

DynamicDays2021 – XL Online Conference

Coupled behaviour of oscillators under asymmetric forcing

August 25, 2021

 Ankit Sahay, Amitesh Roy, Samadhan A. Pawar, R. I. Sujith Dept. of Aerospace Engineering IIT Madras, India

Acknowledgement:

Office of Naval Research Global Contract Monitor: Dr. Ramesh Kolar

Email: ankitsahay02@gmail.com

Laser oscillators

Cardiac pacemaker dynamics

Structural oscillations

Droin *et al.* Nature Physics **15***,* 2019, Qian *et al.* Nature Communications **7***,* 2016 Krause *et al.* arXiv, 2021, BritSync YouTube Channel

External forcing

Driven Stuart-Landau oscillator

 $\dot{z} = (\lambda_0 + i\omega - a|z|^2 - b|z|^4)z + A \sin(\omega_f t)$

Premraj *et al.* Nonlinear Dynamics **103***,* 2021

External forcing

Driven Stuart-Landau oscillator

Mutual coupling

Coupled Stuart-Landau oscillators

 $\dot{z} = (\lambda_0 + i\omega - a|z|^2 - b|z|^4)z + A \sin(\omega_f t)$

$$
\dot{z}_j = (\lambda_0 + i\omega_j - |z_j|^2 - |z_j|^4)z_j + \epsilon[z_k(t - \tau) - z_j]
$$

Premraj *et al.* Nonlinear Dynamics **103***,* 2021

Can we enhance the characteristics of amplitude suppression in a coupled system through forcing?

Oscillator A
$$
\nrightarrow
$$
 A

$$
\dot{z}_j = (\lambda_0 + i\omega_j - |z_j|^2 - |z_j|^4)z_j + \epsilon[z_k(t - \tau) - z_j]
$$

coupling term

Dynamics of an asymmetrically forced coupled system

$$
\dot{z}_j = (\lambda_0 + i\omega_j - |z_j|^2 - |z_j|^4)z_j + \epsilon[z_k(t - \tau) - z_j] + [\text{Asin}(\omega_f t)]^B
$$

coupling term Harmonic forcing

Horizontal Rijke Tube

Rijke tube is a prototypical thermoacoustic system

The acoustic duct can exhibit self-excited limit cycle oscillations

Tandon *et al.,* Chaos **30,** 2020

Coupled Rijke tubes with asymmetric forcing

Coupling parameters:

- Length of the coupling tube (L)
- Internal diameter of the coupling tube (d)

Coupled Rijke tubes with asymmetric forcing

Coupling parameters:

- Length of the coupling tube (L)
- Internal diameter of the coupling tube (d)

B Forcing signal parameters:

- Forcing frequency (f_f)
- Forcing amplitude (A_f)

Coupled Rijke tubes with asymmetric forcing

Coupling parameters:

- Length of the coupling tube (L)
- Internal diameter of the coupling tube (d)

Forcing signal parameters:

- Forcing frequency (f_f)
- Forcing amplitude (A_f)

Extension duct:

Introduce frequency detuning in the system (Δf)

Behaviour of Coupled Two Rijke tubes

During amplitude death, both Rijke tube oscillators reach the same steady state

During Partial amplitude death, one Rijke tube oscillator exhibits limit cycle oscillations and another displays nearly quenched state

AD and PAD states are observed only for finite frequency detuning in the coupled system

No appreciable amplitude suppression of limit cycle oscillations is observed in coupled system with identical oscillators

Periodically Forced Rijke Tube Oscillator

Forced limit cycle oscillations display V-shaped Arnold tongue in the synchronization map

Forced limit cycle oscillations display V-shaped Arnold tongue in the synchronization map

Arnold tongue is asymmetric around the natural frequency

Asynchronous quenching of limit cycle oscillations is observed at non-resonant forcing frequencies

Coupled Rijke Tube Oscillators with Asymmetric Forcing

Complementary forcing and coupling enhances the region oscillations suppression in both the Rijke tube oscillators

Forced synchronization region is wider for Rijke tube A than that observed for Rijke tube B

Larger magnitude of suppression of LCOs is observed in Rijke tube B as compared to that in Rijke tube A.

Effect of forcing is less effective in synchronizing and quenching of LCOs in Rijke tube B

Significant suppression of LCOs can still be achieved at nonresonant conditions

$$
\frac{d^2\dot{\eta}_j^a}{dt} + 2\zeta_j \left(\frac{\omega_j}{r^a}\right) \frac{d\dot{\eta}^a}{dt} + \left(\frac{k_j}{r^a}\right)^2 \eta_j^a
$$

$$
= \dot{Q}
$$

Source Term $\dot{Q} = K * \eta (t - \tau)$

The source term represents the heater power needed to induce LCO in the Rijke tube

$$
\frac{d^2\dot{\eta}_j^a}{dt} + 2\zeta_j \left(\frac{\omega_j}{r^a}\right) \frac{d\dot{\eta}^a}{dt} + \left(\frac{k_j}{r^a}\right)^2 \eta_j^a
$$

$$
= \dot{Q} + K_d \left(\dot{\eta}_j^b - \dot{\eta}_j^a \right)
$$

Source Term Dissipative coupling

 K_d encapsulates the interaction that arises from the mass transfer between the two ducts

$$
\frac{d^2\dot{\eta}_j^a}{dt} + 2\zeta_j \left(\frac{\omega_j}{r^a}\right) \frac{d\dot{\eta}^a}{dt} + \left(\frac{k_j}{r^a}\right)^2 \eta_j^a
$$

$$
= \dot{Q} + K_d \left(\dot{\eta}_j^b - \dot{\eta}_j^a \right) + K_{\tau} \left(\dot{\eta}_j^b (t - \tau_{tube}) - \dot{\eta}_j^a (t) \right)
$$

Source Term Disspative coupling Time-delay coupling

 τ_{tube} quantifies the time taken by acoustic waves to propagate through the coupling tube connecting the two Rijke tubes

$$
\frac{d^2\dot{\eta}_j^a}{dt} + 2\zeta_j \left(\frac{\omega_j}{r^a}\right) \frac{d\dot{\eta}^a}{dt} + \left(\frac{k_j}{r^a}\right)^2 \eta_j^a
$$

$$
= \dot{Q} + K_d \left(\dot{\eta}_j^b - \dot{\eta}_j^a\right) + K_{\tau} \left(\dot{\eta}_j^b (t - \tau_{tube}) - \dot{\eta}_j^a (t)\right) + \left[A_f \sin\left(2\pi f_f t\right)\right]^a
$$

Source Term Dissipative coupling Time-delay coupling Harmonic forcing

External harmonic forcing is applied to Rijke tube A only

Coupled Rijke tubes

Experimental results

Numerical results

The results from the numerical model show AD, but cannot reproduce partial AD

Externally forced single Rijke tube

Experimental results

Numerical results

Arnold Tongue, asynchronous quenching, and resonant amplification are replicated through the numerical model

Experimental results

Numerical results

Resonant amplification region is shifted in the results obtained from numerical model

In the numerical results, the phase-locked region in Rijke tube B shifts to the right side of f_{n0}

Key takeaways

On externally forcing a single oscillator, we observe asynchronous quenching and Arnold tongue

Mutual coupling of two non-identical oscillators can lead to AD and partial AD

External forcing widens the region of coupling over which amplitude suppression is observed

Suppression of LCOs is observed predominantly for $f_f < f_{n0}$ in Rijke tube A, while it is observed on both sides of f_{n0} in Rijke tube B.

In a detuned system, Rijke tube A exhibits phase-locked region, while Rijke tube B (not directly forced) remains desynchronized with the forcing signal

Reference: Sahay, A., Roy, A., Pawar, S. A., & Sujith, R. I. (2021). Dynamics of Coupled Thermoacoustic Oscillators Under Asymmetric Forcing. *Physical Review Applied*, *15*(4), 044011.