

Wrap-up:

Numerical Methods in Accelerator Physics

Dr. Adrian Oeftiger

Overview

Learning objectives for lecture series:

- basic models of accelerator physics
- suitable methods for their implementation

Topics covered:

- 1. reduced models: steering, focusing, acceleration
- 2. maps of linear periodic systems + stability analysis
- 3. beam **transport models**: particles, beam distributions (self-consistent modelling)
- 4. control-room applications and diagnostics:
 - \rightarrow tune reconstruction
 - \longrightarrow tomographic reconstruction of phase space
 - → closed-orbit control

Examination

- 30 min oral exam
- format = conceptual discussion on models of accelerator physics and numerical implementations
- exam material = \sum summary slides
- ▲ you do <u>not</u> need to know how to write python code focus on the ideas and concepts we discussed!

- I. basic concepts: lectures 1-3
- II. longitudinal dynamics: lectures 4-6
- III. transverse dynamics: lectures 7-8
- IV. applications: lectures 9-13

- basic concepts: lectures 1-3
 - \implies using the simple pendulum as example
 - \longrightarrow time scales in a synchrotron
 - (transverse / longitudinal motion period, storage times)
 - → phase space (system state), Hamiltonian (equations of motion)
 - → discrete integrators: Euler, Euler-Cromer, leapfrog
 - → statistical moments, emittance
 - → non-linearities, Liouville theorem vs. filamentation (emittance growth)
 - → discrete frequency analysis, NAFF algorithm (vs. FFT)
 - \rightarrow control of simulation error sources:
 - 1. discretisation error (symplecticity!)
 - 2. modelling error
 - 3. numerical artefacts
 - 4. (input error)
 - → deterministic chaos,

early indicators: (max.) Lyapunov exponent, frequency map analysis

- basic concepts: lectures 1-3
- II. longitudinal dynamics: lectures 4-6
 - \rightarrow Lorentz force, electric longitudinal field E_z to accelerate
 - \longrightarrow beam rigidity, paraxial approximation
 - \longrightarrow momentum compaction, phase slippage, transition energy
 - → phase focusing and stability (classical vs. relativistic regime)
 - → longitudinal tracking equations (discrete one-turn map)
 - → synchrotron Hamiltonian, rf bucket
 - → Monte-Carlo sampling (random number generation)
 - equilibrium distributions (thermal PDF), small-amplitude approximation vs. nonlinear matching
 - → emittance growth mechanisms (filamentation ↔ bucket non-linearity) from dipole and quadrupole moment oscillations

- L basic concepts: lectures 1-3
- II. longitudinal dynamics: lectures 4-6
- III. transverse dynamics: lectures 7-8
 - → magnetic fields for bending (steering) and focusing
 - → multipole representation, dipole / quadrupole / sextupole magnets
 - ---- Hill differential equation, quasi-harmonic oscillation
 - \rightarrow betatron transport matrices
 - → FODO cell, alternate-gradient focusing
 - \rightarrow optics / Twiss functions, β -function as beam envelope, dispersion function
 - \rightarrow stability of periodic transport maps
 - → betatron tune, chromaticity

- L basic concepts: lectures 1-3
- II. longitudinal dynamics: lectures 4-6
- III. transverse dynamics: lectures 7-8
- IV. applications:
 - → longitudinal phase-space tomography (lecture 9)
 - Radon transform, sinogram, Fourier Slice Theorem
 - filtered back projection vs. algebraic reconstruction technique
 - → closed orbit distortion (lecture 10)
 - local orbit correction (bumps)
 - global orbit correction (orbit response matrix, SVD)
 - → machine learning (lectures 11-12)
 - → Bayesian optimisation (Gaussian processes, uncertainty modelling)
 - reinforcement learning (discrete vs. continuous state/action spaces, Q-learning & actor-critic methods)
 - → self-consistent modelling / collective effects (lecture 13)
 - categories of beam interactions (space charge, ...)
 - \blacksquare longitudinal space charge, line density derivative λ' model
 - microwave instability

You have gained solid fundamental knowledge on numerical modelling of periodic physics + have seen in action some dynamical examples from accelerator physics!

... and perhaps became a happy python user.

Well done! :))