News Sentiment Tracker
A Targeted Opinion Mining Interface

Andrew Wesson | Prashanth Rao

1 Introduction

More than 2.5 billion people read online or print
news articles on a near-daily basis. Unlike more
ephemeral sources of information such as Tweets
or videos, the effect of strongly positive or
negative news coverage of a target can linger for
long periods after a triggering event. Considering
this unparalleled global reach and scale of news
organizations, the ability to gain insights into
large-scale shifts in perception of the press
towards a target can have significant commercial
implications, and empower relevant
decision-making personnel in organizations and
governments.

Prior work in this area has focused on large-scale
news sentiment modelling [1] or sentiment
analysis of financial news articles [2] using binary
classification. To our knowledge, there does not
currently exist a system that can efficiently target
the coverage of specific entities within an article’s
content for fine-grained sentiment.

2 Problem Statement

Our goal in this project is to build a commercially
applicable automated system using NLP that can
perform end-to-end data processing and
fine-grained sentiment analysis on news articles
to identify key events that trigger a change in
sentiment toward a target entity. We aim to
provide an in-depth breakdown of temporal
sentiment trends and provide aggregated
information to assist relevant personnel (in
marketing, public relations or product
management) in taking appropriate action during
a period of rapid shift in sentiment.

One of the main challenges in building such a
system is that performing a targeted search of
keyword queries can be very expensive over
several hundreds of thousands of news articles
(each thousands of words long). Once relevant

articles are identified, it also becomes necessary
to narrow down on the exact mentions of the
target entity within the article itself, following
which a sentiment analysis towards the target
can be performed.

There are also numerous challenges from an NLP
perspective, such as dealing with long, complex
sentence structures and ambiguous usage of
words (for e.g. words with multiple meanings).
News articles are known to wildly vary in their
perception of a target (within an article itself), so a
simple binary sentiment classification of the
whole article (or just its headline) would not
provide sufficient depth in meaning to the end
user.

3 Data Science Pipeline

To address the above challenges, we divide our
data science workflow into three main stages, as
shown below.

Big Data Pipeline
e Scraper + News API

Data
Collection

D e Indexed storage

e Fastretrieval of relevant news article

Storage
9 indices

-

S e Boolean logic for combining search
. e Tools: PySpark, Lark

-

- -

Segmentation NLP Pipeline

] o e Extract relevant sentences from

_ content

Sentiment e Sentiment analysis (per-sentence)

L g e Aggregate sentiment and similarity to
track large-scale shifts
Aggregation

-
. User Interface

e Tools: spaCy, fastText, Flair

e Deploy sentiment time series as a
web-based app

4 e Tools: Plotly Dash, Heroku

Visualization
Ul

Figure 1: Data science pipeline

3.1 Big Data Pipeline

Our big data pipeline is designed to enable
efficient search of the news article database for

CMPT 733 Project Report

relevant content pertaining to our query. To do
this, we build an inverted index to map each
query’s words to the articles they appear in, and
a query engine to enable Boolean searches using
this index.

3.1.1 Ingestion

As documents get added to the system, we
perform some preprocessing in Apache Spark in
order to prepare the documents for efficient
search. Currently, we store the results of this
preprocessing in HDFS, separate from the actual
documents themselves. We perform some work
upon document ingestion to reduce the amount
of work needed to perform the search.

3.1.2 Query Engine

Single-term queries are not powerful enough to
properly retrieve documents which pertain to a
specific entity. However, by combining these
single-term queries with union, intersection, and
difference operators, we can create much more
useful queries. To facilitate this, we built a query
language that allows arbitrarily long combinations
of queries using binary operators. We also allow
for queries to specify a minimum number of
occurrences of a word, rather than retrieving any
articles with a non-zero count. We parse the
query into a binary expression tree, which we
then use to generate Spark code to execute the

query.

Trump China china porcelain

Figure 2: Expression tree for the query “Trump &
China - (china | porcelain)”

Queries are performed in batches, multiple
queries can be executed at once. The results of
the query are returned as a JSON object, with the
query strings as keys and the resulting list of
indices as values.

3.2 NLP Pipeline

Our NLP pipeline is applied on only the (relatively
small) subset of articles that directly mention our
target query. To do this, we utilize the article IDs
identified from the prior big data pipeline and
focus on just the relevant articles (for a particular
query) for sentiment analysis.

3.2.1 Sentence segmentation

In this stage, we parse the news article content
(which can be thousands of words long) and
extract only those sentences that explicitly
mention the target query (in part or in full). This is
done by identifying “sentence boundaries” using
a dependency parse from a trained statistical
parser. In our case, we apply the sentence
boundary detection model from the NLP library

spaCy.

For example, to track mentions of “United
Airlines”, we extract not only those sentences
which mention the exact string itself, but also
those that mention just the word “United”. In
case of a specific product, such as “Samsung
Galaxy Note”, once we identify the correct
articles that mention this product, we also extract
sentences that mention just “Samsung”, or
“Note”.

3.2.2 Sentiment analysis

A trained sentiment analysis model is then run on
each sentence of the content pertaining to the
target. To train our sentiment model, we take into
account the fact that in many cases, news
coverage towards a target topic can express
fine-grained sentiment. Rather than treating this
as a binary sentiment classification task, our
approach uses 5-class sentiment prediction - the
sentiment of each sentence is predicted on a
scale of 1 to 5, where 1 is very negative and 5 is
very positive.

To make aggregating the scores easier, and to
compare the scores across different models more
effectively, we normalize the sentiment scores to
be continuous in the range [-1, 1], with -1 being
very negative and +1 being very positive.
Consider the below example snippet from our
dataset, pertaining to the target entity Liberia.

https://spacy.io/usage/spacy-101

CMPT 733 Project Report

‘Monday, Michelle Obama and her daughters,
Sasha and Malia, begin their lightning tour of
Liberia and Morocco to promote the Let Girls
Learn initiative.” ‘Massa David, a ftall, lanky
15-year-old in the sixth grade, would like to take
Obama on a tour to show her some of the
problems with Liberia's infrastructure.’ ‘Poverty,
sexual exploitation both in and outside Liberian
schools and teen pregnancy are major factors
that stop girls from completing their education in
Liberia.’

In the above example, each sentence contains a
different level of sentiment towards Liberia. Our
hope is that a per-sentence scoring approach is
better able to disambiguate the overall perception
of targets in cases such as these.

3.2.3 Sentiment aggregation

The stored sentiment values (per sentence) for
each article are then aggregated in two separate
ways per article:

e Mean sentiment value (i.e. “score”)
e Mean sentiment standard deviation

Articles that possess a high score but a low
deviation are likely more polar in their coverage
towards a target. On the other hand, articles that
possess both high score and high deviation are
likely mixed in sentiment towards a target [3].

In periods of large-scale shifts in sentiment
towards a target (e.g. in case of a scandal or
controversy), there might be multiple articles
written by many publications towards the target
on the same day. Our system performs an
additional aggregation step in such cases, taking
the average of all mean scores and deviations for
that particular day. All the computed aggregated
scores and deviations are stored as a time series
(sampled daily).

3.2.4 Similarity aggregation

An additional step in our NLP pipeline is to
compute the similarity aggregation between
publications. “Similarity” in this case is defined in
terms of content vocabulary and keywords
pertaining to a target. To do this, we featurize the
extracted content using a Term
Frequency-Inverse Document Frequency (TF-IDF)

method. This gives us feature vectors containing
the keywords of the relevant content pertaining to
the target.

Using the TF-IDF matrix, we calculate the
pairwise cosine distances in the form of a
distance matrix. This tells us how similar or
different the coverage of the target is, based on
its content. Articles that cover very similar
content (using similar keywords) towards a target
entity have smaller pairwise cosine distances,
while articles that cover very different topics can
have larger pairwise cosine distances. These
distances are then aggregated as mean distances
per publication.

3.3 User Interface

To make the results intuitive to the end user, we
designed an interactive web-based Ul that allows
users to inspect the time series and coverage
distribution more meaningfully. The sentiment
analysis results are output to a tabular format and
visualized on a dashboard. An example use case
of our dashboard is shown here.

The primary goal of the dashboard is to allow the
end user to narrow down on specific periods of
heightened news coverage (either positive or
negative). In case of a high-profile event such as
a scandal, it can be very useful to be able to
focus on specific news content from a wide range
of publications so that appropriate
countermeasures can be taken by a person or
organization to alleviate the situation.

4 Methodology

Our application uses the following libraries from
the Python big data/data science ecosystem.

e PySpark, Lark: Data indexing/reduction
Pandas: Data cleaning and analysis
spaCy: Sentence segmentation and
lemmatization

e TextBlob, fastText and Flair: Sentiment
analysis
Matplotlib and Plotly: Visualization
Plotly Dash: Ul dashboard
Heroku: Web app deployment

https://nlp-733-dash.herokuapp.com/

CMPT 733 Project Report

4.1 Exploratory Data Analysis

We used the “All the News” dataset (obtained
from Kaggle) to build our NLP modules and train
our sentiment classifier. This dataset contains
143,000 news articles from sixteen U.S.
publications, the breakdown of which is shown in
the below chart (the numbers next to the chart
indicate percentage values of article counts per
publication).

12.1

[Breitbart
[New York Post
1 NPR
16.3 E—j e
[Reuters
[T Buzzfeed News
[0 Los Angeles Times
1.6 [Guardian
83 mm Business Insider
3.0] New York Times
_— 38 - Atla.ntlc .
[0 National Review
[Talking Points Memo
[Fox News
=3 Verge
5.9 5.3 [Vox

5.5

Figure 3: Article breakdown per publication

Most articles in this dataset are from the years
2014-2017, shown below.

Number of articles per year in dataset

80000
70000
60000
50000
40000
30000
20000
10000
0 l [

10\6 100 10\" 10\'\ 10'\—5 10\1 16\\’ 1Q\B 790“ 1006 1@" 10““ 1@‘5 10@ 1006 1000
Year

Article Count

Figure 4: Article counts per year

The median article length is below 400 words in
the case of Talking Points Memo and Business
Insider. On the other hand, publications like Vox
and New York Times’ median length exceed
1,000 words.

Publication

600 1000 1200 1400 1600
Median article length (words)

Figure 5: Median article length (words)

4.2 Data Indexing and Retrieval System

4.2.1 Inverted Indexing

In order to enable efficient document retrieval, we
want to be able to identify which documents
contain specific words. This is done in our
system using Apache Spark. For each document
in the dataset, we tokenize the document and
count the number of occurrences of each token.
Then, we pivot each of the individual word counts
into a key-value pair such that the word is the
key, and the document and the count are the
value.

We then use PySpark aggregation operations to
group the entries by word, and combine all of the
counts and IDs for documents in which the word
occurs into a single row of the resulting RDD.
This allows for much more efficient retrieval of the
IDs of all documents containing a given word
compared to doing a text search on every single
document.

4.2.2 Query Parsing

To parse our boolean queries, we used the
parsing library Lark. We designed a simple
context-free grammar to parse queries into binary
expression trees in a left-associative fashion, with
parentheses available to bypass this associativity.
Using Lark, we convert queries into a parse tree,
which we can then traverse to generate the Spark
code needed to execute the query. Lark allows
us to parse the expressions very efficiently with
relatively low programming effort. Of all the
context-free grammar parsing libraries we
considered, it seemed to be the easiest to use
without sacrificing performance.

https://www.kaggle.com/snapcrack/all-the-news
https://github.com/lark-parser/lark

CMPT 733 Project Report

4.2.3 Query Execution

To execute a query, there are two major phases.
The first is to fetch the index entries for each term
in the query (regardless of what operators are
applied to them) and to re-invert the index. The
result is, for each article containing at least one of
the search terms, a bag of words containing the
number of occurrences of each search term
within the article.

Then, we transform the query into a predicate
that, when given the result of the previous step,
returns “true” if the article satisfies the query. To
do this, we use Lark’s built-in Transformer class
to convert the expression tree to a predicate
function. For the leaves of the tree (terms), we
create a function that checks that the term occurs
at least once (or in the case of greater-than
searches, more than the specified number of
times). Then, for each of the binary operators, we
evaluate the two child functions and join their
result with the Python equivalent of the specified
operator.

Table 1: Query to Python Operator Conversions

Query Operator Python Operator
& and
| or
- and not

The result is a single predicate function that we
then pass to Spark to filter out articles that match
the query. Then, we collect the IDs of all the
articles satisfying the query, and return JSON
objects of the queries/indices as our result.

4.3 Sentence Segmentation

After obtaining the indexing system’s output to
narrow down our search to just the relevant news
articles, we utilized spaCy to break each article’s
content into its constituent sentences. As part of
this step, we also used regular expressions to
clean “dirty” text in each sentence, i.e. unwanted
symbols and artefacts from the scraping process
that could confuse our sentiment model
downstream. In our current implementation, we
did observe some cases where both the sentence
boundaries and text cleaning were not perfect.

We identified ways to improve both using
rule-based approaches, but did not pursue them
in this project due to time constraints.

4.4 Duplicate Article Removal

A common occurrence in news publications is
that an article written by a global news agency
such as Reuters is reused (with permission) by
other news publications. This can lead to multiple
occurrences of duplicate articles published on
different days, that cover the same topic using
the same (or very similar) words. To avoid these
articles skewing our mean sentiment scoring
metric, we implemented an NLP routine that
checks for duplicate content after the relevant
sentences pertaining to the target are extracted.
We used spaCy to lemmatize (i.e. reduce to its
root form) the extracted sentences for each
article. The lemmatization step also removes stop
words (common words that don’t add value) and
punctuation, so minor changes in article syntax
are ignored during comparison.

4.5 Sentiment Analysis

4.5.1 Choice of sentiment model

Since modelling fine-grained sentiment of
targeted news content is quite a complex task,
we were mindful about the inadequacies of
typical rule-based sentiment models. To more
rigorously analyze our framework’s performance,
we implemented and compared three separate
sentiment analysis models.

e TextBlob: A rule-based approach that
utilizes “polar” words from a pre-existing
corpus, and considers linguistic aspects
such as negation, modifiers etc. to
deduce a sentence’s overall sentiment.

e fastText: Uses pre-trained word
embeddings to fine-tune a classifier on a
5-class sentiment dataset (Yelp reviews)
and make per-sentence sentiment
predictions on our news content.

e Flair: Uses a sophisticated pre-trained
neural language model with contextual
word and string embeddings, that is
fine-tuned on the same Yelp 5-class

https://lark-parser.readthedocs.io/en/latest/classes/#transformers-visitors
https://spacy.io/

CMPT 733 Project Report

review dataset and then used to make
predictions on our news data.

The three approaches above are in increasing
order of complexity and run time - both TextBlob
and fastText run on CPU, but the Flair model
requires a GPU with a significant amount of
memory - all our experiments with Flair used an
NVIDIA P100 GPU with 16 GB of memory.

4.5.2 Sentiment model training

The Yelp 5-class public dataset [4] is a very large
dataset containing reviews of ratings (5.8 million
of them) on a scale of 1 to 5. For the purposes of
model training, we take the star-rating to be
similar in nature to sentiment, since a low
star-rating corresponds to a low opinion of a
restaurant or person.

To train our fastText model, we used the
command line utility provided by Facebook
Research (the developers of fastText) [5] along
with a preprocessed version of the labelled Yelp
review data. Numerous hyperparameters were
tried and the model with the best accuracy was
chosen to run our predictions on the news
dataset.

The Flair sentiment classifier was trained using a
modification to the original source provided by
Zalando research labs (the makers of the Flair
NLP library) [6]. Flair allows the use of “stacked”
embeddings, where word embeddings from a
pre-trained model (such as GloVe, BERT or
ELMo) can be concatenated with Flair's own
contextual string embeddings.

In our experiments, we stacked ELMo [7] word
embeddings (by Peters et al.) with Flair’s forward
and backward string embeddings, which we
believe is highly relevant to news data. This is
because both ELMo and Flair's bidirectional
LSTMs were pre-trained on a large news text
corpus, so we expect that the language models
already encode a significant amount of
knowledge from the typical vocabulary seen in
news articles.

4.6 Visualization

4.6.1 Time series plots

The mean scores and deviation from each
sentiment model are obtained as a sparse time
series, which we visualize as shown below.

Sentiment scores and deviations with time for "United Airlines"

< [T

2014-01 201407 2015-01 2015-07 2016-01 2016-07 2017-01 2017-07

c
o
&
2os-
@
Q
c 04
o
]
=202
! i |

2014-01 2014-07 2015-01 2015-07 2016-01 2016-07 2017-01 2017-07
Date

Figure 6: Mean sentiment score/deviation time
series for the query “United Airlines”

Mean Score
o
>

-15.0

-12.5

-10.0

-1.5

-5.0

Article Count

2.5

-0.0

In figure 6, the top plot shows the mean
sentiment score on each day in the period
2014-2017, for the query “United Airlines”. The
lower plot shows the mean deviation over the
same period. There is a period of increased
activity (i.e. high density of bars) in the early part
of 2017, and the red line shows a spike in the
number of articles written about “United Airlines”
during this period.

To further inspect these trends, we convert the
above 1D time series to a 2D calendar heat map.

Calendar map of aggregated sentiment for United Airlines

won oz o=

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

[| M
o a
| | | | w
] F
u
]] m s
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
| | u | 1} M
u H N u
[| i N | |] w
HE
B ma " B] m F
| | u u i
|| u u 5
Jan Feb Mar Apr Jul Aug Sep Oct Nov Dec
| H = Em M
u
%
|]
H EEE F

Jan Feb Marrr

Figure 7: Calendar heat map for “United Airlines”

Jul Aug Sep Oct Nov Dec

The calendar heat map allows us to more
effectively visualize the distribution of strongly

https://fasttext.cc/docs/en/supervised-tutorial.html

CMPT 733 Project Report

positive/negative sentiment through a tiled
representation spread over a multi-year period.
On each day, red squares show strongly negative
sentiment while blue squares show strongly
positive sentiment (aggregated by the mean value
for that day). Based on the above plot, it is clear
that the large cluster of red squares in early 2017
means there was a significant amount of negative
press coverage of United Airlines during this
period.

4.6.2 Distribution plots

We also visualize how the positive and negative
coverage towards a target are distributed across
publications. This is done by separating the
extracted content based on its sentiment score
and then grouping by publication.

CNN ——.
New York Post -
Reuters -
Business Insider -
NPR -
New York Times - —
Guardian -k
Los Angeles Times I —
Breitbart - ——
Buzzfeed News -l —
Atlantic -l
National Review Il
Fox News ™™
Talking Points Memo ™=
0 5 10 15 20 25 30

Figure 8: Breakdown of article count per publication

I Negative
B Positive

In figure 8, it is clear that CNN, New York Post
and Reuters wrote the most negative content
about United Airlines, whereas Fox news barely
wrote about United Airlines at all.

To judge the similarity between each publication
(based on keywords used), we use the computed
TF-IDF and mean cosine distance matrices as
described in section 3.2.4 and transform them to
Euclidean space.

Figure 9 shows these similarities between
publications that wrote about “United Airlines”.
The bubble size indicates the number of articles
written while the distance between the bubbles
indicates how similar or dissimilar they are in
terms of word features. For this example, Atlantic,
Fox News and Talking Points Memo are the
furthest from the rest - however, this could
primarily be because there were very few articles
written by these publications in favor of or against
United Airlines in our dataset.

Jalking Points Memo

£ Arﬂeles Times
(S Relters hal Review
oy w York Times
‘mess Insider @«l
@R @0ox News

@tlant\c

York Post
ped News

Figure 9: Mean cosine distance per publication

Other observations from the plot agree with logic
- Buzzfeed and New York post are spaced close
together, as one might expect. Both Reuters and
New York Times wrote a similar number of
articles as did New York Post, but they are both
positioned relatively far from New York Post,
meaning that New York Post’s content on United
Airlines was different (in terms of the language
used or topics covered). Following an initial
inspection of these similarities, a deeper
inspection of the actual content written by each
publication can be done as required.

4.7 Interactive Dashboard

We developed a Ul dashboard using Plotly Dash
to facilitate easy and interactive exploration of
sentiment trends per query of interest. Dash is an
interactive Python framework for building web
applications, written on top of Flask, Plotly.js
(which itself is built on top of D3.js) and React.js.
By combining the speed and flexibility of ReactJS
to manage the flow of data with the power and
aesthetics of Plotly/D3, Dash combines the best
of both worlds and greatly increases the ease
with which data scientists can build complex
visualizations.

Once we designed an interactive Ul with the
relevant visualizations for news sentiment data
exploration, we deployed it as a web application
using Heroku, a container-based cloud platform
as a service (PaaS) framework that helps users
manage, distribute and scale their applications.
An example use case for our app is shown here.
We believe that the combination of Plotly Dash

https://dash.plot.ly/introduction
https://www.heroku.com/about
https://nlp-733-dash.herokuapp.com/

CMPT 733 Project Report

and Heroku make our system easily deployable
for a range of use cases, and also convenient to
update and maintain for custom tasks.

4.8 Enhancements for Future Versions

In this section we highlight a few features that we
were unable to implement in this project, for time
and cost reasons.

4.8.1 Data input for continuous news feed

There are numerous news APlIs available for a fee
that can automatically pipe the latest relevant
news articles pertaining to a target topic (for
example newsapi.org). To maintain data quality
which s of paramount importance, it makes
sense to rely on a specialized tool optimized to
provide curated, targeted news feeds at scale,
and use it to feed data to our sentiment tracking
system.

4.8.2 Database management

The current implementation of our system uses
PySpark HDFS and structured output formats
(CSV) during the transfer of data from the retrieval
system to the NLP pipeline. To facilitate efficient
retrieval and storage of data downstream and to
streamline the deployment of the visualizations to
a remote web server, we would expect to utilize
database systems. The below figure shows an
example end-to-end pipeline.

Collection Retrieval Sentiment Aggregation Deployment

News API + User-specified Database Interactive
database queries storage web-based Ul

Figure 10: Layout of end-to-end pipeline

For the upstream data handling steps (indexing
and retrieval), a NoSQL database system (such
as Cassandra or MongoDB) would be apt. The
downstream step after aggregation could involve
data storage through SQLite (assuming the
condensed output is small enough to be stored in
memory). In case the output is sufficiently large, a
production-grade PostgreSQL service can be
utilized. Web deployment services such as
Heroku provide ready-to-use production-grade
database systems that can power significant

amounts of data transfer efficiently, so we
foresee our application being scaled up via this
framework.

4.8.3 Dynamic updating

Our current system considers the entire
time-span for which we have data (from the
beginning of time). In a fully productionized
system, we expect that we would have our data
and visualization pipelines use past-computed
results and only update the database dynamically
with any new data that comes in. The dashboard
would also be plugged into this dynamically
updating database, and reflect the trends of any
new data on a daily basis. This would greatly
reduce the computation time for the sentiment
prediction since on average, only a few hundred
articles (at most) would arrive per target on a
particular day.

5 Evaluation

We devised a two-pronged approach to evaluate
the performance of our NLP pipeline.

e A guantitative measurement of sentiment
classification accuracy and F1-scores on
the Yelp review test set.

e A qualitative judgment of temporal
sentiment trends using queries from
real-world scandals/controversies.

5.0.1 Quantitative evaluation of fastText

We ran multiple instances of sentiment model
training using fastText, testing a variety of
hyperparameters. The biggest benefit of training
using fastText is its speed - it can be trained on
millions of samples on multiple CPU threads
(within minutes). Some of our experiments and
their impact on test F1-scores for the Yelp
5-class dataset are shown below.

Table 2: fastText training experiments

Training Pretrained Test F1
samples Max LR | Epochs model score
40k 0.25 5 None 0.55
40k 0.25 10 None 0.56
40k 0.25 5 wiki-news 0.60
5.8m 0.1 5 None 0.64

https://newsapi.org/

CMPT 733 Project Report

When comparing test F1-scores across different
cases, the size of the test set was reduced (after
stratification) to 10% that of the training set. For
all training scenarios using fastText, bigram
models, i.e. models that consider pairs of
neighbouring words for the input vectors, were
found to give better F1-scores than unigram
models. It was also observed that the model was
overfitting when running for many epochs, so the
maximum epochs were capped at 5 for most
runs. Using a pre-trained model (wiki-news) was
not that beneficial in improving the model
accuracy, whereas increasing the number of
training samples to the full Yelp dataset had a
bigger impact on F1-scores and accuracy.

5.0.2 Quantitative evaluation of Flair

When training our Flair sentiment model, we were
limited by the framework’s inability to read in very
large text inputs. This is because deep learning
text classifiers are typically limited by the amount
of text that can fit into GPU memory. Our
experiments with different batch sizes did not
yield much success, hence we opted to train the
Flair models on a small subset of the Yelp review
dataset.

Table 3: Flair training experiments

Training H/qden Epochs | Embeddings Test F1
samples size score
8k 512 10 ELMo + Flair 0.55

40k 512 25 ELMo + Flair 0.51

Just like in the fastText case, the size of the test
set was scaled (and stratified) to be 10% of the
training set in all our experiments for a fair
comparison across cases. We used 512 hidden
layer dimensions and stacked pre-trained
embeddings of ELMo + Flair (forward and
backward) for all experiments. Training the Flair
model with 40k training samples for 25 epochs
took around 3 hours on an NVIDIA P100 GPU.

With Flair, we observed that the model
significantly underfit the training data (i.e. the
validation errors were still reasonably high) even
after 25 epochs. Due to hardware and time
constraints, we were unable to train for more
epochs. Our expectation is that it could take up
to 100 epochs to achieve improved F1-scores

with Flair that are comparable with those from
fastText. In addition, we believe that the larger
the number of training samples we are able to fit
into GPU memory, the more the model can
“learn” from the 5-class training set to provide
better fine-grained sentiment predictions on our
news dataset.

5.0.3 Qualitative evaluation of all models

We also performed a cross-domain qualitative
evaluation of our models by inspecting how well
they identified known scandals or controversies.
We chose multiple queries across domains
(people, organizations, products, nations) and
observed that the Flair sentiment model
performed the best across all scenarios.

Jan Feb Mar Apr May jun Jul Aug Sep Oct Nov Dec

Jan Feb Jul Aug Sep Oct Nov Dec

Figure 11: Calendar maps of Textblob (top), fastText
(middle) and Flair (bottom) for “United Airlines”

The above plot shows a comparison of the
predicted mean sentiment scores (dark red is -1,
dark blue is +1) for the query “United Airlines” in
2017. The TextBlob model performed very poorly
and failed to identify negative sentiment trends
over a broad range of topics, mainly because it
was unable to deal with even mild sentiment
swings or ambiguous vocabulary within the
extracted content. The individual positive and
negative per-sentence scores with TextBlob were
greatly diluted when aggregated, making this
approach unsuitable for our purpose.

In the case of fastText, the broad trends were
well captured, but the model had a tendency to
“flip” the mean scores (between positive and
negative) abruptly between days. We interpret
this as the model’s inability to disambiguate
words that have multiple meanings, or rare,
unseen words in the news dataset. This caused
wild swings in daily mean sentiment scores,

CMPT 733 Project Report

reducing the model’s reliability across a range of
scenarios.

In general, we were most satisfied with our Flair
model’s ability to accurately capture the below
scenarios in which there were significant amounts
of negative press coverage:

2014: Ebola epidemic in Liberia
2016: “Lochtegate” controversy with the
American swimmer Ryan Lochte

e 2016: Drug pricing controversies with the
American CEO Martin Shkreli
2016: Samsung Galaxy Note battery fires
2017: Airline manhandling and dress code
controversies with United Airlines

Appendix A shows some examples of sentiment
trends captured by our best model for the above
real-world scenarios. By making predictions that
correspond with our expectations from reality, we
believe that our model does capture real-world
phenomena with sufficient accuracy, with room
for improvement given adequate training data
and resources.

6 Data Product

We envisage our application as a customizable
product that scales with larger and larger news
datasets. Because data indexing and sentiment
prediction are expensive steps, our intention is to
deploy the application as a background service
(on the end user’s servers) that continually scans
a news database for sharp changes in sentiment
towards a list of targets. The targets themselves
are not fixed - they can be customized by the end
user to fit their needs.

With regard to usage, our Ul/dashboard is
designed to allow the end user to explore
pre-decided search queries for temporal trends.
The time series plots can be interactively probed
to dig deeper into metrics such as per-day article
counts and most polar (positive or negative)
headlines toward a target on a particular day. The
Ul also provides distribution plots showing which
publications wrote the most negative content
towards the target, and a similarity distance plot
to learn at a glance which publications are similar
in terms of content written. We also implemented
a dynamic data table that can narrow down on

specific time periods of interest per target - the
user can update a slider bar to dynamically filter
relevant content pertaining to a target within a
specific date range.

We believe our targeted news sentiment tracking
system is an intuitive tool to help break down the
coverage towards entities of interest in a
user-friendly and customizable way for numerous
real-world scenarios.

7 Lessons Learned

Through our work in this project, we ventured
deep into the implementation aspects of data
indexing and retrieval, data cleaning, text
processing, sentiment analysis and interactive
visualization. We learned a great deal about
end-to-end product development towards a
specific end goal.

During the development of our data indexing and
retrieval system, we learned about and applied
concepts from parsing, such as context-free
grammars, to effectively index queries pertaining
to specific keywords. We realized that even
curated content from news articles can be very
messy for NLP purposes, and experimented with
numerous text cleaning and sentence
segmentation techniques to improve our
sentiment predictions. We spent significant time
fine-tuning our sentiment analysis pipeline and
applied some of the latest developments in NLP,
deep learning and language modelling to achieve
realistic results.

We also conceptualized novel visualization
techniques for viewing sentiment as a time series
and brainstormed about how to effectively
communicate our findings to the end user in an
intuitive manner. By building and deploying an
interactive Ul as a web service, we believe that
we made significant strides in our thought
process as data scientists.

8 Summary

In this project, we developed an end-to-end
NLP-based application that automatically detects
fine-grained sentiment towards a specific target
query (such as a person, event, product or
organization) in news articles. We applied novel

10

https://nlp-733-dash.herokuapp.com/

CMPT 733 Project Report

combinations of techniques from big data, NLP
and time series visualization to provide the end
user targeted insights into press coverage on a
specific entity. Our system was shown to identify
large-scale shifts in sentiment in news coverage
towards a target reliably, and we foresee
numerous commercial applications that could
benefit from this approach and help guide the
relevant personnel in making data-driven
decisions.

References

[1] Godbole, Namrata & Srinivasaiah, Manjunath & Skiena,
Steven. (2007). Large-Scale Sentiment Analysis for News
and Blogs. ICWSM 2007 - International Conference on
Weblogs and Social Media.

[2] Krishnamoorthy, S. Knowl Inf Syst (2018) 56: 373.
https://doi.org/10.1007/s10115-017-1134-1

[8] Google Cloud Natural Language API, Interpreting
aspect-based sentiment analysis.

[4] Yelp Open Dataset. https://www.yelp.com/dataset

[5] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of
Tricks for Efficient Text Classification

[6] Contextual String Embeddings for Sequence Labeling.
Alan Akbik, Duncan Blythe and Roland Vollgraf. 27th
International Conference on Computational Linguistics,
COLING 2018.

[7]1 M. E. Peters, M. Neumann, M. lyyer, M. Gardner, C.
Clark, K. Lee, and L. Zettlemoyer. Deep contextualized
word representations. NAACL, 2018.

11

https://icwsm.org/papers/3--Godbole-Srinivasaiah-Skiena.pdf
https://icwsm.org/papers/3--Godbole-Srinivasaiah-Skiena.pdf
https://doi.org/10.1007/s10115-017-1134-1
https://cloud.google.com/natural-language/docs/basics#interpreting_sentiment_analysis_values
https://cloud.google.com/natural-language/docs/basics#interpreting_sentiment_analysis_values
https://www.yelp.com/dataset
https://arxiv.org/abs/1607.01759
https://arxiv.org/abs/1607.01759
https://arxiv.org/abs/1607.01759
https://aclanthology.coli.uni-saarland.de/papers/C18-1139/c18-1139
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1802.05365

CMPT 733 Project Report

Appendix A

In this section we display some results showcasing how our system correctly identifies past real-world
controversies or scandals purely through a textual analysis of news coverage.

Example Case 1: Ryan Lochte “Lochtegate”, 2016

The “Lochtegate” scandal of 2016 is a good example to test our system. When Ryan Lochte was called out
by the press for his antics during the 2016 Rio Olympics, there was a sharp spike in negative coverage (red
boxes) in the period from August-September 2016. However, when his PR team eventually tried to “fix” his
reputation by having him appear on the show “Dancing with the Stars”, there was an upsurge in positive
content on Lochte around October. Both these events are well captured by our application. The below
plots allow us to track the sentiment trends, deviation as well as count of articles (dashed red line) over
time. To see the actual content that was written about Lochte and zoom in on specific time periods, see

our web app.

Sentiment scores and deviations with time for "Ryan Lochte"
1.0

0.5

w o os =

Feb Apr Jun Jul Dec

0.0
|

Mean Score

-0.5

-1.0
2014-01

n mos =

Feb Apr May Jun Jul 2014-07 201501 2015-07 2016-01 2016-07 2017-01 2017-07

1.0

| |
=
o
@

|

n
o
>

Jan Feb Jun Jul Nov Dec

Mean Deviation
o
IS

o
N

0.0

i)
Ji]
w m s =

2017-07

2017-01

201507 201601 2016-07

Date

201401 2014-07 2015-01

Feb Jun Jul

Example Case 2: Samsung Galaxy Note 7 Battery Fires, 2016

Samsung’s Galaxy Note 7 phone line was mired in controversy after it burst into flames on multiple
occasions in August 2016. Just like the other cases, our sentiment tracking system correctly identifies the
period when the negative coverage began (in early September 2016). Since the Galaxy Note is a niche
brand, most US publications ignored its existence until it became infamous. As can be seen below, the
spike in negative press coverage corresponds very well with the actual date that sales were suspended in
the US (September 2, 2016).

Sentiment scores and deviations with time for "Samsung Galaxy Note"

w 0.0-
E
—02-
S
—04-
M
—0.6-
w
F -0.8-
s

Feb Apr Aug

Mean Score

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec . . i i i i i i
2014-01 2014-07 2015-01 2015-07 2016-01 2016-07 2017-01 2017-07
M
- 0.8 -3.0
u : & 2.5
[|} = S 06- -]
s % 203
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 5 15 v
a 04]
M c 2
s : | -1.0g
W 2 o02- ! <
! -0.5
F]
s - -0.0

Jan

Feb

Apr

May

Jun

Jul

Aug

2014-01

2014-07

2015-01

2015-07

2016-01

Date

2016-07

2017-01

2017-07

12

https://en.wikipedia.org/wiki/Lochtegate
https://nlp-733-dash.herokuapp.com/
https://nlp-733-dash.herokuapp.com/
https://en.wikipedia.org/wiki/Samsung_Galaxy_Note_7
https://en.wikipedia.org/wiki/Samsung_Galaxy_Note_7

