
The

Clustering
and

Dimension-Reduction
Cookbook

Anthony Ozerov

2023-05-14

Introduction

What is this? This text is intended as a quick reference on various methods in dimension-
reduction and clustering, not as an introduction to the subject, or a guide on how to do anything.
This text was born out of a lack of a quick reference for clustering and dimension-reduction
methods. Of course, there are many texts which discuss some of the methods mentioned here
[HTFF09; LLSE11; RB19; MRT18], but we seek to synthesize and condense the information
presented further. For each method mentioned, we focus on:

• What is it doing mathematically?
• How do you do it computationally?
• What are some common pitfalls?

We hope that our condensed presentation makes the differences and similarities between different
methods clear.

Fair warning Many techniques are omitted either for the sake of brevity or for lack of author
knowledge on the subject.

Contribution The .tex source for this text is freely available at https://github.com/

anthonyozerov/cdr-cookbook and licensed under LY. We welcome contributions.

Acknowledgements We thank Peterson & Pederson’s The Matrix Cookbook and Val-
lentin’s Probability and Statistics Cookbook for the inspiration that led us to make
this text. We are also grateful to Andrew Blumberg for explaining geometric data analysis so
clearly.

Common Notation

Throughout this text, we have sought to strike a balance between having non-overlapping variable
names and keeping in line with the literature. Here is a table of the variable names:

Symbol Meaning
n The number of points in a dataset
m The number of points in a subset of a dataset
D The dimension of the data
d A dimension < D

d(·) A dissimilarity or distance function
s(·) A similarity function
p The p in p-norm
k The k in k-NN or k-means (these are different!)
ϵ The ϵ in ϵ-ball or a small positive number

i and j Index variables
A and B Generic sets
X and Y Metric spaces / sets of data points
P and Q Probability measures on a metric sapce

C A collection of sets (e.g. a clustering)

2023-05-14 2

https://github.com/anthonyozerov/cdr-cookbook
https://github.com/anthonyozerov/cdr-cookbook
https://creativecommons.org/publicdomain/zero/1.0/

CONTENTS

Contents

1 Similarity, Dissimilarity, and Distance 4
1.1 Definitions . 4
1.2 Similarities to dissimilarities and back . 4
1.3 Normed vector spaces . 5
1.4 Inner product spaces . 6
1.5 Curved spaces . 6
1.6 Spaces of sets . 6
1.7 Spaces of probability distributions . 7
1.8 Spaces of text or strings . 8
1.9 Building graphs . 9
1.10 Spaces on graphs . 9

2 Dimension-reduction 10
2.1 Definitions . 10
2.2 Principal Component Analysis . 11
2.3 Random Projections . 12
2.4 Multidimensional Scaling (MDS) . 12
2.5 Isomap . 13
2.6 Laplacian Eigenmaps . 14
2.7 Locally Linear Embedding (LLE) . 14

3 Clustering 15
3.1 Definition . 15
3.2 Centroid methods . 15
3.3 Agglomerative/Bottom-up Hierarchical Clustering 17
3.4 Divisive/Top-down Hierarchical Clustering . 19
3.5 Generative/Distribution-based Clustering . 19
3.6 Joint Methods . 20

2023-05-14 3

1 SIMILARITY, DISSIMILARITY, AND DISTANCE

1 Similarity, Dissimilarity, and Distance

1.1 Definitions

For the rest of this text, we will be making use of ideas of similarity, dissimilarity, and distance.
We follow the convention of [HTFF09] in our terminology.

A measure of similarity is a function denoting how similar two mathematical objects are. 0
indicates the least possible similarity, and large numbers indicate high similarity.

A measure of dissimilarity does the opposite of a measure of dissimilarity, instead denoting
how not-similar two mathematical objects are. 0 indicates the most possible similarity (in some
cases, this will only occur when the two objects are equal), and large numbers indicate low
similarity.

Distance, as we will use it throughout this text, is a refined notion of dissimilarity referred to
as a distance metric. A function d : X ×X → R must satisfy the following properties to be a
distance metric:

1. ∀x ∈ X d(x, x) = 0
2. ∀x ̸= y ∈ X d(x, y) > 0 (Positivity/Separation)
3. ∀x, y ∈ X d(x, y) = d(y, x) (Symmetry)
4. ∀x, y, z ∈ X d(x, y) ≤ d(x, y) + d(y, z) (Triangle Inequality)

A tuple (X, d) of a set X and a distance metric on X is a metric space. Sometimes a function
doesn’t seem to be a distance metric until X is very carefully specified. A function that satisfies
all properties but positivity is a pseudometric. A function that satisfies all properties but
symmetry is a quasi-metric. The word semimetric is not used consistently in the literature,
but often means a function that satisfies all properties but the triangle inequality.

Throughout this section, similarity measures will be labeled S, dissimilarity mesures will be
labeled D, distance metrics will be labeled M, and pseudometrics will be labeled P. We will name
some of the key dissimilarity functions, and leave others as a generic d.

1.2 Similarities to dissimilarities and back

Sometimes, we may only have a measure of dissimilarity, but need a similarity, or vice-versa.
In principle, for any strictly decreasing function f : [0,∞] → [0,∞], we can let similarity be
f(dissimilarity) or let dissimilarity be f(similarity). Here are some options for converting a
similarity s to a dissimilarity d [MGL22]:

d(x, y) = 1/s(x, y)

d(x, y) = min
x′,y′

s(x′, y′) + max
x′,y′

s(x′, y′)− s(x, y)

d(x, y) = − log

(
s(x, y)/max

x′,y′
s(x′, y′)

)

2023-05-14 4

1 SIMILARITY, DISSIMILARITY, AND DISTANCE

Here are some options for converting a dissimilarity d to a similarity s [EMTB00]:

s(x, y) = max
x′,y′

d(x′, y′)− d(x, y)

s(x, y) =
√
max
x′,y′

d(x′, y′)− d(x, y)

s(x, y) = max
x′,y′

d(x′, y′)2 − d(x, y)2

s(x, y) = 1− d(x, y)

maxx′,y′ d(x′, y′)

s(x, y) =
1

1 + d(x, y)

1.3 Normed vector spaces

In a vector space where a norm is defined (e.g. Euclidean space), there are many induced
dissimilarity measures that we can compute.

1.3.1 Minkowski distance [D/M]

The Minkowski distance of order p is:

dp(x, y) = ||x− y||p =

(
D∑
i=1

|xi − yi|p
)1/p

We go through some specific settings of p and some limiting cases below.

1.3.2 Minkowsky as p→ −∞ [D]

d(x, y) = lim
p→−∞

||x− y||p = min
i
(|xi − yi|)

To our knowledge there is no name for this in the literature.

1.3.3 Minkowsky as p→ 0+ [M]

d(x, y) = lim
p→0+

(
D∑
i=1

|xi − yi|p
)1/p

= 1(x ̸= y) =

{
1 x ̸= y

0 x = y

1.3.4 Manhattan Distance [M]

This is Minkowski with p = 1. If you’re walking in a city with a grid system, this is the distance
from point x to point y:

d(x, y) = ||x− y||1 =
d∑

i=1

|xi − yi|

1.3.5 Euclidean Distance [M]

This is Minkowski with p = 2:

dRD(x, y) = ||x− y||2 =

√√√√ D∑
i=1

|xi − yi|2

2023-05-14 5

1 SIMILARITY, DISSIMILARITY, AND DISTANCE

1.3.6 Chebyshev distance [M]

This is Minkowski as p→∞:

d(x, y) = lim
p→∞
||x− y||p = max

i
(|xi − yi|)

1.4 Inner product spaces

1.4.1 Cosine Similarity [S]

d(x, y) =
x · y
||x|| ||y||

1.5 Curved spaces

1.5.1 Great-circle distance on a 2-sphere [M]

In geospatial data, we often have data points on a sphere like the Earth, expressed in latitude
and longitude. If the points are spread over too large portion of the sphere’s surface for distances
in a local Euclidean tangent plane to be useful (or we are too lazy to project to a plane), then
we can use the haversine formula. Suppose x has latitude and longitude ϕ1, λ1, y has latitude
and longitude ϕ2, λ2, and the radius of the sphere is r. Then: [Gad10]

d(x, y) = 2r arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cosϕ1 cosϕ2 sin

2

(
λ2 − λ1

2

))

Considerations On the Earth, which is not a perfect sphere, this is only an approximation.
If using a computer, beware of numerical instabilities if two points are antipodal.

1.6 Spaces of sets

Let X and Y be two metric spaces. Let A and B be subsets of X.

1.6.1 Hausdorff [P/M]

dH(A,B) = inf{ϵ : A ⊆ Bϵ, B ⊆ Aϵ}

Considerations Because, if A and B have the same closure, dH(A,B) = 0, the Hausdorff
distance is a metric only if we define it over equivalence classes of sets which have the same
closure, or only consider closed subsets of our space.

1.6.2 Gromov-Hausdorff [P/M]

If X and Y are different metric spaces, or they are in the same metric space but we want
to measure distance up to rigid transformations, then we can use the Gromov-Hausdorff
distance:

dGH(X, Y) = inf
θ1:X→Z
θ2:Y→Z

θi isometry

dH(θ1(X), θ2(Y)).

Computation This is difficult to compute in practice, but if X and Y are finite:

dGH(X, Y) = 1
2

inf
R⊆X×Y

sup
(x,y)∈R
(x′,y′)∈R

|dX(x, x′)− dY (y, y
′)|,

which is more tractable. A useful property is that dGH(X, Y) ≤ 1
2
diam(X)diam(Y).

2023-05-14 6

1 SIMILARITY, DISSIMILARITY, AND DISTANCE

Considerations Similarly to the Hausdorff distance, if A and B are different but isometric,
dGH(A,B) = 0. So the Gromov-Hausdorff distance is a metric only if we define it over equivalence
classes of isometric metric spaces.

1.7 Spaces of probability distributions

1.7.1 Total Variation Distance [M]

Let P and Q be two probability measures on a metric space X.

dTV (P,Q) = sup
x∈X
|P (x)−Q(x)|

As a useful inequality, we have that:

dTV (P,Q) ≤
√

dKL(P,Q)/2 (Pinsker’s Inequality [Tsy08])

1.7.2 Wasserstein/Earth-Mover/Optimal-Transport/Kantorovich Distance [M]

We follow [Was17]. Let P be a probability measure on X, and Q be a probability measure on Y .
Let J denote the set of all joint distributions over (X, Y) that have marginals P and Q.

dWp(P,Q) =

(
inf

J∈J (P,Q)

∫
X×Y

d(x, y)pdJ(x, y)

)1/p

Computation Computing this is easy in 1-dimensional space, as there the J which realizes
the infimum is just the joint distribution which maps quantiles of P to quantiles of Q.

1.7.3 Kullback-Leibler (KL) Divergence / Relative Entropy [D]

Let P and Q be probability measures on X. If X is discrete:

dKL(P,Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
If X is not discrete:

dKL(P,Q) =

∫
X

P (x) log
P (x)

Q(x)
dx

If P1 and Q1 are probability measures on X, P2 and Q2 are probability measures on Y , and
P = P1P2 and Q = Q1Q2, then we have that:

dKL(P,Q) = dKL(P1, Q1) + dKL(P2, Q2) [Tsy08]

Considerations KL Divergence doesn’t satisfy the triangle inequality. And unlike most
measures of dissimilarity, it doesn’t satisfy symmetry. We can, however, symmetrize by taking
DKL(P,Q) +DKL(Q,P), obtaining what is sometimes called “KL Distance,” though it is also
not a metric. [IM07; Tsy08].

2023-05-14 7

1 SIMILARITY, DISSIMILARITY, AND DISTANCE

1.8 Spaces of text or strings

Sometimes our data can be thought of as a sequence of symbols, such as “ahhhhhh” and “cat.”
(see for example, genetic data). How can we define a distance between such objects? We follow
[Nav01] in our discussion.

First let’s define four operations:

• Insertion. We insert one character somewhere into the string.
• Deletion. We delete one character somewhere in the string.
• Substitution. We replace one character in the string with some character.
• Transposition. We swap two adjacent characters in the string.

1.8.1 Levenshtein/edit distance [M]

This is the minimum number of one-character insertions, deletions, and substitutions it takes to
get from string x to string y or vice-versa.

Computation Luckily there is a simple recursive formula:

d(x, y) =

|x| |y| = 0

|y| |x| = 0

d(x2,...,|x|, y2,...,|y|) x1 = y1

1 + min

d(x2,...,|x|, y)

(x, y2,...,|y|)

d(x2,...,|x|, y2,...,|y|)

o.w.

1.8.2 Hamming distance [M]

This is the minimum number of substitutions to get from string x to string y or vice-versa.

Computation This is just the number of characters which differ between the two strings.

Considerations The two strings must be of equal length, as otherwise we cannot turn one
into the other only with substitutions.

1.8.3 Episode distance [D]

This is the minimum number of insertions to get from one string to the other.

Considerations This is not symmetric. If |x| > |y|, then d(x, y) = ∞. Similarly if y does
not contain x as a (not necessarily consecutive) subsequence, then d(x, y) =∞. We see that
actually d(x, y) is either ∞ or |y| − |x|.

1.8.4 Longest Common Subsequence [M]

This is the minimum number of insertions and deletions to get from string x to string y.

2023-05-14 8

1 SIMILARITY, DISSIMILARITY, AND DISTANCE

Computation This is the length of the longest common (ordered) subsequence. This is a well-
studied problem in algorithms and admits a recursive solution. Let LCS(i, j) denote the length
of the longest common subsequence between x1,...,i and y1,...,j, such that d(x, y) = LCS(|x|, |y|).
Then we can make the following recurrence relation: [CLRS22]

LCS(i, j) =

0 i = 0orx = 0

LCS(i− 1, j − 1) + 1 i, j > 0, xi = yj

max(LCS(i, j − 1), LCS(i− 1, j) i, j > 0, xi ̸= yj

1.9 Building graphs

For any of the graphs below, if we want them to be weighted we can give edge (x, y) the weight
d(x, y).

1.9.1 k-nn graph

In this graph the vertices are the points of the dataset and the edges are between nearest
neighbors:

G = (V,E) : V = X, E = {(x, y)|y ∈ k-NN of x}

This graph can be treated as directed or undirected.

Considerations If treated as directed, it is possible that there is an edge (x, y) and no edge
(y, x), which may or may not be desirable.

1.9.2 ϵ-ball graph

In this graph the vertices are the points of the dataset and the edges are between points within
a distance of ϵ of each other:

G = (V,E) : V = X, E = {(x, y)|d(x, y) < ϵ}

If d is symmetric, this graph will behave the same whether directed or undirected. In principle
though a non-symmetric dissimilarity measure d could be used.

Computation This graph is easy to compute with matrix operations as the adjacency matrix
will simply be 1 where the distance matrix is ≤ ϵ, and 0 everywhere else.

Considerations It is very easy in practice to make a disconnected graph if a small ϵ is chosen,
which may or may not be desirable for downstream tasks.

1.10 Spaces on graphs

Using the graphs in the subsection above, we can compute certain distances and similarities.

1.10.1 Path metric [M]

d(x, y) = {Path distance from x to y in G}

In practice this can be computed efficiently by e.g. Dijkstra’s algorithm.

2023-05-14 9

2 DIMENSION-REDUCTION

1.10.2 Adjacency matrix [S]

This is a measure of similarity which is simply the adjacency matrix of the graph:

s(x, y) =

{
1; (x, y) ∈ E

0; (x, y) ̸∈ E

1.10.3 Heat Kernel [S]

This is a measure of similarity which is a bit more involved than simply the adjacency ma-
trix:

s(x, y) =

{
exp

(
−d(x,y)2

2σ2

)
; (x, y) ∈ E

0; (x, y) ̸∈ E

Considerations The choice of σ will affect downstream tasks. Decreasing σ increases the
difference in the similarities between close and distant points.

2 Dimension-reduction

2.1 Definitions

2.1.1 Useful Matrices

Having defined these variables, we can now define a several useful matrices used in dimension-
reduction. Let n be the number of data points in our dataset, D be the dimension of our data,
and d be the target dimension.

Symbol matrix Calculation Dimension PSD
X Data Xi∗ = xi n×D No
D Distance Dij = d(xi, xj) n× n Often

D(2) Squared distance D
(2)
ij = (Dij)

2 n× n Often
W Weight/similarity/adjacency Various n× n No

Dg Degree diag
(∑

j Wji

)
n× n Yes

L Laplacian Dg −W n× n Yes
G Gram Gij = ⟨xi, xj⟩ n× n Yes
In Identity In,ij = 1[i=j] n× n Yes
Cn Centering In − 1

n
11t n× n Yes

X̃ Centered data CnX n×D No

C Empirical covariance X̃ X̃T

n
or X̃ X̃T

n−1
D ×D Yes

R Random Various D × d No
P Projection Various D ×D No
K Kernel Kij = K(xi, xj) n× n Often

Note that the data matrix is defined as n×D (so rows are observations, columns are features),
and not D × n. The convention varies in different fields and subfields, but we will consistently
use n × D, so some of the equations below may be transposes of versions common in the
literature.

2023-05-14 10

2 DIMENSION-REDUCTION

2.1.2 Top and bottom eigenvectors

The bottom-k eigenvectors of a matrix are the eigenvectors corresponding to the matrix’s
k-smallest eigenvalues. The top-k eigenvectors are the eigenvectors corresponding to the
k-largest eigenvalues.

2.2 Principal Component Analysis

2.2.1 Linear PCA

Definition Given p-dimensional data x1, . . . , xn, we want to choose a d-dimensional subspace
of RD where, once we project each point to this subspace to obtain y1, . . . , yn. If we consider
y1, . . . , yn as still being points in Rd, we minimize:

n∑
i=1

dRD(xi, yi)
2 = ||XP−X||2F ,

where P is a D×D rank-d orthogonal projection matrix. The norm on the right is the Frobenius
norm.

Computation

1. Compute the covariance matrix C of the data.
2. Let V be the D × d matrix of the bottom d eigenvectors of C.
3. Our embedded data is Y = XV

Considerations Since the map is linear, if we think our data come from a manifold that is
not a hyperplane, PCA will perform poorly.

2.2.2 Kernel/nonlinear PCA

Linear PCA obtains a linear map V which multiply by our data X to obtain Y

Rather than just projecting X, let’s suppose we have some nonlinear function ϕ : RD → RD′
,

where D′ ≫ D. Denote by Xϕ the data matrix when ϕ is applied to the data. We are now
interested in minimizing:

||XϕP−Xϕ||2F
Where P is now a D′ × d projection matrix. We are essentially looking for projections of a
higher-dimensional representation of X.

It turns out that we can kernelize the method and never have to actually compute Xϕ. This
requires that we have a kernel function K : X ×X 7→ R where K(x, y) = ⟨ϕ(x), ϕ(y)⟩. In
fact, we can completely ignore ϕ and the inner product and just imagine that we have some
function K : X ×X 7→ R which, when represented as a matrix, is positive semi-definite.

Computation To do Kernel PCA we can use the following approach [MRT18]:

1. Compute the n× n kernel matrix K according to Kij = K(xi, xj).
2. Let V be the n× d matrix of the bottom d eigenvectors of K.
3. If we let row i of V be vi, then our embedding for xi is vi elementwise multiplied with

the vector (λ1, . . . , λd) of eigenvalues of K.

Several other dimension-reduction methods can be represented as Kernel PCA with a specific
K. Where this is possible, we will note this below.

2023-05-14 11

2 DIMENSION-REDUCTION

2.3 Random Projections

We follow [LHC06] in our discussion of different projection matrices.

2.3.1 General method

Definition Given data X, we create a random matrix D × d matrix R with entries {Rij}
which are iid with mean zero, and let our projected data be Y = 1√

d
XR.

2.3.2 Johnson-Lindenstrauss lemma

For some 0 < ϵ < 1, let d ∈ N be such that:

d ≥ 24 lnn/(3ϵ2 − 2ϵ3) [DG03]

d ≥ 20 lnn/ϵ2; n > 4 [MRT18]

Then ∃ f : RD → Rd with:

(1− ϵ)dRD(x, y)2 ≤ dRd(f(x), f(y))2 ≤ (1 + ϵ)dRD(x, y)2

This lemma does not on its own justify random projections (as a satisfying f might be nonlinear).
However, one way to prove the lemma is a probabilistic argument which shows that, if we take
a projection to a random d-dimensional subspace of RD, and let f be that projection scaled
by
√

n/d, the probability that f doesn’t satisfy the error bounds is ≤ 1− 1
n
< 1. Since there

is a pretty decent probability ≥ 1/n of a random projection satisfying the bounds, random
projections are a good idea.

2.3.3 Conventional random projections

Rij ∼ N(0, 1)

Considerations If the data is very-high dimensional, computing 1√
d
XR will be computation-

ally expensive, as we can’t use any sparsity in R.

2.3.4 Sparse random projections

Rij =
√
s

1 w.p. 1/2s

0 w.p. 1− 1/s

−1 w.p. 1/2s

Computation If the multiplication by
√
s is done after projecting, then the projection can

be done via a bunch of highly efficient database aggregations because only multiplication by 1,
0, and -1 is required.

2.3.5 Very sparse random projections

Sparse random projections (2.3.4) with s = o(D), e.g. s =
√
D or s = D/ logD. See [LHC06]

for discussion of the error bounds.

2.4 Multidimensional Scaling (MDS)

We follow [BG05] in our discussion.

2023-05-14 12

2 DIMENSION-REDUCTION

2.4.1 Metric MDS

In metric MDS, for some p and some f mapping our points X to a d-dimensional Euclidean
space, we want to minimize the stress function:(∑

i ̸=j

[d(xi, xj)
p − dRd(f(xi), f(xj))]

2

)1/2

2.4.2 Classical MDS

Definition In Classical MDS, we set p = 1 in the above equation. The strain function which
we want to minimize can then be written as:(∑

i,j((B)ij − f(xi)
Tf(xj))

2∑
i,j(B)2ij

)1/2

,

where B is as defined below. When the distances are Euclidean, classical MDS is equivalent to
PCA.

Computation Given distance matrix D and number of points n, if we want to reduce to d
dimensions, this problem can be solved using the following algorithm:[Wic03]

1. Given a distance matrix D, compute the elementwise squared distance matrix D(2).
2. Let B = −1

2
CnD

(2)Cn

3. Compute the d largest positive eigenvalues λ1, . . . , λd of B and their corresponding
eigenvectors e1, . . . , ed

4. Let V be the n×d matrix of eigenvectors and Λ be the d×d diagonal matrix of λ1, . . . , λd.
The new n× d embedding of our data is Y = VΛ1/2.

If n is very large, doing MDS on the whole dataset may be expensive. Instead, we can choose
a small subset of m ≪ n “landmark” points, embed them in the lower-dimensional space,
then use the distances of the rest of the points to the landmark points to embed them in the
lower-dimensional space too. Here is an outline of how this, called Landmark MDS is done
[DT04]:

1. Choose a subset of m≪ n points and compute their m×m distance matrix D.
2. Do MDS as above using this distance matrix to obtain an embedding Y′ of the m points.
3. Let δi be the vector of squared distances from landmark i to all of the landmarks, and let

δµ = (δ1 + . . .+ δm)/m. Let L♯ = [e1/
√
λ1, . . . , ed/

√
λd]

T

4. Now for a point x which is not a landmark, if δx is its vector of squared distances to the
m landmarks, we embed x as y = −1

2
L♯(δx − δµ).

Kernel PCA Equivalence The matrix B obtained can be used as the kernel matrix K in
Kernel PCA, as long as B is PSD. [MRT18]

2.5 Isomap

Definition This method simply combines what we have described above [TSL00]:

1. Build a weighted graph from the data (1.9)
2. Compute a distance matrix of shortest-path distances (1.10.1)
3. Apply classical MDS to the distance matrix to obtain the embedding (2.4.2)

2023-05-14 13

2 DIMENSION-REDUCTION

Kernel PCA Equivalence The matrix B obtained in the use of MDS in (3) can be used as
the kernel matrix K in Kernel PCA, as long as B is PSD. [MRT18]

Considerations The resulting embedding is highly sensitive to the choices made when doing
step 1.

2.6 Laplacian Eigenmaps

Definition This method is a relatively simple combination of things discussed above:

1. Build an unweighted graph from the data (1.9)
2. Compute a similarity matrix W from the graph (1.10.2 or 1.10.3)
3. Compute the Laplacian L from W.
4. Compute the bottom k eigenvectors e1, . . . , ek of L after discarding the 0-eigenvalue.
5. The new embedded data is the n× k matrix X ′ = [e1, . . . , ek]

Computation Standard matrix algorithms can be used for these. W and L can be stored
and worked with as sparse matrices, as the W created will naturally be sparse in a graph which
is not fully-connected.

Kernel PCA Equivalence If we let L† be the pseudoinverse of L, L† can be used as the
kernel matrix K in Kernel PCA, as long as L† is PSD. To make Kernel PCA with this K
equivalent to Laplacian Eigenmaps we must scale the output dimensions to have unit variance.
[MRT18]

Considerations The resulting embedding is highly sensitive to the choices made when doing
steps 1 and 2.

2.7 Locally Linear Embedding (LLE)

Definition The intuition here is that each point on a manifold can be represented as a linear
combination of its nearest neighbors, and an embedding in lower-dimensional space should have
the same linear combination for each point.

1. Compute the k nearest neighbors of each point xi, or use an ϵ-ball.
2. Compute Wij that minimizes:

n∑
i=1

∣∣∣∣∣
∣∣∣∣∣xi −

n∑
j=1

Wijxj

∣∣∣∣∣
∣∣∣∣∣
2

2

subject to
∑

j Wij = 1, and Wij = 0 if xj is not a neighbor of xi (or is not in its ϵ-ball).
3. Compute d-dimensional coordinates y that minimize:

n∑
i=1

∣∣∣∣∣
∣∣∣∣∣yi −

n∑
j=1

Wijyj

∣∣∣∣∣
∣∣∣∣∣
2

2

subject to
∑

j Yij = 0 and YTY = I. This is called the “reconstruction error.”

2023-05-14 14

3 CLUSTERING

Computation We follow [SR00] in our discussion.

To find the weights, we can actually find the weight for each point xi individually. First, for a
point xi, if xi has k neighbors (or k points in its ϵ-ball) η1, . . . , ηk, let’s define the k × k local
covariance matrix C(L) as:

C
(L)
lm = ⟨xi − ηl, x− ηm⟩

Some texts refer to this as the Gram Matrix Gi, as it is a matrix of inner products of a set of
vectors which depends on xi.

The jth weight wj for xi will be:

wj =

∑
m C

(L),−1
jm∑

lmC
(L),−1
lm

It is actually more efficient to solve the system of linear equations:∑
l

C
(L)
lm wm = 1

and rescale so that
∑

m wm = 1.

Now, the n× n weight matrix W be such that the ith row Wi∗ is defined as:

Wi∗ =
[
0 0 w

(xi)
1 0 · · · w

(xi)
k 0

]
,

where the nonzero entries appear at the indices of the neighbors of xi. To find Y , we can
compute:

M = (In −W)T (In −W)

and take the d eigenvectors e1, . . . , ed corresponding to the d smallest eigenvalues excluding the
smallest one. Taking Y = [e1, . . . , ed], the rows of Y are the new data points.

Kernel PCA Equivalence If we let λ be the largest eigenvalue of M, λIn −M can be used
as the kernel matrix K in Kernel PCA. [MRT18]

3 Clustering

3.1 Definition

A clustering of X made up of k clusters is a collection of sets C = {Ci}ki=1, where C forms a
partition of X (Ci ⊆ X, i ̸= j ⇒ Ci ∩ Cj = ∅,

⋃
iCi = X).

3.2 Centroid methods

These methods seek to find a set of points c1, . . . , ck, and from these a collection of clusters
{Ci}ki=1 with:

Ci = {x ∈ X|∀j d(x, ci) ≤ d(x, cj)},
such that one of these objectives is minimized:

1

2

k∑
i=1

∑
x,y∈Ck

d(x, y)
d=d2R=

k∑
i=1

nk

∑
x∈Ci

d(x, ci) [HTFF09]

k∑
i=1

∑
x∈Ci

d(x, ci) [Dau17]

2023-05-14 15

3 CLUSTERING

The first objective given, which is the sum of all inter-point distances in the clusters, is called
within-point scatter. Where centroid methods differ is in the distance or dissimilarity d used
and in restrictions on c1, . . . , ck. These impact what different algorithms can be used to solve
the problem or approximate the solution.

3.2.1 k-means

Distance: Euclidean distance is used for d(x, ci) (1.3.5)
Centroids: No restrictions on c1, . . . , ck

Computation An approximation algorithm for this is what is commonly known as the
“k-means clustering algorithm.”

1. Initialize randomly chosen cluster centers {ci}ki=1. There are many ways to do this. One is
to randomly choose points in the data.

2. Until cluster assignments don’t change:
(a) Assign each x to the cluster Ci with the nearest corresponding ci.
(b) Compute ci as the mean of cluster Ci.

Considerations The k-means clustering algorithm will not necessarily find a globally optimal
solution. In practice, we can run it many times and choose the resulting clustering which
minimizes the objective [Dau17]. The algorithm can also run into cases where, in step 2(b),
cluster Ci is empty, in which case ci can be chosen randomly.

3.2.2 k-medians

Distance: Manhattan distance is used for d(x, ci) (1.3.4)
Centroids: No restrictions on c1, . . . , ck.

Computation An approximation algorithm for this which is very similar to the k-means
algorithm can be used:

1. Assign each x to the cluster Ci with the nearest (Manhatan distance) corresponding ci.
(can initialize with randomly chosen ci’s)

2. Compute ci as the median of cluster Ci (in Euclidean spaces with more than one dimension,
the “median” of a set of points can be computed using the median along each axis)

3.2.3 k-medoids

Distance: Any distance metric can be used for d(x, ci)
Centroids: c1, . . . , ck must be points in the data.

Computation This can be approximated by repeatedly swapping some ci with a point in the
data and seeing if it reduces the cost defined above. Alternatively, we can use an algorithm
similar to k-means: [HTFF09]

1. Initialize randomly chosen cluster assignment.
2. Until cluster assignments don’t change:

(a) Let the center ci of cluster Ci be argminx∈Ci

∑
y∈Ci

d(x, y)
(b) Assign each x to the cluster Ci with the nearest (using d) cluster center.

2023-05-14 16

3 CLUSTERING

3.3 Agglomerative/Bottom-up Hierarchical Clustering

3.3.1 General Method

These methods are all fundamentally the same. They rely on repeatedly merging the two clusters
which are “closest.”

1. Start with a collection of clusters {Ci}i = {{xi}}i
2. Until the collection of clusters is {X}:

(a) Let A,B be the clusters in {Ci}i minimizing d(A,B)
(b) Merge A and B. i.e. {Ci}i ← ({Ci}i − {A,B}) ∪ {A ∪B}.

The distinction between them is how “closeness” d(A,B), a.k.a. the “linkage criterion” is defined
and certain computational improvements which can be made for some definitions of closeness.
We follow [LLSE11] in our discussion of these.

3.3.2 Dendrograms

When agglomerative hierarchical clustering is performed, we may create a “dendrogram” by
making a tree recording how the clusters joined over time, with each node being a cluster merger.
The altitude of the node for A and B joining is d(A,B). A clustering is considered stable if it
covers a large range of altitudes, and unstable otherwise.

3.3.3 Lance and Williams method

Many of the algorithms described are instances of the general Lance and Williams (LW) method,
where the distance between a cluster C and a cluster A ∪B formed by merging clusters A and
B is given by:

d(A ∪B,C) = αAd(A,C) + αBd(B,C) + βd(A,B) + γ|d(A,C)− d(B,C)|

When this can be used for a given d, agglomerative hierarchical clustering can be done in
O(n2 log(n)) [LLSE11].

3.3.4 Minimum/Single-Linkage clustering (SLC)

d(A,B) = min
a∈A,b∈B

d(a, b)

The LW parameters are:
αA = αB = 1/2, β = 0, γ = −1/2,

giving the recurrence relation:

d(A ∪B,C) = min(d(A,C), d(B,C)).

We can also think about the clustering at the point where all x and y with d(x, y) ≤ ϵ are in
the same cluster (which is achieved when we’ve only recursively merged up to the point where
d(A,B) is still < ϵ). This clustering is the same as the connected components of the ϵ-ball
graph (1.9.2).

Considerations A thin chain of points between two real clusters will make them one cluster
in Single-Linkage clustering, making SLC not very robust to noise.

2023-05-14 17

3 CLUSTERING

3.3.5 Maximum/Complete-Linkage clustering

d(A,B) = max
a∈A,b∈B

d(a, b)

The LW parameters are:
αA = αB = 1/2, β = 0, γ = 1/2,

giving the recurrence relation:

d(A ∪B,C) = max(d(A,C), d(B,C)).

3.3.6 Unweighted average linkage clustering (UPGMA)

“Unweighted Pair Group Method with Arithmetic mean.”

d(A,B) =
1

|A||B|
∑
a∈A

∑
b∈B

d(a, b)

The LW parameters are:

αA =
|A|

|A|+ |B|
, αB =

|B|
|A|+ |B|

, β = 0, γ = 0,

giving the recurrence relation:

d(A ∪B,C) =
|A|

|A|+ |B|
d(A,C) +

|B|
|A|+ |B|

d(B,C).

This is called “unweighted” because each point ends up getting the same weight when the
distances are averaged.

3.3.7 Weighted average linkage clustering (WPGMA)

“Weighted Pair Group Method with Arithmetic mean.” There is actually no way to write d(A,B),
as it depends on the sequence of merges which constructed A and B. WPGMA can, however,
be expressed with the LW parameters:

αA = αB =
1

2
, β = 0, γ = 0,

giving the recurrence relation:

d(A ∪B,C) =
1

2
d(A,C) +

1

2
d(B,C).

This is called “weighted” because points in smaller clusters end up getting a higher weight when
the distances are averaged.

3.3.8 Unweighted centroid linkage (UPGMC)

If we call the centroid of cluster A cA, and that of cluster B cB, then:

d(A,B) = d(cA, cB)

This can’t be expressed in LW parameters, but with some reasoning we can get the recurrence
relation that:

cA∪B =
|A|

|A|+ |B|
cA +

|B|
|A|+ |B|

And then:
d(A ∪B,C) = d(cA∪B, cC)

2023-05-14 18

3 CLUSTERING

3.3.9 Weighted centroid linkage (WPGMC)

If we call the centroid of cluster A cA, and that of cluster B cB, then:

d(A,B) = d(cA, cB)

Now, when we join clusters, rather than taking the true centroid we take the simple mean
of the centroids of the two clusters (this is similar to the distinction between UPGMA and
WPGMA):

cA∪B = 0.5cA + 0.5cB

And then:
d(A ∪B,C) = d(cA∪B, cC)

Like UPGMC this can’t be expressed with LW parameters.

3.4 Divisive/Top-down Hierarchical Clustering

Top-down approaches to hierarchical clustering start with one cluster containing all of the points,
then progressively break it up.

3.4.1 diana

The name of this method is short for DIvisive ANAlysis clustering. Here is its algorithm:

1. Start with all points in one cluster, i.e. with the clustering C = {X}.
2. Until we have reachced the desired number of clusters (or each point is in its own cluster):

(a) Pick a cluster Ci ∈ C (say, the largest one)
(b) Find the point x whose average distance to all points in Ci is maximized.
(c) Create a cluster A = {x} and B = Ci − {x}.
(d) Until there are no such points, add points to A which have the highest positive

difference:
[Average distance to B]− [Average distance to A]

(e) Let C = C ∪ {A} ∪ {B} − ∪{Ci}

3.5 Generative/Distribution-based Clustering

In generative clustering methods, we define some mixture model M (which is a mixture over k
different submodels M1, . . . ,Mk) of how our data are generated:

x1, . . . , xn
iid∼ M =

M1 w.p. π1

...

Mk w.p. πk

.

After fitting the model to the data (i.e. choosing parameters θi for each Mi and priors πi) to
maximize likelihood:

θ,π = arg maxθ,πP (x1, . . . , xn|M,θ,π),

we assign each point to the part of the mixture model which assigns it the highest probability,
hence getting that the ith cluster Ci is:

Ci = {x ∈ X|∀j πiP (x|Mi,θ) ≥ πjP (x|Mj,θ)}

2023-05-14 19

REFERENCES

3.5.1 Gaussian mixture

Definition Here Mi is N(µi,Σi) and θ is {µi,Σi}i.

Computation It is hard to maximize the likelihood here exactly, but we can use an
Expectation-Maximization algorithm to find a local maximum:

1. Initialize θ randomly, π uniform. Initialize the assignment weight of xi to cluster j w
(i)
j as

1/k.
2. Until θ and π converge:

(a) (Expectation): For all i ∈ {1, . . . , n} and j ∈ {1, . . . , k}, let:

w
(i)
j = πj

√
det(Σ−1

j) exp
(
−0.5(xi − µj)

TΣ−1
j (xi − µj)

)
And normalize so that

∑
j w

(i)
j = 1 for all i.

(b) (Maximization): For all j, set:

nj =
n∑

i=1

w
(i)
j ; πj =

nj

n
; µj =

1

nj

n∑
i=1

w
(i)
j xi; Σj =

1

nj

n∑
i=1

w
(i)
j (xi − µj)(xi − µj)

T

Considerations The EM algorithm will attain a local maximum, and not necessarily a global
one. The EM algorithm can also be used to obtain soft cluster assignments, in the form of the
normalized weights w

(i)
j .

3.6 Joint Methods

There are some clustering methods which, technically, just apply a dimension-reduction method
followed by a clustering method. In principle, arbitrary combinations can be used, and there’s
nothing to stop someone from doing e.g. Isomap followed by Gaussian mixture. Though
difficulties do arise when combining very hyperparameter-sensitive dimension-reduction methods
with very hyperparameter-sensitive clustering methods.

3.6.1 Spectral Clustering

Spectral clustering, as typically used, is the following:

1. Perform a Laplacian Eigenmap embedding of the data (2.6)
2. Apply k-means to the embedded data (3.2.1)

Considerations As with the Laplacian Eigenmap embedding, there are many choices which
will affect the output. Here our results will also be affected by what dimension d we decide to
embed our data in, and what k we choose for the number of clusters.

References

[BG05] Ingwer Borg and Patrick JF Groenen. Modern multidimensional scaling: Theory
and applications. Springer Science & Business Media, 2005.

[CLRS22] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms. MIT press, 2022.

[Dau17] Hal Daumé. A course in machine learning. 2017.

2023-05-14 20

REFERENCES

[DG03] Sanjoy Dasgupta and Anupam Gupta. “An elementary proof of a theorem of
Johnson and Lindenstrauss”. In: Random Structures & Algorithms 22.1 (2003),
pp. 60–65.

[DT04] Vin De Silva and Joshua B Tenenbaum. Sparse multidimensional scaling using
landmark points. Tech. rep. technical report, Stanford University, 2004.

[EMTB00] F Esposito, D Malerba, V Tamma, and HH Bock. “Similarity and Dissimilarity”.
In: Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical
Information from Complex Data. Springer. 2000, pp. 139–197.

[Gad10] Kenneth Gade. “A Non-singular Horizontal Position Representation”. In: Journal
of Navigation 63.3 (May 2010), pp. 395–417. doi: 10.1017/s0373463309990415.

[HTFF09] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman.
The elements of statistical learning: data mining, inference, and prediction. Vol. 2.
Springer, 2009.

[IM07] Jordi Inglada and Grgoire Mercier. “A new statistical similarity measure for change
detection in multitemporal SAR images and its extension to multiscale change
analysis”. In: IEEE transactions on geoscience and remote sensing 45.5 (2007),
pp. 1432–1445.

[LHC06] Ping Li, Trevor J Hastie, and Kenneth W Church. “Very sparse random projections”.
In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. 2006, pp. 287–296.

[LLSE11] Sabine Landau, Morven Leese, Daniel Stahl, and Brian S Everitt. Cluster analysis.
John Wiley & Sons, 2011.

[MGL22] Patrick Mair, Patrick JF Groenen, and Jan de Leeuw. “More on multidimensional
scaling and unfolding in R: smacof version 2”. In: Journal of Statistical Software
102 (2022), pp. 1–47.

[MRT18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
machine learning. MIT press, 2018.

[Nav01] Gonzalo Navarro. “A guided tour to approximate string matching”. In: ACM
computing surveys (CSUR) 33.1 (2001), pp. 31–88.

[RB19] Raúl Rabadán and Andrew J Blumberg. Topological data analysis for genomics
and evolution: topology in biology. Cambridge University Press, 2019.

[SR00] Lawrence K Saul and Sam T Roweis. “An introduction to locally linear embedding”.
In: unpublished. Available at: http: // www. cs. toronto. edu/ ~ roweis/ lle/
publications. html (2000).

[TSL00] Joshua B Tenenbaum, Vin de Silva, and John C Langford. “A global geometric
framework for nonlinear dimensionality reduction”. In: science 290.5500 (2000),
pp. 2319–2323.

[Tsy08] A. Tsybakov. Introduction to Nonparametric Estimation. 2008.

[Was17] L Wasserman. Optimal transport and wasserstein distance. 2017.

[Wic03] Florian Wickelmaier. “An introduction to MDS”. In: Sound Quality Research Unit,
Aalborg University, Denmark 46.5 (2003), pp. 1–26.

2023-05-14 21

https://doi.org/10.1017/s0373463309990415
http://www.cs.toronto.edu/~roweis/lle/publications.html
http://www.cs.toronto.edu/~roweis/lle/publications.html

	Similarity, Dissimilarity, and Distance
	Definitions
	Similarities to dissimilarities and back
	Normed vector spaces
	Inner product spaces
	Curved spaces
	Spaces of sets
	Spaces of probability distributions
	Spaces of text or strings
	Building graphs
	Spaces on graphs

	Dimension-reduction
	Definitions
	Principal Component Analysis
	Random Projections
	Multidimensional Scaling (MDS)
	Isomap
	Laplacian Eigenmaps
	Locally Linear Embedding (LLE)

	Clustering
	Definition
	Centroid methods
	Agglomerative/Bottom-up Hierarchical Clustering
	Divisive/Top-down Hierarchical Clustering
	Generative/Distribution-based Clustering
	Joint Methods

