
Practices in Visual Computing II (Spring 2025)
Assignment 1

Pose Regression with PoseNet

Total points: 50 + 2.5 points

Due: Friday, 31th January, 23:59 pm

Overview

In this assignment, you will be implementing PoseNet, a type of pose regression net-
work. Your network is trained on a dataset of images and the positions and orien-
tations of the camera during capturing those images, and then it needs to predict 
position/orientations for new unseen images (the new images should be from the same 
data distribution of the training images). It has applications in AR/VR, graphics, and 
autonomous systems industries.

You can learn about the task by watching the PoseNet video or study the related 
paper.

1

https://www.youtube.com/watch?v=u0MVbL_RyPU
https://openaccess.thecvf.com/content_iccv_2015/papers/Kendall_PoseNet_A_Convolutional_ICCV_2015_paper.pdf
https://openaccess.thecvf.com/content_iccv_2015/papers/Kendall_PoseNet_A_Convolutional_ICCV_2015_paper.pdf


Practices in Visual Computing 2 Assignment 1

1 Introduction (0 Points)

At its core, PoseNet is a convolutional neural network and uses convolutional layers
to learn the features of the training images. These features are then used to learn
specific properties present in the images, such as the camera position. CNNs tend
to be very deep and hard to train, especially without large GPUs. Because of this,
PoseNet relies on a pre-trained "general-purpose feature extractor". For this, it uses
a modified version of InceptionV1 that was pretrained on the Places dataset. The
original architecture of InceptionV1 can be seen in Figure 3.

2

http://places2.csail.mit.edu/


Practices in Visual Computing 2 Assignment 1

2 Workspace Initialization (0 Points)

Download the KingsCollege dataset from here and extract it in the data/datasets/

directory.

3

https://www.repository.cam.ac.uk/bitstream/handle/1810/251342/KingsCollege.zip


Practices in Visual Computing 2 Assignment 1

3 Inception Block (10 Points)

Implement the architecture of the InceptionV1 backbone in PoseNet.py . Figure 1
shows all the parameters needed to initialize the main structure of Inception, without
the loss paths. All convolutions and max pooling layers (not the average pooling
layers) use padding p = k−1

2
. Also make sure to use ReLU after every convolution, max

pooling, and average pooling layer.
(Hint: Use nn.Sequential blocks to simplify the model definition. In a sequential block,
nn.Flatten() can easily convert the output of a convolutional layer into the input of a
linear layer.)

Figure 1: InceptionV1

4



Practices in Visual Computing 2 Assignment 1

4 PoseNet Architecture (10 Points)

The loss paths are slightly modified in PoseNet from the Inception original (See Figure
4 for details):

1. Remove all three softmax layers with their preceding linear classifier layers. Re-
place them with 2 parallel linear layers. One with an output size of 3 to predict
the xyz position, and another one with an output size of 4 to predict the wpqr
orientation. The position is predicted as a 3D coordinate and the orientation as
a Quaternion in wpqr ordering.

2. In the final (third) loss header, insert another linear layer with output dimension
2048. This output will then be used as the input for the two linear layers described
in the previous point.

Figure 2: Inception layer parameters

Training the Inception network takes a long time. Fortunately, it has been done before,
so we can load the weights for the layers we are reusing and use them to initialize the
model. In the initialization of PoseNet, the framework already loads the weights from
a file. They are stored as a dictionary, so you can check the available layers using
print(weights.keys) . Use the function init(key, module, weights) to help
you initialize a new layer with the pre-trained weights.
(Hint: You will need to use all the loaded weights from the pre-trained Inception, except
for the classifier layers.)
Complete LossHeader and PoseNet classes in the PoseNet.py .

5



Practices in Visual Computing 2 Assignment 1

5 Loss function (10 Points)

The PoseNet architecture has three loss headers. Each of these loss headers predicts
an xyz position and a wpqr orientation. The position is predicted as a 3D coordinate
and the orientation as a Quaternion in wpqr ordering. We will calculate a loss for each
loss header individually and then add them together to build the final loss. The loss
is given by

lossi = ∥xi − xgt∥2 + β

∥∥∥∥qi −
qgt

∥qgt∥

∥∥∥∥
2

(1)

loss = w1 × loss1 + w2 × loss2 + w3 × loss3. (2)

The parameters β define if the model focuses more on reducing the position or the
orientation error, while wi controls how much influence the auxiliary losses have. We
will use these values for the parameters:

β = 300 (3)

w = (0.3, 0.3, 1) (4)

Implement the loss in the class PoseLoss in PoseNet.py .

6



Practices in Visual Computing 2 Assignment 1

6 Dataloader (10 Points)

To train the network we will use the Kings College dataset. The DataSouce.py already
loads the dataset and provides the structure for serving the batches. Your task is
to implement the image preprocessing pipeline in the DataSource.py . (Hint: Use
torchvision.transforms.)

1. Resize: Resize the images to make the smaller dimension equal to 256 (e.g.
1920x1080 to 455x256).

2. Subtract a mean image: To boost the training, a mean image Imean needs to
be subtracted from each image. Imean needs to be precomputed. For this, finish
generate_mean_image() as follows:

• Load each image.

• Resize as in step 1.

• Add them together.

• Normalize values by the number of images.

The precomputed mean image Imean needs to be subtracted from each image
when serving the images to the training/testing loop.
(Hint: Subtracting images can easiest be done by converting them to numpy ar-
rays. Note that numpy stores images as (height, width), while PIL stores images
as (width, height).)

3. Crop: InceptionV1 is designed for a 224x224 input, so we need to crop the images
to this size.

• During training: Crop a random 224x224 piece out of the image.

• During testing: Crop the 224x224 center out of the image.

4. Normalize: Use a mean of 0.5 and standard deviation of 0.5 to normalize each
channel of the images.

7

https://www.repository.cam.ac.uk/handle/1810/251342


Practices in Visual Computing 2 Assignment 1

7 (Optional) Netron (2.5 Points)

For this part, you will be using the Netron tool for visualizing your architecture.
Export a PNG of your implemented architecture with your student ID as the
network’s input name.

8 Demo (10 Points)

During the demo session, first, we will check if you implemented all of the other
parts. Then, we will ask you exactly four questions related to the assignment,
each having 2.5 points.

(a) Your code needs to be written in a clear, modular format. We ask you to
run your code. Your training/inference code needs to run without errors

(b) Your code needs to produce reasonable results:

i. Median positional error within 5 meters

ii. Median orientation error within 5 degrees

(c) Then we will ask you a question about a part of the code. You need to be
able to clearly explain what’s going on

(d) Finally, we will ask a (fairly simple) question to test your knowledge and
intuition about the assignment

Note that your codes should be zipped and submitted to Canvas before the
deadline and you may not change them during the demo session day.

8

https://github.com/lutzroeder/netron


Figure 3: InceptionV1



Figure 4: PoseNet


	Introduction (0 Points)
	Workspace Initialization (0 Points)
	Inception Block (10 Points)
	PoseNet Architecture (10 Points)
	Loss function (10 Points)
	Dataloader (10 Points)
	(Optional) Netron (2.5 Points)
	Demo (10 Points)



