
Practices in visual computing II (Spring 2025)
Assignment 2

Image to image translation with CycleGAN

Total points: 100

Due: Friday, 21 February, 11:59 PM

Introduction

In 2015 generative adversarial networks (GANs) [1] took the computer vision world by
storm. Their ability to generate high-quality and realistic images was unseen previously.
Naturally soon after, many follow-up works appeared that tried to solve previously
unsolvable problems using the new framework. One such problem was image-to-image
translation, i.e. given an image from one domain (like dogs) transform it to another
domain (like cats) while preserving the structure of the input image.
In this assignment, you will get hands-on experience implementing and training GANs.
The assignment is divided into two sections. In the first section, you will train a vanilla
generative convolutional GAN. In the second part, you are given a dataset from two
different domains. One consists of emojis used in apple devices and another consists of
emojis used in Windows. You will use CycleGAN [2]to implement an image-to-image
model on this dataset.
This assignment imitates a similar assignment from univerity of toronto’s CS321.

Part 1: Deep convolutional GAN (DCGAN) [40 points]

This class of GANs are models that use fully convolutional models both in the generator
and in the discriminator. The discriminator consists of stacks of convolutional layers
that map the input image to a single number, The probability of the image being real
or fake, While the generator consists of stacks of transpose convolutional layers that
map a random noise sample to an image. Figure 1

In this part, you need to complete the implementation of the discriminator, the
generator, and the training loop. for implementing the discriminator and generator

1

CMPT 743 A2

Figure 1: Architecture of the Generator (top) and Discriminator (bottom) in DCGAN

you should complete the __init__ and forward functions of the Discriminator
and Generator classes in the models.py file. For the training loop, you should fill in
the TODO parts in the train_vanillagan.py file. In this file, you should implement
the losses, as well as helper functions to evaluate and save the model.

To complete the training script you should:

1. complete the train_step function. This function handles the training iterations.
To implement this function you should follow Algorithm 1.

2. complete the eval_step function. In this function, you should sample a number
of images using your generator and save them.

3. complete the save_step function. In this function, you should save the weights
of both the discriminator and the generator.

Part 2: CycleGAN [60 points]

So far we have trained a GAN network to generate samples from a domain (e.g. Apple
emojis) from random noise vectors. Now we turn to use the same framework to solve
a more complex problem, image-to-image translation. The problem statement is as
follows:

We are given samples of images from two different domains, for example,
emojis from Apple and Windows, and the samples from the two sets aren’t
ordered. This means that the ith sample from the Apple emojis does not
necessarily correspond to the ith sample from the Windows emojis. Can
we design a framework that given a sample from one of the sets, outputs a
corresponding sample from the other set?

2

CMPT 743 A2

A possible solution to this problem is to have two generators, one that takes Apple
emojis as input and outputs Windows emojis (GA→W) and another that takes Windows
emojis as input and outputs Apple emojis (GW→A). Additionally, we can have two
discriminators. DA that judges apple emojis and tells us whether an image is an Apple
emoji and a similar one for the Windows emojis DW . The training process would be
then similar to training a vanilla GAN, i.e. we train the discriminators and generators
with an adversarial objective. The only difference would be that the generators map
images from one domain to another instead of mapping random noise vectors to an
image domain.

Figure 2: Adversarial training for image-to-image translation

However, the problem with this framework is that there is no guarantee that when

3

CMPT 743 A2

mapping image A to image W the two actually correspond to each other. The brilliant
idea of CycleGAN is that in order to keep the structure of the input when changing it to
another domain, we introduce an additional loss function called a cycle consistency
loss. The intuition behind this loss is that if we change image A to image W using
GA→W , and then change W back to A using GW → A, then the result A′ should be
similar to A. and we can compute the similarity as simple as computing an L2 loss
between A and A′.

To complete this section you should first complete the CycleGenerator in the
models.py file by implementing its __init__ and forward functions. The archi-
tecture is as follows:

Figure 3: Architecture of the CycleGAN generator

Furthermore, you should complete the training script in the train_cyclegan.py file.
For this similar to the training script of the vanilla gan you should do the following:

1. complete the train_step function. This function handles the training iterations.
To implement this function you should follow Algorithm 2. Notice that the whole
training process is similar to the adversarial training you implemented for the
vanilla GAN. Here you just have two discriminators and generators and also you
should compute the cycle consistency loss between a reconstructed image X ′ and
a real image X as ||X −X ′||2.

2. complete the eval_step function. In this function, You should sample a number
of images from the Apple test set and a number of images from the Windows test
set and compute their translations and save the outputs.

3. Complete the save_step function. In this function, you should save the weights
of the discriminators and the generators.

4

CMPT 743 A2

Extra details

1. The script for loading data is provided in the dataloader.py script.

2. The data,model and training configs are all stored as classes in the options.py
file. There is a class for configs of the VanillaGAN model and another class for
the CycleGAN model. You can use instances of these classes and pass them to
the data, model or training classes. However, if you do not fill comfortable with
this setting, please fill free to change your config handling to argparse, yaml or
any system of your choosing.

3. To be able to train the models with the resources that we have, we have chosen
smaller networks and also the data is too small. Therefore your results do not
have to be perfect. They just have to make sense visually.

4. The final grading will be based on:

• your code and implementation.

5

CMPT 743 A2

• the results. the demo sessions and your ability to answer questions about
the framework.

References

[1] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial
networks, 2014.

[2] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-
image translation using cycle-consistent adversarial networks. In Computer Vision
(ICCV), 2017 IEEE International Conference on, 2017.

6

