
by Maarten van Gompel

Practical Tooling
STAM comes with practical programming libraries and tools to work with annotations
on text. These aim to be fairly low-level standalone software with minimal dependencies,
high reusability, and not reliant on any wider infrastructure.

 - stam-rust is the main library written in Rust with a focus on performance (Rust API).
 - stam-python is a Python library built on-top of the Rust library (Python API).
 - a tutorial "Standoff Text Annotation for Pythonistas" is available as a jupyter
 notebook.
 - stam-tools is a set of command-line tools to work with STAM.

All are available as free open-source software under the GNU General Public Licence v3.
The tools are aimed at developers and technical researchers and data scientists.
You can build upon STAM to construct your own applications that deal with annotation
on text, including but not limited to for purposes such as natural language processing (NLP).

text: Hallå världen
0 1 2 3 4 5 6 7 8 9 10 11 12 [13]

resource ID: "document.txt"

Annotation

AnnotationData

 says something about something

any kind of remark/classification/tagging on a text, a portion thereof,
 or on another annotation

Selector

TextResource Offset

TextSelector

DataKey DataValue

example: "pos" "noun"

example: "document.txt" 6-13

Data Model
STAM is a standalone data model for stand-off annotation on text.
It allows you to describe annotations on text
in your own terms. STAM does not prescribe any vocabulary.

Texts are kept as-is (utf-8 plain text), devoid of any special markup, and
annotations target text segments via character offsets. This approach
can be called radical stand-off. Any further annotation paradigm decisions
are up to you. STAM aims to be generic and flexible.

Annotation is the central notion in STAM; almost everything
is an annotation, each has annotation data and selects a target.
The data vocabulary is all up to you; not even the notion of a word,
token or sentence is predefined. Annotations can represent whatever
you want; be it linguistic, structural, presentational, editorial or otherwise.

from stam import *

store = AnnotationStore(id="example")
resource = store.add_resource(
 id="document.txt",
 text="Hallå världen")
annotation = store.annotate(
 target=Selector.textselector(
 resource,
 Offset.simple(6,13)),
 data={"key": "pos", "value": "noun",
 "set": "testset" })

store.set_filename(
 "example.stam.store.json")
store.save()

for annotation in store.annotations():
 for data in annotation.data():
 print(f"{annotation},
 {data.key()}={data.value()}")

$ pip install stam

$ cargo install stam-tools

DataValue

Annotation

Selector

DataKey

AnnotationData

AnnotationDataSet

AnnotationStore

the texts (plain text
 files)

TextResource

the workspace/project space holding all relevant data

the vocabularythe glue that associates
annotation data (3rd column)
with targets (2nd column)

Selects a target for annotation.
There are different types of selectors.
Such as a TextSelector (illustrated here),
ResourceSelector, AnnotationSelector,
CompositeSelector, etc..

key/value pair

typed value

TextSelection

Offset

Formal specification & extensibility
There is a core STAM model that is kept minimal yet expressive, and several optional extensions
that define additional modelling capabilities you may or may not use. All are documented in a
formal specification, independent of any implementations.

STAM provides a solid generic foundation for stand-off text annotation upon which other
initiatives can build. The model is specialised for text annotation, not general knowledge graphs.

A STAM Query Language is defined for querying:

Simplicity, reusability & interoperability
STAM provides a canonical STAM JSON format, a STAM CSV format and an optimised binary format. Data can also be easily imported
from and exported to simple ad-hoc formats like TSV. The model itself is independent of any serialisation formats.

STAM may act as a pivot model in conversions between
different annotation formats, paradigms and vocabularies.
It does not seek to replace existing projects but offers a
common foundation in which other vocabularies may be
expressed, allowing you to benefit from a common machinery.

We seek a fair degree of interoperability with
W3C Web Annotations, linked open data in general, FoLiA, Text Encoding Initiative (TEI),
CoNLL-U and Text Fabric. Various converters and mappings to this end have been implemented, such as a W3C Web Annotation exporter
and a generic XML importer that effectively untangles an XML file with inline annotations/markup (like TEI) and
splits it into plain text and pure stand-off annotations referencing that text.

{
 "@type": "AnnotationStore", "@id": "example",
 "resources": [{ "@type": "TextResource", "@id": "document.txt", "text": "Hallå världen" }],
 "annotationsets": [{ "@type": "AnnotationDataSet", "@id": "testset",
 "keys": [{ "@type": "DataKey", "@id": "pos" }],
 "data": [{ "@type": "AnnotationData", "@id": "!D0", "key": "pos", "value": { "@type": "String", "value": "noun"
 "annotations": [{
 "@type": "Annotation", "@id": "!A0",
 "target": {
 "@type": "TextSelector",
 "resource": "document.txt",
 "offset": { "@type": "Offset", "begin": { "@type": "BeginAlignedCursor", "value": 6 },
 "end": { "@type": "BeginAlignedCursor", "value": 13 } }
 },
 "data": [{ "@type": "AnnotationData", "@id": "!D0", "set": "testset" }]

Visualisation
Tools are provided for visualisation
(e.g. html) based on queries:

Computing with Annotations
- Conversion between character offsets in a relative vs absolute frames, bytes and unicode points.
- Computation of spatial relationships between text selections/annotations,
 e.g. embedding, overlap, adjacency, and retrieval of annotations bases on such relationships.
- Common regular-expression based text search
- Automatic alignment of two or more similar texts (Smith-Waterman/Needleman-Wunsch)
 and automatic transposition of annotations from one text to another, following such an alignment.
- Validation of the integrity of stand-off annotations. Do they still point to the right text?

SELECT ANNOTATION ?a WHERE
 RESOURCE "mytext.txt";
 DATA "myvocab" "pos" = "noun";

-

- Creative Commons BY-SA - 2024-05

httpa://annotation.github.io/stam

httpa://annotation.github.io/stam

