
Assessing and selecting ✏ for
differentially private Federated
Learning with Inference Attacks

Tom Ganz

Roll number 71127

External Supervisor Daniel Bernau (SAP SE)

Masters Committee Prof. Dr.-Ing. Astrid Laubenheimer

Department Computer Science and Business Information System

Abstract

Training federated Machine Learning models is an emerging trend: multiple
data owners train an identical local model and send their model parameters
to an aggregator. In this protocol, the local models with identical structure
over their respective local datasets, get aggregated and sent back to the data
owners. Although, the data owners do not send their potentially sensitive
data to the other participants or the aggregator, it is still possible, to extract
identify the presence of specific attributes or records in the local training
data from each data owner during the collaborative training. To improve
the privacy guarantees, ✏-Differential Privacy can be applied within the local
data owner premises. Either as Local Differential Privacy, where the train-
ing data is perturbed or using Central Differential Privacy by perturbing the
gradients during training. Balancing privacy and model utility is not a trivial
task and the privacy parameter ✏ needs to be fine-tuned accordingly. In this
thesis, inference attacks are used to asses the privacy parameter of Machine
Learning models in Federated Learning for some exemplary datasets. This
thesis aims to formulate suggestions for data scientists and data owners for
choosing ✏ and comparing suitable privacy-utility trade-offs. In this work,
a Federated Learning framework, a white-box Membership Inference Attack
Model and a novel Attribute Inference Attack Model are introduced. The
results of this thesis show, that Central Differential Privacy is favorable over
Local Differential Privacy and that an adversarial Federated Learning cen-
tral instance constitutes a stronger position for an inference attack than an
adversarial participant in the training. Furthermore, this work shows, that
already a high ✏ is sufficient to mitigate most attacks.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Environment . 4
1.3 Research Question . 5
1.4 Methodological Approach . 5
1.5 Structure . 5

2 Theoretical Foundation 7
2.1 Deep Neural Networks . 7
2.2 Federated Learning . 10
2.3 Membership Inference . 12
2.4 Attribute Inference . 15
2.5 Differential Privacy . 16
2.6 Differentially Private Learning 23
2.7 Related Work . 26
2.8 Notation . 29

3 Methodology 30
3.1 Hypothesis . 30
3.2 Threat Model . 30
3.3 Implementation . 31
3.4 Learning under Noise . 41
3.5 Approach . 42
3.6 Attack Evaluation Metrics . 43

4 Experiments 47
4.1 Experimental Setup . 47
4.2 Datasets . 48

4.2.1 Purchases Shopping Carts 48
4.2.2 Texas Hospital Stays 50

1

2

4.2.3 Labeled Faces in the Wild 51
4.3 Target Model Results . 54

4.3.1 Purchases Shopping Carts 56
4.3.2 Texas Hospital Stays 58
4.3.3 Labeled Faces in the Wild 59

4.4 MI Attack Model Results . 60
4.4.1 Purchases Shopping Carts 61
4.4.2 Texas Hospital Stays 66
4.4.3 Labeled Faces in the Wild 69

4.5 AI Attack Model Results . 74
4.5.1 Purchases Shopping Carts 74
4.5.2 Texas Hospital Stays 75

5 Discussion 77
5.1 Comparison of Local and Global Attack 77
5.2 Comparison of CDP and LDP techniques 77
5.3 Membership Inference Attack 78
5.4 Attribute Inference Attack . 79

6 Conclusion and Outlook 82

Appendices 84

A Parameter Evaluations 85

B Attack Model Evaluations 87

Bibliography 94

Introduction

1.1 Motivation

Machine learning algorithms based on neural networks are used in various
domains. Often these models require a large representative amount of data to
be effective. These datasets may be crowdsourced and may contain personal
data or sensitive business information [1]. Personal data could consist of
photos, voice recordings or medical information. Additionally such personal
or sensitive business data cannot be easily removed from a learned model [2].
For above reasons, it is crucial as a company to protect the confidentiality of
the training data with privacy enhancing technologies.
Commonly a machine learning model is trained by a single data analyst on a
central server. However, due to the increasing amount of storage and compu-
tational power of mobile and embedded devices, it seems promising to train
data locally. This enables the possibility to train models collaboratively, by
first training locally and then centrally aggregating the individual models [3].
The gain of this so called “federated learning” is scalability on one hand, due
to the fact that multiple devices train independently on their hardware and
in consequence privacy on the other, since a possibly untrusted server does
not see the actual training data from the clients [4]. In theory the latter is
enforced by keeping the sovereignty of the sensitive or personal training data
by its respective data owner.
However previous research has shown that without much knowledge of the
actual training data, a honest-but-curious attacker might infer individual
training data records or attributes from a trained deep learning model [5].
Thus a data analyst acting as the aggregator is capable of inferring sensi-
tive information from the model itself. There are several methods to assure
privacy of the training data [6]. In the thesis one method called “differential
privacy” (DP) is further investigated [7]. This technique provides a trade-off

3

4

metric between privacy guarantee and model usability. DP provides mecha-
nisms like perturbing the training data or an aggregation function to enforce
privacy [5]. However choosing correct DP parameters and mechanisms is
a non-trivial task especially for data scientists not familiar with differential
privacy. Using threat models such as “membership inference” enables the
possibility to evaluate different privacy strategies for their actual effective-
ness.
In this thesis differentially private models will be trained using personal or
sensitive training data and federated learning algorithms. Differential pri-
vacy is used to secure the sensitive data. Depending on the accuracy of
inference attacks the parameters of the differential private mechanisms can
be evaluated. The purpose of this thesis is to derive a suggestion for the us-
age of parameters and mechanisms to ensure differential privacy for federated
learning.

1.2 Environment

The thesis will be created at “SAP SE” in the SAP Security Research de-
partment. SAP is the world’s leading provider of business software solu-
tions. SAP solutions help enterprises of all sizes around the world to improve
customer relationships, enhance partner collaboration and create efficiencies
across their supply chains and business operations. SAP group includes sub-
sidiaries in over 180 countries and employs more than 100.000 people.
Taken from the Security Research strategy description, the research focuses
are, amongst other relevant topics, anonymization approaches based on dif-
ferential privacy.

“SAP Security Research works on novel anonymization approaches
based on differential privacy. We aim to make the results of these
research activities in anonymization cloud services available for
the Intelligent Enterprise as microservices. Meant to be used in
all cloud solutions, these microservices will enable the ethical use
of AI in an intelligent enterprise” [8, p. 7]

As stated their work consists of scientific research and prototyping. Even-
tually the results from the research should be applied to real use-cases for
customers in e.g. cloud and microservice solutions.
Today the Security Research team consists of four Post-Docs and three PhD-
Students.

5

1.3 Research Question

The promising attack results from Nasr et al. [9] against federated learning
models suggest that the model parameters sent by the participants to the ag-
gregator leak enough information to successfully infer sensitive information
about individuals in the trained datasets.
In this thesis different state-of-the-art models should be trained with differen-
tial privacy on different datasets in a federated fashion. This work should ex-
amine the privacy-utility trade-off for these models before and after applying
differential privacy mechanisms. Eventually, meaningful privacy parameters
for differential privacy should be validated by using inference attacks.

1.4 Methodological Approach

Nasr et al. introduced a white-box membership inference attack model [9].
An adversary with knowledge of the target model parameters can use their
work to successfully infer sensitive data. Nasr et al. even show, that its pos-
sible to infer sensitive training data in federated learning.
Using “DP” is a non-trivial task, especially for data scientists not familiar
with the anonymization techniques. Commonly the choice of ✏ depends on
a utility and privacy trade-off. This work examines the attack using Mem-
bership Inference on models used by Nasr et al. and Bernau et al. [5]. The
goal is to see, if it is possible to give dataset independent suggestions for pa-
rameter ✏ with the use of Membership Inference attacks. Although this work
focuses on models trained using a federated learning approach, therefor the
recommended parameter combination have to fit with the federated learning
hyperparameters.
Besides, in this work, it is shown that the membership inference attack model
from Nasr et al. can be easily extended to perform an attribute inference at-
tack.

1.5 Structure

Chapter Theoretical Foundation 2 serves as an introduction to this thesis’
building blocks as well as to the related works. After this chapter the ter-
minology should be comfortable for the reader. Chapter Methodology 3 in-
troduces the experiment setting consisting of hypothesis, implementation,
threat model and used metrics. Chapter Experiments 4 presents results for
certain experiments with different datasets. At last, chapter Discussion 5

6

puts the results into perspective.

Theoretical Foundation

This chapter serves introduces the research foundations which this work is
built upon. First Machine Learning and Deep Neural Networks, afterwards
Federated Learning and finally algorithms for evaluation are laid out. At last
the main works focusing on Differential Privacy and Membership Inference
are introduced.

2.1 Deep Neural Networks

Machine Learning (ML) is a discipline arising from computer science and
statistics. The intention of ML is to gain new knowledge by finding recurring
patterns in datasets without or with only minimal use of human interaction.
Machine Learning is especially used for complex data and therefore replaces
traditional statistical methods. Most often problems requiring the use of ML
are separated in classification tasks where a model needs to classify a given
data point to a given class or perform regression tasks where a model predicts
numerical values.
Especially Artificial Neural Network (ANN) gained large popularity for this
kind of tasks and is a widely adopted Machine Learning concept [10]. An
ANN can be seen as an universal function approximator [11].
The architecture of an ANN can be summarized by three components: The
neurons (units), the layers and weighted connections between the neurons.
Every layer consists of a fixed amount of neurons. All Deep Neural Net-
works (DNN) have multiple hidden layers and the ability to learn complex
data representations in common. Each hidden layer learns a specific abstrac-
tion of representations from the given dataset. The input layer denotes the
dimension of a data point and the output layer denotes the dimension of the
desired prediction vector (i.e. the result).

7

8

Figure 2.1: ANN Architecture

As seen in Figure 2.1, the input layer is connected to a configuration de-
pendent number of hidden layers. The last hidden layer is connected to the
output layer. The output layer yields the predicted result.
Every layer consists of an arbitrary, but fixed amount of neurons as part of
their configuration. This can be seen in Figure 2.2.

Figure 2.2: ANN layer configuration.

Let n(i)
j denote the j-th neuron of the i-th layer. Every node n(i)

j is connected
to every node n(i+1)

k by an edge with weight w(i)
j,k. Hence the activation value

for a specific node is given by:

n(i+1)
k = h

⇣Xn

j=0
w(i)

j,k · n
(i)
j

⌘

The function h(x) specifies a non-linear activation function e.g. Rectifying
Linear Unit (ReLu) or Tangens Hyperbolicus (tanh). The output of such

9

a function h(x) is called activation value. Activation functions are used in
order to add non-linear properties to the learning ability of a model. Without
these, only linear mappings could be learned.

Forward Pass

Given a data point x, typically denoted as ~x = [x0 . . . xm], x is passed through
the first layer, in other words: n(0) = x. The prediction output of the ANN
is given by consecutively passing the values of the neurons to the next layer
by calculating the neurons activation values with the calculation rule seen in
figure 2.2. In a classification task, i.e. calculating an association between a
data point and a label, the output layer commonly returns a vector with the
size equal to the number of classes. To obtain a confidence vector typically
the output vector is normalized by applying the Softmax Function 2.1 on the
output values.

Softmax(xi) =
exp(xi)P
j exp(xj)

(2.1)

If the output value is a single scalar, the Sigmoid Function 2.2 is preferred
to map a value to a probability.

Sigmoid(x) =
1

1 + exp(�x)
(2.2)

Gradient Descent

Gradient Descent (GD) is an optimization algorithm that finds minima (the
steepest descent) in a function. In this context Gradient Descent is used to
fit the parameters of a neural network to a suiting solution by minimizing
a loss function. This process is also called backpropagation. The algorithm
calculates the partial derivatives of a loss function E : ⌦! R concerning its
weights �J

�W . A partial derivative is called gradient, hence the name Gradient
Descent. Gradient Descent differentiates, with respect to each parameter,
the loss function J and then calculates the error for each sample d 2 Dtrain.
The calculated gradients are then used to take an update for each parameter.
The calculated gradients are used to update the weights by:

W (t+1) = W (t)
� ⌘rJ(f(x;W (t)), y)

The step size and therefore the convergence speed is controlled by a hyper-
parameter ⌘. As a major disadvantage, Gradient Descent needs to iterate
over the entire dataset before taking a step. This leads effectively to only one

10

update per epoch. Comparatively the Stochastic Gradient Descent (SGD)
algorithm, calculates an update for each calculated loss, i.e. for each sample.
Each data point d 2 Dtrain used during training influences the weights of an
ANN. The SGD attempts to minimize the contribution to the training loss
for each d [2].

This consequently leads to the fact, that gradients of the loss for data points
d 2 Dtrain lean to zero, whereas the loss for a data point d0 /2 Dtrain will
be relatively large. Other variations of GD like Batch Gradient Descent
calculate the loss for a small subsample of Dtrain and then average over the
gradients to update the weights. Variations of SGD, like Adam, AdaGrad,
RMSProb tend to converge faster or more stable.

2.2 Federated Learning

Commonly, data scientists collect heterogeneous data and train ML models
centrally, assuming for example the popular CRISP-DM process [5]. Typ-
ically, during the CRISP-DM process, a data scientist gathers and collects
data and afterwards elects a model which is evaluated and eventually de-
ployed. Federated Learning (FL), however, distributes the training among
different Data Owners (DO) [4]. In theory this enforces anonymity, because
a data scientist, i.e. the aggregator, does not see the actual potentially sen-
sitive data and therefore the data is kept by the sovereignty of the DOs.
The second reason for using FL is a significant performance gain because the
computational effort is distributed across the DO’s. By Amdahls law [12] the
optimization is archived by parallelizing a sequential algorithm. In fact, the
interest in FL techniques arose due to increasing computational and storage
resources on handhelds (e.g. mobile phones) and embedded devices.
Federated Learning is similar to Map-Reduce and can be better explained
with following analogy: The dataset is split (mapped) to independent ma-
chines. There, each machine performs a forward- and backpropagation. Fi-
nally, a central instance aggregates (reduces) the weights to obtain a central
model.
In practice each Data Owner trains a local model and sends their parame-
ters, e.g. the respective gradients or weights, to the central aggregator. The
aggregator keeps a central model, which gets updated by the aggregated pa-
rameters received from each Data Owner, hence the name aggregator. The
DO uses the current local model, while the new global model has not been
propagated yet. This implies (compared to CRISP-DM), that in FL, there
is no single deployment, rather the models are being in use constantly.

11

One real-world example is the word suggestion used by Google which is based
on an ML model learned distributed across several mobile phones [13]. By
typing a word, the Android mobile keyboard immediately suggests subse-
quent words.
Obviously, the data is both: sensitive and not respective for the whole dis-
tribution because every person has other writing habits.
Several algorithms can be used to train a model using Federated Learning.
In this work, the FedAVG algorithm is further examined.
Agarwal et al. formalize a distributed SGD algorithm. Let F (w) : Rd

�! R

be of the form
F (wk) =

1

M

XM

i=0
fk(W)

where each fk(x;W) resides at the k-th client [14].
Brendan et al. suggest following algorithm (FedAVG) as seen in Algorithm. 1
[13]. For clarity McMahan et al. define a round, also referred as communica-
tion period, as one iteration where all Data Owner train their local models
for E epochs [4]. Hyperparameter C defines the fraction of clients that train
in parallel for one round. E.g. C = 0.5 means that one half of the available
clients (K) are instructed to train. Parameter B defines the local batch size.

12

Algorithm 1 FedAVG
1: procedure FedAVG . Run by the server
2: initialize w0

3: for each round t = 0, 1, 2, .. do
4: m max(C ·K,1)
5: St (random set of m Clients)
6: for each client k 2 St in parallel do
7: wk

t+1 Clientupdate(k,wt)
8: end for
9: wt+1

PK
k=0

nk
n wk

t+1

10: end for
11: end procedure
12: procedure ClientUpdate(k, w) . Run by the clients
13: B (split Pk into batches of size B)
14: for each local epoch i from 0 to E do
15: for batch b 2 B do
16: w w � ⌘�J(w; b)
17: end for
18: end for
19: return w to server
20: end procedure

Algorithm 1 shows, that the server and client communication is asynchronous.
The server instructs the clients to run a gradient descent optimization on their
local datasets. Afterwards all weights from the local model are collected and
averaged to receive the new weight matrix. The averaging takes the training
size per Data Owner into account, thus, a Data Owner who trained on a
large dataset has therefore much larger impact on the gradients.
Recent work combines Federated Learning with privacy methods, e.g. “Pri-
vate Aggregation of Teacher Ensembles” (PATE) [15]. The federated learning
architecture proposed by Papernot et al. [15] yields scalable and private dis-
tributed learning. However PATE is not topic to this thesis.

2.3 Membership Inference

Membership Inference attacks (MIA) reason about the existence of a given
data point in the training set of a ML model. Generally, this assumes an
honest-but-curious attacker. The attack formulates that there is a target
model under attack, which is trained with dataset Dtarget

train ⇠ D and validated

13

using Dtarget
test ⇠ D with the restriction Dtarget

train \D
target
test = ;. Given x as input

into a MIA model, it should either predict “in” if it is part of Dtarget
train or “out”

for not being part of training set. The adversary does not take any chance
to change or exploit the target model, therefore MIA is considered a passive
attack.

Definition 2.3.1. Membership experiment ExpM(A, A, n,D)
Let A be an adversary, A be a learning algorithm, n be a positive integer,
and D be a distribution over data points (x, y). The membership experiment
proceeds as follows:

1. Sample S ⇠ D
target
test and let AS = A(S)

2. Choose b {0, 1} uniformly at random.

3. Draw z ⇠ S if b = 0 or z ⇠ Dtarget
train if b = 1

4. ExpM(A, A, n,D) is 1 if A(z, AS, n,D) = b and 0 otherwise. A must
output either 0 or 1.

The Definition 2.3.1 is modified and taken from Yeom et al. [16] and specifies
a formal membership inference experiment.

Figure 2.3: Membership Inference attack setting.

In Figure 2.3 a visualisation of the membership inference attack can be seen.
The outputs from the target model are used to train the attack model. The
success is strongly depending on the overfitting of the target model.
In related literature there are some different approaches to infer information
about the membership of individuals in the training set of a target model.
The first, the black-box model, does not take any internal features of
the target model into account. Instead so-called “Shadow Models” are used,
which try to mimic the target models output with respect to their inputs [2].
Since black-box model only exploit external features of the target model, the
shadow model can only learn the output labels f(x) with respect to input x.
The realistic use-case of this setting is, e.g. cloud providers that use auto-ml
solutions for their customers. Whereby the customer never comes to see the
actual ML model.
Leino et al. [17] suggest a naive attack to compare the black-box attack.

14

Just like the black-box attack, the naive attack also merely requires arbitrary
access to the target model. Given a data point x if the predicted outcome
f(x) is correct, assume x to be a member of the training set [17]. This attack
is indeed naive, and achieves worse results than the black-box model [17].
As Leino et al. states, the greater the generalization gap is, measured e.g.
by taking the difference from training and validation accuracy of the target
model, the better the Membership Inference attack works. Despite the gen-
eralization gap, Leino et al. states, that the “idiosyncratic” use of features
within the training of a model, reinforces the accuracy of MIA. When during
training a certain data point is used, which is not in the representative pop-
ulation, particular features could be extracted and used to encode learned
training samples. These features are called evidence of membership.
Another MIA-setting is the grey-box attack [18]. Truex et al. [18] defines
this as an attack where the adversary has knowledge about the target model
or training data. Furthermore the adversary has specialized population-level
knowledge.

White-Box

In contrast to the black-box and naive attack model, the white-box model
assumes the adversary to have access to the entire configuration of the target
model, this includes the ANN architecture, parameters, and the data popu-
lation. Nasr et al. compare different white-box approaches by using different
components of the target model to train an attack model, these differ com-
pletely from the one suggested by Leino et al. They show, that training a
MIA model with the gradients, layer outputs, labels and loss from the target
model for every training and test input, they receive an attacker outperform-
ing the black box variant [9].

Figure 2.4: Membership White-Box Inference Attack setting.

In the MIA white-box setting more information about the target model can
be leveraged to train a more efficient attack model. In particular by having
access to the model f(x,W) the adversary can not only observe the output

15

but also the gradients �J
�W , outputs of the hidden layer hi(x) and loss per

sample. This can be seen as simplified in Figure 2.4. The white-box MIA
approach from Nasr et al. especially the federated case is implemented and
subject to this thesis for validating effective privacy from a target model.
The White-Box Inference Attack is a realistic attack scenario in a Feder-
ated Learning network, because every participant shares the same model
and hence has full knowledge about every model parameter.

2.4 Attribute Inference

Attribute Inference reasons about what an unknown attribute of a partially
known individual might be. Instead of questioning if x 2 Dtarget

train , the task
here is to infer the value of the unknown and sensitive attribute i of ~x. More
concisely, the true projection ⇡i(x) is searched. Yeom et al. [16] introduce
an Attribute Inference attack that is similar to the naive Membership In-
ference attack: If f is the target model trained on Dtarget

train then if the loss
J(f(x;W), y) is low for a given x consider x 2 Dtarget

train . For the Attribute
Inference analogous: If x and x0 differ in the same attribute and the loss of
J(f(x;W), y) < J(f(x0;W)) consider x to have the correct attribute value.
The adversary of Yeom et al. simply searches over all possible attribute val-
ues for a certain attribute. In other words, given an individual x we want
to infer a potentially sensitive target attribute ⇡i(x) using all other partial
information of x denoted as ⇡̂(x).
An adversary could, for instance, be interested in the sexual orientation,
gender or political view of a single individual in a publicly available dataset.
Such datasets could be extracted from Facebook, Twitter or from other highly
available and large online communities [19].

Definition 2.4.1. Attribute experiment ExpA(A, A, n,D)
Let A be an adversary, A be a learning algorithm, n be a positive integer,
and D be a distribution over data points (x, y). The attribute experiment
proceeds as follows:

1. Sample S ⇠ D
target
train and let AS = A(S)

2. Draw z ⇠ S

3. ExpM(A, A, n,D) is 1 if A(⇡̂(z), AS, n,D) = ⇡(z) and 0 otherwise.

The Definition 2.4.1 shows a formally defined attribute inference experiment.

16

It is taken from Yeom et al. [16] and was modified to fit the notation.

2.5 Differential Privacy

Differential Privacy (DP) constitutes a strong definition for anonymization
techniques [1]. The notion DP is formally defined by Dwork et al. [7]. The
goal of DP is to limit the information disclosure of statistical databases. Sta-
tistical databases only allow queries with aggregated results, like summing
or averaging over multiple entries.
Using DP a data scientist should be capable of learning information about the
population but still ensuring privacy for individual entries in the database.
More specifically, a data scientist can not be sure about whether an individ-
ual is part of a database or not, by querying the database.
DP is enforced by adding noise to increase ambiguity about the underlying
dataset. Thus, the success of inference attacks like Membership Inference is
lowered. If an adversary can not even tell if an individual is part of a dataset,
he is not able to infer any other information about individuals, hence increas-
ing privacy for a particular application.

✏-DP

Dwork et al. [7] introduced the notion of ✏-Differential Privacy (✏-DP) in
2006. This mathematical concept states a parameter for which queries to
a statistical database differ with a low probability for a low ✏ if they are
neighboring. A statistical database D0 is neighboring to a database D if they
differ in at most one individual. Statistical databases describe data which can
only be queried by a set of operations or functions f(D) using aggregation
properties like a sum or average of multiple individuals [20]. In the following,
✏-DP is formally defined.

Definition 2.5.1. ✏-DP
An algorithm M satisfies ✏-DP, where ✏ � 0, if and only if for any datasets
D and D0 that differ on one element, we have

8t 2 Range(M) : Pr[M(D) = t]  exp(✏) · Pr[M(D0) = t]

Taken from Li et al. [20].

As seen in Definition 2.5.1, for all possible outputs of a randomized algo-
rithm, a.k.a. mechanism, M on two neighboring databases, the probability
that both outputs result in the same value t should be smaller than exp(✏)

17

to enforce DP for a certain ✏ [20, p. 7]. ✏ = 0 is said to provide perfect pri-
vacy, because the output of a mechanism M is not depending on a database
anymore. This however, would render its function useless, because it would
give no information at all, about the underlying population. Therefore ✏-DP
provides privacy for sacrificing utility.
Definition 2.5.1 can be restated as:

8t 2 Range(M) :
Pr[M(D) = t]

Pr[M(D0) = t]
 exp(✏)

with 0
0 = 1.

A small ✏ contributes to a more similar probability distribution for both
datasets.
To understand the intuition of DP, Li et al. provide an “opting-out”-analogy
[20]: If a data scientist wants to publish M(D) but a single individual has
privacy concerns and is not consenting, the easiest solution would be to
remove the individual’s entry from D yielding D0 with M(D0). However
receiving privacy protection by removing individuals is infeasible, since pro-
tecting everyone’s data means removing everyone’s entry (for example a row
in a relational database). ✏-DP can be seen as approximation of “opting-out”,
since the contribution of an individual entry to M(D) is kept small. This
is achieved by ensuring that for any output t, it is similar likely one will see
the same output even if a single individual (t) is removed.
DP is applied by using a mechanism M that enforces the Differential Privacy
property by perturbing the result of f(D). Dwork et al. defines the notion
of Privacy Loss in following definition.

Definition 2.5.2. Privacy Loss
For two neighboring databases D, D0 and an output t 2 Range(M),

L = ln

✓
PR[M(D) = t]

PR[M(D0) = t]

◆

Definition 2.5.2 shows the equation for the privacy loss. If output t is more
likely for D than D0

L > 0 and vice versa.

Approximate DP

(✏, �)-DP is a generalization of ✏-DP and sometimes called Approximate Dif-
ferential Privacy. The upper bound of ✏-DP is allowed to be violated to some
degree controlled by parameter �. More concretely, ✏-DP holds for 1�� prob-
ability. (✏, � = 0)-DP equals ✏-DP [7]. In practice � should be smaller than
1
n with n being the number of individuals in the database.

18

Definition 2.5.3. (✏, �)-DP
A mechanism M satisfies (✏, �)-DP, where ✏ � 0 and � = [0, 1], if and only if
for any datasets D and D0 that differ on one element, we have

8t 2 Range(M) : Pr[M(D) = t]  exp(✏) · Pr[M(D0) = t] + �

As seen in Definition 2.5.3, � is additively applied to the multiplicative from
Definition 2.5.1. (✏, �)-DP allows to find an output t that is much more likely
to occur in D0 than in D. The absolute privacy loss |L| is bounded by ✏ with
probability 1� �.

Laplace mechanism

A frequently used ✏-DP mechanism is the Laplace mechanism. This mech-
anism is suited for functions f(D) that return scalar values. Assuming a
dataset of lung cancer patients, f(D) could, for example, return the average
amount of cigarettes per day, a patient smoked in the last 15 years [20]. The
definition by Dwork et al. is seen in Definition 2.5.4 [7].

Definition 2.5.4. Laplace mechanism
Given any function f , the Laplace mechanism is defined as:

ML(D, f(·), ✏) = f(D) + (X1, . . . ,Xk)

where Xi are i.i.d. random variables from the Laplace distribution.

To ensure f(D) to be differentially private, the outcome has to be perturbed.
This is done by adding a random variable X :

f̂(D) = f(D) + X

Where X is a random variable drawn from a Laplace distribution. Despite
needing f̂(D) to be an unbiased estimate of f(D), following condition must
hold:

8t,
PR[f̂(D) = t]

PR[f̂(D0) = t]
=

PR[f(D) + X = t]

PR[f(D0) + X 0 = t]
=

PR[X = t� f(D)]

PR[X 0 = t� f(D0)]

where both X and X
0 are drawn from the Laplace distribution. Let d =

f(D)� f(D0) following must hold:

8x,
PR[X = x]

Pr[X 0 = x+ d]
 exp(✏) (2.3)

19

If Equation 2.3 holds for every possible d, then f̂(D) is ✏ deferentially private.
Instead evaluating every possible d, the maximum difference is used, i.e. the
global sensitivity. As formally stated in Definition 2.5.5, the global sensi-
tivity measures the maximum impact an individual can have on the outcome
of a function f [20].

Definition 2.5.5. Global Sensitivity (`1)
Let D ' D0 denote that D and D0 are neighboring. The global sensitivity of
a function f , denoted by �f , is given below

�f = max
D'D0

|f(D)� f(D0)|

This concept is needed in order to ensure that Definition 2.3 holds for all
neighboring D and D0. Furthermore the probability density function should
have the property, that moving no more than �f on the x-axis it should
increase or decrease the probability by no more than exp(✏) [20]. The largest
density should lie on f(D) or f(D0) respectively.

Figure 2.5: Laplace distributions for two neighboring datasets around �f .
Taken from Li et al. [3, p. 13].

In Figure 2.5 two probability density functions are seen both for f(D) and
f(D0) with noise sampled from a Laplace distribution. The difference of

20

f(D) and f(D0) on the x-axis is �f , i.e. the global sensitivity. The higher
the gap between the peak of both distributions, the lower the privacy and
consequently the more noise needs to be added.
The Laplace mechanism samples noise from the Laplace distribution:

Lap(x|µ, b) =
1

2b
exp(
�|x� µ|

b
)

The parameters are fixed to µ = 0 and scale parameter b to b = �f
✏ . This

leads to:
X ⇠ Lap(x|0,

�f

✏
)

In the following, an example proof for Differential Privacy for the Laplace
mechanisms is illustrated, to allow the interested reader to further understand
DP.
Taken from Li et al., Proof 2.5 shows that 1

2b exp(
�|x�µ|

b) yields ✏-DP [20].

Proof. For any function f , the Laplace mechanism M(d) = f(D)+Lap(0, �f
✏)

satisfies ✏-DP.

Pr[f(D) + X = t]

Pr[f(D0) + X = t]
=

Pr[X = t� f(D)]

Pr[X = t� f(D0)]
=

Pr[Lap(0, �f
✏) = t� f(D)]

Pr[Lap(0, �f
✏) = t� f(D0)]

=
1
2b exp(

�|t�f(D)|
b)

1
2b exp(

�|t�f(D0)|
b)

= exp

✓
|t� f(D0)|� |t� f(D)|

b

◆

 exp

✓
f(D)� f(D0)

b

◆
 exp

✓
�f

b

◆
 exp(✏)

(2.4)

Therefore:
b =

�f

✏

Proof 2.5 is slightly modified and taken from Li et al. [20, p. 14] to show that
sampling noise X ⇠ Lap(0, �f

✏) yields ✏-DP for a given global sensitivity.

Gaussian mechanism

The second mechanism that will be used within this thesis, is the Gaussian
mechanism. The Gaussian mechanism, compared to the formerly described
Laplace mechanism, samples noise from a Gaussian distribution, hence the

21

name. While the Laplace mechanism achieves (✏, 0)-DP, the Gaussian mech-
anism yields (✏, �)-DP. Due to the potentially high dimensionality the Gaus-
sian mechanism uses the Euclidean norm to calculate the global sensitivity,
i.e. `2-sensitivity, seen in Definition 2.5.6.

Definition 2.5.6. Global Sensitivity (`2)
Let D ' D0 denote that D and D0 are neighboring. The global sensitivity of
a function f , denoted by �f , is given below

�2f = max
D'D0

||f(D)� f(D0)||2

Recall that the global sensitivity indicates how much noise needs to be added
to achieve (✏, �)-DP.
Let f be a d-dimensional function. The Gaussian mechanism adds noise from
a Gauss distribution with parameter µ = 0 and a certain variance �2 yielding
N (0, �2). The Gauss distribution is defined by:

f(x|µ, �2) =
1

p
2⇡�2

exp(�
1

2
(
x� µ

�
)2)

Dwork et al. proved that if the scale of noise satisfies:

� �

r
2 log(

1.25

�
)
�2f

✏

the Gaussian mechanism guarantees (✏, �)-DP, however the proof is omitted
in this thesis, due to its length [7]. The Gaussian mechanism is generally a
popular choice, since its relaxation yielding (✏, �)-DP. Besides, the Gaussian
distribution is a closed form (e.g. closed under addition). Data scientists can
therefor more easily analyze Differential Privacy under Composition.

Composition

The formerly discussed mechanisms provide Differential Privacy for a single
function evaluation (i.e. query). The common use case, however, is to answer
a query several times or to combine multiple sub-queries to a more complex
query. As Mcsherry points out, an adversary is capable to reconstruct the
original value, when having unlimited query access [21]. Imagine having
a Laplace mechanism applied to a function which returns the amount of
lung cancer patients of a dataset. Due to the Law-of-large-numbers and the
symmetric noise distribution of above mechanisms, querying and averaging
this information after a huge amount of times, eventually, the true value can

22

be obtained.
Dwork et al. addresses this issue with the Sequential Composition Theorem
[7]. The idea is to add up (✏, �) used by every call to a query or sub-query.

Definition 2.5.7. General Sequential Composition (✏, �)-DP
Let M1,M2, ...,Mk be k mechanisms
that satisfy (✏1, �1)-DP, (✏2, �2)-DP,...,(✏k, �k)-DP, respectively, with respect
to the input dataset. Publishing

t = (t1, t2, ..., tk)

where
t1 = M1(D), t2 = M2(t1, D), ..., tk = Mk((t1, ...tk), D)

satisfies (
Pk

i=1 ✏i,
Pk

i=1 �i)-DP.

Definition 2.5.7 (taken from Li et al. [20]) show that the privacy parameters
✏ and � of k mechanisms sum up. Vice versa the summation can also be
interpreted as having a budget that needs to be divided under sequential
composition and consumed by individual steps in an algorithm [20, p. 9].
For this reason ✏ is often referred to as privacy budget. In the homogeneous
case, this yields (k✏, k�)-DP, which would imply linear degradation of pri-
vacy with the number of mechanisms k in the composition. However, Dwork
et al. proofed that for � > 0, this bound is not tight and advanced compo-
sition methods can achieve higher privacy guarantees [7]. There a multitude
of techniques available, to effectively track ✏ under compositional queries,
e.g. Moments Accountant [1], Strong Composition Theorem [7] or the Ad-
vanced Composition Theorem [22].
Mironov et al. introduce Rényi Differential Privacy which provides a tighter
bound for mechanisms under composition [23]. This is due to the fact, that
the underlying assumption from the General Sequential Composition is, that
every time an attacker queries M he becomes more and more certain whether
the result is from D. Realistically however, the attacker could be more biased
towards D0 as well. RDP is based upon the Renyi entropy, which is a gener-
alization to e.g. the Shannon entropy, Hartley entropy or min-entropy. In the
information theory, entropies are used to measure the amount of information
for a statistical random variable. A divergence, however, measures the dif-
ference between two statistical random variables. Renyi divergence, in that
case, uses Renyi entropy to calculate the difference between two statistical
systems, as seen in Definition 2.5.8.

Definition 2.5.8. Renyi-Divergence
Let ↵ > 1 and p ⇠ P and q ⇠ Q be two random variables drawn from two

23

probability distributions, Renyi-Divergence is defined as:

D↵(P ||Q) =
1

1� ↵
log

✓Xn

i=0

p↵i
q↵�1
i

◆

The definition is taken from Mironov et al. [23], although modified to fit to
this thesis’ notation.

It is proven, that for lim↵!1, D1(P ||Q) is equivalent to the Kullback-Leibler-
Divergence.
The motivation to use RDP lies in the obvious fact that a mechanism M is
✏-DP if and only if its distribution over any two neighboring datasets satisfies:
D1(M(D)||M(D0))  ✏ for lim↵!1 [23].
The sequential composition theorem for RDP is defined as: (↵,

Pk
i=0 ✏1)-DP.

2.6 Differentially Private Learning

Differential Privacy is enforceable on each record d 2 D, commonly referred
to as Local Differential Privacy (LDP), or on an aggregate function f(D),
referred to as Central Differential Privacy (CDP). In this thesis both ap-
proaches were validated in the experiments and thus a brief introduction is
necessarily provided in the next following sections.

Central Differential Privacy

Central Differential Privacy (CDP) is used to perturb a aggregation function
f(·). A CDP mechanism has to fulfill Definition 2.6.1.

Definition 2.6.1. (✏, �)-Central Differential Privacy
A mechanism M is said to be (✏, �)-central differentially private if D and D0

differ in at most one element and all outputs 8t 2 Range(M).

PR[M(D) = t]  exp(✏) · Pr[M(D0) = t] + �

The definition was taken from Bernau et al. [5]. In CDP, noise is not added to
records in Dtarget

train but to an aggregation function during the training process.
This is done by utilizing differentially private gradient descent optimizers,
e.g. DPSGD or DPAdam [1]. The algorithms are modifications of the update
rule seen in Section Gradient Descent 2.1. Particularly, they add noise to
gradient updates during the backpropagation process while training an ANN.
Counter-intuitively Abadi et al. claim that adding noise to the parameters
after the training, renders the model unusable, thus the gradients have to be

24

perturbed during the training [1].
A differentially private optimizer represents a DP mechanism [5]. This DP
mechanism Mnn updates the weights of the ANN in each training step t
with W t = W t�1

� ⌘(g̃), where g̃ = Mnn(
�J

�W t�1) denotes the gradient. The
gradients are perturbed by Gaussian noise and hyperparameter ↵ is some
scaling function on (̃g). After a certain number of gradient updates, the
mechanism Mnn yields a differentially private weight matrix W for the ANN.
Because the amount of noise added by a mechanism depends on the global
sensitivity, the gradients have to be clipped, in order to bound the sensitivity
in the backpropagation process.
Hyperparameter C, also called Clipping Norm, determines at what value
the gradients are clipped. Additionally hyperparameter z, also called noise
multiplier, controls the amount of noise that is sampled from the distribution
and added to the clipped gradients. The noise distribution is Gaussian and
therefore � = z · C.

Local Differential Privacy

Sampling and adding noise to each entry d 2 D is called Local Differential
Privacy. While CDP can be used by a trusted server, LDP is the preferred
choice, if a central server can not be trusted. In this setting, the data is
perturbed before the model is trained. To achieve LDP, noise is added to the
data by LR, as can be seen in Definition 2.6.2 [5].

Definition 2.6.2. Local Differential Privacy
A Local Randomizer LR is ✏-local differentially private, if ✏ � 0 and for all
possible inputs v,v0 and all possible outcomes t 2 Range(LR):

PR[LR(v) = t]  exp(✏) · Pr[LR(v0) = t]

The LDP experiments within this work are performed by using a local ran-
domizer to independently perturb each entity d 2 D. However, since features
can be highly correlated, the local randomizer has to repeatedly perturb the
data. A local algorithm repeatedly invokes the LR, and the resulting privacy
guarantees are formally defined in Definition 2.6.3. Due to the sequential ap-
plication of the local randomizer, privacy gradually degrades.

Definition 2.6.3. Local algorithm
An algorithm is ✏-local, if it accesses the database D via LR within the
following restriction: for all i 2 {1, . . . , |D|}, if LRi(i), . . . ,LRk(i) are the
algorithm invocations of LR on index i, where each LRj is an ✏j-local ran-
domizer, for 1  j  k, then ✏1 + . . .+ ✏k  ✏.

25

Definition 2.6.2 is taken from Bernau et al. [5] who themselves based their
definition on Kasiviswanathan et al. [24]. As seen in the formal definition, a
LR perturbs data entries independently. From Definition 2.6.3 follows, that
a local ✏i is a slightly weaker privacy guarantee than the global ✏ achieved
from e.g. a CDP mechanism.

Randomized Response

Randomized Response is a ✏-LDP mechanism which can be used for LDP as
Local Randomizer [7, p. 30]. This technique was originally developed for the
social sciences to evaluate illegal or embarrassing behaviors in surveys and
hence to overcome Non-response Bias. To illustrate randomized response,
imagine an embarrassing activity “P” and the query “Have you engaged in P
in the past week?”. But the n participants from the survey are instructed to
answer “yes” or “no” about property P according to following schema, which
also can be seen in Figure 2.6:

1. Flip a coin.

2. If tails, then respond truthfully

3. If heads, then flip a second coin and respond:

(a) “Yes” if heads.

(b) “No” if tails.

Figure 2.6: Randomized Response schema

The intuition behind randomized response and all other DP mechanisms is
that it provides plausible deniability [7]. Every participant can deny the
outcome, due to the random coin flips.

Proof. Randomized response is ln(3)-differentially private for two possible
events using a coin flip.

26

Pr[Response = Y es|Truth = Y es]

Pr[Response = Y es|Truth = No]
=

Pr[Response = No|Truth = No]

Pr[Response = No|Truth = Y es]

=
1/2 + 1/4

1/4
= 3

(2.5)

Inserting this into Definition 2.5.1 yields ✏i = ln(3).

Although every single response, i.e. entry d 2 D, will be perturbed, the
expected percentage of individuals in the population who have property P
can be approximated by:

Pr[Response = Y es] =
1

4
+

1

2
· p̂) p̂ = (Pr[Response = Y es]�

1

4
) · 2

2.7 Related Work

This work aims to find suiting parameter ✏ for ANNs, which were trained in
a federated fashion. DP is enforced using CDP and LDP mechanisms and
evaluated using MI and AI attacks against the confidentiality of these mod-
els. Hence this work is related to research fields in these three components:
White-Box MIA, Federated Learning and DP.

White-Box MIA

Nasr et al. evaluated white-box Membership Inference attacks against both,
centrally and distributed (federated) learned models [9]. The FL protocol
used in their work is specified by Konečny et al. [25]. They show that for a
small number of participating clients it is possible for an adversary to infer
sensitive information in a global Membership Inference Attack as well as for
an local attacker. Their attack mode learns directly from the target models
internal parameters. Furthermore they assume the adversary to possess a
fraction of the Data Owners sensitive data. These stronger assumptions on
the adversary increase the overall strength of the MI attack in contrast to
black box MI.
Hitaj et al. proposes an attack model using a Generative Adversarial Net-
work GAN to infer sensitive data in a collaboratively learned model [26].
They stat, that their GAN attack model is able to archive high accuracy

27

even when DP is applied. Nasr et al. however point out, that their FL proto-
col is not standardized. More specifically, they update the global model each
time the clients trained on a single mini-batch. Furthermore, their adversary
constitutes an active attack. An local attacker injects generated samples
from the GAN and labels them according to another class. This way, the
other clients need to invest more work to distinguish between these classes.
Eventually evidence of membership will be encoded into the mislabeled class,
making it easier to infer.

FL

The currently active research efforts in FL focus training with heterogeneous
statistical distributions within the datasets of the clients. Algorithms like
Matched Averaging (FedMA) [27], or FedProx [28] try to tackle this prob-
lem. FedMA applies a layer-wise, instead like in FedAVG a coordinate-wise
average. FedProx modifies the federated SGD slightly by having a proximity
term added. These research topics are not concerning privacy, whatsoever.
Although for different federated algorithms, probably other DP-parameters
have to be evaluated. One differentially private technique to fit a ML model
distributively is PATE [15]. Given a number of Data Owner with disjoint
sensitive data. PATE refers to each client as individual Teacher. The so
called aggregate teacher takes for a given input data the prediction votes
from the teacher ensemble. The aggregation then, adds Laplacian noise to
the vote histogram. DP is now enforced due to the fact, that if multiple
teacher agrees on the same label it is not depending on a single model. Also
DP is enforced, because the aggregate teacher yields the prediction with the
highest noisy vote from the ensemble. This mechanism is called max-of-
Laplacian mechanism. The last step in PATEs training involves a student
model. The student model uses unlabeled and non-sensitive data and com-
bines them with a prediction label by the aggregate teacher. An adversary
should have no access to the aggregate teacher or the teacher ensemble at
all. Only the student model should be publicly available.

DP

Abadi et al. present a way to apply a Gaussian mechanism to the Gradient
Descent Optimizer for ANNs [29]. Bernau et al. compare this CDP mecha-
nism and LDP mechanisms for different ML models. For comparability these
datasets are also used in this thesis. For the distributed case of training a ML
model Agarwal et al. present a way to apply a central differentially private
Binomial mechanisms to Federated Learning [14]. Although their work in-

28

tends to find a secure and communication efficient trade-off while this work’s
goal is to propose a good utility-privacy-trade-off. This thesis however, fol-
lows the same approach as the one from Wu et al. [30]. Wu et al. present a
way to apply DP to collaborative learning. Their protocol consists of Data
Owners and a aggregator (referred to as learner). The Data Owners train
one epoch on their local model with their sensitive data. Afterwards the
aggregator queries the Data Owners and receives their perturbed gradients.
They prove that the quality of trained ML models scales inversely with the
squared privacy budget and the squared size of the dataset. This metric will
also be validated in this thesis. However, they enforce DP only through CDP
and are not evaluating the effective privacy by using Inference Attacks [30].

29

2.8 Notation

The purpose of this last section is to provide Table 2.1 of the notation used
throughout this thesis. The notation mostly matches with Bernau et al. [5].

Notation Description
D Dataset.
DO Set representing Data Owners 1...n, i.e. DO = {DO1, . . . ,DOn}.
Dtrain

DOk
Training Data for local model of DOk

Dtest
DOk

Test Data for local model of DOk

A Adversarial aggregator
Dtrain

targetk
Training Data for the target model from data owner k.

Dtest
targetk

Test Data for the target model from data owner k.
AM Attack Model i.e. the model used to infer membership
Din

targetk
Data from data owner k labeled in.

Dout
targetk

Data from data owner k labeled out.
Dtrain

attack Train Data for the attack model.
Dtest

attack Test Data for the attack model.
GM Global Model obtained from the aggregation of the local models.
T M Target Model i.e. the model used to train the attack model.
x A specific data point ~x for convenience reasons the vector arrow is dropped.
J(f(x;W), y) The loss function w.r.t. input x and true value y.
f(x) A concrete function e.g. database query.
hi(x) output of i-th hidden layer.
�J
�Wi

Weight gradients of i-th layer.
X = x0, . . . , xn Certain datapoints.
Y = y0, . . . , yn Corresponding labels for X.
⌘ Learning rate parameter.
⇡(x) A certain projection of data point x.
⇡i(x) The ith attribute of data point x.
✏ Differential Privacy parameter.
M ✏-DP mechanism.

Table 2.1: Notation used in this thesis.

Methodology

Within this chapter, first the research hypothesis is stated and afterwards
the threat model under which the research hypothesis is validated, is be-
ing discussed. The following implementation section describes in detail how
the experiments are performed. The chapter concludes with a definition of
evaluation metrics for comparing white-box MI attacks.

3.1 Hypothesis

Nasr et al. [9] suggest a white-box Membership Inference Model and per-
formed them in numerous experiments. They have shown, that MI attacks
are successful against Federated Learning environments. Using this knowl-
edge, this work hypothesizes, that MI attacks are suited for measuring the
effective privacy enhancement in the FL context. If the hypothesis is correct,
there should be a trade-off sweet-spot, which could act as a general guideline
for data scientists in the future.

3.2 Threat Model

All experiments within this thesis make the same assumptions about the
MI adversary. Thus, every experiment within the thesis considers the same
threat model, which is introduced in the following.

Type of Adversary

For all experiments, it is assumed that the adversary is not actively changing
the model’s behavior, but instead merely observes input, output, and internal

30

31

parameters of the model. In the field of cryptography research, this passive
adversarial behavior is usually referred to as passive or honest-but-curious
[31]. Compared to Nasr et al. this work will not consider the active attack
strategies like exploiting the SGD or completely separating each data owner
from the global update.

Adversarial Knowledge

The adversary is assumed to have full access to the trained ML model, i.e.,
the weights and losses in addition to the input and output. To perform the
attacks, the adversary also knows a certain portion of the target model’s
training and test data. This approach is very similar to Nasr et al. [9]. In
the Federated Learning process, there are two potential adversaries. In both
scenarios the attacker tries to infer potentially sensitive information about
individuals in the training set of the target model from a data owner. Either
with membership or attribute inference.

Global Attack The first attack scenario is called Global Attack. Here, the
adversary acts as the aggregator who tries to infer sensitive information
about the individuals of the training set from the data owners. In the
Global Attack, the aggregator isolates and stores each data owner’s
update before aggregating it. In consequence, T local models are stored
by the aggregator per data owner.

Local Attack In the Local Attack, an adversarial data owner tries to in-
fer sensitive information about other data owners participating in the
training. The adversary stores T global models, for T non-consecutive
epochs. Furthermore, the attacker has a certain fraction of the train-
and test data of the data owner under attack.

Nasr et al. [9] report that the best results are achieved, when the attacker has
access to models from T non-consecutive epochs. Furthermore, they state,
that they tried with T = 5 because they had hardware limitations and could
not test larger T , although they think, larger T yield better results. Lastly,
the attribute inference attack additionally assumes some domain knowledge
about the sensitive attributes.

3.3 Implementation

In this section all implementation details regarding the Federated Learn-
ing Framework, Attribute and Membership Inference Attack model are ex-
plained.

32

Federated Learning Framework

Federated Learning (FL) is used to train a ML model distributed across
multiple data owners. There is a central instance that monitors the training
while several participants actually execute the training. In FL the central
instance assures that everyone complies with the protocol. The implemen-
tation in this work is based on the naive synchronized algorithm of Konečny
et al. [25]:

1. A subset of connected clients is selected, each of which downloads the
current model.

2. Each client in the subset computes an updated model based on their
local data.

3. The model updates are sent from the selected clients to the sever.

4. The server aggregates these models to construct an improved global
model.

The naive algorithm is sufficient, because the solely purpose of this framework
is to run experiments on only a few simulated devices, which is typical for a
b2b environment. Optimizations to decrease the communication rounds are
not necessary since in this thesis the processes run on the same physical ma-
chine. This algorithm is best implemented using a client-server-architecture
model. The FL protocol in this thesis might differ from Nasr et al. research
paper, since they did not clarify which protocol they used for their exper-
iments. Although, the protocol in this work is said to be state-of-the-art
[32].

Components

The software architecture follows the implementation suggestion of Bonawitz
et al. [32], which is based on an actor model, i.e. the framework uses a
client-server-architecture, where the components communicate over message
passing. There are two main components, as seen in the UML component
diagram in Figure 3.1: The server (aggregator) and the clients (data owners).

33

Figure 3.1: UML Component Diagram of the Federated Learning Framework.

The server listens on a multi-threaded TCP Socket (websockets) assuring
a bidirectional real-time communication. A HTTP-Server (Flask) is used to
serve training logs and metrics via a web GUI. Each thread handles a different
client. After a client connects the first time, the server sends the serialized ML
model template. The clients, each consisting of a single threaded websocket
client, receive the model, execute batch gradient descent for a specific amount
of epochs and eventually send the updated local models weight matrix back
to the server. This procedure corresponds to the formal Algorithm 1 seen in
the previous chapter.
In the following, a short outline of the two main components is presented:

Client A client holds a reference to a local model and keeps an unique identi-
fier retrieved from the server. When the training is finished, the clients
save their local models instead of just the weights. This way, the opti-
mizer state is saved as well. A derived class called “AdversarialClient”
denotes a specific client, who saves the received global model every T
epochs before it starts its local training.

Server The server holds a reference to a global model, a list of connected
clients and the queue containing the latest client messages. The queues
capacity is set to max(C · n, 1), i.e. the amount of clients. A derived
class called “AdversarialServer” denotes a specific server, who saves the
isolated local updates from each client for T epochs.

34

All clients, as well as the server, run in their own respective isolated pro-
cess. This is to enforce the memory-safe paradigm: “Do not communicate by
sharing memory; instead, share memory by communicating.” [33].

Communication

Based on the actor model, in the client-server-dialog, each message is asso-
ciated with a particular event. The simplicity lies in the few events that are
needed:

1. on connect
The client connects successfully to the server. The server answers with
the event init and the model template.

2. on init
The client receives the training parameters and emits the event ready.

3. on ready
The server enqueues the message and waits for m <= n clients to be
ready. Eventually it broadcasts the event request_update. This results
in a so called “barrier” which ensures synchronicity among the processes.

4. on request update:
The client receives the current global model and the instruction to train
E epochs on their local model. He answers with the client_update
event, their updated weights, their training data size, their training
loss and accuracy as well as their test loss and test accuracy.

5. on client update:
The server enqueues the message and waits for max(C ·K, 1) clients to
have sent their updated weights. Then it aggregates the weights and
evaluates the global loss and accuracy on the validation data. Finally,
it broadcasts request_update again.

Dialog 3.3 repeats until the server monitors an insignificant change in the
validation loss for a specific amount of epochs i.e. effectively enforcing “early
stopping”. The server is not using a global event loop to decide when to take
action. Rather, a concurrency safe queue, is used, to store the client mes-
sages. The thread that handles the C · n-th message, aggregates the metrics
and weights. Then the queue is flushed and another instruction to train the
local models is broadcast to the clients.
The messages and the “Keras” model are “JSON” serialized python dictionar-
ies, while the weights are serialized and compressed using “Numpy”. For this

35

thesis, different data encoding schemes were evaluated, for instance: “Mes-
sagePack” and “Pickle”. However, the best runtime and size trade-off was
achieved using JSON with “Gzip” HTTP compression.

MIA Model Architecture

Given a data point (x, y), the adversary’s objective is to determine the mem-
bership in the training set Dtarget

traink
of the target model f(x;Wk) from data

owner k. For convenience, in the following explanation of the MI model, the
index k for data owner k is dropped.
The classification task of the MI Attack is performed by the attack model,
which makes use of different features from the target model. This section
explains this specific attack model architecture and how the attack model
inputs relate to the target model. Furthermore, the generation of attack
features and the training of both models are described. The attack model,
implemented within this work, is based on the white-box MI attack proposed
by Nasr et al. [9].

Figure 3.2: White-Box Membership Inference Attack Architecture [9].

The MI attack makes use of all internal and external features of the target
model under attack, including: the loss J(f(x;W), y), the hidden layer out-
puts hi(x) of each hidden layer i, the gradients �J

�Wi
and the Label y. As seen

36

in Fig. 3.2, every feature is the input for a particular component. The gradi-
ent matrix constitutes the input for a Convolutional Neural Network (CNN).
The CNN has a kernel size of (1, np), where np is the number of nodes in the
previous layer to capture the correlation of the gradients in each activation
function [9]. The hidden layer outputs hi(x), the loss J(f(x;W), y) and the
one-hot-encoded Label y are input to a Fully Connected Network (FCN).
Furthermore, in the Federated Learning-scenario, the adversary observes the
target model for multiple epochs. Since in the FL context, there is no single
point in time where the trained model is being deployed, the trained model
is rather used by the data owners until it gets replaced by a new global
model. In practice, this process may never stop at all [4]. In this particular
case, when capturing the target model for T epochs, each input component’s
output is stacked together. For instance, instead of having only one loss fea-
ture L, here, the loss features are composed of L = {L1, L2, . . . , LT

} [9]. If
the target model has i layers (without the input layer) and was observed T
epochs, then the attack model consists of 2 · i+1 components. The output of
each component is merged and used as input for a final FCN component also
called encoder. Eventually the last FCN outputs a single sigmoid activation
value to perform the binary classification task for in or out. Nasr et al. eval-
uated different combinations of the components. Furthermore they extract
information from every layer in the target model. In our experiments, the
last two layers of the target model, with every information, were sufficient.
Adding more layers did not change the outcome but elongated the attack
training process immensely.

37

Name Layer Details

Output Component 2 Fully Connected Layers
Sizes: 128, 64
Activation: LeakyReLu
Dropout: 0.2

Label Component 2 Fully Connected Layers
Sizes: 128, 64
Activation: LeakyReLu
Dropout: 0.2

Loss Component 2 Fully Connected Layers
Sizes: 128, 64
Activation: LeakyReLu
Dropout: 0.2

Gradient Component Convolutional Layer
Kernels: 1000
Kernel size: C x Next layer
Stride: 1

2 Fully Connected Layers
Sizes: 128, 64
Activation: LeakyReLu
Dropout: 0.2

Encoder Component 4 Fully Connected Layer
Sizes: 64, 4, 1
Activation: LeakyReLu
Dropout: 0.2

Table 3.1: Modified White-box MIA model based upon Nasr et al. [9].

The overall architecture details can be taken from Table 3.1. The archi-
tecture differs slightly from Nasr et al. [9]. The ReLu activation functions
from the original approach were replaced with LeakyReLU functions. This
is due to the fact, that during training, we observed the attack model to
sometimes stagnate and predict every sample as being “in”. Compared to
ReLu functions, LeakyReLu allows small gradients even when the neuron is
not active. This averts the “Dying ReLu” phenomenon and allows the net-
work to correct itself. Furthermore, batch normalization layers were added
to every input layer to not only normalize every input batch-wise but also to
add a regularization effect. Normalization is important, since attack features
from multiple different epochs are stacked together. Some parts of the attack
features like gradients and loss can show different statistical properties over
different epochs and hence need to be normalized. At last, the convolutional
layer for the gradient component is modified. With k being the amount of
gradients and C = 4 a fixed hyperparameter for the next layer, the kernel is
now C · k shaped.

38

Target Model Training

The training of the model under attack is an important factor deciding
whether an attacker can succeed or not. A strongly overfitting target model
makes an MI attack significantly easier since the target model performs ex-
tremely well on the training data and badly on the test data. This is likely
to show in all attack features which are extracted from the target model. In
order not to bias the experiments, the target model is trained to achieve a
high test accuracy and hence a small train-test-accuracy gap. This ensures
the experiments are as close as possible to a real-world scenario.
The target model in this thesis is trained using Federated Learning: Mul-
tiple data owner collaboratively train one global model. However in this
implementation, the aggregator receives a fraction of the data to be able to
enforce early stopping, while the data owners perform a 50 : 50 train/test
split. Other public available implementations use the averaged validation
loss of the clients to measure the overall performance as seen in Equation
3.1. This way the loss from all k DOs is aggregated using a weighted average
w.r.t. their training set size.

GlobalLoss
XK

k=0

nk

n
J(f(x;Wk), y) (3.1)

During this work, the experiments were tested with both measurements, and
the results do not vary significantly. The data distribution for each data
owner can be seen in Fig. 3.3.

Figure 3.3: Dataset distribution for target model [5].

In this setting, we have Dtrain
targetk

, Dtest
targetk

⇠ D. D is split up 50 : 50, so that
the attacker has the same amount of data not being present in the train-
ing set and data which was used during training. The target model is then

39

trained using Dtrain
targetk

for all data owner k. The aggregator decides when
to stop training, by monitoring the validation accuracy. Nasr et al. used
four clients to train the model [9]. More data owners lead to a performance
loss on the attack model. Moreover, developers from SAP internally came
to the conclusion, that n = [4, 5] is commonly found in real word applications.

Attack Model Data Generation

To generate the data for the attack model training and evaluation, the T
trained target models are loaded first. This means the same target model
architecture, which is used during training, is used for attack feature ex-
traction. The target models weights which were learned during training are
loaded.

Figure 3.4: Dataset distribution for attack model [5].

To train the attack model, the first step is to load each data point from
Dtrain

targetk
and Dtest

targetk
from target data owner k. The attack features includ-

ing the gradient matrix, hidden layer outputs, loss and label are extracted
yielding Din

targetk
for a data point with extracted features that were in the

training set of the data owner k, and Dout
targetk

for the data with extracted
attack features that were part of the target models test set. This procedure
can be observed in Fig. 3.4. The implementation is iterating batch-wise over
each data point in both datasets. Since the output for every data point can
potentially be large, the attack features for a memory-fitting batch is written
to an HDF5 file on disk before calculating the attack features of the next
points. This way, the memory consumption during the creation of attack
data can be held to a minimum. Additionally, saving the attack features to a
file on disk allows for easy reproducibility of experiments, without expensive
gradient calculations for repeated runs. Dtrain

attack and Dtest
attack is obtained by

combining Din
target and Din

target by the same amount and then split to a test
and train set for the attack model.
The extraction of gradients of all hidden layers quickly becomes very intensive

40

w.r.t. the required disc space. That is due to the attack feature extraction
generating a multiplicity of values. Imagine a target model DNN architecture
of [600, 1024, 512, 256, 128, 100], that yields an amount of 2620 neurons and
more than 1.3 million weights. Furthermore assuming Float64 datatype that
would result into a disk space requirement with at least 10 MB for a single
data point. As an example: assuming 70000 data points in our dataset and
T = 3 captured target models the disk requirement would be 2100000 MB
or 2.1 TB.
Experiment have shown, that it is sufficient if only the last layer is used
to generate attack features. Making use of previous layers, as well, only
marginally (< 1%) improved the attack accuracy. Therefore in this thesis,
only the last two layers of T target models are used to train the attack model.

Attribute Inference

An attribute inference attack tries to infer the possible value of a unknown
sensitive attribute. In this thesis, the membership inference approach from
Nasr et al. [9] is extended to allow attribute inference attacks. Generally,
membership inference is a generalization that can be used to infer whether an
individual x with different attributes ⇡i(x) where i is the sensitive attribute
index and ⇡i(x) 2 0, 1, were member of the training set or not.
In this work, the membership inference attack model is trained on binary
valued datasets. The dataset D

target
train is mirrored and the attribute that is

being inferred at index i is flipped for every individual x 2 D
target
train . This

results in D
in
target for the data with the correct attribute and D

out
target containing

the data with the flipped a.k.a. wrong attributes. Thus, for every attacked
attribute at index i there needs to be a MIA model and the corresponding
attack features to distinguish between whether x 2 D

in
target or x̂ 2 D

out
target is

more likely.
For every dataset at least 10% of the indices are attacked to get an fair
estimation of the true attacker. Moreover, the same target models are used
as in the membership inference experiments. Attribute inference constitutes
a more realistic and problematic attack technique, because the adversarial
knowledge about a sensitive attribute is often worse than the knowledge of
sensitive membership. Due to that reason, we consider for an equal MI and
AI attack accuracy, the AI attack to be much worse.

41

3.4 Learning under Noise

In the next sections the actual realization of DP for the following experiments
is explained.

LDP

In this work, Local Differential Privacy is used to perturb the sensitive train-
ing data for the target model. The entire dataset is perturbed using either
a DP Randomized Response mechanism, to flip Boolean values with a cer-
tain probability or by applying noise from a Laplacian distribution yielding
a Laplace Mechanism. The latter is used for perturbing scalar values, like
pixels. That way, the entire dataset exists in a perturbed and an original
variant, so that each data owner can train on their perturbed data while
the attacker uses the original data. Intuitively, this is because we want the
attacker to learn to infer data from the original training dataset rather than
the noisy one. This implies, that the attacker has a certain amount of the
original unperturbed data and a target model that was trained on noisy data.

CDP

Central Differential Privacy is consumed from the Tensorflow Privacy library.
This library provides noisy optimizers which alter traditional optimizers by
introducing noise sampled from a Gaussian distribution on to the gradients
during training. This effectively implements a Gaussian DP-Mechanism. The
training occurs on the original data, but due to the noisy gradient updates,
the training of the target model usually takes longer.
When using CDP, the effective privacy loss is measured using the Renyi-
differential privacy moments accountant as described in the theoretical foun-
dations. In practice, the RDP is calculated w.r.t. to a fixed set of orders
↵ for a Gaussian mechanism by taking noise parameter � and the sample-
ratio, i.e. the amount of times a certain individual from a dataset has been
observed, into account. ✏ can be calculated for a given target � yielding (✏, �)-
DP. To be able to conveniently plot the results of the experiments, in this
thesis, the calculated ✏ values are averaged over all identical experiments.
Another way of aggregating the ✏ values under composition and for multi-
ple identical experiments is taking the maximum value max(~✏), however the
difference between those two methods is diminishing.

42

Hyperparameter Search

Hyperparameter search is the process of finding the best parameter combi-
nation in a potentially large parameter search space. The goal is to minimize
an objective function f for a certain set of parameters p:

argmin
~p

f(~p) (3.2)

In this work, contrary to Nasr et al., hyperparameter search, particularly
Gaussian Process (GP) optimization, is used to find optimal hyperparam-
eters to train the attack model. The attack models of the corresponding
target model that are not using DP at all, and those of the target model that
use CDP with different noise levels are optimized with a search space con-
taining a continuous learning rate range of [0, 00005, 0, 003], different batch
sizes {64, 128, 256} and a binary value telling whether Batch Normalization
is applied or not. Compared to a classical grid search, the Gaussian Process’
runtime is restricted by the amount of calls, which the process is allowed
to make in order to test certain parameter combinations. This particularly
makes sense, if the search space is continuous or very large. Here, the GP
optimizer, tries to minimize the negative membership advantage of the cur-
rently tested attack model. Using an exploration-vs-exploitation trade-off
and Bayesian inference, it finds the next potentially suiting parameter can-
didate [34].

3.5 Approach

The evaluation of the trade-off between utility and privacy w.r.t. different pa-
rameter ✏ is done by attacking several ANN classifiers for different datasets.
The target model as well as the classification tasks differ in output dimen-
sion, training data distribution and ANN complexity. The target models are
trained using FL without DP, with LDP and CDP and different noise levels
respectively. To measure the privacy, the models are being attacked using
the global and local attack scenario. Every experiment is repeated three to
five times. Then the results are measured to obtain possible insights.
Wu et al. [30] state, that the convexity of a loss function for a ML model un-
der FL differs when applying ✏-CDP. They even suggest a particular learning
rate and iteration parameter, which will reduce the performance difference
between a model trained using DP and the same model in absence of DP to
a minimum. This, however, is only suitable for a cost function which meets
the assumptions of smoothness, strong convexity, and Lipschitz-continuity of
the gradient [30]. However, cost functions with such best-case assumptions

43

are relatively rare in practice. Nasr et al. [9], in contrast, train for a certain
amount of epochs and take the best performing model for both target and
attacker. In this thesis early stopping is used extensively. This gives a much
more realistic scenario. Though this approach leads to several consequences
in the experimental comparability of the results from Nasr et al. and those
from Bernau et al. [5].
For fixing parameter T , Nasr et al. state, that they found out, that stack-
ing attack features from T = 5 models from non-consecutive epochs, yields
the best result. Furthermore they point out, that using latter epochs yields
even better results, because the earlier epochs only learn general informa-
tion without much membership information. In this work the attack model
performance could vary depending on how long the target model is trained.
Under certain circumstances some experiment repetitions could lead to more
or less observed communication rounds. Therefore, the attacker can use more
or less observed target models from different epochs which could lead to a
worse or better attack accuracy. Moreover using RDP to calculate ✏ under
composition could vary as well, since RDP highly depends on how often the
target model observes a certain perturbed individual from a dataset during
training. This effectively leads to different ✏ values for some repeated exper-
iments with early stopping. Each experiment is repeated five times with the
same overall configuration but with different random seeds. All experimental
results are averaged and presented with standard deviation. The precision-
recall curves take the thresholds of every identical experiment into account
and the ROC curves are interpolated among all identical experiments. For
every dataset, there is an experiment for a global and local attacker without
DP and with CDP and LDP. CDP and LDP are tested using five different ✏
values.

3.6 Attack Evaluation Metrics

In this work, the attack model is evaluated not only by using the accuracy
but a few different metrics. The attack evaluation methodology is largely
based on the methodology used by Bernau et al. [5]. Since the adversary
constitutes a binary classifier, the overall performance for a certain test run,
can be measured using the amount of correctly identified members called True
Positives (TP), and the True Negatives (TN), i.e. the correctly identified non-
members. Consequently, False Positives (FP) are non-members who falsely
got classified as members, also called Type-I-Error, and False Negatives (FN),
who are misidentified non-members, also called Type-II-Error.

44

Test Accuracy
Accuracy is defined as:

TP + TN

TP + TN + FP + FN

Since the attack model makes binary decisions, random guessing would
achieve a 0.5 accuracy. Therefore, it is fair to assume a 0.5 worst-case
or baseline accuracy. A perfect performance would reach an accuracy
of 1.0, i.e. identifying every member and non-member correctly. The
Accuracy is also used as measurement for the utility of the target mod-
els.

Attack Precision
Precision is defined as :

TP

TP + FP
The Precision expresses what proportion of the positives are TP. Preci-
sion is arguably an important performance metric for the attack model,
since it expresses how reliable member identification is. An attacker
tries to focus on identifying TP and can mostly ignore TN. Just like
the Accuracy, the baseline is 0.5.

Attack Recall
The recall metric represents the proportion of actual member who have
been classified correctly:

TP

TP + FN
Ideally, an attack model should score high in both precision and recall,
to accomplish a successful inference attack. The baseline for Recall is
0.

False Positive Rate
The FPR is the opposite of the Recall and is used in the ROC curve, it
yields the ratio between falsely identified individuals over all individu-
als.

FP

FP + TN

Membership Advantage
Yeom et al. [16] introduce a metric called Membership Advantage. This
metric measures how well an adversary can distinguish between z ⇠ D0

and z ⇠ D after being given the model. It can be calculated by:

Recall � FPR

45

If the attacker randomly guesses, this metric yields 0. In this thesis,
Membership Advantage is used to evaluate the attack model during
the hyperparameter search. Yeom et al. proved, that the membership
advantage is bound by e✏ � 1.

Since the attack model’s last layer has a sigmoid activation function, instead
of a label corresponding to the input, we receive a probability. Whether a
member belongs to a certain class depends on a threshold for the classifica-
tion probability. If the threshold for being classified as “in” is set high, we
receive a high precision, because we are certain that the input data belongs
to a class, consequently we receive a small recall, because we classify more
data as False Negatives. Vice versa, if we set the threshold low, we receive
a low precision, since we are labeling more data as being “in”, but a high
recall, because we have a lot less False Negatives. Therefore, it is important
to set the threshold according to the needs and moreover to balance recall
and precision, so that both are high. For that particular reason, it is crucial
to evaluate the binary classifier for a multitude of different thresholds [35].
Moreover, it is not suitable to only use a single-threshold measurement like
Membership Advantage or accuracy to grasp the attackers full capabilities.
In this thesis and for above reasons, the Receiver Operating Characteris-
tics (ROC)- and Precision-Recall -Curves [36] are proposed to better evaluate
an attacker.

Receiver Operating Characteristic Curve
The ROC-Curve plots the Recall on the y-axis and the FPR on the
x-axis for different classification thresholds. A straight line from [0, 0]
to [1, 1] identifies the baseline. The ROC curve provides an Area under
Curve (AUC) value, which is a scalar metric indicating the overall
models performance for all thresholds.

Precision-Recall Curve
The Precision-Recall (PR) Curve plots the Precision on the y-axis and
the Recall on the x-axis, for different classification thresholds. The
baseline is the same as for the ROC curve: a straight line from [0, 0] to
[1, 1]. Compared to the ROC-Curve, the PR-Curve has no meaningful
AUC value due to the non-monoticity and thus the average weighted
precision is used as an alternative measurement.

The last metric, taken from Bernau et al. [5], measures the ratio between
target model utility and privacy by taking the target models accuracy and
the attack models behavior into account.

Privacy Gain - Performance Loss Ratio

46

Assuming AUCorig to be the AUC for the attacker when attacking a
target model without DP, AUC✏ be the AUC for attacking a target
model when DP (with a certain ✏) is applied and AUCbase being the
baseline of 0.5. And furthermore assuming ACCorig to be the target
models accuracy without DP being applied, ACC✏ being the target
models accuracy when DP (with a certain ✏) being applied and lastly
ACCbase being the target models baseline accuracy 1/C with C to be
the amount of classification classes.
' measures the Privacy Gain - Performance Loss Ratio:

' = max

✓
2,

max(0, (AUCorig � AUC✏) · (ACCorig � ACCbase)

max(0, (ACCorig � ACC✏) · (AUCorig � AUCbase)

◆

This metric yields two possible outcomes: 0 < ' < 1, when the loss
in test accuracy exceeds the gain in privacy and 1 < ' < 2 when the
relative gain in privacy exceeds the relative loss in accuracy. Therefore,
an optimal trade-off outcome would be a value close to 2 [5].

Experiments

This chapter presents and analyzes the experiments which were performed
throughout this thesis. First, the experimental environment and setup is
laid out and afterwards, the datasets and corresponding target models are
introduced. Finally, the experimental results for the target model under noise
application and the results for the inference attacks using Membership and
Attribute Inference, are shown.

4.1 Experimental Setup

This section describes the general experimental setup, which is used to per-
form the experiments. The hardware and the software setups are briefly
described.

Hardware

For the experiments, AWS EC2 instances of type “c5d.9xlarge” with 36 vC-
PUs and 72GB RAM are used for datasets like Texas Hospital Stay or Pur-
chases Shopping Carts. The larger EC2 instances “c5d.24xlarge” with 96
vCPUs and 192GB RAM are used for the Labeled Faces in the Wild (LFW)
dataset. Both instance types are compute optimized. The GPU accelera-
tion brought little to no benefit, which is due to the federated protocol, the
network I/O and the reading of vast amount of data from the disk into the
memory, causing the actual bottlenecks.

Software

For the experiments in this thesis Tensorflow (version 1.15.2) is used through
the high-level Keras API (version 2.2.4). To communicate over network

47

48

within the federated framework introduced in the last chapter, Socketio is
used. The DP-optimizer is taken from the publicly available TensorFlow-
Privacy package [37]. Nasr et al. [9] state that they have used PyTorch for
the implementation of their MI attack. However, since there is already a
pre-existing MI framework developed within SAP SE, which makes use of
TensorFlow and Keras, PyTorch is not further considered. At the time of
writing, Nasr et al. have not released their code and there is no publicly
available implementation of their attack. This is why the implementation
for performing experiments is done independently and solely based on the
description given in the research paper of Nasr et al. to maximize repro-
ducibility of the code, the MI attack is implemented as a Keras custom layer
and will be provided on GitHub. This allows building an attack model in a
descriptive manner using a sequential Keras model.

4.2 Datasets

This section introduces the datasets which are used in the experiments. Gen-
eral characteristics of the datasets are described, e.g., size, dimensionality,
and domain. Moreover, the target model architecture differs depending on
the dataset. Therefore, the corresponding model architectures are also in-
troduced. Finally, the choice for hyperparameters for target model training
without DP (NoDP), with LDP and with CDP are laid out.

4.2.1 Purchases Shopping Carts

The dataset “Purchases Shopping Carts” [38], conveniently referred to as
“Purchases” dataset, is provided by Shokri et al. [2] and is based on the
Kaggle dataset “Aquire valued shoppers”. The dataset contains the shopping
histories of individuals. Each entry consists of 600 binary values indicating
whether a particular item was bought by an individual or not. The dataset
has more than 200000 individuals. The individuals were separated using a
k-means clustering with k = [10, 20, 50, 100]. In Histogram 4.1 the class fre-
quencies of the Purchases dataset is shown separated in 100 k-means cluster.
As seen the dataset is quite unbalanced and some classes are underrepre-
sented compared to others.

49

Figure 4.1: Class frequencies in the “Purchases100” dataset.

Target model architecture For the experiments on the Purchases dataset,
the target model constitutes a Fully Connected Network with six layers
containing

600, 1024, 512, 256, 128, 100

neurons. With the first layer being the input layer and the last layer
denoting the 100 output neurons. Beware, that the last layer dimension
can vary, depending on the class configuration, for instance 10, 20, 50
is used in some of the experiments as well. Tanh is used as activation
function in the hidden layers and Softmax for the output layer. Cat-
egorical cross-entropy is used as a loss function. The target models
objective is, for any individual from the dataset, to associate a label
that corresponds to his k-means cluster. The federated averaging hy-
perparameters are fixed accordingly for all datasets:

E = 1, K = 4, C = 1

These parameters are supposedly the same Nasr et al. used for their
experiments. E denotes the amount of local epochs per data owner, K
the amount of overall clients and finally C describes how many of the
K clients train in parallel (1 means all).

No-DP training The models are trained on a training set of size 20000 and
test set of size 50000, this corresponds to the setting of Nasr et al. [9].
The batch-size is set to 100 and the model is trained using the Adam
optimizer with a learning-rate set to 0.001.

LDP training The training hyperparameters are identical to the No-DP
parameters. The only difference is, that the model is trained on a
noisy dataset. The binary values of each data point are retained with a

50

probability of e✏�1
e✏+1 . For the experiments the following privacy parame-

ters are used:
✏i 2 {3, 2, 1, 0.5, 0.1}

with retention probabilities of:

0.9%, 0.76%, 0.46%, 0.24%, 0.12%, 0.05%

The LDP mechanism used for the Purchases dataset uses a form of
randomized response. Noise is applied only to D

train
targetk

, whereas Dtest
targetk

remains untouched.

CDP training For CDP training, the DPAdam optimizer is used. The hy-
perparameters are identical to the LDP and No-DP ones. The noise
clipping C impacts the performance of the trained model, as the magni-
tude of C influences the amount of noise added to the gradients during
training. A clipping of C = 2 produces the best result and is hence used
for the experiments with noise multiplier z 2 {0.5, 2, 4, 6, 16}. Because
DPAdam uses a Gaussian DP mechanism, parameter � needs to be
fixed beforehand. In practice it is common to set � = 1

|Dtrain
target|

yielding
� = 5 · 10�5. The resulting ✏ values using RDP composition are:

✏ 2 {75.84, 5.26, 2.35, 1.52, 0.54}

4.2.2 Texas Hospital Stays

The “Texas Hospital Stays” dataset is taken from Shokri et al. [2] and is
based upon “Hospital Discharge Data” [39] from the Texas Department of
State Health Services. In this thesis, the dataset is referred to as “Texas”
dataset for convenience reasons. The dataset has 67333 entities consisting of
a binary feature vector of length 6170 and is divided into 100, 150, 200, 300
classes with the same technique as the Purchases dataset. Each binary value
represents an injury, a medical procedure or binary encoded information
about the individual, such as gender, age or region.

Figure 4.2: Class frequencies in the “Texas100” dataset.

51

Histogram 4.2 shows the class frequencies for Texas100. Compared to the
Purchases dataset, the Texas dataset is even more unbalanced.

Target model architecture The target model for the Texas100, Texas150,
Texas200 and Texas300 datasets classifying 100, 150, 200, 300 labels
consists of a fully connected network similar to the Purchases target
models. The number of Neurons for the exemplary case of Texas100
are:

6169, 1024, 512, 256, 128, 100

Tanh activation function in the hidden layers and Softmax for the out-
put layer is used. Categorical cross-entropy is used as loss function.
The target model architecture and configuration are chosen in accor-
dance with the experiments of Nasr et al. [9] to ensure comparability
of the results.

No-DP training The models are trained on a training set of size 10000
and a test set of size 57300. Batch-size is set to 100 and the model is
trained using the Adam optimizer. The learning rate is set to 0.001.

LDP training All training hyperparameters from the No-DP training re-
main unchanged in the LDP experiments. Following privacy parame-
ters are assessed in the LDP case:

✏i 2 {3, 2, 1, 0.5, 0.1}

The LDP mechanism is equivalent to the one from the Purchases target
model. Randomized Response is applied to Dtrain

targetk
, whereas Dtest

targetk
has the original values.

CDP training Using CDP, the learning rate is set to 0.0001, as it converged
faster in our experiments. The batch-size is kept identical at 100. The
clipping norm was found using hyperparameter search and is set to
C = 2. The noise multipliers used are: z 2 {0.5, 2, 4, 6, 16}. ✏ parameter
is evaluated using � = 1 · 10�4. The resulting ✏ values are:

✏ 2 {74.15, 3.8, 1.72, 1.19, 0.44}

4.2.3 Labeled Faces in the Wild

The dataset “Labeled Faces in the Wild” (LFW) is a dataset often used as
benchmark dataset for facial recognition and verification. It contains 2773
images of faces of either 20 or 50 individuals with a resolution of 255 ⇥ 255
pixel per image. Some samples taken from the dataset can be seen in Figure
4.3.

52

Figure 4.3: Some samples taken from the “LFW” dataset.

As seen in Histogram 4.4, the dataset is unbalanced, just like the other
datasets, but in contrast, one single class is strongly overrepresented. The
motivation for using a dataset containing faces of real people is due to the
increasing use of facial recognition algorithms. Inference attacks on this
dataset constitute realistic scenarios.

Figure 4.4: Class frequencies in the “LFW50” dataset.

Target model architecture For the LFW target model, a pre-trained “VGG-
Very-Deep-16” CNN [40] is used. The target model should label each
image to its corresponding person. The overall architecture of the
VGG-Very-Deep-16 CNN is shown in Figure 4.5.

53

Figure 4.5: VGG architecture for LFW50 target model[41].

The weights of the pre-trained VGG CNN (blue layers in Figure 4.5)
are fixed, such that only the last FCN layers’ weights (green layers in
Figure 4.5) are updated during training. This, additionally, is a huge
performance boost in the Federated Learning case, because a much
smaller weight matrix has to be propagated through the network. The
fully connected network uses ReLu activation functions, except for the
last one, which uses a Softmax activation function. Categorical cross-
entropy is used as loss function. The images from the LFW dataset are
pre-processed before they are passed to the target model. Each image is
first converted from an RGB to a gray-scale image. Finally, the values
which range from 0 to 255 are normalized to an interval between 0 and
1.

No-DP training The models are trained on a training set of size 1000 and
a test set of size 1700. This train-test split is also used in LDP and
CDP training. The batch-size is set to 64. To train the target model,
Adam optimizer is used. Finally, the learning-rate is set to 0.001 for
the experiments.

LDP training LDP is applied to the images using a mechanism that is
also used by Bernau et al. [5] and is based on a mechanism pro-
posed by Fan [42]. The technique is similar to a ✏-DP Laplace Mech-

54

anism as introduced in the theoretical foundations Chapter 2. A ran-
domizer applies noise to each pixel of the image following a Laplace
distribution of scale � = 255·m

b2·✏ . The parameter m represents the
neighborhood, as global connectivity analogy, of a pixel and is set to
m =

p
250 · 250 = 250 for all LDP experiments.

The neighborhood parameter brings its own trade-off, taken from Bernau
et al.: “Full neighborhood for an image dataset would require that any
picture can become any other picture. In general, providing DP within
a large neighborhood will require high ✏ values to retain meaningful
image structure. High privacy will result in random black and white
images.[5]”
In other words, a larger neighborhood will perturb the images more
globally and result in either worse image quality or lower privacy guar-
anties.

Figure 4.6: Example images from LFW with different levels of noise applied
using LDP mechanism.

Images with different values for ✏i are shown in Figure 4.6. To the
human eye, a noise level that corresponds to ✏i = 1000 still allows to
recognize and even identify a person. On ✏i = 100, a silhouette can still
be seen but makes identification by human hardly possible.

CDP training Using CDP, the target model is trained with a lower learning-
rate of 0.0001 and smaller batch-size of 32. The clipping norm is fixed to
C = 2, the noise multipliers used are z 2 {0.5, 2, 4, 6, 16} and � = 1·10�3

using the formula introduced earlier. The resulting ✏ values are:

✏ 2 {102.52, 5.27, 2.33, 1.45, 0.54}

4.3 Target Model Results

In the following section, the experimental results of the target model
classifiers for the introduced datasets are shown. The experiments show

55

the accuracy of each classifier and the same target models after apply-
ing LDP and CDP with different noise levels as explained in the last
section “Datasets” 4.2. For every dataset the plots show the valida-
tion and training accuracy for the classifier w.r.t. different noise levels.
These models are then used in the next section for the inference attack
experiments.
The target models are trained using the Federated Learning framework
outlined in Section 3.3. As already discussed the Federated Learning
parameters are set to:

E = 1, K = 4, C = 1

56

4.3.1 Purchases Shopping Carts

Figure 4.7: Target model performance on Purchases dataset.

The Purchases classifiers in Figure 4.7 show a clear trend in decreas-
ing performance with increasing noise. We can see the four different
class configurations with 10, 20, 50 and 100 labels. The less complex
the learning task, the less susceptible it is for increasing noise. The
baseline, i.e. the accuracy of a random guess, for every experiment is 1

c
with c being the amount of output labels. With the CDP-mechanism
✏ = 0.54 and LDP local ✏i = 0.1 the models get closest to baseline. The

57

target model for LDP stays constant until ✏i = 2 while using CDP the
noise is affecting the target model already with ✏ = 75.84. This is due
to the slight stronger privacy guaranty by a global epsilon.
Furthermore, there is a larger train-test-gap when applying LDP. This
suggests a more successful attack later on. The target model NoDP
results are equal to Nasr et al. [9], they achieved a train accuracy of
100% and a test accuracy of 77.5% for Purchases100, while in our ex-
periments the validation accuracy is slightly better with 79.5%. Which
consequently means, that, in this work, the train-test-gap is slightly
smaller and the attack could be performing slightly worse.

58

4.3.2 Texas Hospital Stays

Figure 4.8: Target model performance on Texas dataset.

In Figure 4.8 the target models classifier performance can be seen for
100, 150, 200 and 300 output dimensions. The LDP mechanism seems
to hold the training performance a little longer constant around 1.0
compared to CDP. However the overall validation accuracy’s peak is
only at 0.5, which is not too bad considering the baseline for Texas300
is 1

300 . The LDP experiments here show a large train-test-gap, com-
pared to the CDP ones, this might suggest a good attacker accuracy.

59

Interestingly, the train accuracy drops instantly fom 1 to 0 with ✏i = 2
to ✏i = 1.
Nasr et al. [9] achieved a train accuracy of 95.2% and a test accuracy
of 48.5% for Texas100. Our experiments have identical results.

4.3.3 Labeled Faces in the Wild

Figure 4.9: Target model performance on LFW dataset.

Lastly, on Figure 4.9, we can see the target model performance for the
LFW dataset for 20 and 50 labels respectively. The utility decreases

60

steeper for the CDP mechanism than for the LDP one. Although, for
ei = 100 the loss in utility is about the same as for e = 2.38 which
shows how hard to compare these two DP applications are. Compared
to Bernau et al. [5] our results are identical.

4.4 MI Attack Model Results

In the following subsections the Membership Inference attack results will be
presented for each different dataset and with different DP configurations.
For each dataset, first, the overall attack performance including accuracy,
precision vs recall and privacy-loss-utility trade-off � will be presented for
the target models with the different introduced DP mechanisms. Then, ex-
emplary ROC and precision-recall curves will be shown for some particular
experiments to demonstrate some threshold depending measurements as de-
scribed in the Methodology 3. All other experiments can be found in the
Appendix. The MI attack model architecture and experimental methodol-
ogy is explained in Section 3.3.

61

4.4.1 Purchases Shopping Carts

Figure 4.10: MI attack model performance on Purchases dataset.

In Figure 4.10 the attack performance measured in accuracy, precision and
recall, and � for the Purchases[10, 20, 50, 100] dataset with different DP con-
figurations can be seen. The figure is separated in four columns, each con-
taining four plots with the results of a global or local attack and either CDP
or LDP DP-mechanisms. The last row measures �, i.e. the privacy loss with
its relative target model utility. Every drawn point is the mean of multiple
experiment repetitions and the gray vertical lines show the standard devia-
tion of the repetitions.
It can be seen, that the attack performance decreases with increasing noise
in the target model training. Furthermore, DNN with less complex archi-

62

tectures, i.e. less output neurons, seem to be more susceptible to the MI
attack.

Comparison of global and local attack As expected, it becomes obvi-
ous, that the global attacker is much stronger than the local attacker.
He achieves an accuracy of nearly 0.75, whereas the local attack only
gets close to 0.7. Intuitively, this is because the global attacker accesses
the local models of the data owner before they get averaged. Whereas
the local attacker has merely access to the aggregated models.

Comparison of DP learning techniques CDP constitutes a strong de-
fense mechanism against MIA for this experiment set. The attack per-
formance drops to baseline even with a relatively high ✏ (✏ = 75.84).
The LDP mechanism shows that for some ✏i the attacker is still able to
extract membership information, in the local as well as for the global
attack. With ✏i  1 the attack starts to fail, with this DP parameter,
however, the utility of the target model is already at half of the initial
utility. For that reason � gets close to 2.0 only for ✏i > 1. Although
CDP ✏ is a stronger bound than ✏i, the target models validation accu-
racy is better compared to LDP. While the attacker performance on a
target model with CDP is instantly at baseline.
Although the CDP ✏-values are a magnitude of 10 times higher than
the LDP ✏i values, the overall effect is very similar.

� results With CDP, � gave best results with ✏ 2 {75.84, 5.26} for Pur-
chases100, which is due to the attack failing for this class configuration.
For Purchases[10, 20, 50] an ✏ 2 {2.35, 1.52} seems promising. Using
LDP, it demonstrates that ✏i 2 {3, 2} yields the best outcome against
local and global attacks, although it does not result in full defense
against MIA. Overall a CDP strategy with ✏ 2 [75.84, 1.52] achieves
the best utility-privacy trade-off for both target model configurations
and both DP learning mechanisms.

In Figure 4.11 the ROC curves for purchases20 are shown. Purchases20
achieved the highest MI accuracy and is therefore the most interesting con-
figuration in this case. Every colored line depicts an ✏ and every plot a
combination of local/global attack and CDP/LDP trained target model.
We can see that for different thresholds, MI on NoDP is always outper-
forming attacks on DP target models. However, it is much easier now to
distinguish, that LDP might not preserve privacy as good as CDP does. The
same insights reveals Figure 4.12 using the precision-recall-curve. There is
no threshold for the attacker that results in any meaningful success. Fur-
thermore, it is now more apparent, that the global adversary constitutes a

63

stronger attacker than the local one.
The global attack from Nasr et al. [9] performed better for Purchases100,
they demonstrate a MI accuracy of 72.4% while in this work only a MI ac-
curacy of 63% could be achieved on Purchases100 (NoDP). However attacks
on less complex Purchases configurations happen to be more successful.

64

(a)

(b)

Figure 4.11: ROC Curve for MIA on Purchases20 dataset

65

(a)

(b)

Figure 4.12: Precision-Recall Curve for MIA on Purchases20 dataset

66

4.4.2 Texas Hospital Stays

Figure 4.13: MI attack model performance on Texas dataset.

In Figure 4.13, the attack performance on the Texas[100, 150, 200, 300] dataset
is evaluated. Just as in the Purchases experiments, accuracy, precision, recall
and � can be seen. In this experiment the utility as well as the attack per-
formance already declines with high ✏ both for CDP and LDP and both for
the global and local attack. Nasr et al. [9] achieved a global attack accuracy
of 66.4% and a local accuracy of 62.4% for Texas100. In this work a global
attack accuracy for Texas100 (NodP) of 74% could be achieved while the
local attack performance is identical to the one from Nasr et al. Note that
the retention probabilities and Federated Learning parameters stay the same
as in the Purchases experiments.

67

Comparison of global and local attack Just like in the Purchases ex-
periments, the global attacker outperforms the local attacker. While
the global attack achieves a accuracy of nearly 75% the local attacker
is at around 60%.

Comparison of DP learning techniques For the Texas experiments CDP
and LDP yield similar defense benefits. For LDP ✏i � 3 and CDP
✏ � 64.13 the attack performance drops to baseline. Texas100 seems to
be more susceptible to MIA. Which suggests the same pattern as the
one observed for Purchases, that less complex DNNs are more suscep-
tible to MIA.

� results In this case � shows best results for CDP ✏ 2 {64.13, 3.29} depend-
ing on the class configuration. LDP, however, shows worse trade-offs
compared to CDP. Only ✏i for C = 300 is favorable in the local attack.
While the global attack using LDP shows that ✏i = 3 is favorable, es-
pecially for C = 200. Overall it seems, that it is easier to find good
trade-offs for C 2 {200, 300}.

In Figure 4.14 the Receiver-Operating-Characteristic curve for the Texas100
MI attacker can be seen. Every target model using DP techniques evades
the MI attack completely, because, apparently, all lines but the NoDP one,
are close to the base line 0.5. The attacker ROC curves and AUC values are
very similar to those from the non-federated Texas experiments from Bernau
et al. [5].

68

(a)

(b)

Figure 4.14: ROC Curve for MIA on Texas100 dataset

69

4.4.3 Labeled Faces in the Wild

Figure 4.15: MI attack model performance on LFW dataset.

In the plots at Figure 4.15 the attack performance measured in precision,
accuracy and recall for the LFW[20, 50] dataset with different DP config-
urations can be seen. The plot is, again, separated in four columns each
containing four plots with the results of a global or local attack and either
CDP or LDP DP-mechanisms. The last row measures �.
Compared to the Purchases MI results, we observe, that the larger DNN
configuration with 50 output neurons is more susceptible to the MI attack.
Furthermore, the global attack still outperforms the local attack as already
seen in the Purchases experiments. Note that the retention probabilities and
Federated Learning parameters stay the same as in the Purchases experi-

70

ments.

Comparison of global and local attack Here, the global attacker achieves
an accuracy of nearly 75% for LFW50 and the local attacker is only at
around 60% with a larger standard deviation.

Comparison of DP learning techniques In the CDP local attack results,
the accuracy on LFW50 is not reaching baseline, even with an ✏ = 0.55.
However, the standard deviation is very large throughout the local CDP
attack accuracies. In the global CDP case, compared to purchases, the
attacker still has success with a high ✏. While in the Purchases experi-
ments, the CDP noise brought the attack immediately to baseline 0.5.
The LDP defense is again slightly weaker than the CDP mechanism.
The MIA on LFW20 reaches baseline with ✏i  100 while on LFW50
LDP reaches baseline with ✏  1.

� results With CDP, � gave best results with ✏ = 5.38 for both target model
configurations and both DP learning mechanisms. In the LDP case it
is not as obvious. Approximately ✏i = 1000 gave the best �. However,
the MIA showed that for this parameter it is still possible to extract
some membership information.

In Figure 4.16 the precision-recall curve for LFW50 with CDP and LDP
applied target models is presented, due to the LFW50 target models con-
stituting the strongest attacker. Some attack classifier, e.g. LFW50 CDP
global ✏ = 1.49, are completely non-functional, as they keep predicting 0.5
resulting in a nearly straight line in the precision-recall curves. However
there are thresholds, e.g. LFW50 global LDP, where ✏ = 104.42 outperforms
NoDP. Bernau et al. [5] show a NoDP AUC of 75 and 50 for LFW50 and
LFW20 respectively for the non-federated case. With Federated Learning an
attack AUC of 60 (Figure 4.18b) and 68 (Figure 4.17a) could be achieved
for LFW20 and LFW50.

71

(a)

(b)

Figure 4.16: Precision-Recall Curve for MIA on LFW50 dataset

72

(a) ROC Curve for MIA on LFW50 dataset with CDP.

(b) ROC Curve for MIA on LFW50 dataset with LDP.

73

(a) ROC Curve for MIA on LFW20 dataset with CDP.

(b) ROC Curve for MIA on LFW20 dataset with LDP.

74

4.5 AI Attack Model Results

In this section, the Attribute Inference attack results are presented. Because
the proposed attack model in this work only considers binary feature vectors,
the attack model is not applicable to the LFW dataset. For each dataset,
the overall attack performance measured using the attack models accuracy,
precision and recall, and �. The AI attack model architecture and experi-
mental methodology is explained in Section 3.3. Retention probabilities and
Federated Learning parameters stay the same.

4.5.1 Purchases Shopping Carts

Figure 4.19: AI attack model performance on the Purchases100 dataset.

75

In Figure 4.19 the Attribute Inference attack model performance for the Pur-
chases100 dataset is shown. As seen, the AI attack is not very successful and
only achieves around 52% accuracy for the NoDP case. Other Purchases
class configurations were not further considered, due to the poor attack per-
formance on this particular experiment. Adding DP to the target models
training, renders the attack completely non-functional. The � values sug-
gest, that ✏  75.84 and ✏i  3 are sufficient as a defense against AI. This is
very similar to the values received from the MI attack evaluation. Compared
to the other plots the values here are rounded to only one decimal to enhance
the visibility.

4.5.2 Texas Hospital Stays

Figure 4.20: AI attack model performance on Texas dataset.

76

Compared to the Purchases dataset, the AI attack achieves better results on
the Texas dataset. For the Texas experiments the LDP parameter ✏i = 4,
corresponding to a retention probability of 96%, and CDP � = 0.25 yielding
✏ = 700 are also evaluated, to better see for which ✏ the AIA model starts
to fail. As presented in Figure 4.20, just like in the purchases dataset, the
attack becomes non-functional after adding DP learning strategies to the
target model. However, the local attack without DP achieves an accuracy of
55% and a global attack with an accuracy of 60%. Furthermore, the attack
on Texas300 outperformed the attack on Texas100. The large standard de-
viation suggests, that there are some indices, that are more susceptible (75%
accuracy) to Attribute Inference attacks than others (only 50% accuracy).
The trade-off metric � suggests an ✏ � 3.0 and ✏i = 4.

Discussion

This chapter is summarizing the general findings of the analysis of experi-
mental results. Based on the analysis, the initial hypotheses are revisited and
discussed. Additionally, as part of the analysis, the experimental setup and
execution are critically assessed, to identify possible weaknesses and suggest
potential future improvements.

5.1 Comparison of Local and Global Attack

In this work, the distributed system to train ML models is attacked both
from a local and global adversary. While the global attacker has access to
the local models of each data owner before they get updated, the attacker
performance was expectantly better. In contrast, the local attacker only
observes the aggregated global model for each communication round. The
latter implicates, that the more data owner take part in the collaborative
training, the worse the local attack becomes. This also has been shown by
Nasr et al. [9] for the case without differential privacy.

5.2 Comparison of CDP and LDP techniques

The results support the hypothesis that there is a generally superior tech-
nique for training differentially private ML models w.r.t. the privacy-accuracy
trade-off. On all datasets, CDP produces more favorable trade-offs compared
to LDP. This observation is also in line with the findings of Bernau et al. [5]
from non-federated learning. However, as Bernau et al. point out, LDP does
not need to track the privacy account compared to CDP and has therefore a
simpler application.
The � metric can give an indication, whether the target model performance

77

78

decrease is more significant than the decrease in MI risk or vice versa. Al-
though, the LDP ✏i are much lower than the CDP ✏ values, we can’t compare
them directly. ✏i is the privacy parameter for a single individual while ✏ is a
global bound for the entire dataset and therefore a much stronger guarantee.
However, the ✏i values can be transformed to ✏ values via:

✏ = ✏i · |~x|

With |~x| being the amount of features. Table 5.1 shows the transformation
of LDP ✏i to ✏ and compares them to CDP ✏. This demonstrates, that LDP
has in fact a much loose privacy guarantee than CDP.

Dataset LDP ✏i LDP ✏ CDP ✏
Purchases [3, 2, 1, 0.5, 0.1] [1800, 1200, 300, 30] [75.8, 5.3, 2.3, 1.5, 0.5]
Texas [3, 2, 1, 0.5, 0.1] [18000, 12000, 3000, 300] [64.1, 3.3, 1.5, 1.0, 0.3]
LFW [10000, 1000, 100, 10, 1] [2500000, 250000, 25000, 2500, 250] [104.4, 5.4, 2.4, 1.5, .0.5]

Table 5.1: LDP ✏i transformed to global ✏.

As an example, for dataset Purchases20, we have a MI precision of 62% using
LDP ✏ = 18000 but a base line precision of 50% using CDP ✏ = 75.8.

5.3 Membership Inference Attack

This thesis uses the white-box MIA model from Nasr et al. [9]. Furthermore,
this thesis shows that ✏-DP is a strong defense against this attack model. This
behavior can effectively be used to assess the anonymization in a dataset. In
a federated setting however, the local attack introduced by Nasr et al. gets
worse, indicating that for a fair amount of data owner, no data owner can
infer sensitive membership information about other data owners. Although,
the global attack would just work fine, making it the essential trust anchor in
any FL system. During the work on this thesis, another phenomenon could
be observed: The attack model achieved a much higher accuracy when using
stratified sampling according to each dataset label. This was not always
possible, because some datasets only have a low representation for certain
classes and it turned out, that some data owner lack some labels. This means
a stratified sampling per data owner was not possible. However, the insight
indicates that there are some classes that leak more membership information
than other.
In general, using this white-box Membership Inference attack to measure

79

the needed privacy guaranty is not trivial: MIA attack features have to be
generated, the model has to be fine-tuned using a costly hyperparameter
search and lastly it needs to be trained and evaluated with suitable metrics.
Although, using a probabilistic hyperparameter search instead of e.g. a grid-
search, simplifies this process. More optimization techniques like dimension
reduction of the gradients using e.g. SVD or PCA could be tested.
The white-box MI model from Nasr et al. has been significantly improved.
Introducing a convolution width parameter and replacing the ReLu layer with
a LeakyReLu stabilizes the training and yields better accuracy. Furthermore
the model selection process differs from Nasr et al. Instead of taking the best
model out of 100, we use early-stopping and a probabilistic hyperparameter
search to find suiting parameters for every particular dataset.

5.4 Attribute Inference Attack

The Attribute Inference attack model in this thesis is novel and based on
Nasr et al. [9] Membership Inference attack model. In most evaluations it
outperformed the AIA introduced by Yeom et al. [16]. Furthermore, this
work shows that MIA is a generalization of AIA. However, while the AIA
performances for Texas and Purchases are not very significant, they show
that there are certain indices that can be inferred more easily (80% precision)
than others (only 50% precision). Zi et al. [43] experimentally demonstrate,
that datasets with a large distance, i.e. the maximum distance for each en-
try to any other, perform better than datasets with small distance. They
observe this phenomenon using the Purchases dataset and by measuring the
Hamming distance. They remove every close entry in the Purchases dataset
to achieve a certain large distance. With the larger distance, the Attribute
Inference attack gets better. Intuitively this makes sense: lets consider the
“MovieDB” dataset, where each binary feature represents whether an individ-
ual watched a certain movie or not. It should be relatively easy for a human
to guess e.g. the individual’s gender just by looking at his seen movies. How-
ever, if each individual in the dataset watches the same movies as everyone,
resulting in a very low distance, it is nearly impossible to predict the gender
for a single individual. This can be easily extended to scalar datasets using
another distance metric like the Manhattan- or Euclidean-distance.
In this work, another measurement has been developed to measure how ef-
fective AIA will be on a dataset. Instead of taking the Hamming distance
of each individual, we take the fraction dist(D) = n

|Du|
on the overall size

of the dataset n over the amount of all unique entries |Du|. A dist(D) = 1
corresponds to a Hamming distance of 0 for a binary dataset like Purchases

80

or Texas. For some datasets we have following results (seen in Table 5.2):

Dataset dist(D)
Purchases10 1
Purchases100 1.00001
Texas100 1.003
Texas200 1.584
Texas300 1.584

Table 5.2: Distance measurement for different datasets.

This is in line with our experimental results, showing that Texas300 AIA
yields a much better attack accuracy than the AIA on the Purchases dataset.
Our distance values are not surprising, since Texas has about 6000 attributes
while a single entry in the Purchases dataset has only about 600 attributes,
resulting in a large space of possible feature permutations in the Texas dataset
and a smaller one for the Purchases dataset.
More formally: given a binary dataset with ~x 2 D like Purchases or Texas
and, moreover, given a correct sensitive attribute s and the same attribute
flipped resulting in a wrong attribute ŝ, we’ll have a joint probability distribu-
tion of P (~x, s) and a joint probability distribution with P (~x, ŝ). We can then
determine the Posterior probabilities P (s|~x) and P (ŝ|~x). With a distance of
1 both posterior probabilities must have a similar probability (0.5) and there
is no correct or incorrect sensitive attribute that could be inferred from
the ground truth. However, if the posterior probability of P (s|~x) is large and
consequently the posterior probability of P (ŝ|~x) low, the distance converges
towards n. The posterior probability gives a strong bound on how effective
an AIA model could be. In theory, a dataset with a distance close to 1 should
need a lower privacy guarantee (larger ✏) and a dataset with a large distance
should need a stronger privacy guarantee (lower ✏) to defend against AIAs.
In this thesis, using AIA as reference for assessing privacy parameter ✏ seems
to be inferior for using MIA. Not just because it performed way worse, but
the experiments demand a lot more computational resources, due to the fact
that for each attribute one MIA model is needed.
LDP perturbs single entries in a dataset compared to CDP which perturbs
a global aggregation function. Therefore, it would make sense to assume,
that LDP yields a better defense against Attribute Inference attacks. The
experiments show, that the standard deviation of the attack precision for the
LDP perturbed target models are much smaller than the standard deviation
of the CDP perturbed target models. This means, that the LDP perturbed

81

attributes can be inferred more or less equally, while in the CDP case, some
attributes achieve a very high attack precision.
Even though, the experiments suggest, that still CDP yields a better privacy-
utility trade-off than LDP against AIAs just like they do against MIAs.

Conclusion and Outlook

This thesis has analyzed the privacy-utility trade-off of DP learning tech-
niques LDP and CDP for the application on ML models in Federated Learn-
ing for several datasets using two different inference attacks. During this
work, a framework for the collaborative training among several data own-
ers on a single machine using multi-processing has been developed and was
shown to be successful to simulate real world Federated Learning applica-
tion. This framework can be used in future works to analyze distributed ML
applications. Furthermore, it has been demonstrated, that CDP and LDP
do not allow to compare the techniques solely based on the chosen privacy
parameters ✏i and ✏. Therefore, inference attacks were used to empirically
measure privacy with either of the two DP learning techniques. In this work,
it is shown that, even though the data owner don’t share their data, the MI
and AI attacks can be very successful. In Federated Learning, there are two
possible adversaries, the local and the global attacker. The global attack
constitutes a stronger attack and gives therefore a stronger bound on the
possibility of inferring sensitive membership information. Consequently, a
stronger attack, yields a stronger privacy assumption as defense. Our exper-
iments demonstrated, that the more data owners participate in the training
the lower the risk of a local attack. Although the risk of a global attack
remains constant. Traditionally, LDP is preferred, when a curator (i.e. the
server which computes a ML model) such as found in cloud based machine
learning service platforms that are potentially untrustworthy. Uploading
noisy data poses a lower privacy risk. In a Federated Learning setting, how-
ever, no one but the actual data owner sees the potentially sensitive data.
In this thesis, a novel Attribute Inference attack is introduced. Although
the attack outperformed some state-of-the-art attacks, its performance was
lower than the Membership Inference attacks. Empirically, we demonstrated,
that although LDP perturbs local data and should therefore yield a better

82

83

anonymization, it was still equal or inferior to the CDP technique. CDP,
whatsoever, needs a completely new hyperparameter search for the ML model
and moreover needs its privacy accountant to be tracked during the training.
Although, using RDP accountant, CDP has a much larger privacy bound
compared to LDP for the same loss in attack accuracy, which makes it supe-
rior.
The white-box MI attack implemented and analyzed in this work has the
potential to serve as benchmark for empirically analyzing the worst-case MI
risk on federated trained ML models. The original white-box model has been
modified and optimized to further yield a stronger attack performance. As-
sessing the privacy loss in a model with MIA is only suitable when the model
is optimized. This poses an arguably non-trivial and complex task for real
world application.
We empirically demonstrated, that the Attribute Inference attack perfor-
mance strongly depends on the distance of a dataset. In a future work, the
mathematical connection of the distance and the dependence on the ✏ pa-
rameter could be formally proven and bounded.
Another differential privacy technique called PATE [15] could be analyzed
with the very same methodology from this thesis in a future work. In PATE
multiple data owners train on a disjoint subset of data just like in this work’s
experiments. The prediction is generated using a voting over the data owner
model ensemble instead of using a global model. ✏-DP is achieved by perturb-
ing the votes using a Gaussian mechanism. It could be analyzed, whether
the PATE yields a better general utility-privacy-trade-off than the methods
described in this work. Furthermore, the application of LDP in PATE could
be assessed, for instance, the participants in PATE would have to train on a
perturbed dataset and the voting system should be unperturbed.
Nasr et al. [9] suggest extending the white-box MI architecture to an auto-
encoder DNN architecture to be able to train the DNN unsupervised. What-
soever, we suspect a stronger latent space encoding using the unsupervised
training. And then for fine-tuning a supervised training on the already op-
timized encoder. This could yield an even better accuracy for MI and AI
attacks.
Lastly, in reality, the datasets of each data owner are not only disjoint, but
also very different in terms of labels. In an experiment the MNIST dataset
was trained using Federated Learning, where one data owner trained on the
class labels [0, 1, 2, 3, 4] and the other one training on [5, 6, 7, 8, 9]. The MI
attack was considerably worse than using just a disjoint data distribution for
the target models. In the future, more research into the analysis of different
data distributions in Federated Learning and their consequence in privacy
guarantees could be done.

Appendices

84

Parameter Evaluations

Figure A.1: MI performance using different T .

85

86

Figure A.2: Target model training with different E.

Figure A.3: Different loss measurements compared.

Attack Model Evaluations

87

88

(a)

(b)

Figure B.1: ROC Curve for MIA on Texas150 dataset.

89

(a)

(b)

Figure B.2: ROC Curve for MIA on Texas200 dataset.

90

(a)

(b)

Figure B.3: ROC Curve for MIA on Texas300 dataset.

91

(a)

(b)

Figure B.4: Precision-Recall Curve for MIA on Purchases10 dataset.

92

(a)

(b)

Figure B.5: Precision-Recall Curve for MIA on Purchases50 dataset.

93

(a)

(b)

Figure B.6: Precision-Recall Curve for MIA on Purchases100 dataset.

Bibliography

[1] Martín Abadi et al. “Deep learning with differential privacy.” In: Pro-
ceedings of the ACM Conference on Computer and Communications
Security. Vol. 24-28-Octo. 2016, pp. 308–318. isbn: 9781450341394.
doi: 10.1145/2976749.2978318. url: http://dx.doi.org/10.
1145/2976749.2978318.

[2] Reza Shokri and Vitaly Shmatikov. “Privacy-Preserving Deep Learn-
ing.” In: Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security. CCS ’15. Denver, Colorado, USA:
Association for Computing Machinery, 2015, pp. 1310–1321. doi: 10.
1145/2810103.2813687.

[3] Tian Li et al. “Federated Learning: Challenges, Methods, and Future
Directions.” In: (2019). url: http://arxiv.org/abs/1908.07873.

[4] H Brendan McMahan Eider Moore Daniel Ramage Seth Hampson
Blaise AgüeraAg and Agüera Arcas. Communication-Efficient Learn-
ing of Deep Networks from Decentralized Data. Tech. rep. 2017.

[5] Daniel Bernau et al. Assessing Differentially Private Deep Learning
with Membership Inference. Tech. rep. 2020.

[6] Rules O F Procedure. “Article 29 Data Protection Working Party.”
In: October Lx (2010). visited on 2020-08-02, pp. 1–8. url: http :

//ec.europa.eu/justice/data-protection/index_en.htm.
[7] C Dwork et al. “The Algorithmic Foundations of Differential Privacy.”

In: Foundations and Trends R in Theoretical Computer Science 9
(2014), pp. 211–407. doi: 10.1561/0400000042.

[8] SAP Security Research. visited on 2020-08-02. url: https://www.sap.
com/documents/2017/12/cc047065-e67c-0010-82c7-eda71af511fa.

html.

94

https://doi.org/10.1145/2976749.2978318
http://dx.doi.org/10.1145/2976749.2978318
http://dx.doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2810103.2813687
https://doi.org/10.1145/2810103.2813687
http://arxiv.org/abs/1908.07873
http://ec.europa.eu/justice/data-protection/index_en.htm
http://ec.europa.eu/justice/data-protection/index_en.htm
https://doi.org/10.1561/0400000042
https://www.sap.com/documents/2017/12/cc047065-e67c-0010-82c7-eda71af511fa.html
https://www.sap.com/documents/2017/12/cc047065-e67c-0010-82c7-eda71af511fa.html
https://www.sap.com/documents/2017/12/cc047065-e67c-0010-82c7-eda71af511fa.html

95

[9] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive Pri-
vacy Analysis of Deep Learning Stand-alone and Federated Learning
under Passive and Active White-box Inference Attacks. Tech. rep. 2018.

[10] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. May
2015. doi: 10.1038/nature14539.

[11] Balázs Csanád Csáji. Approximation with Artificial Neural Networks.
Tech. rep. 2001.

[12] George Popov, Nikos Mastorakis, and Valeri Mladenov. Calculation of
the acceleration of parallel programs as a function of the number of
threads. Jan. 2010.

[13] Brendan McMahan and Research Scientists Daniel Ramage. Google AI
Blog: Federated Learning: Collaborative Machine Learning without Cen-
tralized Training Data. visited on 2020-08-02. 2018. url: https://ai.
googleblog.com/2017/04/federated-learning-collaborative.

html.
[14] Naman Agarwal et al. cpSGD: Communication-efficient and differentially-

private distributed SGD. Tech. rep. 2018. arXiv: 1805.10559 [stat.ML].
[15] Nicolas Papernot et al. Scalable Private Learning with PATE. 2018.

arXiv: 1802.08908 [stat.ML].
[16] Samuel Yeom et al. Privacy Risk in Machine Learning: Analyzing the

Connection to Overfitting. 2017. arXiv: 1709.01604 [cs.CR].
[17] Klas Leino and Matt Fredrikson. Stolen Memories: Leveraging Model

Memorization for Calibrated White-Box Membership Inference. 2019.
arXiv: 1906.11798 [cs.LG].

[18] Stacey Truex et al. Demystifying Membership Inference Attacks in Ma-
chine Learning as a Service. Tech. rep.

[19] Jinyuan Jia and Neil Zhenqiang Gong. AttriGuard: A Practical Defense
Against Attribute Inference Attacks via Adversarial Machine Learn-
ing. isbn: 978-1-939133-04-5. url: www.usenix.org/conference/

usenixsecurity18/presentation/jia-jinyuan.
[20] Ninghui Li et al. “Differential Privacy: From Theory to Practice.” In:

Synthesis Lectures on Information Security, Privacy, and Trust 8.4
(Oct. 2016), pp. 1–138. issn: 1945-9742.

[21] Frank Mcsherry. Privacy Integrated Queries An Extensible Platform
for Privacy-Preserving Data Analysis. 2009. isbn: 9781605585512.

[22] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The Composition
Theorem for Differential Privacy. 2013. arXiv: 1311.0776 [cs.DS].

https://doi.org/10.1038/nature14539
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://arxiv.org/abs/1805.10559
https://arxiv.org/abs/1802.08908
https://arxiv.org/abs/1709.01604
https://arxiv.org/abs/1906.11798
www.usenix.org/conference/usenixsecurity18/presentation/jia-jinyuan
www.usenix.org/conference/usenixsecurity18/presentation/jia-jinyuan
https://arxiv.org/abs/1311.0776

96

[23] Ilya Mironov and Google Brain. Rényi Differential Privacy. Tech. rep.
2017.

[24] Shiva Prasad Kasiviswanathan et al. What Can We Learn Privately?
*. Tech. rep. 2013.

[25] Jakub Konečny et al. Federated Learning: Strategies for Improving Com-
munication Efficiency. Tech. rep.

[26] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. “Deep
Models Under the GAN: Information Leakage from Collaborative Deep
Learning.” In: (). doi: 10.1145/3133956.3134012. url: https://
doi.org/10.1145/3133956.3134012.

[27] Hongyi Wang et al. Federated Learning with Matched Averaging. Tech.
rep. 2020. url: https://github.com/IBM/FedMA.

[28] Tian Li et al. Federated Optimization in Heterogeneous Networks. Tech.
rep. 2020.

[29] Martín Abadi et al. “Deep Learning with Differential Privacy.” In: ().
doi: 10.1145/2976749.2978318. url: http://dx.doi.org/10.
1145/2976749.2978318.

[30] Nan Wu et al. The Value of Collaboration in Convex Machine Learning
with Differential Privacy. Tech. rep. 2019.

[31] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Appli-
cations. Basic Applications. Cambridge University Press, 2001. isbn:
9780521830843. url: https://books.google.de/books?id=tfzM9d%
5C_jnxwC.

[32] Keith Bonawitz et al. Towards Federated Learning at Scale: System
Design. 2019. arXiv: 1902.01046 [cs.LG].

[33] Share Memory By Communicating - The Go Blog. visited on 2020-08-
02. url: https://blog.golang.org/codelab-share.

[34] Michael Osborne. “Bayesian Gaussian Processes for Sequential Predic-
tion, Optimisation and Quadrature.” In: 2010.

[35] Marina Sokolova and Guy Lapalme. “A systematic analysis of perfor-
mance measures for classification tasks.” In: Information Processing
and Management 45.4 (July 2009), pp. 427–437. issn: 03064573. doi:
10.1016/j.ipm.2009.03.002.

https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1145/3133956.3134012
https://github.com/IBM/FedMA
https://doi.org/10.1145/2976749.2978318
http://dx.doi.org/10.1145/2976749.2978318
http://dx.doi.org/10.1145/2976749.2978318
https://books.google.de/books?id=tfzM9d%5C_jnxwC
https://books.google.de/books?id=tfzM9d%5C_jnxwC
https://arxiv.org/abs/1902.01046
https://blog.golang.org/codelab-share
https://doi.org/10.1016/j.ipm.2009.03.002

97

[36] Jesse Davis and Mark Goadrich. “The Relationship between Precision-
Recall and ROC Curves.” In: ICML ’06. Pittsburgh, Pennsylvania,
USA: Association for Computing Machinery, 2006, pp. 233–240. isbn:
1595933832. doi: 10.1145/1143844.1143874. url: https://doi.
org/10.1145/1143844.1143874.

[37] tensorflow/privacy: Library for training machine learning models with
privacy for training data. visited on 2020-08-02. url: https://github.
com/tensorflow/privacy.

[38] Kaggle.com. Acquire Valued Shoppers Challenge | Kaggle. visited on
2020-08-02. 2014. url: https : / / www . kaggle . com / c / acquire -

valued-shoppers-challenge/data.
[39] Hospital Discharge Data Use Agreement. visited on 2020-08-02. url:

https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm.
[40] Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman. “Deep Face

Recognition.” In: Proceedings of the British Machine Vision Conference
(BMVC). Ed. by Mark W. Jones Xianghua Xie and Gary K. L. Tam.
BMVA Press, Sept. 2015, pp. 41.1–41.12. isbn: 1-901725-53-7. doi:
10.5244/C.29.41. url: https://dx.doi.org/10.5244/C.29.41.

[41] Max Ferguson et al. “Automatic localization of casting defects with
convolutional neural networks Data Analytics for Smart Manufacturing
Systems View project Neural Network Modeling for Prediction under
Uncertainty in Energy System Applications View project Automatic
Localization of Casting Defects with Convolutional Neural Networks.”
In: (2017). doi: 10.1109/BigData.2017.8258115. url: https://
www.researchgate.net/publication/322512435.

[42] Liyue Fan. “Image pixelization with differential privacy.” In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics). Vol. 10980
LNCS. Springer Verlag, July 2018, pp. 148–162. isbn: 9783319957289.
doi: 10.1007/978-3-319-95729-6{_}10. url: https://link.
springer.com/chapter/10.1007/978-3-319-95729-6_10.

[43] Benjamin Zi et al. On Inferring Training Data Attributes in Machine
Learning Models. Tech. rep. url: https://www.tensorflow.org/
guide/estimators.

https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://github.com/tensorflow/privacy
https://github.com/tensorflow/privacy
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
https://doi.org/10.5244/C.29.41
https://dx.doi.org/10.5244/C.29.41
https://doi.org/10.1109/BigData.2017.8258115
https://www.researchgate.net/publication/322512435
https://www.researchgate.net/publication/322512435
https://doi.org/10.1007/978-3-319-95729-6%7B%5C_%7D10
https://link.springer.com/chapter/10.1007/978-3-319-95729-6_10
https://link.springer.com/chapter/10.1007/978-3-319-95729-6_10
https://www.tensorflow.org/guide/estimators
https://www.tensorflow.org/guide/estimators

	Introduction
	Motivation
	Environment
	Research Question
	Methodological Approach
	Structure

	Theoretical Foundation
	Deep Neural Networks
	Federated Learning
	Membership Inference
	Attribute Inference
	Differential Privacy
	Differentially Private Learning
	Related Work
	Notation

	Methodology
	Hypothesis
	Threat Model
	Implementation
	Learning under Noise
	Approach
	Attack Evaluation Metrics

	Experiments
	Experimental Setup
	Datasets
	Purchases Shopping Carts
	Texas Hospital Stays
	Labeled Faces in the Wild

	Target Model Results
	Purchases Shopping Carts
	Texas Hospital Stays
	Labeled Faces in the Wild

	MI Attack Model Results
	Purchases Shopping Carts
	Texas Hospital Stays
	Labeled Faces in the Wild

	AI Attack Model Results
	Purchases Shopping Carts
	Texas Hospital Stays

	Discussion
	Comparison of Local and Global Attack
	Comparison of CDP and LDP techniques
	Membership Inference Attack
	Attribute Inference Attack

	Conclusion and Outlook
	Appendices
	Parameter Evaluations
	Attack Model Evaluations
	Bibliography

