
Predicting Application Use to Reduce User Wait Time
Sasami Scott

University of California, San Diego
sjscott@ucsd.edu

Andy Do
University of California, San Diego

ando@ucsd.edu

Timothy Tran
University of California, San Diego

tmt030@ucsd.edu

1 ABSTRACT
Our goal for this project was to lower the user wait time when
loading programs by predicting the next used application. In order
to obtain the needed data, we created data collection libraries. Using
this data, we created a Hidden Markov Model (HMM) and a Long
Short-Term Memory (LSTM) model, but the latter proved to be
better. Using LSTM, we can predict the application use time and
expand this concept to more applications. We created multiple
LSTM models with varying results, but ultimately chose a model
that we think had potential. We decided on using the model that
reported a 90% accuracy.

2 PROBLEM STATEMENT
App wait time is the amount of time an application needs to be
fully loaded. This is depicted as a cursor with a spinning wheel.
The longer this cursor status is present, the longer the user must
wait for the application to be fully loaded and usable. For example,
Google Chrome takes an average of 10 seconds to be fully loaded
up. As a result, user experience may be affected by such wait time.

In an effort to reduce app wait time, we collected data on appli-
cation use and app wait time for a single user over several weeks.
With this data we plan to build a series of models to predict which
application the user will open with an emphasis on when and for
how long. With the series of models, we will evaluate each one and
select the one we think is most fitting.

3 DATA COLLECTION
3.1 Intel Collector
We built upon Intel® System Usage Report (SUR), which is a frame-
work that will be used to collect our own data for this project. This
was designed to track and manage system usage in an accurate and
efficient way. Intel SUR can be used to run custom input libraries
(IL) to record data as needed. We will be writing custom ILs in order
to collect the data that is needed for our task.

Once started, Intel® Energy Checker Energy Server (ESRV) will
execute all IL and collect samples every second. If needed, a signal
can be sent to collect samples so that data is only recorded as needed.
Once terminated, the ESRV will stop running and write all of the
data (as specified in the ILs) into a database file. For every instance
that the collector is started, a new database file will be created.

3.2 Foreground Window
Many windows can be layered on top of each other, but only one
window will accept input. This window is known as the Fore-
ground Window, which was the main focus for the IL that we
created. As stated above, it is important to note that the ESRV
will collect samples every second, but a signal can be used instead.

.

Knowing this, we decided to collect samples via a foreground win-
dow change. We came to this reasoning because we would end up
with repeating values if the user remains on the same foreground
window; this would be inefficient from a memory perspective and
would make it more difficult to eventually calculate the time spent
on the window. We would also lose data if the user switches fore-
ground windows in less than a second.

We start by obtaining the handle to the foreground window and
checking that the handle is valid. After obtaining the handle, we
obtain the identifier of the thread that created the specified window.
We then enumerate the handle in the case where we are in a child
window and want to obtain the parent window. We must do so
because child windows might return an executable name that does
not match the true executable name. Examples of this are built-
in windows applications (calculator, calendar, weather). Without
enumerating, we get a return of “ApplicationFrameHost” which
does not tell us anything about the executable name. Because of
this, enumerating through the child windows allows us to obtain
the true executable name.

Now that we have the handle to the parent’s window and its
identifier, we use these as parameters to obtain a handle to open this
process. If we have access to this process, we can extract information
from it, such as its file directory. Note that we are not opening this
process with limited access, such that we will not be able to open
processes that demand higher access. We are using limited access
because we do not want to access sensitive information. If we are
in a situation where we do not have access to open a process, we
do not proceed and will simply log the output as “Admin App.”

Now that we have the file directory, we must extract only the
executable name. We want to do this because we do not want to
output the user’s directory, as that can obtain sensitive information.
It’s important to note here that this is simply the directory for the
executable. The executable will always follow this format, followed
by a forward slash and then the actual executable name. In this
case, the full directory will be C:.exe. In C, we can not simply split
by a forward slash and extract the last value. Instead, we must
obtain values (called tokens) for every instance of the forward slash.
We continue to loop through every token until the next token is
NULL. This signifies that there are no more tokens, so we simply
record the last token before the NULL value. This will guarantee
that we obtain the executable name and discard the previous and/or
sensitive information.

As noted above, we record only when a foreground window has
changed. As such, we have a variable that holds the previous exe-
cutable name. Before collecting the value as a sample, we compare
the previous executable name to the current one. This is because
an application can have the same name, but have different process
identifiers and are distinct. This can happen when an application
has the ability to open up different and smaller windows, but are
still connected to the main framework. The executable ‘steam.exe’



, , Scott, Do, Tran

is an example because steam has smaller windows implemented,
such as friends, community, trading, etc. These all will have the
same parent window (steam) but will have different process identi-
fiers. Since it has different identifiers, the ESRV will collect and log
‘steam.exe’ multiple times in a rapid succession. We want to avoid
this situation because it can lead to a skewed dataset which means
that our machine learning model will be less accurate. However,
the use of comparing the previous executable name and the current
executable name ensures that we will not run into this issue and
will always log distinct values.

4 DATASET
4.1 Data Overview
Using the data collector and input library we developed, we gath-
ered just about 2 months worth of data from our group’s Windows
10 laptop from December 1st 2021 to January 30th 2022 over 63
collection periods. We collected foreground windows as ‘VALUE’
and recording time as ‘MEASUREMENT_TIME’. In total 68 unique
applications were recorded with the most used app being Chrome.

Figure 1: A bar chart showing the most used apps in hours.

This gave us 2469 rows or foreground windows collected. This
totals to about 66 hours of total active use time.

4.2 Data Cleaning
The data collector stores everything it collects into databases and
separates the data into tables by data types.To extract the fore-
ground window information we wrote a simple SQL query to get
all the rows for the string table. This was then converted into a
Pandas DataFrame and each column was changed into the correct
data type as this information could be lost during conversion. Each
collection session has its own database, so we did this for every
session. After every DataFrame was checked for errors, they were
merged into a larger database we would use going forward.

‘MEASUREMENT_TIME’ values were recorded in military time
so we initially didn’t notice errors with this metric. However after
beginning to see strange late night activity, we looked at the data-
base files and found an inconsistency with the time the database
was created and the last recording time, values that should differ
by only milliseconds. Instead of using PST, our collector was using
UTC and we subsequently had incorrect values. This was fixed by

Figure 2: A line chart plotting active use over the entire data
collection period.

querying the metadata table in each database to see the actual col-
lection start time in both time zones. The difference was calculated
and added subtracted from ‘MEASUREMENT_TIME’ values in the
related data.

Outliers were found after looking at the amount of time various
apps were used and the unique lists of apps. Using the difference
in time recorded between apps we calculated the use time for each
foreground window in our dataset. Very quickly, apps we were not
expecting had a total use time much higher than expected. Both File
Explorer and Microsoft Edge had instances where they were open
for an unreasonable amount of time, which was likely the machine
being left on unattended. While we do believe that these instances
were not due to collectormalfunction, theywere removed given that
their inclusion in a model could lead to unrealistic predictions based
on their massive scale. We also found that in some cases the same
app would have multiple names. We found both ‘Steam.exe’ and
‘steam.exe’ in our dataset and converted all app names to lowercase
so future models would interpret them as the same.

5 MODELS
5.1 HMM
The first approach we tried was predicting a sequence of apps
given a starting app. This would enable an underlying program
to launch the predicted app in the background and decrease the
wait of opening it for the user. A Hidden Markov Model (HMM)
was developed for this prediction task. HMMs are statistical models
that predict sequences using conditional probability, that being the
odds that one event will occur given prior knowledge of another.
This means that HMMs require a clear and consistent start from
which all sequences start at. The HMM can visually be displayed
as a decision tree, where each branch is selected based on which
has the highest probability.

For our problem we built a first order HMM, the order here refers
to how much recent history is used to make individual predictions.



Predicting Application Use to Reduce User Wait Time

Figure 3: Transition Diagram for the HMM using 5 common
apps.

In a first order HMM, while conditional probabilities are calculated
using all the training data, it’s the conditional probability based
on 1 previous event. In our case that means the model knows the
probability of opening Chrome given Zoom was just opened but
not Chrome given two or more previous apps. While this gives
the model less data, it’s much more resource efficient which is
important for the eventual application. First we added a ‘s0’ app
to start off each data collection period so our model could see the
probability of opening each app first. The data was then split into
training and test sets with 80% of observed app pairs being used for
training and 20% for testing. Training consisted of creating a (n x
n) transition matrix where n is the number of apps in the training
set. For a position of the matrix (A, B) it contains the conditional
probability of opening app A given app B calculated by:

𝑃 (𝐴|𝐵) = 𝑃 (𝐴 ∩ 𝐵)/𝑃 (𝐵) (1)
These probabilities were further verified by making sure the

rows of the transition matrix summed to 1 as that would represent
all possibilities of A.

Using this matrix the model would predict a sequence of apps
given a desired sequence length and starting app which defaulted
to ‘s0’. Ultimately when predicting just the following app, so a
sequence of 2, the model had an accuracy of only 17%. This is due
to several factors. Firstly, the data was unbalanced. The user spent
a disproportionate amount of time using a small sample of apps, so
those used most would be predicted much more than they actually
appeared in the data. There also was low dimensionality so the
model had less history to work with and was essentially forgetful,
therefore it needed to have more past data to accurately predict for
our dataset. Lastly, for this approach we had too many apps. With
over 50 apps there aren’t a lot of possible predictions with unequal
amounts of data. This made us consider lowering our scope to one
app at a time.

5.2 LSTM
Understanding we would likely need to narrow our focus and in-
crease memory retention in our model to improve results, wemoved
on to our second approach. This time we predicted the use time of
a single app within a given hour. This would allow a user to have

apps preloaded as well but would require more models (one for
each app) at the benefit of more accurate predictions. A Long Short
Term Memory Recurrent Neural Network (LSTM RNN) was used
in this problem. The LSTM in the name refers to a cell type in the
network that improves accuracy by strengthening long-term and
working memory. This type of model is a great predictor for time
series problems because of how it learns from the entire training
series, rather than pairs, for predictions.

Before creating our LSTM, we first had to encode our data in
such a way that the model can use it as inputs. Our initial approach
was to bin the use time by hour in each row, and to measure the
seconds in each hour Google Chromewas used.We chose to analyze
Google Chrome because this was our most used app, thus having
the most data. This means that we will get a larger dataset if we
were to filter the dataset with only one application. Our other apps
did not have sufficient data to be used in this model. Our Google
Chrome dataset had 2 features, with the columns being USE_TIME,
the use time for Google Chrome in seconds during the hour, and
on break, a feature that denotes whether the user was using the
machine during a time that school was not in session. The rows
in this dataset were split by the hour, ranging from the first hour
when data was successfully recorded to the last hour that the ESRV
was running.

Figure 4: Example of DataFrame

A high accuracy was achieved with our LSTM (specifically 96%)
but after further investigation, this was because of the model pre-
dicting only one value. Since most of the use times within our data
were 0s, it made sense on why the model only predicted one value.
The LSTM did not capture the peaks and we were not sure why
this was happening. We wanted to build upon this prototype, and
make it as best as we can.

Before making any major changes to our model, specifically the
encoding of our data, we opted to look at our accuracy metric and
adjust the hyperparameters of our model. After looking into how
our model dealt with accuracy, we discovered that our model was
overestimating in order to achieve a high score in that category. This
was not what we wanted as an indicator as to how good our model
was doing, as estimating an exact use time in our use case would
be extremely hard. Instead, we opted to create our own accuracy
metric, which instead would use a range instead of an exact value.
True would only be returned, given that the predicted value landed
in a range relative to the actual value. The default range was ± .5 *
the actual value, but this was easily adjustable from the parameters
of the function. We also noticed that some models would predict
very small values for 0 that would vary every time the model was
re-trained. From a human eye it was clear these functioned as 0’s as



, , Scott, Do, Tran

Figure 5: Base model performance

they would be consistent with the zeroes in our data. To make sure
our accuracy metric captured this, the outputs would be subtracted
by that model’s zero value.

Next, we looked into the hyperparameters of the model and
tinkered with them until we got a result that we were satisfied with.
One hyperparameter was focused at a time, with each one being
manually changed to achieve best performance. We adjusted one
hyperparameter until it could not get any better, then moved on
to the next one. Our edited hyperparameters were with 5 layers, a
batch size of 2, and a lookback value of 3. We then incorporated a
new method when dealing with the last two hyperparameters, the
loss function and optimizer. Since these two hyperparameters had
a finite amount of choices, we ran them in a nested for loop to see
which combination of the two gave us the best choice. 56 models
were run, and the results of 5 are listed in the table below.

Figure 6: Example of 5 results

As you can see, the results varied a lot and we couldn’t tell which
of the models did the best. We first took a look at the combinations
with a 96% or higher accuracy calculated using the model’s function.
Despite their accuracy being good, we were still skeptical of the
high values and started looking at them through our own accuracy
metric. Even with this new perspective, results still varied and
there was still a lot of overestimation. Our next step was to review
these models visually, and the best one to us was the one with the
logcosh loss function and the NAdam optimizer. Not only did it
boast a 90% accuracy with our own function, this model actually
tried to capture some of the peaks within our dataset, and did not
fall back to overestimating the predictions. This was our best model
yet, and it resembled the dataset even more than the previous one
did. We still wanted to further optimize this model, and turned to
changing the encoding of our dataset.

Figure 7: Performance of logcosh and NAdam model

Since the previous LSTM only had 2 input columns with our
dataset, our next goal was to add more features for the model to
use. Instead of having just 2 features, we revised it to have 24,
which represented the seconds used in an hour of the day. We had
an additional 25th label column which showed the total seconds
Google Chrome was used in a 24 hour instance. For our rows, each
one represented a day in which data was recorded. In total, we had
61 rows worth of data, and 24 columns as inputs.

Figure 8: New encoding

With our new encoding, we were ready to run the model and see
our results. Unfortunately, we had to change much of our previous
code on how we ran the model and graphed it, as it was catered
to our 2 feature dataset. This took more time than expected, so
most default hyperparameters were used, with the loss function
being mean squared error and the optimizer being Adam. The only
change we made to the hyperparameters was changing epochs to
400, as this model took longer for the loss to converge.

As you can see here, our new inputs did not perform as we
wanted it to, and actually resulted in a worse accuracy than our
previous model. This one ended with an accuracy of 33%, which was
67% lower than our previous model. Despite our best attempts, this
was the end result of our last modification given our allotted time.
However, we were not discouraged by this result, as visually, you
can see how this model tried harder to capture peaks and prevent
overestimating. Many more ideas were thought of to improve our
model and finally reach our end goal in the near future.



Predicting Application Use to Reduce User Wait Time

Figure 9: Performance of new encoding

6 DISCUSSION
6.1 Limitations
During the initial state of data collection, we ran into multiple
obstacles that we had to overcome. First of all, we did not perfect
our other input library (Desktop Mapper) for it to collect other
metrics in relation to the foreground window. Before starting the
data collection period, we only ended up with just using one input
library to record the foreground window executable and its use
time. To make matters worse, we only had one laptop to record
data off of, which required the user to be constantly be using this
machine, thus hindering the amount of data we have. Instead of
crippling ourselves and using only those metrics for our model,
we expanded upon it and added more features for the model to be
trained on. ON_BREAK is an example of a feature we added that
was not part of the data collection process. We insisted on adding
this to explain the big spikes in our data, in which it definitely
improved our results. We also tried modifying the dataset in a way
that resulted in multiple features, as seen in our last optimization
which included 25 columns instead of the original 2.

Our biggest struggle was with coding in the language of C. Our
group was not comfortable coding in C, as all of us were only
accustomed to mainly doing things in Python. However, we took a
different perspective on this, and saw it as a challenge we had to
overcome. We saw this as an opportunity to get better at coding in
C, and to also learn the intricacies of the language since this was
opted over Python. C had to be utilized in such a way that while
collecting data, the user was unobstructed and that their privacy
was not at risk. Because of these two factors, we were limited on
how much of the user’s data we could access. Using resources such
as SUR and ESRV documentation, we managed to create a data
collector with the use of C and Intel libraries, while keeping in
mind the memory usage and privacy.

6.2 Future Plans
Despite so much progress on this project, there is actually much
more that we can do to finally reach our end goal of predicting a
user’s next open app and preloading it in the background. First of

all, we can add more features to our data collector by creating and
finishing up more input libraries. With this new information, we
can feed more information to our model, thus resulting in more
features and potentially better predictions. Once we get the model
to a point we are comfortable with, the LSTM can be expanded
upon just predicting just one app, and predict use time for multiple
apps in the same timeframe. This can lead us into also predicting
the next app opened, which is essential to what our original goal
is, to preload apps. And finally, we can get to the point where we
actually preload the app and improve the user’s experience on their
machine.

6.3 Conclusion
To conclude, we were able to construct a data collector using the
Intel® System Usage Report and our own input libraries to collect
the foreground data of a user’s machine without slowdown. With
this data, a LSTM model was created and used to predict the use
time of the app Google Chromewith moderate accuracy. Our goal of
predicting the next application that would be used was not reached,
but upon expanding on this model and its features, this could be
worked up to.


	1 Abstract
	2 Problem Statement
	3 Data Collection
	3.1 Intel Collector
	3.2 Foreground Window

	4 Dataset
	4.1 Data Overview
	4.2 Data Cleaning

	5 Models
	5.1 HMM
	5.2 LSTM

	6 Discussion
	6.1 Limitations
	6.2 Future Plans
	6.3 Conclusion


