
Learning Discrete Structures

with Graph Neural Networks

Andreas Grafberger
Data Analytics and Machine Learning Group

Technical University of Munich
andreas.grafberger@tum.de

April 8, 2020

Abstract

In recent years the field of Graph Neural Networks
has emerged and seen tremendous interest. Es-
pecially as it is now possible to use modern deep
learning methods for graphs, these breakthroughs
opened up a new world of potential applications.
Many popular Graph Neural Networks, however,
rely on existing, high-quality graph information. In
their 2019 paper, Franceschi et al. have presented a
novel model that jointly learns both the parameters
of such a model, as well as the structure of the
graph itself. It achieves state-of-the-art in various
tasks. Unfortunately, their proposed method does
not scale to large graphs as its number of learnable
parameters grows quadratically with the size of the
graph. Our proposed model, which is based on the
Graph Auto-Encoder, modifies their approach and
learns a discrete graph distribution by learning node
embeddings only, therefore scaling linearly instead
of quadratically. We also present two methods to
sparsify our sampled graph effectively. Although
we find that our method does not perform as well
as the method of Franceschi et al., it still might
be useful in cases where their model can not be
used for scalability reasons. We see it as a starting
point for further research into similar models and
draw a comparison to similar work that was recently
published.

1 Introduction

Relational Learning and Graph Neural Network
(GNN) research specifically has seen tremendous in-

terest in the last few years. These new type of neural
networks have been successfully applied to computer
vision problems[12], transductive classification[19],
link prediction[18] and more[1]. However, the per-
formance of these methods strongly depends on the
available graph information, it for examples has
been shown that noise in the input graph can cause
such models to fail or perform poorly.[32] GNNs
like the Graph Attention Network [26] fix some of
these shortcomings but are limited in various ways;
they can not add completely new edges and do
not allow working with discrete distributions over
graphs, which inherently provides more freedom to
the model and comes with other benefits. To fix this
shortcoming, Franceschi et al. recently published
a method called LDS [11], that can simultaneously
learn the parameters of a GNN, as well as a graph
distribution that is optimal for the task at hand. For
each potential edge in a graph, they explicitly learn
a separate, independent Bernoulli parameter that
represents the probability that two nodes should be
connected. To classify the nodes in a graph, during
training and testing, they sample a discrete graph
from the learned graph distribution and feed it to a
GNN that performs a down-stream task like node
classification. Their method not only outperforms
previous approaches that only learn the parameters
of a GNN, but it is more resilient to noisy graphs
or even proves to be useful when no initial graph
structure is available. However, their method does
not scale to large graphs as the number of learn-
able parameters of their graph distribution grows
quadratically with the number of nodes in the graph.
In this work, we build on theirs and propose an al-
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ternative graph distribution that aims to provide
better scalability while still maintaining comparable
performance. The model we present here is based
on the Graph Auto-Encoder [18]. Instead of learning
individual edge probabilities explicitly, we train a
separate GCN that produces node embeddings. The
probability that two nodes should be connected with
an edge is calculated based on the distance of their
calculated embeddings. Moreover, various design
decisions such as how we enforce sparsity in our
graph distribution are explained in detail. We find
that our method does not perform as well as LDS
but still significantly outperforms a standard GCN
for two common graph datasets. We also present
related work that was published in the meantime
and briefly compare it to ours.[4, 31]

2 Background

The following chapter contains a summary of the
notations used throughout this work and a brief
explanation of the machine learning models we build
upon.

2.1 Graph Notation

We refer to a graph G as a tuple (V,E) where
V = {v1, ..., vn} is a set of n nodes and E ⊆ V × V
a set containing (vi, vj) if there exists an edge from
vi to vj . This graph can also be expressed as an
adjacency matrix A ∈ Rn×n. In this work, we
exclusively consider unweighted graphs, therefore
A ∈ {0, 1}n×n and Ai,j = 1 ⇐⇒ (vi, vj) ∈ E and
Ai,j = 0 else. As in [19] and [11] we mostly assume
the graph is undirected, so Ai,j = Aj,i if not other-
wise stated. Whenever there exist features for the
nodes in a graph they are represented as X ∈ Rn×m
where m is the dimensionality of the features. For
node classification problems each node belongs to
exactly one class, represented for the whole graph as
a vector Y ∈ {C1, C2, ...}n. Various models in this
work do not operate on the adjacency matrix A di-
rectly but on a normalized version Ã = D̂−

1
2 ÂD̂−

1
2 .

D ∈ Rn×n is a diagonal matrix representing the
node degree Di,i =

∑
j Ai,j and the operatorˆadds

self-loops to a matrix (Û = U + I). For easier
readability, we continue to differentiate between
A and Ã throughout this work.

2.2 Graph Neural Network

Graph Neural Networks are a family of machine
learning methods that are especially well-suited for
relational learning and there exist a variety of pos-
sible formulations. For an extensive overview the
interested reader is referred to [29] and to [1] for
a thorough motivation. In this work, we concen-
trate on the Graph Convolutional Network (GCN)
as presented in [19] and explain it in the following
part. Fundamentally a GCN comprises simple feed-
forward neural network layers but allows nodes in a
graph to exchange local information (often referred
to as messages). In successive time-steps each node
aggregates (usually the sum or average) the features
of all connected nodes and then applies a linear
transformation to each node’s updated embedding,
followed by a non-linearity (here ReLU). With each
successive time-step information thus gets further
distributed over the graph in a one-hop neighbor-
hood. To perform node classification, in the final
round of message passing the linear transformation
is followed by a softmax to calculate normalized
class probabilities. Note that the parameters for the
linear transformations are shared across all nodes
but usually not over successive time-steps. A GCN
that performs two rounds of this process (also often
referred to as message passing [12]) can be written
as

fw(X,A) = softmax
(
ÃReLU

(
ÃXW (0)

)
W (1)

)
(1)

Before applying each activation function, a learned
bias vector is added to the updated embeddings
but we omit it for easier readability. When using a
GCN to classify nodes in a graph this boils down
to solving the following optimization problem:

w∗ ∈ argmin
w

L (fw(X,A), Y ) (2)

where L is some classification loss like the categori-
cal cross-entropy. Note how no model parameters
operate on the adjacency matrix directly and that
in no way the model can re-weight existing connec-
tions or add new edges. This has the consequence
that the classification performance strongly relies
on high-quality graph information.

2.3 Graph Auto-Encoder

Building on GCNs, [18] introduced two variants
of Graph Auto-Encoders, models that learn latent
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representations for nodes in a graph and that can
also be used as graph generative models. Note that
here we only focus on the deterministic and not the
probabilistic variant of their model. Like a standard
Auto-Encoder [17] their model comprises an encoder
and decoder component. The encoder is a GCN
that learns an embedding for each node and can be
written as

Z = fw(X,A) = ÃReLU
(
ÃXW (0)

)
W (1). (3)

We also omit the bias here for easier readability. It
should be noted that the model does not require
the existence of node features X but the authors
show in their work that incorporating them, if they
are available, greatly improves performance. In
such a case where X is undefined, we can set it
to the identity matrix and XW (0) then amounts
to directly learning an initial embedding for each
node. The task of the decoder is to reconstruct
the original adjacency matrix A by computing a
pairwise dot-product of node embeddings

p (Aij = 1|zi, zj) = σ
(
z>i zj

)
= σ

(
ZZ>

)
ij
. (4)

As the decoder has no learnable parameters we can
optimize a graph distribution simply by searching
for

w∗ ∈ argmin
w

L
(
σ
(
ZZ>

)
, A
)
, Z = fw (X,A) (5)

where L is the weighted binary cross-entropy. New
graphs can be generated with A∗ ∼ Ber

(
ZZ>

)
.

3 Related Work

We already pointed out that the method presented
in [11] suffers from severe scalability problems. But
before we present our potential improvements in
the next section, this one contains a more detailed
explanation of their method and also presents a
selection of the most similar work that has been
published in the time we worked on ours. For com-
pleteness we also advise the reader to look at [15]
and [24] as these publications follow similar ideas
but focus on slightly different problems.

3.1 LDS

In Learning Discrete Structures for Graph Neural
Networks[11] (LDS), Franceschi et al. argue that

in various problem settings, such as when no graph
structure is available or whenever the given graph in-
formation is imperfect, one could rephrase the prob-
lem entirely. Instead of only optimizing a GCN’s
parameters as presented in equation 2, one can de-
fine a distribution over graphs Pθ and minimize a
loss w.r.t. both the parameters of the GCN and
those of the graph distribution together. This can
be expressed as

min
θ

min
w

EA∼Pθ [L (fw(X,A), Y )] . (6)

To optimize this equation they build on their
earlier work [9] and treat the graph distribu-
tion parameters as hyper-parameters in a Bilevel-
Programming [5] problem. Rephrasing equation 6
as a Bilevel problem boils down to splitting the
equation into an inner and outer objective. The
inner objective is responsible for finding GCN pa-
rameters that optimize an empirical training loss
given a fixed graph distribution. The outer objec-
tive aims to optimize the parameters of the graph
distribution by minimizing an empirical loss on a
separate validation set, assuming the parameters
of the GCN are optimal w.r.t. the inner objective.
Written as a formula the final optimization problem
is

min
θ∈HN

EA∼Ber(θ) [Lval (wθ, A)] Outer Problem

s.t. wθ = arg min
w

EA∼Ber(θ)[Ltrain(w,A)]

Inner Problem
(7)

HN is the convex hull of all possible graph distri-
bution parameters. The authors refer to the corre-
sponding training algorithm as structure learning via
hyper-gradient descent. Optimizing the inner prob-
lem can easily be done with any variant of gradient
descent, as during training ∇wtLtrain only depends
on the current set of GCN parameters wt at each
training step t. However, computing ∇θE [Lval] is
a bit more involved.
In each gradient-descent iteration of the inner prob-
lem a new sampled adjacency matrix A ∼ Ber(θ) is
used with the GCN to calculate ∇wtLtrain. When
the final GCN parameters wt are then used to cal-
culate Lval (wt, A), the gradient ∇θE [Lval] has a
dependency on wi for i ∈ {1, ..., t}, so across all
weight updates of w. This setup is very similar to
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Backpropagation Through Time[27] which is used to
train recurrent neural networks. The way this can
be optimized is by unrolling the optimization graph
of the training dynamics of the inner problem, which
can easily be done with modern frameworks for au-
tomatic differentiation. In practice, only the last
λ (which is treated as a regular hyper-parameter)
optimization steps are actually unrolled due to com-
putational limitations. For details on how the au-
thors implement the optimization please refer to
their work.
One more notable design decision is how the term
∇θA is computed, as it appears multiple times
when calculating ∇θE [Lval]. As we sample from
a discrete distribution, calculating that gradient is
non-trivial. Instead of using algorithms like REIN-
FORCE [28] to estimate the gradient, the straight-
through estimator [2] is used by setting ∇θA := I.
This also allows them to not use a differentiable
approximation of the Bernoulli distribution like
the Gumbel-Softmax [14] but to directly use sam-
ples drawn from a discrete Bernoulli distribution.
Although this gradient is biased, this approach al-
lows for easier optimization because the gradients
can just flow directly through the sampling step.
In their experiments Franceschi et al. demonstrate
that LDS outperforms other baselines on a variety
of problems. It shows especially promising results
in scenarios where either no prior graph information
is available or when it is noisy. We will describe
their experiment setup and results later in this work
where we also compare it to ours.

3.2 GRCN

With a similar idea in mind [31] presents the Graph-
Revised Convolutional Network (GRCN). Just like
we do, they separate the GCN responsible for node
classification and the module that predicts the graph
structure. Their graph revision module however
is non-probabilistic and the calculated adjacency
matrix is directly fed into the classification module.
The graph revision module can be written as

GRCN(A,X) = GCNc(Ã,X)

Ã = A+K (GCNg(A,X))
(8)

where GCNc is the GCN for node classification,
GCNg the graph revision module and K(Z) :=
ZZ> some kernel function, here chosen to be the

dot product. Given the computed adjacency matrix
they additionally thin out the graph by only allowing
connections for each node to the k-nearest-neighbors.
This allows them to retrieve a sparse graph and
use sparse matrix operations, making running the
model very efficient. However, gradients only flow
through the non-zero values of the adjacency matrix.
They directly optimize both model components by
minimizing a common training loss only, making
their optimization much easier. For details we refer
to their paper, a short comparison with our model
and LDS follows in the experiments section 6.

3.3 DIAL-GNN

Deep Iterative and Adaptive Learning for Graph
Neural Networks (DIAL-GNN)[4] is another pub-
lication that presents a model that jointly learns
graph structure and embeddings that can be used
for downstream tasks like node classification. Their
two primary contributions are a) treating graph
structure learning as a similarity metric learning
task and b) a novel iterative improvement mech-
anism for more efficient learning. They also use
three different regularization terms to introduce pri-
ors like sparsity or smoothness for the graph. To
predict if nodes i and j with features ~xi, ~xj respec-
tively should be connected, they learn m similarity
measures skij = cos(~wk� ~xi, ~wk� ~xj), k ∈ {1, ...,m}
where ~wk are the learnable parameters. To receive
the final adjacency matrix they average the indi-
vidual similarity scores sij =

∑m
k=1 s

k
ij and then

threshold that result to get a sparse graph via

Aij =

{
sij sij > ε
0 otherwise

. ε is a hyper-parameter. Like GRCN they there-
fore do not follow a probabilistic approach which
allows them to optimize the downstream classifi-
cation GCN and the similarity function by simply
minimizing a (regularized) common classification
loss. For details on the iterative refinement please
see their paper.

4 Our Contribution

Inspired by the GAE explained earlier in 2.3 we mod-
ify LDS by parameterizing the graph distribution
differently. All other elements of the optimization

4



such as the formulation of the Bilevel problem and
using a separate GCN that, given a sampled graph
from our distribution performs the actual down-
stream task of node classification, stay the same.
We still sample from a Bernoulli distribution but
the individual parameters come from a GAE:

Z = GCNg(X,A)

Â ∼ Ber(σ(ZZT ))
(9)

We additionally pre-train GCNg by training it to
reconstruct the original adjacency matrix A. This
makes it easier for the model in the beginning of the
training and allows us to introduce prior knowledge
about the graph structure, if it exists.

Naively using this solution however does not work
and we had to make various modifications which
are explained in the rest of this section.

4.1 Graph Sparsification

Directly using the sampled adjacency matrix Â from
above and feeding it into a downstream classification,
GCN lead to poor results in first experiments. As
the values of the node embeddings and therefore also
their dot product is centered around 0, passing them
through the sigmoid leads to Bernoulli parameters
that are ≈ 0.5 everywhere. Any graph sampled from
that distribution is too connected. We, therefore,
need to sparsify the graph in a post-processing step.
This is also done in similar work like [31, 4]. Initially
we tried adding a power to the Bernoulli parameters,
therefore sampling from

Â ∼ Ber(σ(ZZT )n), n > 2.

All probabilities are thus artificially decreased addi-
tionally. Although this worked in first experiments,
it leads to unstable gradients and we, therefore, dis-
carded it. The two methods that have proven to be
useful are the following:
Learning an affine transformation

Ber(σ(aZZT − b)) for a, b ∈ R

for the node similarity values before passing them
through a sigmoid is one of them. a and b are sim-
ply learned additionally via gradient descent during
training. This way the model can modify the slope
of the sigmoid and by subtracting the offset b, learn
a soft threshold for embedding similarities before

they lead to too large probabilities.
For each node in the graph, we also restrict the
sampled edges to belong to a k-nearest-neighbor
graph based on the node embeddings. We there-
fore only set the entry in the adjacency matrix for
a node-pair to 1 if their learned embeddings are
close. Because we use a straight-through estimator
to calculate gradients for the backwards pass dur-
ing backpropagation, we can still get gradients for
all values in the adjacency matrix although only a
very small portion of them are non-zero. Instead of
restricting samples to be from a k-nearest-neighbor
graph we also tried tuning a hard threshold of the
embedding similarities but that always performed
worse than the former method.

4.2 Model Variants

Now follows a short collection of various tweaks and
model variants that we tried in our experiments
and most of them were exposed as regular hyper-
parameters for our final grid-search. A first modifi-
cation was to add the original adjacency matrix to
our calculated embedding similarity matrix. This
is also done in [31] but as we need the parameters
of the Bernoulli distribution to be between 0 and 1,
they are manually cut off if they are outside that
range.

Z = GCNg(X,A)

Â ∼ Ber(clamp(A+ σ(ZZT )))

We also tried to learn an embedding vector for each
node directly without the use of a GCN but did
not achieve competitive results. We shortly also
experimented with hyperbolic embeddings like ex-
plained in [21] instead of using the euclidian embed-
dings from a GCN but did not achieve satisfactory
results in preliminary experiments and stopped ex-
ploring this direction. We nonetheless think that
this might be a very useful alternative, especially in
combination with Hyperbolic Graph Convolutional
Networks[3]. We also optionally regularize sam-
pled graphs with the different priors in [4]. To
see whether our probabilistic approach also brings
performance benefits compared to directly using
the dense embedding similarity matrix, we tried
disregarding the Bilevel formulation and directly
optimize all components of our model on the train-
ing loss without any separation of inner or outer
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optimization loop. We could not see noteworthy
improvements from that which might also be due to
insufficient exploration and hyper-parameter tuning.
The most time during this project, however, was
spent on hyper-parameter tuning and fiddling with
sensitive parameters that made the more sensitive
Bilevel optimization fail.

5 Implementation Details

We used Pytorch[22] as our automatic differentia-
tion framework and for various data-loading and
feature-processing steps we rely on the Pytorch-
Geometric[8] and Scikit-Learn[23] libraries. Sa-
cred [20] was used for experiment tracking together
with SEML[33] to coordinate running the experi-
ments on the lab’s compute infrastructure.
In Pytorch it is not directly possible to calcu-
late higher-order gradients that span over multiple
weight updates as is necessary for meta-optimization.
As soon as an optimizer in Pytorch updates a mod-
ule’s parameters, the computational graph is in-
terrupted as modules are originally implemented
to be stateful. Also, optimizers in Pytorch imple-
ment their operations on the gradient in a non-
differentiable manner. We use the open-source
package Higher [13] for differentiable implementa-
tions of optimizers and use the Pytorch-Meta[6]
library to use a stateless abstraction of Pytorch
modules. These simple modifications allow us to
perform meta-optimization and could also be im-
plemented without any extra dependencies in a few
lines of code.

6 Experiments

As our main goal is to compare how our proposed
method compares against LDS, we replicate the
setup reported in their paper [11], if not otherwise
stated. We test all methods on a variety of trans-
ductive classification problems.

6.1 Datasets

The primarily used datasets are the graph datasets
Cora and Citeseer, presented in [30]. Both are cita-
tion networks where nodes represent papers and if
one cites the other they are connected by an undi-
rected edge. Node features come as tf-idf features

of the contents of the papers. We also use two
datasets from the UCI Machine Learning Reposi-
tory [7], namely Wine and Breast Cancer. Other
than Franceschi et al. we do not only evaluate on
Cora and Citeseer with the train/ validation/ test
splits used in [30], referred to as Planetoid splits,
but also test all methods on random splits. [25]
has shown that only using Planetoid splits is an
unreliably way to compare models and the danger
that also existing models are overfitted to these
splits is a serious concern. For these two graph
datasets, we also replicate the scenario where edge
information is noisy by randomly removing 25%,
50% and 75% of all edges. It should be noted that
in the official implementation of [11] after remov-
ing edges it can still be enforced that the graph
is connected by re-adding some edges. We do not
do this to simulate more realistic scenarios. Our
results for these edge-deletion experiments might
therefore differ. Dataset statistics are reported be-
low in table 1. Except for Cora and Citeseer with
the Planetoid splits, all experiments are repeated
10 times with different model initializations and
random splits. As the model performance varies
significantly between splits, the same 10 splits are
used for different models. When running models on
the Planetoid splits we use 10 different model initial-
izations. As no prior graph information is available
for the Wine and Breast Cancer datasets, we build a
k-nearest-neighbor graph with k ∈ {10, 20} using a
distance metric ∈ {minkowski, cosine} and report
the best results for each.

6.2 Model Setup

For all models we performed grid-searches for the
most important hyper-parameters and chose the oth-
ers based on recommended values in the literature,
mainly [11], [18] and [19]. Due to computational
restrictions and since our proposed model needs
longer training times than LDS, we, if not otherwise
stated, did not perform a new grid-search for all
dataset configurations but ran one for each model
and always used the parameters that worked best
on average.

GCN

Throughout all experiments, GCNs used for the
classification part share the same hyper-parameters.
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Name Nodes Edges Features Classes Train/Val/Test
Citeseer 3,327 4,732 3,703 6 120/500/1, 000
Cora 2,708 5,429 1,433 7 140/500/1, 000
Wine 178 13 13 3 10/20/158
Cancer 569 30 30 2 10/20/539

Table 1: Dataset Statistics

They are based on [11], [19] and an initial grid-
search. The GCN has 2 layers with a hidden layer
with 16 dimensions. Gradient descent is performed
using Adam[16] and a learning rate of 0.01. The
parameters of the first layer are regularized with
a weight-decay of 0.0005 and throughout the full
network, dropout is used with a keep-probability of
50%. We use early-stopping with a patience of 20.

LDS

The hyper-parameters for our implementation of
LDS are based on the values mentioned in the pa-
per and the original implementation[10]. Due to
computational limitations, we did not perform a
grid-search for all parameter combinations for ev-
ery dataset configuration but base our finally used
parameters on a large initial grid-search that tries
to replicate the one in [10]. The parameters of the
graph distribution are also optimized using stochas-
tic gradient-descent without momentum and we use
an exponentially decaying learning rate of 0.1. We
ran every experiment with a step-size of 10 and 20
for the outer optimization and each report the best
results. Just like in the original paper we also found
that increasing this value leads to better results but
that improvement becomes neglectable for values
larger than 10. To get the final output predictions
we also draw 16 samples from the graph distribution
and average the GCN’s outputs. Just like for the
GCN we also use early-stopping with a patience of
20.

Our Model

Although our model contains significantly less pa-
rameters, the computational graph’s GPU memory
requirement can amount to multiple gigabytes if
the inner problem’s training dynamics are unrolled
over many epochs. Instead of going up to 20 as
done in the LDS paper, we limit it to 15. For the
initial grid search, we experimented with using both

Adam and vanilla SGD without momentum and ulti-
mately chose Adam. Each parameter configuration
was re-run with another random seed 3 times and
the results were averaged. The updates for the GAE
parts use a learning rate of 0.01 whereas the learned
bias and factor use a learning rate of 0.1. Like the
original GAE model, we use a two-layer GCN. In the
grid-search, we found that using dropout decreased
performance but using a weight-decay of 0.0005 was
beneficial. Out of multiple dimensionalities for the
node embeddings we tried, higher values did not
improve performance but actually significantly de-
creased it. Finally, we use a dimensionality of 16
for them. Unlike in [31] we use the cosine similar-
ity instead of the pure dot-product in the decoder
part as it performed slightly better. Adding the
original graph to the predicted adjacency matrix
as done in [31] did not bring the expected improve-
ments but actually performed worse. However, we
still do provide prior information about existing
graph structure to the network by pre-training it
as explained earlier. We also tried using no pre-
training but this seemed to significantly decrease
performance. To sparsify the sampled graph we
use a k-nearest-neighbor graph. We tried multi-
ple values between 5 and even went up to 200 in
our experiments but ultimately try k ∈ {10, 20}
for each dataset configuration and choose the best
performing one. Using a threshold for the cosine
similarity instead did not lead to competitive results.
We also tried multiple combinations of the graph-
priors presented in [4], with either {0, 0.01, 0.001}
for each but it consistently decreased performance.
We, therefore, do not use any additional prior for
the predicted graphs. We also tried to optimize our
models without any Bilevel-formulation just like in
[31, 4] but always achieved worse results than using
the training regime of LDS. To summarize: our final
graph distribution is a GAE that uses the two meth-
ods explained in 4.1 to thin out the graph before
feeding it to the classification GCN. We train it just
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Cora Citeseer Wine Breast Cancer
GCN 81.1± 1.0 68.7± 2.2 95.5± 1.0 93.4± 1.8
LDS 81.2± 1.5 72.5± 1.7 95.6± 1.4 93.7± 1.6
Ours 82.5± 1.3 70.6± 1.3 95.5± 1.9 93.2± 2.0

Table 2: Model Comparison.
Test accuracies are reported for the same 10 random splits. For Wine and Breast Cancer all methods

start with a k-nearest-neighbor graph. Best model for each dataset is shown with bold font.

like LDS but optimize over fewer inner optimization
steps to still be able to train it on a GPU with
limited memory.

6.3 Results

Table 2 shows each methods results on all datasets.
For Cora and Citeseer we report results using ran-
dom splits. The full available graph is used for
these two and the mentioned k-nearest-neighbor
graph for the UCI datasets. We see that, except
for Cora, LDS performs better than a normal GCN
and our proposed method, indicating that the abil-
ity to directly learn individual edges still has an
advantage over calculating them via learned node
embeddings. However, unlike the results reported
in [11], the advantage of using LDS for Wine and
Breast Cancer is far lower, deserving further inves-
tigation. Our method seems to not be useful for
these two datasets. But based on the results on
Cora and Citeseer we see that our method seems
to work as well as we initially hoped at least on
datasets where initial, high-quality graph informa-
tion is available. It was already mentioned that
the model performance strongly depends on the
used splits. We, therefore, compare how a GCN,
LDS and our method compare when using the orig-
inal Planetoid splits in table 3. There we see that

Cora Citeseer
GCN 81.2± 0.4 70.8± 0.5
LDS 84.2± 0.5 74.0± 0.5
Ours 82.4± 1.1 71.8± 1.1

Table 3: Test Accuracies on Planetoid Splits.
Results are averaged for 10 randomly initialized

models.

the overall performance of all models increases, es-
pecially for LDS, by multiple percent in accuracy,

when using Planetoid splits. This finding is on-par
with what is reported in [25] and [31]. LDS ap-
parently is overfitted to the Planetoid splits as are
many other methods. This table again shows that
we perform better than a normal GCN but still do
not completely reach the performance of LDS. The
authors of LDS report that their method is more
robust to deleted edges in the original graph and we,
therefore, perform the same experiment as them. In
figure 1 it is shown how the accuracy on the test
set declines when an increasing number of random
edges in the graphs are deleted. Note that unlike
done in [11] we deliberately do not re-add some of
these edges to enforce that the graph is connected.
As we want to see in this experiment how real-world
noise in the graph might affect the models, we con-
sider our setup more useful. Similar to the findings
in [11] we can see that a GCN is severely affected,
especially when about 75% of edges are removed
the accuracy drops by up to 10%. Similar to what
we saw before, as we perform this experiment using
random instead of Planetoid splits, the improve-
ments of LDS are not as significant as in [11] but
still notable, especially for Citeseer. Our method
performs similar to LDS, for Cora slightly better
and Citeseer slightly worse, however always better
than a normal GCN. It, therefore, indicates that
our method is especially effective when many edges
in a given graph are missing. One further result we
are interested in is whether the edges learned by
our model bear any meaning or can be interpreted
in any useful way. Figure 2 shows how the proba-
bilities that nodes from the same class vs from a
different class evolve in the course of the training
process. We see that our model is far more likely
to predict an edge between two nodes if they come
from the same class. For nodes of different classes,
the mean edge probability is around 5%.
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Figure 1: Edge Deletion Scenario for Cora and Citeseer.
We show the decline of each model’s test set accuracy for an increasing percentages of random edges that
are removed from the graph. For each percentage we re-run each model with 10 random dataset splits

and parameter initializations.
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Figure 2: Edge Probability Analysis for a randomly
picked training run on Cora. Edges between nodes

from different classes are on-average attributed
much lower probabilities than edges between nodes

from the same class.

Finally, we would like to show how our method
compares to the two methods presented before,
namely GRCN3.2 and DIAL-GNN3.3. As these
two methods were published while we worked on
ours and as for neither a public implementation
exists at the time of writing, we could not compare
them in detail. It has to be mentioned though that
both GRCN as well as DIAL-GNN, according to
their respective experiments, outperform LDS and
our method on all of our benchmark datasets with-
out exception. The specific results reported in these
papers are listed in table 4. Especially since GRCN
is very similar to our method or variations we tried,
we suspect that their simpler, non-probabilistic ap-

proach and simpler optimization is mainly responsi-
ble for these results. However, this deserves further
analysis and proper ablation studies are vital.

7 Conclusion

Based on the work of Franceschi et al. we explain
why basic GNNs like the GCN struggle when no
graph is available for a problem or when an existing
graph is noisy or incomplete. It is demonstrated why
their method LDS does not scale to large graphs
and we present a modification of their approach that
scales better to large graphs as the number of its
parameters does not depend on the size of the graph.
Multiple variants of our method are proposed and
special emphasis is put on how a predicted graph
can be sparsified for better performance. In our
experiments on different datasets, we show that our
method does not generally perform better than LDS
but that it still performs better than a simple GCN
on a variety of tasks. Albeit providing better scala-
bility we were still not able to run our method on
large datasets due to the computationally expen-
sive optimization procedure we copy from LDS. In
our result analysis, we also show how two similar
approaches that were recently published that are
inherently easier to optimize outperform both our
method and LDS. We think that future could should
be to compare these methods with ours and perform
proper ablation studies to see which components
of the different models and optimization methods

9



Cora Citeseer
Planetoid Random Planetoid Random

Ours 82.4± 1.1 82.5± 1.3 71.8± 1.1 70.6± 1.3
LDS 84.2± 0.5 81.2± 1.5 74.0± 0.5 72.5± 1.7
[31] N/A 83.9± 1.7 N/A 72.6± 1.3
[4] 84.5± 0.3 N/A 74.1± 0.2 N/A

Table 4: Comparison with Similar Methods
Test Accuracies are taken from the respective papers and our experiments. Results are shown separately

for different splits.

prove to be most useful.
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