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Abstract

The math behind the Theta Sketch unique counting algorithms used in the Apache DataSketches 4 library has
been well described in papers by Dasgupta, et al 3, Giroire 2, Bar Yossef, et al 1, and many others. The presentation
of these concepts in the theoretical research literature is often abstract with details deferred to other papers in order
to save space. This makes acquiring intuitive understanding of these mathematical concepts a challenge if one is not
familiar with this scientific discipline and its mathematical conventions. The objective in this short paper is to develop
the important mathematical concepts so that individuals with a background of first-year college calculus can follow
them.

1 Introduction
The Theta Sketch Framework3 encompasses many possible sketch algorithms only a few of which have been imple-
mented in the Apache DataSketches4 library. In this paper we will discuss the mathematics of Bernoulli Sampling,
KMV and Theta Sketch algorithms in some detail. This should provide sufficient understanding of how these kinds of
algorithms work. For the analysis of the Alpha algorithm we will defer to the above TSF paper.

2 Hypothetical Sketch Produced by Bernoulli Sampling

2.1 Fixed Theta Sampling
Suppose we have a stream A of n items a1, a2, . . . , an and an arbitrary, fixed sampling probability 1 > θ > 0.

The traditional Bernoulli variable, bi, is defined as a random, independent, weighted coin flip for each item ai:

bi =

{
1 with probability θ
0 with probability 1− θ.

Equivalently, we could compute a uniform hash on the interval [0,1] for each ai. The Bernoulli variable becomes:

bi =

{
1 h(ai) < θ

0 h(ai) ≥ θ.
We will use this latter definition as it more closely aligns with what we actually do.

Our sketch consists of two elements, a set S of hash values h(ai) selected by the above Bernoulli sampling process,
and a predefined value of θ. Note that we don’t actually implement this algorithm. It is impractical as we do not know
θ upfront. Suspend disbelief for a few moments and pretend that we did. The payoff will be that the mathematics is
relatively straightforward.
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2.2 Fixed k Sampling 2 HYPOTHETICAL SKETCH PRODUCED BY BERNOULLI SAMPLING

From the Bernoulli Distribution5 the expected value, mean and variance are
E[bi = 1] = µ = θ

σ2(bi) = θ(1− θ)
A stream of n Bernoulli Trials6 defines a sample set S of size |S|:

|S| =
∑
i∈n

bi where |S| is a random variable.

The expected value of |S| is

E [|S|] = E

[∑
i∈n

bi

]
=
∑
i∈n

E[bi] = nθ.

Because the samples are independent, the variance is

σ2 (|S|) =
∑
i∈n

σ2(bi) = nθ(1− θ).

The estimate of n, is simply

n̂ =
|S|
θ
. (2.1)

To establish unbiasedness we compute the expected value of n̂

E[n̂] = E

[
1

θ

∑
i∈n

bi

]
=

1

θ

∑
i∈n

E(bi) =
1

θ
nθ = n.

To understand the error, we compute the variance of n̂,

σ2(n̂) = σ2

(
|S|
θ

)
=

1

θ2
σ2(|S|) =

1

θ2
(nθ(1− θ)) =

n

θ
− n.

To compute the Relative Standard Error, we divide by n2 and take the square root

RSE(n̂) =

√
σ2(n̂)

n2
=

√
1

nθ
− 1

n
=

√
1

E [|S|]
− 1

n
<

1√
E [|S|]

. (2.2)

2.2 Fixed k Sampling
The above derivation assumed a fixed θ sampling where the size of the sample set,|S|, is a random variable. It is not
hard to imagine turning this around so that the resulting size of the sample set is bounded by a constant k, and then θ
becomes a variable that must be constantly adjusted by the sketch algorithm as new items arrive so that k = nθ.

Equations for the estimate (2.1) and the RSE (2.2) become

n̂ =
k

θ
(2.3)

RSE(n̂) =

√
1

k
− 1

n
<

1√
k

(2.4)

2.3 Subsets of Fixed k Sampling
Suppose we were to choose, by set operations or other means, a subset, Ssub of the k samples in the sketch (S, θ) to
represent a subpopulation of the original n. The estimate n̂sub = |Ssub|/θ and the RSE(n̂sub) = 1/

√
|Ssub|.
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3 KMV EQUATIONS

Figure 1: Uniform density (left) and distribution (right)

3 KMV Equations
We implement a variant of the KMV sketch in the Apache DataSketches library called the Theta Sketch. The subtle
differences between the conventional definition of the KMV sketch and the Theta Sketch is summarized at the end.
This derivation is similar to that of Giroire2, but is more direct and includes rudimentary steps that Giroire omits.

3.1 Preliminaries
3.1.1 Uniform Probability Density and Distribution

One of the fundamental concepts of sketches is that the raw input stream of unique values is transformed into a stream
of unique hash values that have a uniform random distribution. This is accomplished internally by a hash function that
has good avalanche and bit-independence properties.

We begin by defining a continuous uniform random variable X on the interval [0,1]:

The Probability Density Function (PDF) (Figure 1, left):

f(x) =

{
1 0 < x < 1

0 otherwise
(3.1)∫ 1

0

f(x)dx = 1

f(x0) = P (x = x0)

The Cumulative Distribution Function (CDF) (Figure 1, right):
F (x0) = P (x < x0)

=

∫ x0

0

f(x)dx = x0 (3.2)

3.1.2 Expected Value of g(x) Given Density f(x)

Given a random variable X with a density function f(x), and another function of X , g(x), the expected value7 of
g(x) is given by the inner product of f and g. See Appendix A for a discrete example.

E[g(x)] =

∫ 1

0

g(x)f(x)dx (3.3)

3.1.3 Euler Beta Function

The Euler Beta function is a special function that has different forms that can be very useful depending on the context.
It is particularly useful in solving the integrals that occur in Order Statistics by converting the integrals into Gamma
or Factorial expressions.
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3.1 Preliminaries 3 KMV EQUATIONS

For R(a),R(b) > 0

B(a, b) =

∫ 1

t=0

ta−1(1− t)b−1dt (3.4)

=
Γ(a)Γ(b)

Γ(a+ b)

For integers a, b > 0

Γ(a) = (a− 1)!

B(a, b) =
(a− 1)!(b− 1)!

(a+ b− 1)!
(3.5)

3.1.4 The kth Order Statistic, part 1

We start with a set of n labeled random variables X1, . . . , Xn in the interval [0, 1] that have a density f(x) and
a distribution F (x). If we take one instance of all the X ′s, we can order them and identify them by their order
X(1), . . . , X(n), which is independent of the labels. Our goal is to find the density function and expected value of the
kth minimum value (KMV), M(k). This analysis only assumes that the underlying probability density of the X ′s is a
real analytic function. At the end of the analysis we simplify to the uniform random density case.

The density of M(k) (Figure 2)
f(k)(x)dx = P (M(k) ∈ dx)

= P (exactly one of X ′s ∈ dx, exactly k − 1 of X ′s < x)

There are n X ′s, each with the same f(x).
= P (X1 ∈ dx, exactly k − 1 of the other X ′s < x)+

P (X2 ∈ dx, exactly k − 1 of the other X ′s < x)+

· · ·+
P (Xn ∈ dx, exactly k − 1 of the other X ′s < x).

f(k)(x)dx = nP (X1 ∈ dx, exactly k − 1 of the other X ′s < x) choice of X1 is arbitrary

From probability theory.
P (X1 ∈ dx) = f(x)dx

P (at least (k − 1)X ′s < x) = (F (x))k−1

P (at least (n− k)X ′s > x) = (1− F (x))n−k

Note that there are
(
n−k
k−1
)

combinations of (k − 1) X ′s < x.

Figure 2: Some arbitrary density (left) and distribution (right)
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3.2 The Expected Value of the Inverse of M(k) 3 KMV EQUATIONS

To force exactly (k − 1) X ′s < x we partition the probability space into three parts: X ∈ dx,X < x,X > x+ dx.

f(k)(x)dx = n f(x)dx

(
n− 1

k − 1

)
(F (x))k−1 (1− F (x))n−k

Let’s simplify the above by assuming the uniform random probability density instead of an arbitrary density. Recall
that f(x0) = 1 and F (x) = x0 from 3.1 and 3.2.

f(k)(x)dx = n

(
n− 1

k − 1

)
xk−1(1− x)n−kdx

= k

(
n

k

)
xk−1(1− x)n−kdx (3.6)

The Expected Value of M(k) becomes

E[M(k)] =

∫ 1

0

(x)

[
k

(
n

k

)
xk−1(1− x)n−k

]
dx

= k

(
n

k

)∫ 1

0

xk(1− x)n−kdx (3.7)

3.1.5 The kth Order Statistic, part 2: Using the Beta Function

The integral of 3.7 can be recognized as a form of the Beta integral from 3.4.

Let a = k + 1, b = n− k + 1, a+ b = n+ 2

B(k + 1, n− k + 1) =

∫ 1

t=0

tk(1− t)n−kdt,

and the Beta factorial form from 3.5

=
k!(n− k)!

(n+ 1)!
.

This means that 3.7 can be written

E[M(k)] = k

(
n

k

)
B(k + 1, n− k + 1)

= k

(
n

k

)
k! (n− k)!

(n+ 1)!

=
k n!

k!(n− k)!

k! (n− k)!

(n+ 1)!

E[M(k)] =
k

n+ 1
(3.8)

3.2 The Expected Value of the Inverse of M(k)

In order to estimate n we need to derive E[ 1
M(k)

]. From 3.3 and 3.6 we have

E

[
1

M(k)

]
=

∫ 1

0

(
1

x

)[
k

(
n

k

)
xk−1(1− x)n−k

]
dx

= k

(
n

k

)∫ 1

x=0

xk−2(1− x)n−1dx. (3.9)

Again using the Beta integral and factorial forms from 3.4 and 3.5 for the integral in 3.9:
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3.3 The Variance of n̂ 3 KMV EQUATIONS

Let a = k − 1, b = n− k + 1, a+ b = n

B(k − 1, n− k + 1) =

∫ 1

t=0

tk−2(1− t)n−kdt

=
(k − 2)!(n− k)!

(n− 1)!
(3.10)

Substituting 3.10 into 3.9:

E

[
1

M(k)

]
= k

(
n

k

)
B(k − 1, n− k + 1)

=
k n!

(n− k)! k!

(k − 2)! (n− k)!

(n− 1)!

E

[
1

M(k)

]
=

n

k − 1
(3.11)

We don’t know n. What we want is n̂, an asymptotically unbiased estimate of n.
Solving 3.11 for n it becomes the estimate, n̂

n̂ = (k − 1)

(
1

M(k)

)
=
k − 1

M(k)
(3.12)

E[n̂] = (k − 1)E

[
1

M(k)

]
= (k − 1)

n

k − 1
= n. (3.13)

This proves that our estimate of n is indeed unbiased.

3.3 The Variance of n̂
From the expected value of n̂ from 3.13 we have:

E[n̂] = n

The variance of n̂
σ2[n̂] = E[n̂2]− E[n̂]2 = E[n̂2]− n2

Evaluating the term, E[n̂2] by squaring 3.13:

E[n̂2] = (k − 1)2E

[(
1

M(k)

)2
]

Evaluating the term, E
[(

1
M(k)

)2]
E

[(
1

M(k)

)2
]

=

∫ 1

0

(
1

x2

)[
k

(
n

k

)
xk−1(1− x)n−k

]
dx

= k

(
n

k

)∫ 1

0

x(k−2)−1(1− x)(n−k+1)−1dx

Again using the Beta integral and factorial forms from 3.4 and 3.5:
Let a = k − 2, b = n− k + 1, a+ b = n− 1

= k

(
n

k

)
B(k − 2, n− k + 1)

=
k n!

(n− k)! k!

(k − 3)! (n− k)!

(n− 2)!

E

[(
1

M(k)

)2
]

=
n (n− 1)

(k − 1) (k − 2)
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3.4 Equation Differences Between KMV and Theta Sketch 3 KMV EQUATIONS

Returning to the evaluation of E[n̂2]:

E[n̂2] = (k − 1)2
n (n− 1)

(k − 1) (k − 2)

=
n (n− 1) (k − 1)

(k − 2)

Returning to the evaluation of σ2[n̂]

σ2[n̂] =
n (n− 1) (k − 1)

(k − 2)
− n2

=
n (n− 1) (k − 1)− (k − 2) n2

k − 2

σ2[n̂] =
n2 − n(k − 1)

k − 2
<

n2

k − 2

Normalizing the variance by n2 and taking the square root results in the Relative Standard Error (RSE):

RSE[n̂] =

√
σ2

n2
=

√
1

k − 2
− k − 1

n(k − 2)
<

1√
k − 2

(3.14)

RSE[n̂]n→∞ =
1√
k − 2

(3.15)

This proves that the RSE is always less than a constant!

3.4 Equation Differences Between KMV and Theta Sketch
Much of the research literature on KMV sketches defines a cache of size k that holds the kth minimum value (M(k))
and k − 1 hash values less than M(k). The Theta Sketch Framework (TSF), however, is more flexible and differs
slightly from the standard KMV definition. In the TSF, the label k is used as a user configured parameter that defines
the maximum RSE for the sketch. In KMV,M(k) is always a member of the cache array of hash values and the highest
value when the array is sorted. TSF sketches have a separate register called θ, which is separate from the cache array
of hash values. This simple separation allows creation of different Theta Choosing Function (TCF) algorithms for
computing θ for different variations of the TSF. See Theta Sketch Framework2.

This requires minor changes to the above equations for the Theta Sketch family.

Ref / Equation KMV Theta Sketch

TCF(θ) = M(k) M(k+1)

3.8 E[θ] = k
n+1

k+1
n+1

3.11 E
[
1
θ

]
= n

k−1
n
k

3.12 n̂ = k−1
θ

k
θ

3.14 RSE(n̂) ≤ 1√
k−2

1√
k−1
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A DISCRETE EXAMPLE OF E[G(X)], EQUATION 3.3

A Discrete Example of E[g(x)], Equation 3.3
Assume our random variable X is the result of rolling a single, fair 6-sided die. It’s density and distribution are shown
in Figure 3.

x = The face value of rolling the die once
xi = One of the specific (labeled) face values: 1, 2, 3, 4, 5, 6

f(x) = The density function of x

=
1

6
g(x) = A function that produces a value given x

= x

The expected value (average) of rolling the die many times

E[X] =

6∑
i=1

g(xi)f(xi)

=
1

6

6∑
i=1

g(xi)

=
1

6
(1 + 2 + 3 + 4 + 5 + 6)

= 3.5

Let’s compute the expected value of the inverse of X

g2(x) =
1

x

E

[
1

X

]
=

6∑
i=1

g2(xi)f(xi)

=
1

6

6∑
i=1

g2(xi)

=
1

6

(
1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6

)
= 0.4083

Figure 3: Density and distribution of a single die
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