
Streamdice: An encryption algorithm based on

catalogued shuffled keyboards

Andrew R. Garcia
garcia.gtr@gmail.com

Abstract

The algorithm presented in this paper is a stream cipher that provides
encryption by considering the specific identity of characters and their rel-
ative location in the message. STREAMDICE uses shuffled keyboards, gener-
ated by a pseudo-random number generator (PRNG), with each keyboard
shifted for every encrypted character. These shuffled keyboards are stored
in memory using seeds, which are dependent on the provided encryption
keys. The periodicity of the algorithm is obscured by the pseudo-random
factor, and the encryption operations make it resistant to brute force
attacks. The algorithm shuffles the keyboard with each new character
encryption, allowing for repeated permutations. The specific seeds used
for keyboard generation are computed from the user-provided encryption
keys. The decryption process reverses the encryption protocol using the
same keys. This approach optimizes auxiliary space complexity.

1 Introduction

Good encryption can be used to protect data and private information. When
properly encrypted, even if data is accessed in an unauthorized manner or un-
willingly disclosed, the non-consented reader will be unable to read it without
the correct encryption keys. The algorithm presented here, STREAMDICE, is a
stream cipher which encrypts characters (i.e. letters, numbers and some allowed
signs) by both their specific identity as well as their relative location in the mes-
sage thread. For streamdice, the stream units are shuffled keyboards generated
by a pseudo-random number generator (PRNG), each of which are shifted once
for every single encrypted character. The shuffled keyboards are limited and
kept in memory with seeds, which are in turn dependent on the provided keys
for encryption. The pseudo-random factor obfuscates the periodicity of the al-
gorithm, and the encryption operations make it challenging to exploit by brute
force.

1



2 Method

In short, the algorithm starts by initializing an unwarped map of QWERTY
characters. This keyboard map is then warped through character shuffling to
produce a new arrangement. Each shuffling operation is linked to a number
associated with the PRNG seed. For any given string or message, the algorithm
encrypts each character using this method, that is, applying one keyboard warp
per character. In this sense, STREAMDICE combines elements of both a stream
cipher and a block cipher. The sections below give a more detailed explanation
of these steps.

2.1 Unwarped Map Creation

The unwarped map represents the original arrangement of characters on the
keyboard. Let Ξ be the character set used for encryption. The character set is
in a sense the QWERTY keyboard (Figure 1), including uppercase and lowercase
letters, numbers, and special characters. The bidirectional map is tied to map
unwarping U , that associates each character Ξi in the character set Ξ with its
corresponding index i, such that:

U = {(Ξi, i) | ∀i (Ξi ∈ Ξ)} (1)

and its inverse:

U−1 = {(i,Ξi) | ∀i (i ∈ N)} (2)

Figure 1: Standard QWERTY keyboard

2.2 Map Warping

The map warping operation W is initialized with a PRNG(µi) seeding, where
µi is a seed generated by the encryption key provided by the user, and then re-
shuffling all keys. This operation adds a layer of randomness to the encryption
process. It should be known that every map warping operation produces a
unique keyboard set (Figure 2).

2



Figure 2: Randomly-shuffled keyboard with µi seed #5443

2.3 Character Encryption and Decryption Process

The encryption process involves transforming the input message characters Mi

into their corresponding encrypted characters Ci using W map warping. De-
cryption involves the reverse process of transforming the encrypted characters
back to the original characters using U map unwarping. For each character Mi

in a M message, it retrieves the corresponding index using U(Mi). If encryp-
tion is requested, the corresponding character from the shuffled map is printed,
i.e., W(U(Mi)). In some implementations of streamdice, if Mi is a space, it is
directly printed.

Thus, for encryption:

∀Mi ∈ M : Ci = W(U(Mi)) (3)

Likewise, for decryption:

∀Ci ∈ C : Mi = U−1(W−1(Ci)) (4)

2.4 Main Processing Function

The machine operation is the core of the encryption/decryption process. It takes
the message M to be processed, the root key key1, the sequence derived from
key2, and a boolean flag encrypt indicating whether encryption (encrypt = true)
or decryption (encrypt = false) should be performed. Let sequence be the
sequence generated by extracting digits from key2. For each character Mi in the
message, the scribe function is called with Mi, root, and the current element
sequence[i]. The index i is updated as i = (i+ 1) mod length(sequence).

The specific seeds are computed directly from the 2 keys provided by the
user for the encryption. An µ vector contains all the µi seeds used to generate
the shuffled keyboards. The N number of µi seeds is equal to the number of
digits provided for key2 and are computed in the following way:

If the number of keyboards is less than the number of characters to encrypt,
the warped keyboards repeat periodically, as seen in Figure 3.

3



θi = (key2//10
i)%10 and µi = key1 + θi

Figure 3: Encrypting hello world with a periodically-repeating stream of 3 shuf-
fled keyboards.

The seeds used to generate the new keyboard, rather than the specific key-
board arrangement, are the objects kept in memory throughout the encryption.
As suggested above, the decryption takes the keys used to encrypt the messages
and reverses the protocol. This method, thus, optimizes auxiliary space, O(N),
rather than encryption time complexity, O(MC), where N is the number of dig-
its of the key2, while M and K are the message length and number of keyboard
characters to encrypt, respectively.

4


