

76th Annual Meeting of the Division of Fluid Dynamics

Correlating hydrodynamic and acoustic fields in a turbulent combustor through community-based dimensionality reduction of vortical networks

November 21, 2023

Ankit Sahay^{1,2}, **Murali Gopalakrishnan Meena³**, R. I. Sujith^{1,2}

¹Centre of Excellence for Critical Transitions in Complex Systems, IIT Madras, India ²Department of Aerospace Engineering, IIT Madras, India ³Oak Ridge National Laboratory, USA

Acknowledgement:

Office of Naval Research Global Institute of Eminence Initiative, Govt. of India Office of Science of the US Department of Energy

Positive feedback between acoustic pressure and heat release rate oscillations

Heat release rate fluctuations (\dot{Q}')

Vortical structures drive thermoacoustic instability in many combustors

Understand the relation between vortical interactions and acoustic pressure oscillations

Complex networks provide a convenient framework to work with a large number of interactions

Bluff-body stabilized turbulent combustor

Bluff-body stabilized turbulent combustor - states of combustion noise, intermittency, and thermoacoustic instability

Cells of PIV computation domain - nodes of a complex network

Induced velocity calculated from Biot-Savart law - directed links of a weighted complex network

Combustion noise

Thermoacoustic instability

(ii) (iii) (iv) (i) (iiii t(s)t(s)1000 (ed) /d -1000 -(iv) (ii) (iii) (i) 0.981.021.04 1 t(s)(iii) (ii) (i) (iv) -5000 -250025000 5000 $\omega~({
m s}^{-1})$ 4/14

Aperiodic epoch of intermittency

(ii) (iii) (iv) (iiii t(s)t(s)1000 1000 (iii) (iv) (iv) 0 (i) -1000 1.04 0.981.021.041 t(s)t(s)(iii) (ii) (i) (1V)-25002500-5000 50000 $\omega~({
m s}^{-1})$ 4/14

Periodic epoch of intermittency

At each time instant, communities are condensed through their weighted centroids to form inter-community reduced networks

Network measures considered - mean and maximum of the reduced adjacency matrix

Evaluate correlation between temporal evolution of network measures and acoustic pressure fluctuations

Combustion noise - aperiodic dynamics of networks measures

Intermittency - network measures are aperiodic during the aperiodic epoch of intermittency

Intermittency - taking average of inter-community interactions smears out the periodic information of the flow field

Intermittency - maximum inter-community interactions captures the periodicity of acoustics during the periodic epoch

Thermoacoustic instability - network measures are periodic

Thermoacoustic instability - significant delayed correlation between acoustics and network measures

Combustion noise - significant vortex shedding from the upstream tip of bluff body

Aperiodic epoch of intermittency - aperiodic temporal variation of network measures

Periodic epoch of intermittency - periodic emergence of vortices

Thermoacoustic instability - periodic dynamics of network measures

Critical regions - probability distribution of communities with largest inter-community interactions

Smart passive control - mitigation of thermoacoustic instability via air microjets

Interplay between vortical interactions and acoustics quantified via vortical network measures

Interplay between vortical interactions and acoustics quantified via vortical network measures

Temporal evolution of influential vortical communities in the reaction field of the combustor

Temporal evolution of influential vortical communities in the reaction field of the combustor

Spatial probability of locating most influential communities during the state of thermoacoustic instability

Temporal evolution of influential vortical communities in the reaction field of the combustor

Spatial probability of locating most influential communities during the state of thermoacoustic instability

nterplay between vortical interactions and acoustics quantified via vortical network measures

Temporal evolution of influential vortical communities in the reaction field of the combustor

Thank you

Spatial probability of locating most influential communities during the state of thermoacoustic instability

