
Practices in Visual Computing II (Spring 2023)
Assignment 1

Object Detection with SSD

Total points: 100 + 5 points

Due: Thursday, 2nd February, 23:55 pm

Overview

In this assignment, you will be implementing SSD (Single Shot MultiBox Detector), a
type of object detection network. Similar to YOLO, SSD divides the image into grids
and outputs bounding boxes in each cell. However, SSD is more complex as it divides
grids at different scales and uses default bounding boxes as anchors.

It is worth noting that the SSD you will be implementing in this assignment is a
simplified version. If there are any discrepancies between the instructions provided
in this assignment and the SSD paper, please follow the instructions provided in the
assignment. Additionally, you can learn more about the task by reading the SSD
paper.

1

https://arxiv.org/pdf/1512.02325.pdf
https://arxiv.org/pdf/1512.02325.pdf

Practices in Visual Computing 2 Assignment 1

1 Introduction (0 Points)

The main difference between YOLO and SSD is the default bounding boxes. In YOLO,
we divide the image into 5x5 grid cells. Each cell has its confidence, or probabilities for
each class (P(cat), P(dog), P(person), P(background)). For SSD, each cell will provide
some default bounding boxes. In this assignment, each cell will provide four default
bounding boxes as follows:

Figure 1: Default bounding boxes of cell [1,1]

As you see, if for YOLO, we have at most 25 bounding boxes, then for SSD, we will
have 25 × 4 = 100 bounding boxes. Furthermore, we will introduce grids for multiple
scales. In YOLO, we only have one 5x5 grid in the output layer, but for SSD in this
assignment, we will have four output branches: 10x10, 5x5, 3x3 and 1x1, a total of 135
cells and 540 default bounding boxes.

We aim to match ground truth bounding boxes to some of our pre-determined
default bounding boxes. This will ensure that the default bounding boxes are
accurate estimates of the ground truth bounding box. We can then use these default
bounding boxes as "anchors" to predict the relative positions and sizes of objects in the
image. That is, we do not need to predict the absolute width and height as in YOLO;

2

Practices in Visual Computing 2 Assignment 1

we can just predict the relative positions and sizes with respect to the default bounding
box, as shown in the above figure, ∆(cx, cy, w, h). In all, the main challenge in this
assignment (SSD) compared to the tutorial (YOLO) is how to generate the default
bounding boxes and how to assign ground truth objects to those default bounding
boxes.

2 Workspace Initialization (0 Points)

Download the dataset from here and extract it in the data/ directory.

3 Generating default bounding boxes (10 Points)

As mentioned, in this assignment you are going to work on (10× 10 + 5× 5 + 3× 3 +

1× 1)× 4 = 540 default bounding boxes. The first step is to generate them.

You need to complete the function default_box_generator in dataset.py . The
function takes a series of parameters and eventually outputs a 540×8 array, storing 540
bounding boxes. The last dimension 8 means the 8 attributes of each default bounding
box:
[x_center, y_center, box_width, box_height, x_min, y_min, x_max, y_max]

Note that here, all values are absolute positions and sizes. For example, if a default
bounding box has a center (x=0.3, y=0.4), width=0.1 and height=0.2, the attributes
you need to store are:
[0.3, 0.4, 0.1, 0.2, 0.25, 0.3, 0.35, 0.5]

You need to generate 4 default bounding boxes for each grid cell in each grid (10, 5, 3,
1), using the provided scales large_scale and small_scale to determine the sizes of the
default bounding boxes. There may be bounding boxes exceeding the image boundary,
therefore you may clip them so that the bounding boxes stay inside the image.

For example, consider filling the default boxes for the first cell. The size of the grid is
10 since layers[0]=10. The scale of the three large boxes is lsize = large_scale[0] = 0.2.
The scale of the one small box is ssize = small_scale[0] = 0.1. The first cell is (0,0) in
a 10x10 cell grid.

3

https://drive.google.com/file/d/1D9KLAwT_MOwCGL8fAsvK4I6uml00TvkL/view?usp=sharing

Practices in Visual Computing 2 Assignment 1

For each cell;
Generate a box with width and height [ssize,ssize].
Generate a box with width and height [lsize,lsize].
Generate a box with width and height [lsize*sqrt(2),lsize/sqrt(2)].
Generate a box with width and height [lsize/sqrt(2),lsize*sqrt(2)].

All the four above boxes are centered at the center of the first cell (0.5/10, 0.5/10) The
four boxes you get for the first cell is:
[0.05, 0.05, 0.1, 0.1, 0, 0, 0.1, 0.1]

[0.05, 0.05, 0.2, 0.2, -0.05, -0.05, 0.15, 0.15]

[0.05, 0.05, 0.28, 0.14, -0.09, -0.02, 0.19, 0.12]

[0.05, 0.05, 0.14, 0.28, -0.02, -0.09, 0.12, 0.19]

The four boxes after clipping (optional) is:
[0.05, 0.05, 0.1, 0.1, 0, 0, 0.1, 0.1]

[0.05, 0.05, 0.2, 0.2, 0, 0, 0.15, 0.15]

[0.05, 0.05, 0.28, 0.14, 0, 0, 0.19, 0.12]

[0.05, 0.05, 0.14, 0.28, 0, 0, 0.12, 0.19]

You need to create boxes for all cells in a similar manner. You can modify the box
sizes in large_scale and small_scale to see if you get better results when training
the network.

4 Assigning ground truth objects to default bounding

boxes (15 Points)

This part is done in the dataloader in dataset.py . You need to read the image and
ground truth bounding boxes, and then return the resized and transposed image, the
ground truth probabilities ann_confidence , and the ground truth bounding boxes
ann_box . ann_confidence is 540x4, since we have 540 default boxes and 4 classes
(cat, dog, person, background). ann_confidence should be 540 one-hot vectors.
ann_box is 540x4, since we have 4 attributes for a bounding box:
[relative_center_x, relative_center_y, relative_width, relative_height]

The attributes are all relative to the default bounding box as follows:

4

Practices in Visual Computing 2 Assignment 1

Suppose we have a default box [px,py,pw,ph], which are exactly the first four at-
tributes of our generated default bounding boxes. Also, we have a ground truth
object bounding box [gx,gy,gw,gh]. The 4 attributes we need for ann_box are
[tx,ty,tw,th], the relative positions and sizes of the ground truth bounding box
with respect to the default bounding box. If you need to recover the ground truth
bounding box, or to show the predicted bounding box of your network, you can do an
inverse process as follows, where [dx,dy,dw,dh] is the predicted relative attributes
from your network.

Then, how to determine if a default bounding box is carrying an object? Different from
YOLO, this time you need to assign one object to multiple default boxes. We will say
a default box is carrying an object, if the ground truth bounding box of this object has
an IOU greater than a threshold (0.5 in this assignment) with the default box. There
may be cases where the ground truth box does not have sufficient overlap with any of
the default boxes, in that case, we assign the object to the default box that has the
largest IOU with the object bounding box, to make sure at least one default bounding
box is used for each object.

5

Practices in Visual Computing 2 Assignment 1

You need to implement a function match to process each bounding box and update
the entries of ann_confidence and ann_box. You only need to fill in the bounding box
attributes for boxes that carry objects. For empty boxes, you can ignore them since
they are not used when training the network.

Other important things to do:

1. You should split the dataset into 90% training and 10% validation. You can use
all images for the training of course, but you will not know whether your network has
overfitted without a test or validation set. Your model may have very good performance
on the training set, but have very poor performance on the testing set. Keep in mind
that both training accuracy and testing accuracy are considered when grading your
assignment.

2. Data augmentation. Usually the networks are trained on millions of images. It is
uncommon to train an object detection network on only 6000 images. But we have
to reduce the data size so you can finish training within 2 hours. Therefore you have
a high chance of overfitting on the training set. You will need to augment the data to
mitigate that.

5 The network (15 Points)

Please open model.py and implement the network on the next page. The network is
the same as YOLO until you reach resolution 10x10. Be sure to include a bias term
for your convolution layer.

6

Practices in Visual Computing 2 Assignment 1

Figure 2: Model architecture

Pay close attention to how the four output branches are concatenated, especially their
ordering. You need to make sure that each entry in your 540 output boxes actually
corresponds to the entry in the 540 default boxes defined in the previous section. For
example, if you define ann_confidence[4] and ann_box[4] to be a box in cell (0,1)
of the 10x10 grid, your network output must have confidence[4] and bboxes[4]

7

Practices in Visual Computing 2 Assignment 1

correspond to the cell (0,1) of the 10x10 output branch. This part is very error-prone.

6 The loss function (15 Points)

The loss function is almost the same as YOLO.

Lcls =
1∑
i x

obj
i

∑
i

xobj
i crossentropy

(
conf pred

i , conf gt
i

)
+

3 · 1∑
i x

noobj
i

∑
i

xnoobj
i crossentropy

(
conf pred

i , conf gt
i

)
Lbox = 1∑

i x
obj
i

∑
i x

obj
i L1

(
boxpred

i , boxgt
i

)
conf pred

i : class probabilities, conf gt
i : ground truth probabilities box pred

i : predicted

box attributes, box gt
i : ground truth box attributes xobj

i = 1 and xnoobj
i = 0, if box(i)

carries an object otherwise, xobj
i = 0 and xnoobj

i = 1

You need to figure out how you can get the indices of all boxes carrying objects, and use
confidence[indices] , box[indices] to select those boxes. If your implementation
is correct, after you get those indices, your code to compute loss should be no more
than three lines.

Note that the average operation is done automatically by the built-in functions F.cross_entropy

and F.smooth_l1_loss .

7 Non maximum suppression (10 Points)

This part is already covered in the lecture and in the tutorial sessions. Please refer to
Ali’s slides.
You need to complete the function in utils.py . An example of NMS is shown below:

8

Practices in Visual Computing 2 Assignment 1

A brief pipeline of NMS:
Keep two lists: A = all predicted bounding boxes; B = []

1. Select the bounding box in A with the highest probability in class cat,

dog or person.

2. If that highest probability is greater than a threshold (threshold=0.5),

proceed; otherwise, the NMS is done.

3. Denote the bounding box with the highest probability as x. Move x from

A to B.

4. For all boxes in A, if a box has IOU greater than an overlap threshold

(overlap=0.5) with x, remove that box from A.

5. Jump to 1.

8 Evaluation (15 Points)

For this part, you need to plot a precision-recall curve and compute mAP using your
validation set. Implement the generate_mAP function in utils.py .

9

Practices in Visual Computing 2 Assignment 1

9 (Optional) Albumentations (5 Points)

For this part, you will be using the Albumentations library to perform data augmen-
tation. You then need to provide separate evaluation results for it.

10 Demo (20 Points)

During the demo session, first, we will check if you implemented the other parts. Then,
we will ask you exactly four questions related to the assignment, each having 5 points.

1. We ask you to run your code on a set of examples provided by us. Your code
needs to run without errors

2. After running, your code needs to produce the expected results. We will not be
very tough on the numbers and metrics, we just visually inspect the results to
see if your implementation is performing reasonably

3. Then we will ask you a question about a part of the code. You need to be able
to clearly explain what’s going on

4. Finally, we will ask a (fairly simple) question to test your knowledge and intuition
about the assignment

Note that your codes should be zipped and submitted to Canvas before the deadline
and you may not change them during the demo session day.

10

https://github.com/albumentations-team/albumentations

	Introduction (0 Points)
	Workspace Initialization (0 Points)
	Generating default bounding boxes (10 Points)
	Assigning ground truth objects to default bounding boxes (15 Points)
	The network (15 Points)
	The loss function (15 Points)
	Non maximum suppression (10 Points)
	Evaluation (15 Points)
	(Optional) Albumentations (5 Points)
	Demo (20 Points)

