@prefix epid: .
@prefix void: .
@prefix xsd: .
@prefix cc: .
@prefix ep: .
@prefix eprel: .
@prefix dc: .
@prefix bibo: .
@prefix geo: .
@prefix owl: .
@prefix event: .
@prefix skos: .
@prefix foaf: .
@prefix rdfs: .
@prefix rdf: .
@prefix dct: .
<>
rdfs:comment "The repository administrator has not yet configured an RDF license."^^xsd:string .
dc:format "text/html";
dc:title "HTML Summary of #92440 \n\nA Comparison of Online Hate on Reddit and 4chan: A Case Study of the 2020 US Election\n\n";
foaf:primaryTopic .
rdf:type bibo:Document,
ep:Document;
rdfs:label "A Comparison of Online Hate on Reddit and 4chan: A Case Study of the 2020 US Election (PDF)"^^xsd:string .
eprel:isIndexCodesVersionOf ;
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
rdf:type ep:Document;
rdfs:label "A Comparison of Online Hate on Reddit and 4chan: A Case Study of the 2020 US Election (Other)"^^xsd:string .
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
eprel:islightboxThumbnailVersionOf ;
rdf:type ep:Document;
rdfs:label "A Comparison of Online Hate on Reddit and 4chan: A Case Study of the 2020 US Election (Other)"^^xsd:string .
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
eprel:ispreviewThumbnailVersionOf ;
rdf:type ep:Document;
rdfs:label "A Comparison of Online Hate on Reddit and 4chan: A Case Study of the 2020 US Election (Other)"^^xsd:string .
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
eprel:ismediumThumbnailVersionOf ;
rdf:type ep:Document;
rdfs:label "A Comparison of Online Hate on Reddit and 4chan: A Case Study of the 2020 US Election (Other)"^^xsd:string .
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
eprel:issmallThumbnailVersionOf ;
rdf:type ep:Document;
rdfs:label "A Comparison of Online Hate on Reddit and 4chan: A Case Study of the 2020 US Election (Other)"^^xsd:string .
rdf:_1 ;
rdf:_2 ;
rdf:_3 .
bibo:abstract "The rapid integration of the Internet into our daily lives has led to many benefits but also to a number of new, wide-spread threats such as online hate, trolling, bullying, and generally aggressive behaviours. While research has traditionally explored online hate, in particular, on one platform, the reality is that such hate is a phenomenon that often makes use of multiple online networks. In this article, we seek to advance the discussion into online hate by harnessing a comparative approach, where we make use of various Natural Language Processing (NLP) techniques to computationally analyse hateful content from Reddit and 4chan relating to the 2020 US Presidential Elections. Our findings show how content and posting activity can differ depending on the platform being used. Through this, we provide initial comparison into the platform-specific behaviours of online hate, and how different platforms can serve specific purposes. We further provide several avenues for future research utilising a cross-platform approach so as to gain a more comprehensive understanding of the global hate ecosystem."^^xsd:string;
bibo:authorList ;
bibo:presentedAt ;
bibo:status ,
;
dc:hasVersion ;
dct:creator ,
,
;
dct:date "2022-04-15";
dct:isPartOf ;
dct:publisher ;
dct:subject ,
,
,
;
dct:title "A Comparison of Online Hate on Reddit and 4chan: A Case Study of the 2020 US Election"^^xsd:string;
ep:hasAccepted ;
ep:hasDocument ,
,
,
,
,
;
rdf:type bibo:AcademicArticle,
bibo:Article,
ep:ConferenceItemEPrint,
ep:EPrint;
rdfs:seeAlso .
rdf:type skos:Concept;
skos:prefLabel "H Social Sciences (General)"@en .
rdf:type skos:Concept;
skos:prefLabel "QA 76 Software, computer programming,"@en .
rdf:type skos:Concept;
skos:prefLabel "QA Mathematics (inc Computing science)"@en .
rdf:type skos:Concept;
skos:prefLabel "T Technology"@en .
dct:title "37th ACM/SIGAPP Symposium On Applied Computing"^^xsd:string;
rdf:type bibo:Conference .
foaf:name "ACM"^^xsd:string;
rdf:type foaf:Organization .
foaf:familyName "Zahrah"^^xsd:string;
foaf:givenName "Fatima"^^xsd:string;
foaf:name "Fatima Zahrah"^^xsd:string;
rdf:type foaf:Person .
foaf:familyName "Goldsmith"^^xsd:string;
foaf:givenName "Michael"^^xsd:string;
foaf:name "Michael Goldsmith"^^xsd:string;
rdf:type foaf:Person .
foaf:familyName "Nurse"^^xsd:string;
foaf:givenName "Jason R. C."^^xsd:string;
foaf:name "Jason R. C. Nurse"^^xsd:string;
rdf:type foaf:Person .
rdfs:label "indexcodes.txt"^^xsd:string .
rdfs:label "lightbox.jpg"^^xsd:string .
rdfs:label "preview.jpg"^^xsd:string .
rdfs:label "medium.jpg"^^xsd:string .
rdfs:label "small.jpg"^^xsd:string .
dc:format "text/html";
dc:title "HTML Summary of #91586 \n\nA Self-Training Hierarchical Prototype-based Ensemble Framework for Remote Sensing Scene Classification\n\n";
foaf:primaryTopic .
cc:license ;
rdf:type bibo:Document,
ep:Document;
rdfs:label "A Self-Training Hierarchical Prototype-based Ensemble Framework for Remote Sensing Scene Classification (PDF)"^^xsd:string .
dct:hasPart ;
ep:hasFile ;
eprel:isIndexCodesVersionOf ;
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
rdf:type ep:Document;
rdfs:label "A Self-Training Hierarchical Prototype-based Ensemble Framework for Remote Sensing Scene Classification (Other)"^^xsd:string .
dct:hasPart ;
ep:hasFile ;
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
eprel:islightboxThumbnailVersionOf ;
rdf:type ep:Document;
rdfs:label "A Self-Training Hierarchical Prototype-based Ensemble Framework for Remote Sensing Scene Classification (Other)"^^xsd:string .
dct:hasPart ;
ep:hasFile ;
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
eprel:ispreviewThumbnailVersionOf ;
rdf:type ep:Document;
rdfs:label "A Self-Training Hierarchical Prototype-based Ensemble Framework for Remote Sensing Scene Classification (Other)"^^xsd:string .
dct:hasPart ;
ep:hasFile ;
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
eprel:ismediumThumbnailVersionOf ;
rdf:type ep:Document;
rdfs:label "A Self-Training Hierarchical Prototype-based Ensemble Framework for Remote Sensing Scene Classification (Other)"^^xsd:string .
dct:hasPart ;
ep:hasFile ;
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
eprel:issmallThumbnailVersionOf ;
rdf:type ep:Document;
rdfs:label "A Self-Training Hierarchical Prototype-based Ensemble Framework for Remote Sensing Scene Classification (Other)"^^xsd:string .
rdf:_1 ;
rdf:_2 ;
rdf:_3 ;
rdf:_4 ;
rdf:_5 ;
rdf:_6 .
bibo:abstract "Remote sensing scene classification plays a critical role in a wide range of real-world applications. Technically, however, scene classification is an extremely challenging task due to the huge complexity in remotely sensed scenes, and the difficulty in acquiring labelled data for model training such as supervised deep learning. To tackle these issues, a novel semi-supervised ensemble framework is proposed here using the self-training hierarchical prototype-based classifier as the base learner for chunk-by-chunk prediction. The framework has the ability to build a powerful ensemble model from both labelled and unlabelled images with minimum supervision. Different feature descriptors are employed in the proposed ensemble framework to offer multiple independent views of images. Thus, the diversity of base learners is guaranteed for ensemble classification. To further increase the overall accuracy, a novel cross-checking strategy was introduced to enable the base learners to exchange pseudo-labelling information during the self-training process, and maximize the correctness of pseudo-labels assigned to unlabelled images. Extensive numerical experiments on popular benchmark remote sensing scenes demonstrated the effectiveness of the proposed ensemble framework, especially where the number of labelled images available is limited. For example, the classification accuracy achieved on the OPTIMAL-31, PatternNet and RSI-CB256 datasets was up to 99.91%, 98. 67% and 99.07% with only 40% of the image sets used as labelled training images, surpassing or at least on par with mainstream benchmark approaches trained with double the number of labelled images."^^xsd:string;
bibo:authorList ;
bibo:status ,
;
bibo:volume "80";
dc:hasVersion ;
dct:creator ,
,
,
,
,
;
dct:date "2022-04";
dct:isPartOf ,
;
dct:publisher ;
dct:subject ;
dct:title "A Self-Training Hierarchical Prototype-based Ensemble Framework for Remote Sensing Scene Classification"^^xsd:string;
ep:hasAccepted ;
ep:hasDocument ,
,
,
,
,
;
owl:sameAs ;
rdf:type bibo:AcademicArticle,
bibo:Article,
ep:ArticleEPrint,
ep:EPrint;
rdfs:seeAlso .
rdf:type skos:Concept;
skos:prefLabel "QA Mathematics (inc Computing science)"@en .
foaf:name "Elsevier"^^xsd:string;
rdf:type foaf:Organization .
foaf:familyName "Zhang"^^xsd:string;
foaf:givenName "Ce"^^xsd:string;
foaf:name "Ce Zhang"^^xsd:string;
rdf:type foaf:Person .
foaf:familyName "Han"^^xsd:string;
foaf:givenName "Jungong"^^xsd:string;
foaf:name "Jungong Han"^^xsd:string;
rdf:type foaf:Person .
foaf:familyName "Angelov"^^xsd:string;
foaf:givenName "Plamen"^^xsd:string;
foaf:name "Plamen Angelov"^^xsd:string;
rdf:type foaf:Person .
foaf:familyName "Atkinson"^^xsd:string;
foaf:givenName "Peter"^^xsd:string;
foaf:name "Peter Atkinson"^^xsd:string;
rdf:type foaf:Person .
foaf:familyName "Shen"^^xsd:string;
foaf:givenName "Qiang"^^xsd:string;
foaf:name "Qiang Shen"^^xsd:string;
rdf:type foaf:Person .
foaf:familyName "Gu"^^xsd:string;
foaf:givenName "Xiaowei"^^xsd:string;
foaf:name "Xiaowei Gu"^^xsd:string;
rdf:type foaf:Person .
bibo:issn "15662535";
foaf:name "Information Fusion"^^xsd:string;
owl:sameAs ;
rdf:type bibo:Collection .
dc:format "text/html";
dc:title "HTML Summary of #93038 \n\nPACO-VMP: Parallel Ant Colony Optimization for Virtual Machine Placement\n\n";
foaf:primaryTopic .
rdf:type bibo:Document,
ep:Document;
rdfs:label "PACO-VMP: Parallel Ant Colony Optimization for Virtual Machine Placement (PDF)"^^xsd:string .
eprel:isIndexCodesVersionOf ;
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
rdf:type ep:Document;
rdfs:label "PACO-VMP: Parallel Ant Colony Optimization for Virtual Machine Placement (Other)"^^xsd:string .
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
eprel:islightboxThumbnailVersionOf ;
rdf:type ep:Document;
rdfs:label "PACO-VMP: Parallel Ant Colony Optimization for Virtual Machine Placement (Other)"^^xsd:string .
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
eprel:ispreviewThumbnailVersionOf ;
rdf:type ep:Document;
rdfs:label "PACO-VMP: Parallel Ant Colony Optimization for Virtual Machine Placement (Other)"^^xsd:string .
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
eprel:ismediumThumbnailVersionOf ;
rdf:type ep:Document;
rdfs:label "PACO-VMP: Parallel Ant Colony Optimization for Virtual Machine Placement (Other)"^^xsd:string .
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
eprel:issmallThumbnailVersionOf ;
rdf:type ep:Document;
rdfs:label "PACO-VMP: Parallel Ant Colony Optimization for Virtual Machine Placement (Other)"^^xsd:string .
rdf:_1 ;
rdf:_2 ;
rdf:_3 ;
rdf:_4 ;
rdf:_5 .
bibo:abstract "The Virtual Machine Placement (VMP) problem is a challenging optimization task that involves the assignment of virtual machines to physical machines in a cloud computing environment. The placement of virtual machines can significantly affect the use of resources in a cluster, with a subsequent impact on operational costs and the environment. In this paper, we present an improved algorithm for VMP, based on Parallel Ant Colony Optimization (PACO), which makes effective use of parallelization techniques and modern processor technologies. We achieve solution qualities that are comparable with or superior to those obtained by other nature-inspired methods, with our parallel implementation obtaining a speed-up of up to 2002x over recent serial algorithms in the literature. This allows us to rapidly find high-quality solutions that are close to the theoretical minimum number of Virtual Machines."^^xsd:string;
bibo:authorList ;
bibo:status ,
;
bibo:volume "129";
dc:hasVersion ;
dct:creator ,
,
,
,
;
dct:date "2022-04";
dct:isPartOf ,
;
dct:publisher ;
dct:subject ;
dct:title "PACO-VMP: Parallel Ant Colony Optimization for Virtual Machine Placement"^^xsd:string;
ep:hasAccepted ;
ep:hasDocument ,
,
,
,
,
;
owl:sameAs ;
rdf:type bibo:AcademicArticle,
bibo:Article,
ep:ArticleEPrint,
ep:EPrint;
rdfs:seeAlso .
rdf:type skos:Concept;
skos:prefLabel "QA 75 Electronic computers. Computer science"@en .
foaf:name "Elsevier"^^xsd:string;
rdf:type foaf:Organization .
foaf:familyName "Peake"^^xsd:string;
foaf:givenName "Joshua"^^xsd:string;
foaf:name "Joshua Peake"^^xsd:string;
rdf:type foaf:Person .
foaf:familyName "Costen"^^xsd:string;
foaf:givenName "Nicholas"^^xsd:string;
foaf:name "Nicholas Costen"^^xsd:string;
rdf:type foaf:Person .
foaf:familyName "Amos"^^xsd:string;
foaf:givenName "Martyn"^^xsd:string;
foaf:name "Martyn Amos"^^xsd:string;
rdf:type foaf:Person .
foaf:familyName "Lloyd"^^xsd:string;
foaf:givenName "Huw"^^xsd:string;
foaf:name "Huw Lloyd"^^xsd:string;
rdf:type foaf:Person .
foaf:familyName "Masala"^^xsd:string;
foaf:givenName "Giovanni"^^xsd:string;
foaf:name "Giovanni Masala"^^xsd:string;
rdf:type foaf:Person .
bibo:issn "0167739X";
foaf:name "Future Generation Computer Systems"^^xsd:string;
owl:sameAs ;
rdf:type bibo:Collection .
rdfs:label "cgf2022.pdf"^^xsd:string .
rdfs:label "indexcodes.txt"^^xsd:string .
rdfs:label "lightbox.jpg"^^xsd:string .
rdfs:label "preview.jpg"^^xsd:string .
rdfs:label "medium.jpg"^^xsd:string .
rdfs:label "small.jpg"^^xsd:string .
dc:format "text/html";
dc:title "HTML Summary of #93697 \n\nComputing Schematic Layouts for Spatial Hypergraphs on Concentric Circles and Grids\n\n";
foaf:primaryTopic .
cc:license ;
dct:hasPart ;
ep:hasFile ;
rdf:type bibo:Document,
ep:Document;
rdfs:label "Computing Schematic Layouts for Spatial Hypergraphs on Concentric Circles and Grids (PDF)"^^xsd:string .
dct:hasPart ;
ep:hasFile ;
eprel:isIndexCodesVersionOf ;
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
rdf:type ep:Document;
rdfs:label "Computing Schematic Layouts for Spatial Hypergraphs on Concentric Circles and Grids (Other)"^^xsd:string .
dct:hasPart ;
ep:hasFile ;
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
eprel:islightboxThumbnailVersionOf ;
rdf:type ep:Document;
rdfs:label "Computing Schematic Layouts for Spatial Hypergraphs on Concentric Circles and Grids (Other)"^^xsd:string .
dct:hasPart ;
ep:hasFile ;
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
eprel:ispreviewThumbnailVersionOf ;
rdf:type ep:Document;
rdfs:label "Computing Schematic Layouts for Spatial Hypergraphs on Concentric Circles and Grids (Other)"^^xsd:string .
dct:hasPart ;
ep:hasFile ;
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
eprel:ismediumThumbnailVersionOf ;
rdf:type ep:Document;
rdfs:label "Computing Schematic Layouts for Spatial Hypergraphs on Concentric Circles and Grids (Other)"^^xsd:string .
dct:hasPart ;
ep:hasFile ;
eprel:isVersionOf ;
eprel:isVolatileVersionOf ;
eprel:issmallThumbnailVersionOf ;
rdf:type ep:Document;
rdfs:label "Computing Schematic Layouts for Spatial Hypergraphs on Concentric Circles and Grids (Other)"^^xsd:string .
rdf:_1 ;
rdf:_2 ;
rdf:_3 ;
rdf:_4 ;
rdf:_5 ;
rdf:_6 .
bibo:abstract "Set systems can be visualized in various ways. An important distinction between techniques is whether the elements have a spatial location that is to be used for the visualization; for example, the elements are cities on a map. Strictly adhering to such location may severely limit the visualization and force overlay, intersections and other forms of clutter. On the other hand, completely ignoring the spatial dimension omits information and may hide spatial patterns in the data. We study layouts for set systems (or hypergraphs) in which spatial locations are displaced onto concentric circles or a grid, to obtain schematic set visualizations. We investigate the tractability of the underlying algorithmic problems adopting different optimization criteria (e.g. crossings or bends) for the layout structure, also known as the support of the hypergraph. Furthermore, we describe a simulated-annealing approach to heuristically optimize a combination of such criteria. Using this method in computational experiments, we explore the trade-offs and dependencies between criteria for computing high-quality schematic set visualizations."^^xsd:string;
bibo:authorList ;
bibo:status ,
;
dc:hasVersion ;
dct:creator