{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "gpuType": "T4"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "# AutoEncoder"
      ],
      "metadata": {
        "id": "yG5hlKoPyzw2"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "We'll start off by building a simple autoencoder to compress the MNIST dataset. With autoencoders, we pass input data through an encoder that makes a compressed representation of the input. Then, this representation is passed through a decoder to reconstruct the input data. Generally the encoder and decoder will be built with neural networks, then trained on example data."
      ],
      "metadata": {
        "id": "PLXjw5n0-fpC"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "![autoencoder_1.png]()"
      ],
      "metadata": {
        "id": "je-RN-8D-qh4"
      }
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "id": "qF4qZQN7vMB_",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "8eb4d6bf-33c1-4a55-eaef-fb3097d52454"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n",
            "\u001b[1m11490434/11490434\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0us/step\n"
          ]
        }
      ],
      "source": [
        "from tensorflow.keras.datasets import mnist\n",
        "import numpy as np\n",
        "import torch\n",
        "import matplotlib.pyplot as plt\n",
        "# Load the MNIST dataset\n",
        "(X_train, y_train), (X_test, y_test) = mnist.load_data()\n",
        "\n",
        "# Normalize the pixel values to be in the range [0, 1]\n",
        "X_train = X_train.astype(np.float32) / 255.0\n",
        "X_test = X_test.astype(np.float32) / 255.0\n",
        "\n",
        "num_workers = 0\n",
        "# how many samples per batch to load\n",
        "batch_size = 20\n",
        "\n",
        "# prepare data loaders\n",
        "train_loader = torch.utils.data.DataLoader(X_train, batch_size=batch_size, num_workers=num_workers)\n",
        "test_loader = torch.utils.data.DataLoader(X_test, batch_size=batch_size, num_workers=num_workers)\n"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Visualization"
      ],
      "metadata": {
        "id": "koPWqX1mypCE"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "def show_images(images, labels):\n",
        "    \"\"\"\n",
        "    Display a set of images and their labels using matplotlib.\n",
        "    The first column of `images` should contain the image indices,\n",
        "    and the second column should contain the flattened image pixels\n",
        "    reshaped into 28x28 arrays.\n",
        "    \"\"\"\n",
        "    # Extract the image indices and reshaped pixels\n",
        "    pixels = images.reshape(-1, 28, 28)\n",
        "\n",
        "    # Create a figure with subplots for each image\n",
        "    fig, axs = plt.subplots(\n",
        "        ncols=min(len(images),10), nrows=1, figsize=(10, 3 * min(10,len(images)))\n",
        "    )\n",
        "\n",
        "    # Loop over the images and display them with their labels\n",
        "    for i in range(min(len(images),10)):\n",
        "        # Display the image and its label\n",
        "        axs[i].imshow(pixels[i], cmap=\"gray\")\n",
        "        axs[i].set_title(\"Label: {}\".format(labels[i]))\n",
        "\n",
        "        # Remove the tick marks and axis labels\n",
        "        axs[i].set_xticks([])\n",
        "        axs[i].set_yticks([])\n",
        "        axs[i].set_xlabel(\"Index: {}\".format(i))\n",
        "\n",
        "    # Adjust the spacing between subplots\n",
        "    fig.subplots_adjust(hspace=0.5)\n",
        "\n",
        "    # Show the figure\n",
        "    plt.show()"
      ],
      "metadata": {
        "id": "2eQoChrNvVh5"
      },
      "execution_count": 2,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "show_images(X_train, y_train)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 138
        },
        "id": "21C6Ul4c1oOK",
        "outputId": "c607b809-cc6b-403b-b3e6-b79f3482f51a"
      },
      "execution_count": 3,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 1000x3000 with 10 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxsAAAB/CAYAAACHU98YAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAa0tJREFUeJztnXmcXGWZ73+17/te1fuWTqc7+0ISAtEAQQyrCIp61QEdtyvXK+OKA1evOyjOqOg44ADCoEZgHGWVzQRCFkL2pPet9ura9/XcP3Lfl+qkk3R3eqvq9/v59Ae6u6r6nCfnnPd9tt/D4ziOA4PBYDAYDAaDwWDMMPz5PgAGg8FgMBgMBoNRnTBng8FgMBgMBoPBYMwKzNlgMBgMBoPBYDAYswJzNhgMBoPBYDAYDMaswJwNBoPBYDAYDAaDMSswZ4PBYDAYDAaDwWDMCszZYDAYDAaDwWAwGLMCczYYDAaDwWAwGAzGrMCcDQaDwWAwGAwGgzErzJuzMTQ0BB6Ph/vuu2/GPvO1114Dj8fDa6+9NmOfuRBhtps+zHbTg9lt+jDbTR9mu+nDbDd9mO2mB7Pb9Kl2203J2fiP//gP8Hg8HDhwYLaOZ1659957wePxzvqSSqUX/dnVbjsAcLlcuOWWW6DVaqFWq3H99ddjYGDgoj93MdiunCuvvBI8Hg9f+MIXLupzqt1u3d3d+NKXvoRNmzZBKpWCx+NhaGhoRj672m0HAE8++SRWr14NqVQKk8mE22+/HWNjYxf9udVuu6eeegq33normpqaIJfLsWTJEnz5y19GJBK56M+udtuxe3b6PP3009i+fTvsdjskEglqampw880349ixYxf1udVuN3bNzRwXszcRzsLxVDwPPvgglEol/V4gEMzj0VQGiUQC73nPexCNRvGNb3wDIpEIP/3pT3H55Zfj0KFDMBgM832IFcFTTz2FPXv2zPdhVAR79uzBv/zLv6CjowNLly7FoUOH5vuQKoYHH3wQn/vc57Bt2zb85Cc/gdPpxM9+9jMcOHAAe/funZEAS7Xy6U9/Gna7HR/96EdRV1eHo0eP4uc//zmeffZZHDx4EDKZbL4PccHC7tnpc/ToUeh0Otx5550wGo3wer14+OGHsX79euzZswcrVqyY70NckLBrbma42L0JczYm4Oabb4bRaJzvw6gofvnLX6K3txf79u3DunXrAADve9/70NnZifvvvx/f+9735vkIFz6ZTAZf/vKX8dWvfhX//M//PN+Hs+C57rrrEIlEoFKpcN9997FFZJLkcjl84xvfwGWXXYaXXnoJPB4PALBp0yZce+21+M1vfoP/+T//5zwf5cJl586d2Lp167ifrVmzBh//+Mfx+OOP44477pifA6sA2D07fSZaE+644w7U1NTgwQcfxK9+9at5OKqFD7vmLp6Z2JvMeM9GLpfDP//zP2PNmjXQaDRQKBTYsmULXn311XO+56c//Snq6+shk8lw+eWXT5gWPHXqFG6++Wbo9XpIpVKsXbsWf/7zny94PKlUCqdOnZpSeQDHcYjFYuA4btLvmQkq2XY7d+7EunXrqKMBAO3t7di2bRv+8Ic/XPD9F0sl247wox/9CKVSCXfdddek33OxVLLd9Ho9VCrVBV83W1Sq7Y4dO4ZIJIJbb72VOhoAsGPHDiiVSjz55JMX/FsXS6XaDsBZjgYA3HjjjQCAkydPXvD9F0sl247ds+OZzjpRjtlshlwun5ESvvNRyXZj19x45mtvMuPORiwWw7//+79j69at+OEPf4h7770XgUAA27dvn9CjfPTRR/Ev//Iv+PznP4+vf/3rOHbsGN773vfC5/PR1xw/fhyXXHIJTp48ia997Wu4//77oVAocMMNN+Dpp58+7/Hs27cPS5cuxc9//vNJn0NTUxM0Gg1UKhU++tGPjjuW2aRSbVcqlXDkyBGsXbv2rN+tX78e/f39iMfjkzPCNKlU2xFGRkbwgx/8AD/84Q/ntAyj0u02n1Sq7bLZLABMeJ3JZDK88847KJVKk7DA9KlU250Lr9cLAHOSEa82280l1WC7SCSCQCCAo0eP4o477kAsFsO2bdsm/f7pUA12my8q3XYztjfhpsBvf/tbDgC3f//+c76mUChw2Wx23M/C4TBnsVi4f/iHf6A/Gxwc5ABwMpmMczqd9Od79+7lAHBf+tKX6M+2bdvGdXV1cZlMhv6sVCpxmzZt4lpbW+nPXn31VQ4A9+qrr571s3vuueeC5/fAAw9wX/jCF7jHH3+c27lzJ3fnnXdyQqGQa21t5aLR6AXffz6q2XaBQIADwH37298+63e/+MUvOADcqVOnzvsZ56OabUe4+eabuU2bNtHvAXCf//znJ/Xec7EY7Eb48Y9/zAHgBgcHp/S+c1HNtgsEAhyPx+Nuv/32cT8/deoUB4ADwI2NjZ33M85HNdvuXNx+++2cQCDgenp6pvV+wmKyHbtnp2e7JUuW0PtUqVRyd999N1csFif9/jNZLHbjOHbNlf9srvcmM57ZEAgEEIvFAE5HvEOhEAqFAtauXYuDBw+e9fobbrgBDoeDfr9+/Xps2LABzz77LAAgFArhlVdewS233IJ4PI6xsTGMjY0hGAxi+/bt6O3thcvlOufxbN26FRzH4d57773gsd95553413/9V9x22234wAc+gAceeACPPPIIent78ctf/nKKlpg6lWq7dDoNAJBIJGf9jjSaktfMFpVqOwB49dVX8ac//QkPPPDA1E56Bqhku803lWo7o9GIW265BY888gjuv/9+DAwMYNeuXbj11lshEokAsPt1KjzxxBN46KGH8OUvfxmtra1Tfv9UqSbbzTXVYLvf/va3eP755/HLX/4SS5cuRTqdRrFYnPT7p0M12G2+qGTbzeTeZFbmbDzyyCNYvnw5pFIpDAYDTCYT/vrXvyIajZ712okezm1tbVSarK+vDxzH4Vvf+hZMJtO4r3vuuQcA4Pf7Z+M0AAC33XYbrFYr/va3v83a3yinEm1HUmukPKOcTCYz7jWzSSXarlAo4Itf/CI+9rGPjet3mUsq0W4LhUq13a9//Wtcc801uOuuu9Dc3IzLLrsMXV1duPbaawFgnBrfbFGptitn165duP3227F9+3Z897vfnfHPPxfVYLv5otJtt3HjRmzfvh2f/exn8cILL+B3v/sdvv71r8/o35iISrfbfFKJtpvpvcmMq1H97ne/wyc+8QnccMMN+Kd/+ieYzWYIBAJ8//vfR39//5Q/j9QO33XXXdi+ffuEr2lpabmoY74QtbW1CIVCs/o3gMq1nV6vh0QigcfjOet35Gd2u/2i/875qFTbPfroo+ju7savf/3rs7S/4/E4hoaGaBPgbFCpdlsIVLLtNBoN/uu//gsjIyMYGhpCfX096uvrsWnTJphMJmi12hn5O+eikm1HOHz4MK677jp0dnZi586dEArnRtyxGmw3X1Sb7XQ6Hd773vfi8ccfn9FhcGdSbXabSyrVdjO9N5nxp+POnTvR1NSEp556apzSCfG4zqS3t/esn/X09KChoQHA6WZtABCJRLjiiitm+nAvCMdxGBoawqpVq2b9b1Wq7fh8Prq6uiYcbLN37140NTXNuhpEpdpuZGQE+XwemzdvPut3jz76KB599FE8/fTTuOGGG2bl71eq3RYC1WC7uro61NXVATjdePr222/jAx/4wKz/3Uq3XX9/P66++mqYzWY8++yzc5IJIlS67eaTarRdOp2eMEI+k1Sj3eaKSrXdTO9NZqVnA8A42di9e/eecxjIM888M66+bN++fdi7dy/e9773ATgt7bZ161b8+te/njByHggEzns8U5H5muizHnzwQQQCAVx99dUXfP/FUsm2u/nmm7F///5xDkd3dzdeeeUVfPCDH7zg+y+WSrXdhz70ITz99NNnfQHANddcg6effhobNmw472dcDJVqt4VAtdnu61//OgqFAr70pS9N6/1ToZJt5/V6cdVVV4HP5+OFF16AyWS64Htmkkq23XxTybabqDRmaGgIL7/88oRKkDNJJdttvqlU28303mRamY2HH34Yzz///Fk/v/POO7Fjxw489dRTuPHGG/H+978fg4OD+NWvfoWOjg4kEomz3tPS0oJLL70Un/3sZ5HNZvHAAw/AYDDgK1/5Cn3NL37xC1x66aXo6urCpz71KTQ1NcHn82HPnj1wOp04fPjwOY913759eM973oN77rnngg0x9fX1uPXWW9HV1QWpVIrdu3fjySefxMqVK/GP//iPkzfQeahW233uc5/Db37zG7z//e/HXXfdBZFIhJ/85CewWCz48pe/PHkDnYdqtF17ezva29sn/F1jY+OMZDSq0W4AEI1G8a//+q8AgDfeeAMA8POf/xxarRZarRZf+MIXJmOe81KttvvBD36AY8eOYcOGDRAKhXjmmWfw4osv4v/+3/87Y71D1Wq7q6++GgMDA/jKV76C3bt3Y/fu3fR3FosFV1555SSsc36q1Xbsnh3PVGzX1dWFbdu2YeXKldDpdOjt7cVDDz2EfD6PH/zgB5M30DmoVruxa24887Y3mYp0FZH5OtfX6OgoVyqVuO9973tcfX09J5FIuFWrVnF/+ctfuI9//ONcfX09/Swi8/XjH/+Yu//++7na2lpOIpFwW7Zs4Q4fPnzW3+7v7+f+x//4H5zVauVEIhHncDi4HTt2cDt37qSvuViZrzvuuIPr6OjgVCoVJxKJuJaWFu6rX/0qF4vFpmKmCal223Ecx42OjnI333wzp1arOaVSye3YsYPr7e2drskoi8F2Z4IZlL6tVruRY5roq/zYp0O12+4vf/kLt379ek6lUnFyuZy75JJLuD/84Q8XYzJKtdvufOd2+eWXX4Tlqt927J6dvu3uuecebu3atZxOp+OEQiFnt9u5D33oQ9yRI0cuxmxVbzd2zS2MvQnv/7+ZwWAwGAwGg8FgMGaUWZG+ZTAYDAaDwWAwGAzmbDAYDAaDwWAwGIxZgTkbDAaDwWAwGAwGY1ZgzgaDwWAwGAwGg8GYFZizwWAwGAwGg8FgMGYF5mwwGAwGg8FgMBiMWWFSQ/1KpRLcbjdUKtW4ceuLDY7jEI/HYbfbwedPzk9jtjsNs930YbabHtOxG8BsB7Br7mJgtps+zHbTh9luerB1YvpMyXaTGcYxOjp63sEli+1rdHR00oNMmO2Y7ZjtKsduzHbTtx2zG7Mds938fzHbzb7dmO2mbrtJuXEqlWoyL1s0TMUezHbjYbabPsx202OqtmC2exd2zU0fZrvpw2w3fZjtpgdbJ6bPZGwxKWdjsaaIzsVU7MFsNx5mu+nDbDc9pmoLZrt3Ydfc9GG2mz7MdtOH2W56sHVi+kzGFqxBnMFgMBgMBoPBYMwKzNlgMBgMBoPBYDAYswJzNhgMBoPBYDAYDMaswJwNBoPBYDAYDAaDMStMas4Go7rg8Xjg8Xjg8/n0/3k8HkqlEjiOA8dxKJVKAACO4+b5aBkMBoMx0/D5fLoGEI388ud/sVic5yNkMBhzBY/Hg0AgGNfsPZPPAeZsLCJ4PB40Gg2USiXMZjOampqgVCrR0NAAuVwOl8sFn8+HsbEx9Pf3I51OIxwOI5vNzvehMxgMBmOGEIlEWL58OWpra2Gz2dDY2IhSqYRoNIp0Oo29e/fi1KlTyGazSKfTLOjEYFQ5DocDW7duhVKpBI/HA8dxOHz4MPbu3UuDzxcDczYWETweD2q1GkajEe3t7diyZQvMZjM2btwIg8GAgwcP4uTJk9TRiEQiSCaTzNlgMBiMKkIoFKKjowNr1qxBV1cXLr30UhQKBbhcLoTDYaRSKbhcLvD5fGQyGeZsMBhVjsViwTXXXAOz2Ux/ViqVsH///sXhbPD5fAgEggl/p1KpYDQax6WDJRIJRCIRotEonE4neDweampqoFQqoVaroVaraaq4UCjA5/MhkUggFAohEAhU5UOVz+dDLpdDIpGgo6MDbW1tqK2tRUNDAzQaDaRSKXg8HvR6Perr6yESiZDL5RAIBBCLxRCPx+f7FCoOPp8PlUoFiUQCu90Om82GSCSCnp4eZDIZZDIZVqaA0w6wyWSCTqeDSqWCzWaDUHj6scRxHEZGRjAyMoJcLodEIjEjDz3G4uDMMiGhUAiNRgOxWAyBQAChUIhEIgG/349CoVCVz/4z4fP5EIvFUCqVsFgsqKurg16vpyUUCoUCxWIRarUaKpWKPaPK4PP5kEql9JoCAKlUCoVCAblcjrq6OshkMgCTLz8uFouIRqPIZDJwu91wu910f1KtlNtOLpdDJpPB4XBAJBKhv78fHo9nno9wcWGxWGA2m7FkyRKYzWZotVoacMjlcjP2dxass0H6CMRiMSQSyYRDQ5qamnDJJZdAKpVCJBJBKBRCr9dDq9Xi+PHjeOaZZyAQCLBjxw40Nzejvb0dS5YsoY5GIpHAq6++ioGBAezfvx9jY2NVeZOLxWJYLBbodDpcd9112L59O6RSKVQqFQQCAUQiEXg8Hurq6mC325HNZrF582aMjIygp6cHo6Oj830KFYdIJEJtbS0MBgOuueYaXH311Thy5Ah+8YtfwOv1wu/3I5VKzfdhzjt8Ph/t7e1YvXo12tracNVVV0GhUNAeot///vfYuXMnQqEQ+vv7Z/Thx6huyJogFAohkUigUCjQ0dEBrVYLhUIBmUyGgYEB/P3vf0cqlVoUDodQKIRWq4Ver0dHRwfWr18PuVxOHTOj0Qi5XA6r1Qqr1QqO4+Dz+ZiTj9PrqMFggEgkgkAgAJ/Ph8ViQX19PWpra3HzzTfDbrdPyVlIp9M4duwYAoEA/vrXv+LZZ59FoVCoaiePOP86nY6W8e3YsQMajQYPPfQQczbmEB6Ph2XLluGyyy5DY2Mj2tvbIRKJ4Pf74ff7kUgkZuyZOOfORnkzGnEgSJSJz+fTjS9pVJHL5VCpVBM6G3V1dXA4HNTZEAgE0Gq1UKvV8Pv9MBqNEAqFsFqtsNvtsFgsMJlMKBaLyGQy4PP5kEgk9MFRbRMhSTRPoVDAYrHAaDTCZDJBr9dDJBJBIpEAeLcpkES9BAIBBAIB4vE4zYgs5AegUCik1wupNczlcvO6QJJsklKphEqlglqthkKhoMdK7oHFCo/Hg1QqhVgshtFopNkfs9lMnQ0SYRWLxRAKhVV3fzJmDrKuCAQCyOVyGqWXSCQQi8WQyWRQKBSora2FRqOhEdVUKgWDwQCxWIxoNLronFlyT3EcR9dd8owia/JihTynyVopl8ths9nG7RksFgscDgfsdjusVivMZvOUnI1MJoNgMAihUAiz2Qyj0Yh0Oo1YLIZisViVzi9xbFUqFWpqamCz2WCxWKBUKum9S8RqGLNDebWLyWSC3W6HwWCggX1SSVDRmQ2RSEQj6mSDaDAYYLFYoFAoqPMgkUggFArhcDjQ0tIy4UNPoVBAq9XSixcA8vk88vk8dT5EIhE2b94Mu90OiUSCbDaLVCoFv9+PcDiMvr4+9PT0VGUJlVqthtlsRk1NDW699VbU1dWhra0Ncrl83CJDNubk4SYQCGjmo6amBk1NTQgGgwiFQuA4bkE5HaQMx2g0QiQSQSqVIpfLobe3F9FodN6OSygU0jIFABgeHobP51tQtptP5HI5li1bBqPRiG3btuGyyy6DSqWCSCRCqVQCn8+ni3a13ZeMmUcqlUKtVkOn02H9+vUwGAyw2WzQ6/W03JaUD5FsB5/PR39/P/R6PbxeL15++WU4nc75PpVZpVgsIpVKQSgUYnR0FD09PbDZbLQplHEaPp8PvV4PhUKB+vp6tLa2wmAwoLOzk9qKCK4YDAbIZDJoNJopP69EIhGamprgcDiQyWSg1WoxPDyMV155BfF4HLlcrqrWDFKtIhaLsW7dOvzjP/4jFAoFFAoFcrkcdDod1Go1crkcUqkUe/bPEnK5HFu2bEFNTQ02b96MjRs3QiaTQSQSIZVKYWRkBKdOnYLf76/czAaJPJU/8ElkU6vVoqWlhUadxGIxGhsb0dXVReu4gXejMOXfEyKRCOLxOIxGI5qbmyESiWCz2WA0GpHL5ZDL5ZBOpxGNRhGJRBAOhxEKhapScUMikUCr1cJisaCjowONjY1Qq9XjemCIk1EsFlEoFFAoFCCRSOiFp1arodfrkclkaLRloT38ZDIZdDodLZVIp9MYHh6e12Pi8/lQKBRQq9UAgHg8jlQqxcoR/j9CoZDe96R/iAQggLNrnqvt3jwXZBNT/v1ETLSpKQ8gLDZ7kXtfr9ejpaUFNpsN9fX1tAbZarVO2PvH4/Hgdrtp5qPa4TgO+Xwe2WwW8Xgc4XCYbpIZ70Iiv6SPrK2tDWazGStXrqSVFqTyQq1Wj5MOPhdn7lvI3yH2b2hooP2RMpkM6XQa+Xx+9k5yniAVFxaLBStXrqRZxVgsRgPNbJ2cXUQiERwOB1pbW9HQ0ICamhoAoHvAeDyOYDCIZDI5Y39zzpwNpVIJpVKJ+vp6bNu2jZZHCAQCqFQq2qhMSnzKy6LOzGqcawEuFovo7e3FyZMnkUqlEAwGwefz4fF46CaUfI2NjSGZTOLIkSNwu92IxWIV/cAlKXDy8JLJZFRlxGq10uiVSCQa975isYhYLIZ0Oo3BwUE4nU7U1dXhkksugVKpxPbt29HZ2YmjR4/i2LFjCAaD6O7uXjAKVeWN7XK5HFqtFolEAt3d3QgEAvN2XAKBAEqlElqtFlqtFhqNBgqFYlGXJZTD5/OhVCrptbqYS8t4PB60Wi3kcjmMRiNsNhukUimMRiMkEgmUSiVtPAWARCKB48ePU1nqfD4PmUwGg8GAYrGI0dFRxOPxqhV3EAqFVHyhoaGBOq3Nzc1Qq9VYsmQJVCoV7c0QCARIJpO0V4/jONqzQV6vVCphs9kwNjaGVCqFdDo936c5KxBng5RJEKnbSl77ZgOxWIyuri40NzdjyZIl6OzshEKhoPckcPq+JWXfk2Gi15X/zGKx0DJgm80GPp9PxQuqGeLYlUoluk8slUrUFoyZRyAQwGg0wuFwQKPRQCAQIJ1OIxAIIBAIoKenBydOnEAwGKy8zAZRv+js7MRHPvIRWCwWGj0Hzu1ATPZGJuU9/f39eP311+kDtdxQiUQC8Xgc+XweyWQS+XweXq+3KhZkHo8HoVAIkUgEo9EIvV6P1atX4/rrr4dKpaKNbWfas1QqIRaLIRaL4dChQ3j77bexdu1arFq1ChqNBldeeSVKpRJee+01qFQq9Pf3Y2hoaEE5GzqdDvX19XR+SDgchlwun9djIptp4mio1WraiMnKFUBr6kmQoTxzudggJRsGgwGtra1Ys2YNNBoN2traoFarqbgDwe/3Y+fOnRgcHEQ8HkcymYTBYEBzczNyuRzeeusteDwecBxXFc+2MxGJRLQ3b/369Whvb0draytWr15NSzTKh5WmUilEIhEUCgVkMhlapieTyaBSqdDa2gqFQgG73Q632w0AVe1sFAoF5HI5JJNJ6mwwxkOcjQ0bNqCpqQltbW1TfnaTTMZEGY2JIKpA6XQaNpsNhUIB0Wh0RqPLCxFyL5IgACmpYuvk7DGRs5HP5+Hz+eB2u2nQfiadvTlb4cmDntQgEs/1XLK2BHKjklpT8t5SqUSbtoDTm+ZCoYBwOAyXy0XTQeXGIhEr0iBeKBSqJk0pl8vR0NAApVKJ5uZmmEwmtLS0QKlUniXXVw4p9+E4jjYHkYcccNpJLO/hKO/3WAiQulmHw3FWo/h8QJrs5XI5LBYLampqIJFIkEgkkEgkkEwmqfLNYkQsFtMIYU1NDWpra2mpWbFYRDabRTabxejoKKLRKHp6ehCNRquyBE0kEtHMTnt7O2pqalBXV0cdZ71eD5lMRrOPpAGa4zh6XaVSKWQyGajVaqok5/V6IRaLkUwmqdNRyZCePJ1OB4PBALVajYaGBpqVIKpv5UICPB4P+XwehUIBbrcbJ0+eRC6XQz6fB4/Hw4oVK6DX6+n9ShrJSba9WiGBEJFIRJ0tqVQ634e14OA4DolEAuFwGOl0+qwp66ScOJlMTlgVUf59eem4TCabUF2TfF++di2kdXY2OfPcF8t5TxVSticWi2kAmayVZF97oWe9RCKBRqOB1WqFVqul/UepVAqhUAh9fX3weDyIx+Mzvm7MmbORSqXA4/EQDocRj8ehVqvHlQaUUx4JIP/NZrNwuVxIpVLIZrPI5XIwmUy01ptsVAYGBrBnz54J65Y5jqMbFvLfhdZ/MF1MJhOuv/56OBwOrFq1CnV1dVTHuryB/kxEIhGNnOr1ekilUmpHrVaL5uZmqqbkcDgQCoUW1GLM5/NRX1+PjRs3IhaLweVyzevxEAEEk8mEVatWYePGjejt7UVfXx+cTic8Hg+CwWDVXHdTRavVoqmpCXV1ddiyZQuN3gOnlVkCgQB8Ph9++9vf4sSJEzStS4IH1YRSqURXVxeMRiOuu+46rFy5kopeEHELjuPgdDoRCARocIWIXpBmeiLqIBQKkUqloFQq4fF4kMlkcOrUqYp2Nkg/hlAoxIoVK3D55ZfDbDZj9erVdG6STCaDUCikGQ0ANKsTj8exZ88ePPLII0ilUlSB8NOf/jSWLFlC1fpI+YZSqUQkEpnfk55FyKwIhUJBxUN0Ot2iLWE8F4VCAaOjo5BKpTAYDOPuIY7jkE6nkc1m0d/fj0OHDtHn+USlP1KpFHV1dVCr1aitrYXVap3Tc2FUB3w+H1arFQaDAV1dXdi8eTO8Xi8ef/xxOJ1OpNPpC6pH6fV6LF++HHa7HU1NTbDb7cjn8xgbG0N3dzf+/Oc/w+v10gzvTDJnzkapVEI+n6eNxiTiTn5XKpVoBL28SZREETKZDMbGxmh/AcmQkD4EgUBAFQwWk4oBcSTkcjnMZjNsNhusVissFgt9Dcn6lDeDl0vfko1Kua3D4TAA0MyPQCBYsBKkpDk0m83O+7GJxWJotVo6pI7IuKbTaWQyGRptXWyQngxS6mYymaDVaqFSqSAWiwGcvtZisRjC4TA8Hg9GR0dpcKGapBDLJVrNZjMsFgstoSD3JdnQkIXA4/HQ61wul1P5ViKyQa57UpJQLaVpRL2G9PPZ7Xb6nCPXDinFJdcHec5Fo1GMjY3B6/XC4/EglUrRiD4pHSrvdSP/LvP9DJltiBCDRCKhsvETvaa8d5Ks0YuFUqlEh/0Gg0EEAoFx+5JEIkGziG63G4VCYZyjWw6R+E6lUtDpdLSqozygStZeUuJGVDUXk82r/b67WPh8PlUYtVqttKmbBKAmU9oukUhgNBphNBqpNDgpMw2FQhgbG0MwGJwVCfA5W42IczA8PIxnn30WBoMBbW1tMBgMiEajCIVCsFgsuOyyy6DVaun7yA0/PDyMxx57DKOjo7QpUq/Xo6amBhqNBsuXL4dSqYTP56uaTclkIGpRTU1N6OjoQF1d3Tj7Aadt73K5kEwmMTo6ikAggJaWFqxfvx4CgYCWl/n9foyMjCAWiyGZTMJsNqOurg5Go3HBPwgWSvq1rq6OZphsNhsAIJlMIhAIIBKJLKrFg1A+JXz16tW47rrraBmVTCajUVW/34/XX38dLpcLQ0NDCIVCdL5LNdzT5Bol5UCtra34wAc+AIfDgbq6OiiVSkSjUTidToRCIezfvx/BYBADAwPweDx0OJ3JZMINN9yAhoYG2Gw2mEwm+jcKhQK9j6PRaMXbTSgUoqmpCWazGevWrcOll15KnS2RSDQuIk9Kp0id+1//+lfs2bOHZhQ5jhvX+7IYKZ8boVKpoNfrzyqN5fP5MBgMqK+vB3D6viSzHxZLoCSXy+H48eMYGhqifaDlNsrlcigUCggGg3C73fS5PlFmg/QYKRQKfOhDH4Jer6flpOXXr9frhcvlwrFjxzA4OAifz7eo+mlIhpYENRnjEYvF2Lx5My699FIqiCGXy1FTU4N0Og23241MJnPez7BYLNi2bRtsNhtqamogl8tx4MAB7Nq1C8PDwxgYGKAB/ZlmTjMbpVIJkUgE3d3dtFQgkUjA7/fD4/EgkUhgw4YN427WXC6HaDQKn8+HgwcPore3l97opPbMZDJBLpfDZDIhkUjM1SktCKRSKZ0IS6KjZ9bgkl6WaDSKgYEBjIyMQCqVYs2aNeDz+chms0in04jH43SwFclwlEcAF2pN5UI6Lo1Gg87OThp5BUCVX0hz6mKDx+NBqVTSDczKlStpCQwpFQJOBxYGBgbgdrtprXQ1QTIQcrkcer0eNpsNnZ2dqKmpob0C+XwewWAQLpcLBw4cgNvtxuDgILxeL402OxwOrF69mpZclVMqlaikaTXYTyAQQKfTwW63o6amBvX19TQLSyj/f9LbF41G0d3djTfffBOpVArxeBxCoXBR3n/lkN4D4riWi7SUo1AooNPpqNgGx3FIJpOLxtkoFovw+Xzg8/kIBALo6+s76/elUomum+dz6km2USaTYfPmzchkMuOcElLBEY/H4fF46AywxeTcEUh2kZX1nY1AIEB9fT1WrFgBrVYLo9GIWCwGjUYzrkLgfKhUKjQ1NcFms9H1NxgM4uTJk/B4PHQMxGww5+5jKpXC0NAQnd6qVqtp6UQsFkNXVxdsNhudu+H3+3Hw4EEMDQ0hFouNSy1ms1mEQiFks1m8+eabUCqV8z5fYS4g0zclEglWr16NzZs3o6amhsoGkxs1FoshFArB5/Phb3/7GwKBAM0KDQ4OYs+ePVQuOBKJYP/+/QgEAhCJRNTpSKVSAE7X2jc2NiIcDtMSrXg8Pm+qVEQymSgayeVyJJPJeXc4SMOpWCymg+kikQgd6rfYFg/gtE1sNhs6OjpQX19PhQZI9CoajSIej2NwcBAnT56E3++vOgUWMqBUo9Ggq6sLa9euhd1up/XywWAQ6XQaR48exa5duxAMBtHT00PnBpVKJWg0GjqXpLGxEfX19bTfpVAoIJvNIhKJoL+/n/a7VHpmQyAQwOFwoK2tDSaT6azSE1JqRhyKcDiMt99+G4FAACdOnKCD0chnkUxweUCm0m00FcqH+g0NDeH48eOor6+nwT/gtJ2ampogFouh0WjoLKpkMrlgVAjnAtLjOdE5kz3ImYqXEyESiWhDLpnSXK4MSa5lEpQiAiLVktGdLDwej6rvZbNZ8Pn8RdvbeC5IqR25NkgZ6IXKP4l8usFggEajocI/HMdRB2+2e3Hn3NlIJpPo7e2l01tFIhFyuRyy2SzGxsbQ3t5Om5u1Wi28Xi/27NkDr9eLSCQyTj0qk8nQ942OjgLAoohcEWUWjUaDTZs24eMf/zgdSlVeVxqJRNDb24uBgQE89dRTcDqdaGxshMVioYtOPB7H7t274fP5qIwmIZPJIJFIgOM4GI1G6hjW1NTQkoX5WnyEQiH0ej3tj1AqlYjH4/PubJBaaIlEQp2+UCiE/v5+BIPBRelsCAQC1NXVYdWqVWhpaYFGo6H9QhzHIRwOw+l0ore3F4cPH0Y4HK66+1goFKKxsRF1dXW48sorccMNN9B6+EKhgEAgAK/XizfeeAP/+Z//iVQqhWQyOW7DQdSXyETj5uZmer3n83k6iOnUqVM4dOhQVWR5hUIh6urq0NnZCavVOu7+LpVKSCaTtEzR6XTC6XRi586dcLvdCAaDiMVi4z6LRATLxUnm+5kxlxAFpVKphN7eXkilUvB4PCxZsmScs9He3k7FG0hfwvDwMFUpXAyQjEMmk7lgecr5EIvFqK2thcVigclkooIGZ153pJ81kUggn88vuo02UZa02+0LYi1fiBSLxbP6PknP7bmyQTwej4rWkCGnKpWKOhtkXsxs96vNS2EciRiQLAXx1EhzVC6Xo5sNMtwqk8lMWMdHFuLFcGOSelupVAqz2Qyz2QyDwUBT4aSJljSDk/KzQCCAZDJJH2YikYg+zEjJQSqVQj6fHxdJKd/wkTkecrkcNpsNpVIJgUBg3haf8iilXC6f99QriQ6QZlbibJB/D9IcvpgiVcC7jaY6nQ42m40O6STPgGKxiGAwiJGREQQCgapriiRqNmSeQ0NDA6xWK71fw+EwUqkU+vv7MTIyApfLRZVuzmyKVygUqKmpgd1uH9frApwO4gwNDcHlciEWi1Fp70qHlLMMDAyAx+NBJpOhVCrR51UwGKR9fR6PBz6fD+FwmG7YyiGLarXL206GYrGIQCCA4eFhNDY2nvVcIiV/5LnKNn5Thwzk1Gg0VLiFbPLOXKs4jkM0GsXw8PCiGORX/vwvFov0GiOy8eXKcosdiUQCvV4PvV4PnU5H9zvpdJoGpcjz8EzIPazX61FbWwuj0UizamSNiEQiVHxpNtfeeevCIWlDkkIsV0IimsEAYLfbsXnzZvT29mLPnj0YGxtbdBs2glgshtFohEajwcaNG9HS0oJly5bRORnpdBqFQoH2B5w6dYpmhUgN9/DwMFwuF63bJXWnpAb1XJAHpNVqxeWXXw632w2v1wufzzeHFngXiUSClpYWGjGaC8/8fEilUshkMho5JSVtwOmIVXk5zGKBKC6p1WosXboUW7ZsGaduQzbVhw8fxssvvwyn01l1ZRpmsxlXXHEFbDYbrrrqKrS0tNDFIhwO46233oLf78cLL7yA48eP05KyidS3ampqsH37dpjN5rManUdHR/HUU0/RHo9EIlEV11o6ncYrr7yCt99+G52dnVizZg0SiQT6+vqQSCQwNjZGM7KkzDYej9MAVjlkppBarZ5UfXM1k8/n8c477+DEiRPQ6/W46aabqE0W25yH2cJoNKKjowMmkwmXXnopbDYbGhoaJtxIcxyHkydP4r/+679oKVW1QpyMfD6PdDpNVUjLI/BqtZpdf/8fvV6PK6+8Ena7HStWrEBNTQ2SySTtdSYZ3TNLj4nzJhaLsWzZMlx22WVobGyESqUCj8eD1+tFNBrF8ePH8fbbb9M5eLPFvLb8nzkLg2xASG1ooVCASCSiHh2R6SOR+8WGSCSCWq2GVqul8mdqtRp8Pp/We2azWZqpIDJm0WiU2owMTZsqpAFbLBZDr9cjk8nM64JN5H5J7wqJFJFIyVw7pGToIZGTI44GydgttrQ4ycKR65VMUQcwLrCQSqUQDofh8/mqSq1LKBRCKBTSgZN2ux02m42WMObzeSSTSfh8Png8HrjdbrhcrgmvE+Lok2GIOp2ONtaT+SPRaJQGAMjw02qgVCohFAohlUpREQzS35NIJGhmg5R8ng/y/CJzO4DF1a9RDpFvJYNGGRcHyfyT7Bkp8yUCNmazmZbvlW+iyyP8xHkmWc1qhez7ymV+y2X4SeaRORvvzsWxWCzj5L5jsRgikQjd602UyS4XJjAYDLRviPTChMNhjI2NIRQK0QBNVWY2JiIcDuP111+nOsBkYSBp3ra2NvB4PNo1v1ggGvA2mw3bt2+H1WrFhg0bUFtbC7lcTqVtn3/+eaorH41GEYlEaAnVTEWMydTjZDI5oYrJXEEe5mazmU6Rz2Qy8Pv9tBF+rhAIBOjs7MTq1auxbNkyWtpGGuij0SiNGiyGzQ0ZGma1WnHNNdfA4XBg2bJl416TSqVw6NAheL1evPPOO+jp6RmX0axkeDweWltbsWTJErS0tODKK6+EwWCAwWBAoVCg92h/fz+ee+45eDweDA8Pn6VWJhQKIRAIYLPZqLw1afAjikzd3d3o7+/H4cOHab9LNfRqEEjJVDabxYkTJ+Dz+ai8LekZm6wjLxKJaHSZOL5sQ3MaEkxaDM+n2UAul9N+tGXLlqG+vh5GoxH19fWQyWSwWq2Qy+VQKpUA3r3uiHxuIpFANBq9YIVBpUMqWshzcGBgAAaDAY2NjfO6n1iIkKHMdrsda9euRV1dHQwGA0qlEvr6+vDcc8/B7XbD7XYjmUyeVUalUqlw+eWXw+Fw4LLLLsOqVasgEomQTqcxNjaG3//+9zh69CgGBwfnpMR7QTkbyWQSPT098Hq9GB4eRkNDA+x2O5W0tVqtiMVidC7HYoHIFWq1WiqV2draCrPZjHw+j1wuh3A4jHfeeQejo6MYGRlBMBiEUCgc158xEwgEAshksnFqQvNBeWaDZFgKhQJisdicSwbyeDzU1NRg9erVdF6CUCikEQOimLNY1EVEIhGdULxhwwY0NzfDbrePe002m8XIyAiGhoYwMjICr9c7T0c7O5jNZnR2dqK1tRWdnZ1Qq9U0ckQm3Q8NDeHo0aNwu91n3aPlEqU6nQ41NTUwm81UVYSUonm9Xhw7dgzd3d0YGRmpyig1Se2n02l4PJ5pfw5pECfBAGDxZjbKOVM6nNlk6ojFYjgcDpjNZmzatAkrV66ESqWC0WikSj+kVw0Y32saj8cRiUSQTqeranjpuSDVB4lEAoFAADweD7W1tczZOAORSAS5XA6dToeGhgY0NDRAKpWiVCrB5/Ph7bffxtjYGCKRyITBValUiiVLltDAV11dHTKZDKLRKMLhMPbt24c33nhjzs5nQTkbJLWWTqdx4sQJAMDq1avhcDggk8mwevVq2O122O12uFwumjrPZDJwuVxVW+dI6t4tFgtqa2tpgygADA4O4tixYxgeHkZfXx9t2iYRPzIzo5qjJQSiTBYKhWal9rC8nIWU9VksFiiVSqxduxbNzc3Q6/UQCATIZrPo7e2F2+2mvQgTNXBVI0qlEjU1NXA4HDCZTOOkRknZlMfjwcmTJ9Hf349AIDDPRzxzkPIpm82GZcuWwWazQSgUolgsYmxsDMlkEu+88w7eeOMNeDwe6hiT+5MIDKjVanR1dUGr1aK5uRk2mw0tLS2QSCS0uTeZTOLEiRM4dOgQXC5X1TeVng8yt+R8U8CNRiPNEpHrMZvNIhaLwefz0a9qdNjOBylrObOseTHD4/EglUqps280GiGRSKDT6SYMsmk0GqxatQp6vR4tLS3Q6XSQSCTjGuxJ+SgpDSSlgH19fQiHw+jp6VmUkreMd+HxeFAoFBCLxWhvb8fy5cvR2NgIg8EAoVAIr9eLeDyO/v5+uN1u2qdWjk6no6W7S5cuRVNTE/R6PQAgEong6NGjGB0dRTwen9NzW3DOBlGj2bNnD44fP45isYhLLrkECoUCV1xxBbLZLPr6+qi0odPpRDAYRDwer1pnQ61Ww+FwoL6+Hu3t7bBYLLRH4dixY3j00UcRCARw8uRJJJPJcYvGYkqNp1IpmlacjTIqkUgEkUgEs9mMJUuWwGAwYP369fT7xsZGqr4Ui8Vw8OBBGnVOpVKL5t9Bq9Wira0NjY2NqKmpgdVqHTf7ZWBgAMPDw3jrrbfQ09NTNZs7Ho9HZY+bmpqwceNGyOVySCQSFAoFuFwu+Hw+vPrqq/jP//xPWk5Qfl1IpVLo9Xo0NDTgtttuQ0NDA2pqamAymajEYSKRQH9/P/x+P/bs2YNXX32VqvgtVmw2GzZu3AiJREJn3JxZG69Wq9HU1ASTyQSFQgHg9DNjdHQUo6OjGBoawvDwcFWU8k0V5miMhwwilcvldNOn0+nQ3t5Oy3bLUSqVaGtrg1KppGXP5HPKIX0KQ0ND+Otf/4pAIICjR48iGAzSmWGMxQsZYqpWq7FlyxbceuutUKvVsNls4DgOg4OD6O3txaFDh9DX1zdOuZVgsViwefNm1NbWYsOGDaivr6fqe36/H7t27YLL5Zrz6qAF5WwQSKM4j8ej8nxKpRIKhQJyuRwGgwEcx0Eul0MkEkGpVNJ/DNIsQ5quKh2iPV1bWwuz2UwXUiKlSmTLIpHIhBfeTCwgleKwTHaS+JnSl0QNozzdTT5PKBRCoVBAKBRCLBZDJBLBaDTSum+VSkWFC86MYJE63IvRaK8UiCypSCSCyWRCbW0trFYrJBIJeDzeuDrdwcFBjI6OUonWarhPgXevv3KJaqI8UywW4ff7MTQ0ROetCAQC2n9BbEfUzEjZlF6vh1KppA2UwOkNSzgcht/vp31BiyUaSuxL7mG1Wg2ZTIampiY0NjaOG6hJXk/sQkoSyEArUnY5PDxM1VwWix0nw2K0A7l3JRIJamtrYTAY0NzcTAdoms3mcQMhCaQR91yiKcSW2WwWyWSSZncDgQBVKlzMwQLCYp0gTkqPZTIZWlpaYDKZ6LBNol5YLBbptUlUu1KpFM2Ok/2HQqGAyWSCwWCg+5rymXRkSv1cO7YL0tngOI4Ot9m/fz+EQiFqa2tx3XXXwWq1oq2tDa2trVTlJxAIQCqVYmhoCKdOncLAwACy2SwdSFfJ8Hg8dHZ24gMf+ACsVisUCgUKhQLcbjfC4TC6u7vR3d2NbDY7Kw+rM2t5J7uhnw+I1Cq5Oc/1GqPROK5RT6VSoampCTKZjDoP5KFHJj5rNBoasSK/IxrV5fNiiMOSz+fh8/noIKxKvw4vhEAgQH19PaxWK7Zs2YKbbroJKpUKWq0WpVIJfr8fwWAQb731Fv74xz8iFAphdHQU6XS6qmxDsg9EnYwo1KTTafz973/H7t27EQqFoFAooNfrsXLlSmi1WrS2tsJisUCn08FisdB5NsSRLSedTuPYsWPo6enB6OgostlsVdnwXBDbymQymEwmqFQqbN68GS0tLWhsbERnZye1d/kXidoTdRahUIhcLodoNIoTJ07giSeegNfrhcvlWhTlppNlIT7jZxsyw0qv1+O2227D8uXLYTAYYDab6X09kV3IMNdzwePx6Gwqp9OJo0ePYteuXVSSnvQxLGZIZlipVJ7TztUGCZ7o9XosX74cJpMJN910Ezo6OqDRaKDX6+l+AzjdCwicDsiTYPybb76JcDhMg1u1tbVYvXo1fUZyHIehoSEMDg7i4MGDeP311xEOh+e8omBBOhsAaP0xqW0EgEQigVwuR+VFy6NcNTU1dBKvz+ejC3wlR6rObBDV6XR06mMymaSa/IlEYs7qtYlU30JsZCNDB8lX+ZRgAokeEx3v8qmlZAATGZhGmvKXLFkCrVZLz7dQKCCbzSKdTiMYDNIsU6lUok2AZO5JMpms+ogVGRyk1WphsVhgtVpht9vpRplM4SUTroeHhxGLxZBKpapyc0eeS+XlFKVSCYlEgk5HJwuJw+GAwWBAS0sL7HY7dDod3diUSzqXb5rLM5pkGnQ1Q+5TiUQCmUwGhUIBg8EAtVqNuro6tLa20mGHpHEeeLfH6symXABUMjiZTMLr9c5LpG8hQwJLiw0+nw+JRAKFQgGHw4GWlhYaNJmMPc5XBVA+4JWs37FYbNE7GeWQyP18is/MJSSAolAoqLxtU1MTVV4l1xzZx5IgltFoRG1tLYRCIdRqNXK5HC3Z1Wq10Ov10Gg0dL8Yi8Xo0FMym2iuWfD/oqFQCMePH4fX6wXHcTCZTFi9ejWVmSMNuhs3bkRHRwfMZjMcDgdcLhcOHjxIpyxWWvOkSCRCTU0NNBoNmpqaaJM8aT4eGRnBwMAAtctscWYtbyaTgc/ng9frndfyIPLgLld5stvt2LFjB+LxODZu3IhYLHbW+4hdy6UvxWIxLWchzaXpdJrekN3d3eA4jsqKRqNReL1epNNpBAIBFAoF3HLLLVRxicyCIaUu1VxGJRQKoVQqoVarccUVV2Dz5s2w2+1QKBR0s1csFpFMJhEMBhEOh+kQtmrcJJMMFymXIA3fSqUSt9xyCzZv3kyddSKJSfo0SB8ByVLmcjmqs06uKTIgsq+vDydOnEAkEpnfE55FSERPr9dDLpdj1apVuOSSSyCXy2E0GiGVSulUeqlUSh17MoHZarWeFRkE3nU6eDwetFotli5dCr1eTyV2F2IgZa5ZjI7GuZisLS6k6EWG4ioUCkSjUSxdupRmOqqlb+1i4PP5NEg1ODh4zuqEasJqtVJ10RtvvJHuXwkkuEScUqVSCaVSCa1Wi9raWkQiEdTX1yMej0OlUkEmk6GhoQFNTU0Qi8UolUqIx+PYt28f/vu//xuBQGDe9iML3tmIx+OIx+O0Ppl4azKZDKVSCSaTCVKpFEuXLqWbTjLyvr+/HwDogMBKQigUwmw2U2+XqBHw+XyawRkeHkY4HJ71hbH88/P5PMLh8KwpPk3lmM4c4GcwGLBhwwbk83l0dnZOeFOJRCI4HI5xE0pJtqZcA5wMmkskEhgYGEA8Hsfo6Oi4GQmZTAaxWAw8Hg/r1q2jZVTk2Ej0qpoRCARUnWvVqlW44oorJnwdyWwkEgk6ObwaIY5ELpej1x+JyG/ZsoW+7lz3LKnBJdci2SiLRCIUi0XqxHg8HoyOjs7JOc0H5dK/Go0GWq0Wa9aswc033wy5XA6tVkvLFUnTbTqdRiKRoKVlxMkjz83yTSP5fIVCgbq6OojFYnR3dyMYDLJmaQaA8c7DhRyOM0uLJ8pwEOdWq9Wirq4OdXV1EAqFNEO52CHlREqlEgaDoer7Nng8Hp2f1NHRgc2bN1PVKODdNaJQKCCRSKBYLNIScKPRiMbGRqRSKVitVmQyGWg0GlrVoVarqaORTqfR09ODv//97/P6XFvwzgaB6FEXi0UcO3YMuVwOdrsdgUAAarUaLS0ttDGmra0NIpGIlhocOHAAfr9/vk9hypQ3LJMbL5vNIpVKwePxYGhoCOFweMb+XnlZUU1NDerq6qBSqQCATpsdHh7G4cOH4fF45nUjnclkcOLECYTDYeqAkSZuUmY2kdQsn8+H3++nPUFkOFgymaQ9GKlUCqlUijZ3BwIBpNNpOjeDvJfH48Fms9HJzqTONJ1OV82Augshl8tpv4FGo5nwNcViEW63G8eOHYPT6axau5BsWzabRX9/P1577TVYrVasXLmSzqXh8/nI5XLIZrPIZrNUgYaktklGTaFQYMmSJbSHCDh9D46MjFAp5WqEPINItodkrevq6rBs2TLas9bT04NsNktrj+PxOMLhMLLZLILBIABQp4Rkhso3g6RMzWQyYfny5bBYLLRcNxwOIxqNLroMx0QbZKlUCpPJhEwmsyjmIJAoMo/Hw759+xCJRGj0mZQvEqnqiZwJ4N1NImniJRnMicp6FzOpVAo+n4/2PxIWak/oTEH6RuVyObq6urBx40Y6Z4QIGxWLRbhcLjrsNRQKgcfjoaOjA3a7nc4YI7ODysuoiEgBqdoolUpYvXo1brrpJvh8Ppw8eRKZTGbOxVkqxtkgjeB8Ph+RSARvvvkmampqsGzZMtTW1uIjH/kIlEolGhoaUFdXh5aWFjgcDjidTjidzopzNogSEpFbJVr9yWQSkUgEPT09eOeddxCLxWasHIVEUR0OB6666io4HA4YjUYAQDAYxMjICA4dOoTnnnsOfr9/XicVx2IxvPLKKxCLxfD5fHA6nXT4DZmuPNFGgcfjUQdtcHAQ3d3dtG47lUrRgYgk2wGA3pDlvSqlUglqtRpLliyB3W5HfX09lEoldUqIE1PtaLVa+rC0WCwT2rxQKODkyZN46aWXEA6HKy7LOFk4jqPzVPbu3Quv14uVK1dS6Vq5XA4+n490Ok2zg0eOHEE4HMaBAwcwNDREMxd1dXX45Cc/icbGRqhUKmg0GoRCIRw+fBjDw8NVNSW8HNL/o1arqRN72223Ye3atRCJRBCLxXC5XNi9ezcCgQD6+vrg8/ng9/sxPDwM4N0J9kRvXqPRUEEIAlmU5XI5ampqEAgE4Ha7IZfL0dvbS5WpqvVaLed8Q/3UajUaGxupA1jtZLNZ+Hw+BINB7Ny5EyqVikrfxuNxKi9P5mGcj6amJqxbtw5msxmXXXYZczbOIBqNor+/nwZoFgsSiQQtLS2wWq246qqrcO2119L5TGTOHFlDnnnmGdr7KZFIcO2112LlypW0HE8sFsNqtVIBjDOzazKZDBKJBDt27MCll16KN998Ew8++CACgQDGxsaYs3EuyGYvnU6jUCggFArB4/FAIpHQkh7SWESizel0GiqVCnK5HPl8vuI2gGdqxRPPl2Q4Zup8iK44aVRyOBywWCwQCoU02kMewqQUZj4j1OUbu7GxMTidTroBm2xz2cjICDweD1KpFPx+/zhHYTLw+XzaPEiayguFAs1+VPNGhTS2ETlRvV4/To2FXKtk8CaZ7F5t6lMTUSqVkEwmMTY2Brfbjd7eXoRCISpvG4vF6BRXolbm9XoxNjZG7+9CoUCbJUkfUaFQQCqVopOGqw0i26hSqWA2m1FfXw+LxQKDwQClUol8Pk/LzEjfmM/nQyAQQCgUQiKRgFgshtlshlarhUKhgEgkoqWNpByBZEHJNUwUcGw2GxKJBM06kWm7ZBBb+XVLaqmr/VoWi8XQarVUOEMsFo8bQlmNkL4rcq34/X66vvh8Prr/uND6p1Ao4HQ6aUkksHgb7yeiWCzSklpyPRHbEAliEmStpvuMz+dTIRC1Wg2xWEzL08l/U6kUhoeH4fP5qBiNWCyG1+uF0+mkZfYkADNRfwu51kgQmWTWzyw/nysqytkg5HI55PN5OJ1OhEIhRCIRmvYm3p1SqaRypkuWLKGlR16vd74Pf9qQBTOXy9ESoJl46BOvurOzE8uWLUN7ezuuvvpqqkcfCoVw7NgxvPrqq3A6nXRC+UJYcEqlEk6ePInR0dHzShNORCaToU4TmVEylQiLWCxGQ0MD2traxk3oPHz48LxM6JxL1Go1DAYDGhsb0dHRQcUMCKScrKenB4FAgIoZLJZp9qS8x+/349SpU3QOC3FIy9WQiIOazWah1+upmldLSwudGg6cvl7HxsYQCoUqLmhyIciC2NHRgVWrVqG+vh7vec97oNVqYbVaAQBjY2MYHR1FT08PXnvtNXg8HkQiETqTSaFQoKamBrfddhvq6+vR1dUFh8NBFalisRjeeustjI2NUbUWo9FIFYd27NiBZDKJ/v5+DAwMwOVy4a233kIikUAmkxkXPEin0/B6vVXx73C+CeJ6vR4rVqyAWq1GQ0MDdZInEt+oJkqlEmKxGJLJJFKpFPr7+1EsFqmC3mT6emKxGFwuF5qbm7FlyxbU1dUxR6MMUh6k1+up40YymzKZjK6p1VYlIJVKsXz5cixfvhxms5kGzd944w0Eg0EcOnQIXq8X4XAYwWCQBtmFQiFefPFFHD58GBs2bIBIJKIDn8+XNeM4Dn6/H4ODgxgYGIDP55uXCoOKcjbOvFFJxD0ej59lOKKSo1KpoFKpoFQqzzlwp1IgjcdEhelib8DyAWRisRhGoxH19fWora2FzWaDWCxGMBhEKpWiqhmBQIDKvC4USNR8riENpmq1mm4ISc34fDfQzzZEYo98aTQaen+RhTiXyyEYDCIQCNABfosFoiZFoqGTpVQqQSqV0ppcopNO7v3yoaXVAikZFQqFMBgMaGhoQGNjI9ra2qBSqegzL5FIYGxsDIFAAF6vlyri5fN5yOVyKBQKOrOkubkZZrMZMpmMBhNSqRTcbjc8Hg8dckXU/aRSKSwWC4B3ZybIZDIMDAxAIpEgnU6Pu5/L5+lUOuViG+WzSYjcsFgsRiQSgVqthlKpXDTNzCQgkM1mp6X6RioQVCpVVa8F04Xcl+XDiMsj8eTaq7ZGcSITbzQaIRQKqVLj4OAgfD4fjhw5MqH4B5/PpyqY9fX1SCQStM+jXOTmzMABaRQnVRtnPsvmiopxNkgjjEQigd1uh8FgoCUcdrsdVqt1XM0aeUD4fD6MjIxgaGio4pWBkskk+vr64Ha7LzpqLpPJoNFooFKp0NHRAb1ejw0bNqCrqwtCoRBDQ0OIx+N45ZVXMDo6ioGBAQwODs5o6VY1Eo/H0dPTA5fLVdWLcldXFx2ySaSESXM+mSfhcrnw7LPP0uuHcWGI80/S4uXRUyID7vf7q+ba4vF4kMvlNMp36aWXYvPmzVCr1eDz+YjH4zh27Bi8Xi96e3tx4sQJWm+cy+Wg0WgglUrR2tqK1atXw2azoa2tDSaTCRzHIRgMYmhoCO+88w7Gxsawb98+BINBunE2m804dOgQVCoV6uvroVKp6PRosiEgCnVk85hOpzEwMIAnnniiKhxon8+H/fv3w2g0orm5GQqFYsLa76VLl0IgEODAgQMYGxubxyOuDMg1VV9fz/o1JqB8g3wmxOGoRvnbfD6P4eFhSCQSRKNRKmR0/PhxJBKJczq2xPknQRVShkV6PQ4ePIje3l6k0+lxvbylUgmjo6Pwer1wu93z1h9TUc6GTqeDUqlER0cHmpqaYDAYUFdXB41GA4PBME6mLpfLIRwO0/HsLper4uv+SB2f2+2+6M2GVCqF0WiE2WzGpk2bUFtbi+XLl2PJkiXweDzUu37qqadw9OjRirfdXJFMJjE0NASPx4N0Oj3fhzMr8Hg8tLa24oYbbqAR5fLoE1EZGRgYwK5du9Df37+oGgAvBlJGMJGzEYvF0NfXh2AwWDXXFmk8XrZsGVpbW7FhwwasWbOGZsYSiQSOHDmCEydO4NSpUzh8+DByuRySySR4PB5UKhWdvrtjxw4qEiGTyTA2NoZoNIru7m785S9/wdjYGE6dOoVYLEajpgaDAd3d3dDpdNiwYQN1Vurq6lBTU4MVK1bQa5vjOMTjcUSjURw4cAB//vOfEQgE5tmCFw9xYu12O52RcyYSiQTNzc0Qi8UYGhqa+4OsQJRKJerq6uBwOM47XXwxQ0qECOV7OKLEWW2lZ/l8Hm63GwKBAKdOncKpU6dov+j5+oB4PB5EIhFkMhlUKhUNuJO+2mPHjuHll19GJBKBx+MZ91lkAHQ+n5+3LNuCdTakUimdjmgwGKBSqdDc3Exlbu12O5WWk8vl40qkSFqYpMpJM0wlb5iJV2uxWFAsFqelDMLj8WA0GqHRaOBwOOgwq5aWFphMJhSLRTidTgwMDGD//v1U3raS7TbXnKv2udogaW4iKVoumxmLxTA4OEiHVS20sruFDBkUaTQaq1pgAACVKid9E62trdDpdLRevr+/H+FwGP39/RgdHUUmk4FOp4NAIIBSqYREIkFTUxPMZjM6OjpgNBohEAgwOjqKYrGI4eFh+P1+nDx5El6vF7FYjDZ1F4tFKnlNMkVyuRwulwuJRALJZBIKhYJOcyeQLB3ZIFQDuVzurEGbpIzqXIp+1QI5F4VCAYVCgXw+TyX2p/PM4vF40Ol0UKlUaGtrw6pVq6g8OmM8RAVSrVYjGo0ikUhQ4QYyzJgMQKyGDCKhUCjQDIPP50MqlUIulzvnnoE4XqTU3eFwQK/X0z5A0ntKhAzIfK/y65dUpMxns/2CdDb4fD7UajVUKhWWLl2K9evXw2g0YuXKlbRGXKlU0n8EUvMLjK8XJwMBK1U15ExJQrVajY6ODuh0unPONDgfAoEAS5cuxdKlS9HZ2Yn3vve9dPqzUCjEqVOnsH//fhw8eBCPP/44bb5kMM5EJBJRXW8C2Zy43W7s2rULHo8H4XD4vA9SxnhI861EIqmqBXYiyBBOh8OBbdu2oa2tDTweD/l8HiMjI3jmmWfg9Xpx9OhReL1e2lNmMpmwbt066PV6qjtP5G7Hxsbw0ksvwePx0LKCaDRKp4qTaB8ZBkhmdfD5fBw7dgwCgQDLli3DsmXLYLVasWbNGsjlcgCn15bdu3fjpZdeQiQSqZrp7SQTKZPJaInsZIfZVTpEtMFqtaK+vh6RSAR9fX20F2iqDodAIEBzczNaWlqwZs0aXH/99VCpVFCr1bN0BpVLMBhENBpFoVCA0+mk0XoSDL3sssswMjKC4eHhqrnXgNON8YcOHaLKUIVC4bwBSj6fT8unWlpa0NXVhcbGRsjlcnAch3A4TMchvP322zSYUs5CCIIuCGeDbKjLo6Vms5n2Y9jtduj1ehqVVygU41SHiFQdkcXNZDLw+/3weDzw+/1V05wlEAjooqrVaqHX62mDFal/JI5XeeM3mcQrFovhcDhQU1ND5SGJHYkiTiAQQDAYRCQSqWo1pdmiXLKv2hZqovJGJjMTR7/8Acbj8Wi/FBFuYI7G5Knm8oEzkUqlMJvNsFgsUKvVkMvlVPwCeNcWSqUSer0eJpMJDocDJpMJdrsdOp0OJpMJOp2ONs9Ho1H4fD643W74fD6MjY1Rec0zr0Oy+JINZTabBY/HQzAYhMfjQalUgsViofX2HMfB4/EgEAhQFbFqgNyv0WiUKj2Sa5AgEAioGAYZklipynJkPSQiMmKxGHa7HbW1tRCLxRgZGaHO6GQ/jzz3JRIJjEYj7HY7zGYznepMZj8B43sVFvOzsVQqIZfLUXn0RCIBtVo9rjKlGgNVRLZ/sggEAioWQp6DZG5QLpeD3++nJaMLuVx5QTgbRPlDq9Wivb0dWq0Wa9euRX19PcxmM30IkImJZ85RyOfz8Pl8SCaTOHToEE2bHz16lE7drUTO9EbJRcdxHN773vfCarVicHAQvb29yOfzVAKSTHOuqalBW1sbZDIZzGYzpFIpHTBG9KtJE30ikcDevXtx+PBhuFyuqnHQ5hJSf06aSsmQsWpBLpdj27ZtaG1txbp166hTe+aGIx6PY3BwkE7HZkwevV6PmpoaNDc3V/0QNZvNhquuugo2m40ODyVqNCaTCZdffjl1FIrFIgwGA0wmE1VCE4lEdJbG0NAQ3n77bbhcLvzlL3+B1+tFJBKhw/kmu2HhOA5OpxORSAQSiQR79+4d16RK+gCJelM1QMQsPB4P3vOe90Amk1Hnj6BQKLB27VokEgl0d3fjyJEjSKfTMya/PpcolUrY7XZotVrap9Pc3IzGxka88847cDqdVKb7Qv/GxMFQKBRoamqCTqfD+973Pqxfvx56vX5cUAYA/UxSO89KTE9H+omAiFAohEKhQG9vL55++mmMjY0tejECjUaD9evXw2KxYOvWrVixYgVEIhEdQvzb3/4Wg4ODOH78+Hwf6nmZd2eDROLJA662thYmk4k2DKpUKuh0unFNegQSHSgUCnRQ1sDAAI4cOQKPx4OjR49WzWaHTIgkU29ra2tpRicQCCCbzdJoqNFohNFoRFNTE1asWAGVSoWamhrI5XKaGSKKQaRGPBKJwOl0YnR0FKFQaNE/AKcL0QgnQ/6qCaFQiLq6OlpiUl5qUe4UZ7NZ2pBWLRuyuUIqlcJgMECr1ValEks5crkcdXV1sFqt49R6iEJVTU0NCoUCHWxIsrmE8kgxefY7nU4qITndyHEymawata/JQM5XrVYjHo8jnU6PczSA05tqi8VCB3jK5XIqlVtpiMVimhVbunQpGhsb6Vc8HodCoaDX3IWe4WQoJBmGazKZqGyzUCiESCSiry3vFSIlfdU2sG46FAoFRCIRhEIhpFIp+j3p2Vrs6pdEgdXhcKC2thYOhwPpdJoqV504cQLd3d0LXm11zp0NUipFovQSiQRLlixBV1cXdDod2tvbqWScVquFWCw+a4p2NBqljX0DAwOIxWI4deoUwuEwBgcHaZNftaS5y+HxeBCLxWhtbYXJZKLqKURHnsfjweFwQKvVwmAw0HkZGo0GAoGAOhmhUAgulwvBYBB79uyBz+eD0+mkKkpskzh9zuy1qXTI9WMwGFBfX4+mpia66Suf/TI8PIyxsTH09PTQaeHMaZ0aJGpP+qiqmWKxSIemyeVy2vAInJbmNplMKJVKdNOXTqfR399PhxuSBstoNIqhoSEcO3aMNpou9hKV6VAoFBAOhxEIBCCXy8f1GZQ7dpWOxWLBe9/7XpjNZnR2dtKSbQDQarVYs2YN6urq6DT580GGcKrVarS1tUGj0aClpWXcfIh8Pk/L+UZGRuDxeHDixAnaT1TtvVnTgawri3n9kEgkdP5PZ2cnamtr6XVKlPX6+/sRCAQQj8cXfDXKvDgbRD2KKEpt3rwZO3bsgEqlopvjc23UOI5DJBKB3+/HiRMn8Morr2BsbAyHDh2iEflqvkCJs9HS0gKO49De3k4dK1JGZTKZoFKpztrwlkolBINB+P1+qlvv8Xjw/PPP01KzalhM5gtiu2pxMgikDtlisaCurg6NjY1UXaVUKtH5A729vejt7UVfXx+diF3N9+JsIJFIqJpNtWc2CoUCUqkUkskkXUTLpX/PLCMj0U7SDBmLxXDkyBE4nU7E43E6bZdFi6cHcTaCwSAsFgtVpCKcb9J4JWE2m7F161Y6I4jUvwOnS1bWrFlDh5BeKGBZU1NDKzDq6+vPyggB75Z5h0Ih7Nu3D0eOHIHL5aKOM2M8pKdlsWd+xGIx1Go1LBYLli1bhrq6Omi1WnAch0AggMOHD2NkZARjY2MV0V87684GiUoRiUMyhl4ikdCIAJG0lclk41KXRFWK1O0SfXmSJh8cHITb7abRgWq6MEulEk2TRaNRxGIxiMXis8pziO5ysViktaEkqkLKrAqFAp0ceezYMQwNDdHMBkldVovd5huRSETLEaolMk30vUl9skQioedGmvzS6TScTidOnToFj8dDBRsYU6O8uZ6UqVTrvRkOh/HOO+/AZDIhGAxCo9HQ+RekPJb0laXTabjdboyMjCAej1OJx7GxMSQSCZqNrfSN8HxCNsUymQx1dXXzfTizBukLImXH5Q6VTCaj4gO5XO6CGX6j0QidTgeZTEZlwMsHQJI1/OjRo/D7/TTAd6GZCosV0rxPZLEFAgGi0eiiLKWyWq1YtmwZWlpaqJhPIpFALBbDyMgI+vr64PV6K6ZVYFZ3Q6RhViwWY9OmTXjPe94DtVoNh8NB0+SkPpJsogUCwbiISiwWg9PphN/vx+uvvw6fz4fe3l44nU5kMhnE43G64ammRaZQKMDj8dBm28HBQWi1WtTU1IybKVK+OJMvEhElkcNoNIpDhw4hEAjg2Wefxb59+2jtaLFYZPK2M4hCoUBDQwPt3agGSJRZLpdTqWTi8BaLRcRiMYRCIezatQvPPfccVRippvtxrohGo+jr64NYLEYul6PPwWq0ZU9PD37xi19ApVJh+fLlMJlMMJvNMJlMyOfzSCQSSKVSOHDgAFwuF1KpFHXCSHCJPMOqPaM9FyQSCRw8eBButxuNjY3o6OiY70Oac3Q6HTZu3HjOydZnIhAIqFAGCcBkMhlkMhl4PB709PTA5XLhT3/6E4aHh5FKpahjvBg30OejfGidxWLB8uXL4fP5cPTo0aqSvp0MPB4Pa9euxac//Wk6qFQgEODo0aNwOp14/fXX8ec//xnpdBqpVGq+D3dSzKizUT5invRlqNVqSCQS2Gw2OBwO6mxIpVLaaEYorwvNZrM0rev1euHz+eByueDz+eDxeODz+ar6hiU24PP5CIfDVCdeo9FAKpWOiy6fmerO5XIoFAp0uEs4HIbb7aZywD6fb75Oq+ohTfzlNbvVAIkElk+3Bsb3bCSTyUW3KMw0ZNBc+RAmcn+X278aSvWIRHkikYDRaEQ2mx2n0kOcDafTCafTiWw2S53YauzHm2+KxSLi8TikUil15kgWoBquN0I+n0csFoNcLqdCDETlciK1yzMpl64l33Mch0wmg1KphEgkgkQiAb/fD7fbTSX4A4HAuFkvjNOQORJkkDMppaxWCfnJIhaLoVQqaT8bcFrMIRQKIRwOU6nqSmHGnA0ej0dVVOx2O1auXAmVSgW73Q6lUonGxkbU19dTz5VMRCyHLCK5XA7Hjh2D0+nEyZMn8dZbbyEej8PlctEu/GrLZJwJKaNKp9PYvXs3XC4XbDYb1q1bB4PBgDVr1sDhcJz1vnw+j+PHj8PlcmFoaAjHjx+n2ZFEIgGv1zsPZ7M4qKamcMb8QCRIdTodfD4fDAYDVCoVZDIZJBIJDAYDSqUSdUYqmVKpRGVtjx8/DrFYTAMpZC0oFAoIhUI0Gsw2arNHPp+nG2KPxwOPx0NnOlXTc21kZAR/+MMfYDQasW7dOthsNjQ0NKChoYG+5sx+lXI4jqOqXeSaJGV+yWQSJ06cwPDwMAKBAM1meDyeih0uPNvI5XJ0dHSgvb0der0ehUKB7lUCgUDFP+emAxmO+9Zbb9GJ4WQGzOHDh+F0OisukzujmQ3Sj1FbW4vVq1dDr9ejoaEBGo2GDiU5kzOlbIvFInK5HNxuN3p7e3HkyBG89dZbdMBLpRl4upAMBQAMDQ1hbGwMtbW1UKlUsFgsaGtro7YoL7UoFArw+Xzo7+/H8ePH8dZbbyGRSMDn81WUF8xYmJAoXjVtPhYS+XyeRl7JoCupVEqjfgqFAslksiqax0lWrFgswu/3z/fhLHrIYEShUIhYLIZYLAYej0fX7WrpHyI9FHq9Hnq9Hvl8HjqdDqVSaVw2+lznWiqV6CA6MoSSzPOKRCJ01lckEoHb7V40e5bpIhKJqLIm6T8l/S5kTs5iJBaLYXR0FEKhELlcDnw+H5FIBF6vF7FYrOLuxRnNbJhMJrS0tKC1tRWtra1Qq9XQ6/W0bwN4t0wgl8shEAjQ5mQSLSBKNt3d3fB6vXC5XFQVotKMO1Pkcjka8dy/fz9UKhX8fj+MRuNZJVSFQoHKofl8PgSDwUk1ujGmTj6fh9vtpg2V1Xp95vN5RCIRiMViOp1ZpVJBo9HM96FVLalUCkePHkUqlcKqVaugUqlgNptxySWXwOv1IpfLwefzIZVKMUUbxoxAsumFQgF///vf4fP5IJVKxykbFgoF7N69G5FIpGLV5rLZLMbGxpBKpbB371709PQgEAjA7/dDr9ejtbUVEomESjFHIhEEg0EquZzJZGgAsFzAJhAIUHlbInVbrWvCTEKeZTqdbtwcMFJGulht6PF4sG/fPvT19cHj8UAoFGL//v10YG6l3Xsz6mxYLBZ0dHSgra0NHR0dVB6zfEOcz+cRDAaRSCRw7NgxeL1e6my4XC68+OKLCIVC1CEh9ZGLmVwuh1wuh0QiAbfbDR6PhxdffPGc0WVST1oNMoULmVwuh9HRUZRKJXR1dQGozkbeXC6HUCgEHo8Hl8uFkZER2n/FmB0SiQTefvtteDweWK1WtLS0wGazYevWrXC5XDSNHggEmLPBmBFIz0YikcDzzz+PF198EcDZUt6VXs6WyWTg8/nA4/HgdrshFAoxMjKC4eFhtLa2wmg0QqvV0j61YDCIkydPIhwO48SJE4hGo7RRN51OU5GaM3s4qnEtmA1IJYtUKoXZbIZWq0UsFqO9p4vVjqOjo3C5XACA//7v/waPxxunuFdpdpnRMqpwOEznNRAp2zNJp9NUwravrw+hUIgajgwnSafT1KtlvEv5BcZsM/8UCgUEg0Hw+XwcP34ccrkcXq8XPT098Pv9VaPyRUr6kskkBgYGIBaL4fF44HQ6adYjGo0iGAzO96FWDfl8HqFQCEKhEKFQCNFoFMViEVqtFtlslk7XzuVyiEQiFbn4MBYm5eVt1Qq5X/L5PEqlEsLhMFwuF3g8Hg4cOACVSkVLF51OJ4aGhmhZSzweRzgcpllFVp58cWQyGQwODiKbzcLr9UKlUmFgYACpVKpis2czAbkPgerY782Ys1EsFnHkyBH09vZCLBZDLpdPqMZDZj+UNwcC75YApVKpRT85klEZpNNpHD16FEKhEAcPHoRCoUA+n0c6nUahUEAsFpvvQ5wR8vk84vE4UqkUfv/739NFmKi2EIUV5mzMHOl0GidPnoTT6URHRwedctzU1ASz2UzLKp999ll4vV7a68ZgMCYP2WsMDAzA5XJBLBbjueeeo1kNAFQhjdxjpKdgMUfdZ5KxsTHs3LmTqk/x+Xwq2c/2gtXDjGY2kskkksnkTH4kg7FgKZVK9HqPRqPzfDSzC4l0BgKB+T6URUGxWEQymQTHcQgGg/D5fNS5E4vFMBqNAACVSgWhUEib9tnmh8GYGkS2lpQjsmfc3FIoFDA2Njbfh8GYZapjxDGDwWBUEWRQaalUwq5duzA4OIj29nZcfvnlUKlUsFqtsNvt2Lt3L/R6PVKpVNXLgTMYDAajMmHOBoPBYCxAyJyJnp4eOifHarXCZrOhtbUVer0eBoMBCoVi3PA/BoPBYDAWEszZYDAYjAUMmZbt8XiwZ88eaDQajI6OQqFQYO/evQiHw0xmk8FgMBgLFuZsMBgMxgKGZDj6+/sxNDREm1d5PB7y+Tx1RpizwWAwGIyFyKScDbaIjWcq9mC2Gw+z3fRhtpseU7XFQrVdqVSac2UWds1NH2a76cNsN32Y7aZHtawT88FkbHG2Nu0ExOPxiz6YamIq9mC2Gw+z3fRhtpseU7UFs927sGtu+jDbTR9mu+nDbDc92DoxfSZjCx43CZekVCrB7XZDpVIt6iZEjuMQj8dht9snnCEyEcx2p2G2mz7MdtNjOnYDmO0Ads1dDMx204fZbvow200Ptk5Mn6nYblLOBoPBYDAYDAaDwWBMlcm7cQwGg8FgMBgMBoMxBZizwWAwGAwGg8FgMGYF5mwwGAwGg8FgMBiMWYE5GwwGg8FgMBgMBmNWWDDOBo/HwzPPPDPfh1GRMNtNH2a76cNsNz2Y3aYPs930YbabPsx204fZbnpUm90u2tn4xCc+gRtuuGEGDmV++OMf/4j29nZIpVJ0dXXh2WefnbO/Xcm2O378OD7wgQ+goaEBPB4PDzzwwJz+/Uq23W9+8xts2bIFOp0OOp0OV1xxBfbt2zdnf7+SbffUU09h7dq10Gq1UCgUWLlyJR577LE5+duVbLdynnzySfB4vDk9l0q23X/8x3+Ax+ON+5JKpXP29yvZdgAQiUTw+c9/HjabDRKJBG1tbXO2zlay7bZu3XrWdcfj8fD+979/Tv5+JdsOAB544AEsWbIEMpkMtbW1+NKXvoRMJjPrf7eS7ZbP5/Htb38bzc3NkEqlWLFiBZ5//vkZ+exJTRCvVt588018+MMfxve//33s2LEDTzzxBG644QYcPHgQnZ2d8314C5pUKoWmpiZ88IMfxJe+9KX5PpyK4rXXXsOHP/xhbNq0CVKpFD/84Q9x1VVX4fjx43A4HPN9eAsavV6Pb37zm2hvb4dYLMZf/vIXfPKTn4TZbMb27dvn+/AWPENDQ7jrrruwZcuW+T6UikKtVqO7u5t+v1h19adKLpfDlVdeCbPZjJ07d8LhcGB4eBharXa+D23B89RTTyGXy9Hvg8EgVqxYgQ9+8IPzeFSVwRNPPIGvfe1rePjhh7Fp0yb09PTgE5/4BHg8Hn7yk5/M9+EtWO6++2787ne/w29+8xu0t7fjhRdewI033og333wTq1atuqjPnvEyqq1bt+KLX/wivvKVr0Cv18NqteLee+8d95re3l5cdtllkEql6OjowEsvvXTW54yOjuKWW26BVquFXq/H9ddfj6GhIQDAqVOnIJfL8cQTT9DX/+EPf4BMJsOJEycmfaw/+9nPcPXVV+Of/umfsHTpUnznO9/B6tWr8fOf/3xa536xVJLt1q1bhx//+Mf40Ic+BIlEMq3znUkqyXaPP/44Pve5z2HlypVob2/Hv//7v6NUKuHll1+e1rlfLJVku61bt+LGG2/E0qVL0dzcjDvvvBPLly/H7t27p3XuF0Ml2Q0AisUiPvKRj+D//J//g6ampimf70xSabbj8XiwWq30y2KxTPmcZ4pKst3DDz+MUCiEZ555Bps3b0ZDQwMuv/xyrFixYlrnfrFUku3I8ZGvl156CXK5fN6cjUqy3ZtvvonNmzfjtttuQ0NDA6666ip8+MMfntMKAkIl2e2xxx7DN77xDVxzzTVoamrCZz/7WVxzzTW4//77p3Xu5cxKz8YjjzwChUKBvXv34kc/+hG+/e1vU+OVSiXcdNNNEIvF2Lt3L371q1/hq1/96rj35/N5bN++HSqVCrt27cIbb7wBpVKJq6++GrlcDu3t7bjvvvvwuc99DiMjI3A6nfjMZz6DH/7wh+jo6ABwOnrM4/HoP8ZE7NmzB1dcccW4n23fvh179uyZWYNMgUqx3UKkUm2XSqWQz+eh1+tnzBZTpRJtx3EcXn75ZXR3d+Oyyy6bUXtMlkqy27e//W2YzWbcfvvts2KLqVJJtkskEqivr0dtbS2uv/56HD9+fFZsMlkqxXZ//vOfsXHjRnz+85+HxWJBZ2cnvve976FYLM6abS5EpdjuTB566CF86EMfgkKhmDFbTJVKsd2mTZvw9ttvU+diYGAAzz77LK655prZMcwFqBS7ZbPZs0pEZTLZzATzuIvk4x//OHf99dfT7y+//HLu0ksvHfeadevWcV/96lc5juO4F154gRMKhZzL5aK/f+655zgA3NNPP81xHMc99thj3JIlS7hSqURfk81mOZlMxr3wwgv0Z+9///u5LVu2cNu2beOuuuqqca/fu3cvt2TJEs7pdJ7z2EUiEffEE0+M+9kvfvELzmw2T94AF0El266c+vp67qc//elkT3tGqBbbcRzHffazn+Wampq4dDo96fdcDJVuu0gkwikUCk4oFHISiYR76KGHpmyD6VDJdtu1axfncDi4QCAw4bnMNpVsuzfffJN75JFHuHfeeYd77bXXuB07dnBqtZobHR2dli2mSiXbbsmSJZxEIuH+4R/+gTtw4AD35JNPcnq9nrv33nunZYupUsm2K2fv3r0cAG7v3r2TPveLpdJt97Of/YwTiUScUCjkAHCf+cxnpmyD6VDJdvvwhz/MdXR0cD09PVyxWORefPFFTiaTcWKxeFq2KGdWejaWL18+7nubzQa/3w8AOHnyJGpra2G32+nvN27cOO71hw8fRl9fH1Qq1bifZzIZ9Pf30+8ffvhhtLW1gc/n4/jx4+PqaNevX49Tp07N2DnNFcx206cSbfeDH/wATz75JF577bU5bTo9k0qynUqlwqFDh5BIJPDyyy/jf//v/42mpiZs3bp10uc7U1SC3eLxOD72sY/hN7/5DYxG49RPcpaoBNuRv1v+tzdt2oSlS5fi17/+Nb7zne9M8mxnlkqxXalUgtlsxr/9279BIBBgzZo1cLlc+PGPf4x77rlnaic9Q1SK7cp56KGH0NXVhfXr10/6PbNBpdjutddew/e+9z388pe/xIYNG9DX14c777wT3/nOd/Ctb31raic9A1SK3X72s5/hU5/6FNrb28Hj8dDc3IxPfvKTePjhh6d2whMwK86GSCQa9z2Px0OpVJr0+xOJBNasWYPHH3/8rN+ZTCb6/4cPH0YymQSfz4fH44HNZpvScVqtVvh8vnE/8/l8sFqtU/qcmaRSbLcQqTTb3XffffjBD36Av/3tb2c9jOaaSrIdn89HS0sLAGDlypU4efIkvv/978+Ls1EJduvv78fQ0BCuvfZa+jNyjEKhEN3d3Whubp70580UlWC7iRCJRFi1ahX6+vou6nMu9hjKWai2s9lsEIlEEAgE9GdLly6F1+tFLpeDWCye0ufNBJViO0IymcSTTz6Jb3/729N6/0xSKbb71re+hY997GO44447AABdXV1IJpP49Kc/jW9+85vg8+d26kOl2M1kMuGZZ55BJpNBMBiE3W7H1772tRnp8ZtzNaqlS5didHR0nCHeeuutca9ZvXo1fv/738NsNkOtVk/4OaFQCJ/4xCfwzW9+Ex6PBx/5yEdw8OBByGSySR/Lxo0b8fLLL+N//a//RX/20ksvneVVLhQWku0qjYVmux/96Ef47ne/ixdeeAFr166d3knNEQvNdmdSKpWQzWYv6jNmg4Vit/b2dhw9enTcz+6++27E43H87Gc/Q21t7TTObnZZKLabiGKxiKNHj85b/feFWEi227x5M5544gmUSiW6wevp6YHNZpsXR+NCLCTbEf74xz8im83iox/96NRPaA5ZSLZLpVJnORTE4eU4biqnNessJLsRpFIpHA4H8vk8/vSnP+GWW26Z+omdwZwP9bviiivQ1taGj3/84zh8+DB27dqFb37zm+Ne85GPfARGoxHXX389du3ahcHBQbz22mv44he/CKfTCQD4zGc+g9raWtx99934yU9+gmKxiLvuuot+xr59+9De3g6Xy3XOY7nzzjvx/PPP4/7778epU6dw77334sCBA/jCF74wOyd/kSwk2+VyORw6dAiHDh1CLpeDy+XCoUOH5jXadz4Wku1++MMf4lvf+hYefvhhNDQ0wOv1wuv1IpFIzM7JXyQLyXbf//738dJLL2FgYAAnT57E/fffj8cee2xBLsQLxW5SqRSdnZ3jvrRaLVQqFTo7Oxfkpm+h2A443Vj/4osvYmBgAAcPHsRHP/pRDA8P06jpQmMh2e6zn/0sQqEQ7rzzTvT09OCvf/0rvve97+Hzn//87Jz8RbKQbEd46KGHcMMNN8BgMMzsyc4wC8l21157LR588EE8+eSTGBwcxEsvvYRvfetbuPbaa8dl2RYCC8lue/fuxVNPPYWBgQHs2rULV199NUqlEr7yla9c9HnOubPB5/Px9NNPI51OY/369bjjjjvw3e9+d9xr5HI5/v73v6Ourg433XQTli5dittvvx2ZTAZqtRqPPvoonn32WTz22GMQCoVQKBRUG/i5554DcNqz7e7uRj6fP+exbNq0CU888QT+7d/+DStWrMDOnTvxzDPPLNgZGwvJdm63G6tWrcKqVavg8Xhw3333YdWqVQt2AV5ItnvwwQeRy+Vw8803w2az0a/77rtvVm0wXRaS7ZLJJD73uc9h2bJl2Lx5M/70pz/hd7/73YK87haS3SqNhWS7cDiMT33qU1i6dCmuueYaxGIxvPnmm1TlZaGxkGxXW1uLF154Afv378fy5cvxxS9+EXfeeSe+9rWvzaoNpstCsh0AdHd3Y/fu3QtGQe58LCTb3X333fjyl7+Mu+++Gx0dHbj99tuxfft2/PrXv55VG0yHhWS3TCZDbXbjjTfC4XBg9+7dMzIXh8cttJwSg8FgMBgMBoPBqArmPLPBYDAYDAaDwWAwFgfM2WAwGAwGg8FgMBizAnM2GAwGg8FgMBgMxqzAnA0Gg8FgMBgMBoMxKzBng8FgMBgMBoPBYMwKzNlgMBgMBoPBYDAYswJzNhgMBoPBYDAYDMaswJwNBoPBYDAYDAaDMSswZ4PBYDAYDAaDwWDMCszZYDAYDAaDwWAwGLMCczYYDAaDwWAwGAzGrPD/AF6jOuY3OPk0AAAAAElFTkSuQmCC\n"
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Architecture"
      ],
      "metadata": {
        "id": "J344tO6PyseE"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import torch.nn as nn\n",
        "import torch.nn.functional as F\n",
        "\n",
        "# define the NN architecture\n",
        "class Autoencoder(nn.Module):\n",
        "    def __init__(self, encoding_dim):\n",
        "        super(Autoencoder, self).__init__()\n",
        "        ## encoder ##\n",
        "        self.fc1 = nn.Linear(28*28, encoding_dim)\n",
        "        self.fc2 = nn.Linear(encoding_dim, 28*28)\n",
        "        ## decoder ##\n",
        "\n",
        "\n",
        "    def forward(self, x):\n",
        "        # define feedforward behavior\n",
        "        # and scale the *output* layer with a sigmoid activation function\n",
        "        x = F.relu(self.fc1(x))\n",
        "        x = F.sigmoid(self.fc2(x))\n",
        "        return x\n"
      ],
      "metadata": {
        "id": "jIlrduzDvYTH"
      },
      "execution_count": 24,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Train"
      ],
      "metadata": {
        "id": "48Oy2E_9yvfO"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Create the autoencoder model and optimizer\n",
        "encoding_dim = 4\n",
        "model = Autoencoder(encoding_dim)\n",
        "\n",
        "optimizer = torch.optim.Adam(model.parameters(), lr=0.001)\n",
        "\n",
        "# Define the loss function\n",
        "criterion = nn.MSELoss()\n",
        "\n",
        "# Set the device to GPU if available, otherwise use CPU\n",
        "device='cuda'\n",
        "model.to(device)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "vr33jaCevczo",
        "outputId": "ffbe5dc0-245f-4946-d851-2092841d0f2f"
      },
      "execution_count": 28,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "Autoencoder(\n",
              "  (fc1): Linear(in_features=784, out_features=4, bias=True)\n",
              "  (fc2): Linear(in_features=4, out_features=784, bias=True)\n",
              ")"
            ]
          },
          "metadata": {},
          "execution_count": 28
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# number of epochs to train the model\n",
        "n_epochs = 20\n",
        "\n",
        "for epoch in range(1, n_epochs+1):\n",
        "    # monitor training loss\n",
        "    train_loss = 0.0\n",
        "\n",
        "    ###################\n",
        "    # train the model #\n",
        "    ###################\n",
        "    for images in train_loader:\n",
        "\n",
        "        ### training code ###\n",
        "        images = images.to(device)\n",
        "        images = images.view(images.shape[0], -1)\n",
        "        optimizer.zero_grad()\n",
        "        outputs = model(images)\n",
        "        loss = criterion(outputs, images)\n",
        "        loss.backward()\n",
        "        optimizer.step()\n",
        "        # update running training loss\n",
        "        train_loss += loss.item()*images.size(0)\n",
        "\n",
        "    # print avg training statistics\n",
        "    train_loss = train_loss/len(train_loader)\n",
        "    print('Epoch: {} \\tTraining Loss: {:.6f}'.format(\n",
        "        epoch,\n",
        "        train_loss\n",
        "        ))"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "jubr913gxWbu",
        "outputId": "f4349d8e-35f5-4af9-a7ed-c7818e7eec31"
      },
      "execution_count": 29,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Epoch: 1 \tTraining Loss: 1.490595\n",
            "Epoch: 2 \tTraining Loss: 1.215091\n",
            "Epoch: 3 \tTraining Loss: 1.154939\n",
            "Epoch: 4 \tTraining Loss: 1.132552\n",
            "Epoch: 5 \tTraining Loss: 1.121539\n",
            "Epoch: 6 \tTraining Loss: 1.116499\n",
            "Epoch: 7 \tTraining Loss: 1.114284\n",
            "Epoch: 8 \tTraining Loss: 1.113049\n",
            "Epoch: 9 \tTraining Loss: 1.112245\n",
            "Epoch: 10 \tTraining Loss: 1.111732\n",
            "Epoch: 11 \tTraining Loss: 1.111336\n",
            "Epoch: 12 \tTraining Loss: 1.111043\n",
            "Epoch: 13 \tTraining Loss: 1.110823\n",
            "Epoch: 14 \tTraining Loss: 1.110647\n",
            "Epoch: 15 \tTraining Loss: 1.110504\n",
            "Epoch: 16 \tTraining Loss: 1.110394\n",
            "Epoch: 17 \tTraining Loss: 1.110300\n",
            "Epoch: 18 \tTraining Loss: 1.110222\n",
            "Epoch: 19 \tTraining Loss: 1.110153\n",
            "Epoch: 20 \tTraining Loss: 1.110083\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Evaluation"
      ],
      "metadata": {
        "id": "bUwECCKs-wZA"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "encoding_dim = 4"
      ],
      "metadata": {
        "id": "Y7AGvPSsXut3"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import matplotlib.pyplot as plt\n",
        "\n",
        "# obtain one batch of test images\n",
        "dataiter = iter(test_loader)\n",
        "images = next(dataiter).to(device)\n",
        "\n",
        "images_flatten = images.view(images.size(0), -1)\n",
        "# get sample outputs\n",
        "output = model(images_flatten)\n",
        "# prep images for display\n",
        "images = images.cpu().numpy()\n",
        "\n",
        "# output is resized into a batch of images\n",
        "output = output.view(batch_size, 1, 28, 28)\n",
        "# use detach when it's an output that requires_grad\n",
        "output = output.cpu().detach().numpy()\n",
        "\n",
        "# plot the first ten input images and then reconstructed images\n",
        "fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(25,4))\n",
        "\n",
        "# input images on top row, reconstructions on bottom\n",
        "for images, row in zip([images, output], axes):\n",
        "    for img, ax in zip(images, row):\n",
        "        ax.imshow(np.squeeze(img), cmap='gray')\n",
        "        ax.get_xaxis().set_visible(False)\n",
        "        ax.get_yaxis().set_visible(False)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 145
        },
        "id": "2rnx9Kx9d-os",
        "outputId": "867cd8c9-4b58-4f32-ad33-c1233c7b7c3d"
      },
      "execution_count": 27,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 2500x400 with 20 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAB40AAAFICAYAAABEN2iVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWlVJREFUeJzt3XmUXWWd6P1TqUoq8zwPJBAIAcIokwgKylIEQWlQaLjeVtvptrS2A0qrrTZOa2m3tm0r6F3XibYV5wGRiyCDTCJhkiQQCGQOmSpDjalKVb3/vPe+5v390J1KnVTV2Z/Pn991Tp3nVD3P3s8+m3Dqent7eysAAAAAAAAAlNKwgR4AAAAAAAAAAAPHTWMAAAAAAACAEnPTGAAAAAAAAKDE3DQGAAAAAAAAKDE3jQEAAAAAAABKzE1jAAAAAAAAgBJz0xgAAAAAAACgxNw0BgAAAAAAACixhiIP6unpqWzcuLEybty4Sl1dXbXHxBDX29tbaW5ursyePbsybFht/ncJ1gT7w5qAfVkTsC9rAvZlTcC+rAnYlzUB+7ImYF/WBOxrf9ZEoZvGGzdurMybN69fBkd5rFu3rjJ37tyBHkZVWBP0hTUB+7ImYF/WBOzLmoB9WROwL2sC9mVNwL6sCdhXkTVR6D+zGDduXL8MiHKp5XlTy++N6qnleVPL743qqeV5U8vvjeqp5XlTy++N6qnleVPL743qqeV5U8vvjeqp5XlTy++N6qnleVPL743qqeV5U8vvjeopMm8K3TT2z9vpi1qeN7X83qieWp43tfzeqJ5anje1/N6onlqeN7X83qieWp43tfzeqJ5anje1/N6onlqeN7X83qieWp43tfzeqJ5anje1/N6oniLzpjb/h+4AAAAAAAAAFOKmMQAAAAAAAECJuWkMAAAAAAAAUGJuGgMAAAAAAACUmJvGAAAAAAAAACXmpjEAAAAAAABAiblpDAAAAAAAAFBibhoDAAAAAAAAlJibxgAAAAAAAAAl5qYxAAAAAAAAQIm5aQwAAAAAAABQYm4aAwAAAAAAAJRYw0APABhYH/jAB0IbNWpUaMcdd1xol156aaHXuO6660K7//77Q7vhhhsK/TwAAAAAAAD6j39pDAAAAAAAAFBibhoDAAAAAAAAlJibxgAAAAAAAAAl5qYxAAAAAAAAQIk1DPQAgIPnxhtvDO3SSy/t88/r6ekp9Lh3vOMdoZ177rmh3XXXXaGtXbt2/wcGQ9CiRYtCe/LJJ0N7z3veE9qXv/zlqowJ9seYMWNC+/znPx9adk5YunRpaK9//etDW7NmTR9HBwAAAPypSZMmhXbIIYf0+edl1+zvfe97Q3viiSdCW7lyZWiPPfZYn8cC9I1/aQwAAAAAAABQYm4aAwAAAAAAAJSYm8YAAAAAAAAAJeamMQAAAAAAAECJNQz0AIDquPHGG0O79NJL+/zznnzyydD+9//+36EddthhoV144YWhLVy4MLQrr7wytM9+9rNFhwhD2oknnhhaT09PaOvXrz8Yw4H9NmvWrNDe9ra3hZbN6xe96EWhveY1rwntK1/5Sh9HB/3npJNOCu0nP/lJaAsWLDgIoynmla98ZWgrVqwIbd26dQdjONBvsuuMX/ziF6FdddVVoV1//fWhdXd398/AKI3p06eH9oMf/CC0++67L7Svf/3roa1evbpfxlUtEyZMCO2lL31paLfccktoXV1dVRkTANEFF1wQ2kUXXRTa2WefHdrhhx/e59dduXJlaPPnzw+tsbGx0M+rr6/v81iAvvEvjQEAAAAAAABKzE1jAAAAAAAAgBJz0xgAAAAAAACgxNw0BgAAAAAAACixhoEeAHDgTj755NAuvvjiQs9dtmxZaBdddFFo27ZtC62lpSW0ESNGhPbAAw+Edvzxx4c2ZcqUFxwn1LoTTjghtNbW1tB++tOfHoTRwJ83bdq00L797W8PwEjg4HvVq14VWmNj4wCMpLgLL7wwtLe85S2hXX755QdjONAn2bXCV7/61ULP/Y//+I/QvvGNb4TW3t6+/wOjNCZNmhRadj09YcKE0DZv3hza6tWr+2Vc1ZK9j6VLl4aW7Qtf9KIXhfbMM8/0z8CoCePHjw/ts5/9bGhLliwJ7dxzz01/ZldX14EPDAaRhQsXhvaud70rtLe97W2hjRo1KrS6urr+GdifsWjRoqq/BlBd/qUxAAAAAAAAQIm5aQwAAAAAAABQYm4aAwAAAAAAAJSYm8YAAAAAAAAAJdYw0AP4Sy699NLQsi9337hxY2gdHR2hffe73w3t+eefD+2ZZ54pOkQYcLNmzQqtrq4utGXLloX2qle9KrRNmzb1eSzvf//7Qzv66KMLPfdXv/pVn18XhpIlS5aEdtVVV4V2ww03HIzhwJ/17ne/O7TXve51oZ166qn9+rovfelLQxs2LP73jo899lhod999d7+OhfJqaIiXS+eff/4AjOTALF26NLT3ve99oY0ZMya01tbWqowJ9ld2Xpg7d26h537ve98LLfu8AP6PqVOnhnbjjTeGNnny5NC++tWvhvb3f//3/TOwg+ijH/1oaIceemho73jHO0LzmRp/6sorrwzt05/+dGjz5s0r9PPGjx+f9u3bt+/fwGCQy/Y573nPewZgJLknn3wytOyzZ6imww8/PLRsH3fxxReHdvbZZ4fW09MT2vXXXx/avffeG1qt7H/8S2MAAAAAAACAEnPTGAAAAAAAAKDE3DQGAAAAAAAAKDE3jQEAAAAAAABKrGGgB/CXfO5znwttwYIFff5573jHO0Jrbm4ObbB/afv69etDy35XDz300MEYDgPsl7/8ZWjZl8Bnc72pqalfx3L55ZeHNnz48H59DRjqFi9eHNqYMWNCu/HGGw/GcODP+uIXvxhaT09P1V/3r/7qrwq1NWvWhHbZZZeFtnTp0v4ZGKVyzjnnhPbiF784tGwfPphMmjQptKOPPjq00aNHh9ba2lqVMcELaWxsTPtHPvKRPv/MG264IbTe3t4+/zxq30knnRTa2WefXei51157bT+PpvqOOeaY0N7//veH9tOf/jQ01yz8qblz54b2b//2b6FNmTIltKLH5S9/+ctpv+qqq0Lr78+84M+ZOnVqaO95z3tCu/fee0O75ZZbQtuzZ09ou3btCi3br2efMd16662hPfHEE6H9/ve/D+2RRx4Jrb29vdBYoC+WLFkSWnaczz4nytbigTjttNNC27t3b2hPPfVUaPfcc09o2XGhs7Ozj6Prf/6lMQAAAAAAAECJuWkMAAAAAAAAUGJuGgMAAAAAAACUmJvGAAAAAAAAACXWMNAD+Eve9ra3hXbccceFtmLFitCOOuqo0E466aTQzj777NBOP/300NatWxfavHnzQisq+7LsrVu3hjZr1qxCP2/t2rWhPfTQQ/s/MGrCmjVrqv4aV199dWiLFi0q9Nzf//73hRrUog9+8IOhZWvWMZyD7eabbw5t2LDq/zeG27dvD62lpSW0+fPnh3booYeG9uCDD4ZWX1/fx9FRFkuWLAnte9/7XmirVq0K7TOf+UxVxtRfXvva1w70EKCwY489Nu0vetGLCj0/u87+9a9/fUBjorZNnz49tEsuuaTQc//2b/82tOxzncHkmGOOCe22224r9Nyf/vSnoTU3Nx/wmKgdH/jAB0KbPHlyv77GZZddlvbzzjsvtE9/+tOhffnLXw6ts7PzwAdGqYwZMya0W2+9NbTjjz8+tIsvvrjQazzwwAOhZfc2Vq9eHdohhxwS2vr160Pr6ekpNBboL9m9vXe9612hZcf68ePHF3qNDRs2hPa73/0utOeeey607DPbpUuXhnbqqaeGlp3vzj///NAee+yx0K6//vrQBop/aQwAAAAAAABQYm4aAwAAAAAAAJSYm8YAAAAAAAAAJeamMQAAAAAAAECJNQz0AP6S22+/vVDL3HLLLYUeN2nSpNBOOOGE0LIvvD7llFMKvUamo6MjtJUrV4a2YsWK0LIv1V61alWfxwJ/yWte85rQrr322tBGjBgR2pYtW0L7x3/8x9Da2tr6ODoYvBYsWBDaySefHFp2/G9tba3GkKBSqVQqL3vZy0I78sgjQ+vp6SnUirr++utDu/XWW0PbtWtXaC9/+ctD+8hHPlLodf/H//gfoV133XWFnks5fPSjHw1tzJgxoZ133nmhtbS0VGVMfZFdJ2Tr/UDWMVTTJZdcckDPz84p8Of867/+a2j/7b/9t9Cyz4R++MMfVmVM1XTWWWeFNmPGjNC+9a1vhfaf//mf1RgSQ9T8+fNDe/Ob31zouY8//nhomzdvDu3cc88tPJ4JEyaE9oEPfCC07373u6E9//zzhV+H8sk+6/yv//qv0I4//vjQPvOZz4R222239Xksq1evLvS4tWvX9vk1oL987WtfC+3iiy8OberUqYV+XnZf8I9//GNoH/7wh0PL7sVlzjjjjNCyz5O+8Y1vhJbdU8zObV/5yldC+/GPfxza1q1bX2iYVeVfGgMAAAAAAACUmJvGAAAAAAAAACXmpjEAAAAAAABAiblpDAAAAAAAAFBiDQM9gMFgx44dod1xxx2Fnpt9+faBuOSSS0KbNGlSaNkXfN944439Ohb4UyeffHJoI0aMKPTcbG7eddddBzwmGApe9rKXFXrc1q1bqzwSymzBggWhff/73w9t6tSpfX6NNWvWhPbjH/84tH/+538Ora2trc+v8fa3vz20adOmhfa5z30utJEjR4b2H//xH6F1dXUVGh9Dx6WXXhra+eefH9ozzzwT2kMPPVSVMfWXj3zkI6H19PSEduedd4a2c+fOKowI9s9LX/rSwo/t7OwMLVsD8Of09vaGlh03N27cGFo2BwfKqFGjQvvwhz8c2t/93d+Flv0O3vKWt/TPwKhZJ5xwQmjjxo0L7Xe/+11o2XVytjf/67/+69CyeV2pVCoLFy4MbebMmaH9/Oc/D+3Vr351aE1NTenrUNvGjh0b2j/+4z+G9prXvCa0bdu2hfYv//IvoRW9/oXBKjtef/CDHwztrW99a2h1dXWhZZ+JXnfddaF9/vOfD621tfUFx9kXU6ZMCa2+vj60T3ziE6Hdcsstoc2fP79fxnUw+ZfGAAAAAAAAACXmpjEAAAAAAABAiblpDAAAAAAAAFBibhoDAAAAAAAAlFjDQA+gzKZPnx7aV7/61dCGDYv39q+99trQmpqa+mdglN7Pfvaz0F75ylcWeu53vvOd0D760Y8e6JBgyDr22GMLPe5zn/tclUdCmTU0xC3f1KlT+/zz7rrrrtAuv/zy0LZt29bn18isWbMmtM9+9rOhfeELXwht9OjRoWXr7he/+EVoq1atKjpEhojXv/71oWVzJNubDyYLFiwI7corrwytu7s7tE996lOhdXV19cu4oKgzzjijUHshra2toT366KMHMiR4QRdccEFot956a2g7d+4M7brrruvXsbzsZS8L7eyzzw7t9NNPL/TzfvSjHx3okCihxsbG0Hp7e0P74he/WOjndXR0hPbNb34ztGwfV6lUKocddlih12lrawuts7Oz0HOpfa973etCu+aaa0Jbu3ZtaGeddVZou3bt6pdxwWCS7Tmuvvrq0Orq6kLbsGFDaJdcckloDz74YN8G9wLq6+tDmzdvXmjZvY2bb745tEmTJhV63ex3cMMNN4SW7R8Hin9pDAAAAAAAAFBibhoDAAAAAAAAlJibxgAAAAAAAAAl5qYxAAAAAAAAQIk1DPQAyuxd73pXaNOmTQttx44doT311FNVGRPlM2vWrNDOOOOM0BobG0Pbtm1baJ/61KdCa2lp6ePoYGg5/fTTQ3vzm98c2iOPPBLab37zm6qMCQ7UQw89FNpb3vKW0LJzwsHwi1/8IrQrr7wytFNOOeVgDIdBaMKECaFlx+vMdddd19/D6Vdvf/vbQ5s6dWpoK1asCO2OO+6oyphgfxzosXmwr1GGhi996UuhnXPOOaHNnj07tJe+9KWh1dXVhXbRRRf1cXS57DV6e3sLPffZZ58N7cMf/vABj4ny+eu//utCj7vgggtC+9nPftbn1z355JP7/NxKpVJ54IEHQvO5Ff9H9ploJvtcZ/369f09HBiU6uvrQ+vu7i703L1794Z22mmnhXbppZeGtnjx4kKv0d7eHtpRRx1VqGWfbc2YMaPQ62Y2b94cWnb/pKurq8+v0d/8S2MAAAAAAACAEnPTGAAAAAAAAKDE3DQGAAAAAAAAKDE3jQEAAAAAAABKrGGgB1AWL3nJS0K75pprCj33da97XWhPPPHEgQ4JKpVKpfLjH/84tClTphR67n/+53+GtmrVqgMeEwxV5557bmiTJ08O7ZZbbgmto6OjKmOCFzJsWLH/dvC0006r8kgOTF1dXWjZeyv6fj/xiU+E9sY3vnG/x8Xg0djYGNqcOXNC+973vncwhtOvFi5cWOhxrh0YrE4++eTCj925c2do1113XT+OhrJaunRpaMcdd1xoJ5xwQmjnnXdeaFdffXVoW7duDe3b3/52wRFGN9xwQ2iPPfZYoefed999obmOpy+yvdNFF10U2imnnBLa4sWLQzv22GNDu/jii0ObNGlSOp7sPJE99m1ve1to2Zpavnx5+jrUtksvvbTQ47Lj/8c//vHQfv7zn4f26KOP7ve4YDD57W9/G9odd9wRWvY56SGHHBLav//7v4fW29tbaCzd3d2h1dfXF3puZsaMGYUe19PTE9pPf/rT0N797neHtmnTpv0f2EHkXxoDAAAAAAAAlJibxgAAAAAAAAAl5qYxAAAAAAAAQIm5aQwAAAAAAABQYg0DPYCyOP/880MbPnx4aLfffnto999/f1XGRPlcdNFFoZ100kmFnnvnnXeG9vGPf/xAhwQ15fjjjw+tt7c3tB/96EcHYzjwf73zne8MraenZwBG0v8uvPDC0E488cTQsvebtU984hP9Mi4Gj+bm5tAeffTR0I477rjQJk+eHFpTU1O/jGt/TZ8+PbRLL7200HPvueee/h4O7LczzzwztCuuuKLw83ft2hXa+vXrD2hM8EJ27NgR2h133FGofehDH6rKmP7UYYcdFlpdXV1o2fnuAx/4QDWGRAnddtttoWXH6mOPPTa05cuXh5ZdOxd93UqlUnnXu94V2k033RTaEUccEdq73/3u0LJrKGrftGnTQsuuGxsbG0P72Mc+FtpHP/rR0K6//vrQHnjggdAOOeSQ0J555pnQli1bFlrmmGOOCS2772B/xV/S3t4e2sUXXxzaxIkTQ7vmmmtCe8lLXhLa9u3bQ1u7dm1o2VrMPp899dRTQzsQX//610P78Ic/HNrOnTv79XUPBv/SGAAAAAAAAKDE3DQGAAAAAAAAKDE3jQEAAAAAAABKzE1jAAAAAAAAgBJrGOgB1KJRo0aFdt5554XW2dkZ2sc//vHQurq6+mdglMqUKVNCy76Mffjw4YV+3qOPPhpaS0vLfo8LasXMmTNDO+uss0J76qmnQvvpT39alTHBC7nwwgsHegj7bdq0aaEdffTRoWXntqK2bt0amn1X7Wlvbw9t1apVoV1yySWh/epXvwrtC1/4Qv8M7P+1ZMmS0A477LDQFixYEFpvb2+h1+jp6dnvcUF/y65Phg0r/t+x/+Y3v+nP4cCQ9rGPfSy07JzwoQ99KLRs/wN90dTUFNob3vCG0H70ox+FNmHChEKv8eUvfzm0bF5XKpVKR0dHaD/5yU9Cu+aaa0J71ateFdrChQtDy/aQ1JZ/+Zd/Ce1973tfn39ettf5u7/7u0LtYMjOCXfeeWdol19++UEYDbVm586doWXH4P72ne98J7RTTz210HObm5tDy44B3/rWt0Lr7u4u9BqDnX9pDAAAAAAAAFBibhoDAAAAAAAAlJibxgAAAAAAAAAl5qYxAAAAAAAAQIk1DPQAatHVV18d2oknnhjaLbfcEtp9991XlTFRPu9///tDO+WUUwo992c/+1loH//4xw90SFBT3vSmN4U2ffr00H79618fhNFA7fnIRz4S2rve9a4+/7zVq1eH9jd/8zehrV27ts+vwdCR7Wvq6upCu+CCC0L73ve+169j2bZtW2i9vb2hTZ06tc+v8a1vfavPz4X+cumllxZ63M6dO9P+ta99rR9HA0PH61//+tD++3//76E1NzeHtn379qqMCV7IbbfdFlp2/L/iiitCy47/H/vYx0Lr6OgoPJ5PfvKToR111FGhXXTRRYVeO7t+oLZcc801od14442h/dd//VdoDQ3xVsu8efNCGzZs8Pw7vmnTpoWWrdmPfvSjoX3qU5+qyphgf3zwgx8M7fLLL+/zz3vnO98ZWn9/BjDYDZ4jFAAAAAAAAAAHnZvGAAAAAAAAACXmpjEAAAAAAABAiblpDAAAAAAAAFBi8dvZ2S8XXHBBaP/0T/8U2u7du0O79tprqzImqFQqlfe97319fu5VV10VWktLy4EMB2rO/PnzCz1ux44dVR4JDH0333xzaEceeWS/vsby5ctDu+eee/r1NRg6nnzyydDe8IY3hHbCCSeEdvjhh/frWH70ox8Vety3v/3t0K688spCz21vb9+vMcGBmjt3bmhXXHFFoeeuX78+7Q899NABjQmGqle/+tWFHnfTTTeF9vDDD/f3cGC/3XbbbYVaNWR7oBtvvDG0iy66KLRzzjkntMmTJ4fW1NTUx9ExGHV3d4eW7UEWLVpU6Oe94hWvCG348OGhfeITnwjtlFNOKfQa/a2uri60F73oRQMwEtjXW9/61tA++tGPhtbQUOy257Jly0L7yU9+sv8DqzH+pTEAAAAAAABAiblpDAAAAAAAAFBibhoDAAAAAAAAlJibxgAAAAAAAAAlVuwboalUKpXKlClTQvv3f//30Orr60O7+eabQ3vggQf6Z2DQzyZPnhxaV1dXv77Grl27Cr3G8OHDQ5swYUKh15g4cWJo73vf+wo9N9Pd3R3ahz70odDa2tr6/BoMHa95zWsKPe6Xv/xllUcCf1ldXV1ow4YV+28HX/3qVxd63Ne//vXQZs+eXei52Vh6enoKPbeoCy+8sF9/HuXw6KOPFmoHw7PPPtvn5y5ZsiS0J5544kCGA3/WGWecEVrR887Pfvazfh4NDG3ZXqy1tTW0f/3Xfz0Yw4Eh7wc/+EFoF110UWiXXXZZaFdddVVo1157bf8MjJp0++23F3rcCSecENopp5wS2t69e0P75je/Gdr//J//M7R/+Id/CO2KK64oND442E499dTQsr3O2LFjC/28lpaW0N75zneGtmfPnkI/r5b5l8YAAAAAAAAAJeamMQAAAAAAAECJuWkMAAAAAAAAUGJuGgMAAAAAAACUWMNAD2Cwqq+vD+2WW24J7dBDDw1t1apVof3TP/1T/wwMDoLHH3+86q/xwx/+MLRNmzaFNmPGjNAuu+yyqoypL55//vnQPv3pTw/ASKimM888M7SZM2cOwEigb6677rrQPve5zxV67k033RRaT09PoecWfVx/P/f666/v83NhsKqrqyvUMk888UR/Dwf+rClTphR63LZt20L70pe+1N/DgSHjne98Z2jZNfGWLVtCe/jhh6syJqg12XVGdm302te+NrSPf/zjoX3/+98PbeXKlX0cHWV16623hpZ9vtjQEG/nvO1tbwvt8MMPD+3ss8/u2+Aqlcr69ev7/FzoiwsvvDC0cePGFXpua2traBdddFFo99577/4PrAT8S2MAAAAAAACAEnPTGAAAAAAAAKDE3DQGAAAAAAAAKDE3jQEAAAAAAABKLH5zOpVKpVJZuHBhaC960YsKPfd973tfaKtWrTrgMcH+uPnmm0N77WtfOwAjyb3+9a/v15+3d+/e0Hp6ego99xe/+EVoDz30UKHn/u53vyv0OIa2iy++OLT6+vrQHnnkkdDuvvvuqowJ9sdPfvKT0K6++urQpk2bdjCGU8jWrVtDW7FiRWhvf/vbQ9u0aVNVxgQDqbe3t1CDweBVr3pVocetXbs2tF27dvX3cGDIeOc73xladqz/1a9+VejnjRs3LrRJkyaFlq1FKJNHH300tI997GOhff7znw/tM5/5TGhvfOMbQ2tvb+/b4CiF7Fr3Bz/4QWhveMMbCv28c845p9Djuru7Q8vOMddcc02hnwd9ke1XPvjBD/b55333u98N7c477+zzzysb/9IYAAAAAAAAoMTcNAYAAAAAAAAoMTeNAQAAAAAAAErMTWMAAAAAAACAEmsY6AEMBvPnzw/t1ltvLfTcq6++OrSbbrrpgMcEB+qv/uqvQsu+QH748OF9fo1jjjkmtMsuu6zPP+8b3/hGaKtXry703B//+MehPfnkk30eC+U1evTo0M4///xCz/3Rj34UWnd39wGPCQ7UmjVrQrv88stDe93rXhfae97znmoM6S/69Kc/HdpXvvKVARgJDA4jR44s9Lj29vYqjwT2lV1PLFy4sNBzOzo6Quvq6jrgMUGty64xrrzyytDe+973hrZs2bLQ/uZv/qZ/BgY15Dvf+U5o73jHO0LLPn+79tprQ3v88cf7Z2DUpGwP/w//8A+hjR07NrSTTz45tOnTp4eWfcZ6ww03hPaJT3wiHyT0g2wOL1++PLSi9yyyY2u2dijOvzQGAAAAAAAAKDE3jQEAAAAAAABKzE1jAAAAAAAAgBJz0xgAAAAAAACgxBoGegCDwdvf/vbQDjnkkELPveuuu0Lr7e094DFBNXzuc5+r+mtcccUVVX8NqKaurq7QduzYEdovfvGL0L70pS9VZUxQDXfffXehduutt4aW7Z0uvPDC0LJ18vWvfz20urq60JYvXx4alNmb3/zm0Hbu3BnaJz/5yYMwGvj/9PT0hPbQQw+FtmTJktCeeeaZqowJat1b3/rW0P72b/82tP/1v/5XaM4TUMzWrVtDO/fcc0NbvXp1aB/60IdCu/LKK/tlXJTH5s2bQ8uuu9/4xjeGdvrpp4f2z//8z6Ft2bKlj6ODvnn5y18e2ty5c0Mreo/tve99b2gdHR37PzD+L//SGAAAAAAAAKDE3DQGAAAAAAAAKDE3jQEAAAAAAABKzE1jAAAAAAAAgBJrGOgBHGxnnnlmaH//938/ACMBYDDq6uoK7YwzzhiAkcDgcMsttxRqQHX94Q9/CO0LX/hCaHfcccfBGA78X93d3aF95CMfCa23tze0pUuXVmVMMFRdddVVoV177bWh3X333aFdd911oe3YsSO0zs7OPo4OWLt2bWi33XZbaBdddFFoRx99dGjLly/vn4FRajfccEOhBoPBJz/5ydCy64TM5z//+dBc//Y//9IYAAAAAAAAoMTcNAYAAAAAAAAoMTeNAQAAAAAAAErMTWMAAAAAAACAEmsY6AEcbGeddVZoY8eOLfTcVatWhdbS0nLAYwIAAPhzLrzwwoEeAhS2cePG0N7ylrcMwEhgaLnnnntCe/nLXz4AIwGKuvTSS0N77LHHQjv88MNDW758eVXGBDBYTZ48ObS6urrQtmzZEtq//du/VWNI/P/4l8YAAAAAAAAAJeamMQAAAAAAAECJuWkMAAAAAAAAUGJuGgMAAAAAAACUWMNAD2Cweuyxx0J7xSteEVpTU9PBGA4AAAAAAIPI7t27Qzv00EMHYCQAg98XvvCFQu2Tn/xkaJs2barKmNiXf2kMAAAAAAAAUGJuGgMAAAAAAACUmJvGAAAAAAAAACXmpjEAAAAAAABAiTUM9AAOts9+9rOFGgAAAAAAAHDgvvjFLxZqDBz/0hgAAAAAAACgxNw0BgAAAAAAACgxN40BAAAAAAAASqzQTePe3t5qj4MaVMvzppbfG9VTy/Omlt8b1VPL86aW3xvVU8vzppbfG9VTy/Omlt8b1VPL86aW3xvVU8vzppbfG9VTy/Omlt8b1VPL86aW3xvVU2TeFLpp3NzcfMCDoXxqed7U8nujemp53tTye6N6anne1PJ7o3pqed7U8nujemp53tTye6N6anne1PJ7o3pqed7U8nujemp53tTye6N6anne1PJ7o3qKzJu63gK3lnt6eiobN26sjBs3rlJXV9cvg6N29fb2VpqbmyuzZ8+uDBtWm/8HdGuC/WFNwL6sCdiXNQH7siZgX9YE7MuagH1ZE7AvawL2tT9rotBNYwAAAAAAAABqU23+ZxYAAAAAAAAAFOKmMQAAAAAAAECJuWkMAAAAAAAAUGJuGgMAAAAAAACUmJvGAAAAAAAAACXmpjEAAAAAAABAiblpDAAAAAAAAFBibhoDAAAAAAAAlJibxgAAAAAAAAAl5qYxAAAAAAAAQIm5aQwAAAAAAABQYm4aAwAAAAAAAJSYm8YAAAAAAAAAJeamMQAAAAAAAECJuWkMAAAAAAAAUGJuGgMAAAAAAACUmJvGAAAAAAAAACXmpjEAAAAAAABAiblpDAAAAAAAAFBibhoDAAAAAAAAlJibxgAAAAAAAAAl5qYxAAAAAAAAQIm5aQwAAAAAAABQYm4aAwAAAAAAAJRYQ5EH9fT0VDZu3FgZN25cpa6urtpjYojr7e2tNDc3V2bPnl0ZNqw2/7sEa4L9YU3AvqwJ2Jc1AfuyJmBf1gTsy5qAfVkTsC9rAva1P2ui0E3jjRs3VubNm9cvg6M81q1bV5k7d+5AD6MqrAn6wpqAfVkTsC9rAvZlTcC+rAnYlzUB+7ImYF/WBOyryJoo9J9ZjBs3rl8GRLnU8ryp5fdG9dTyvKnl90b11PK8qeX3RvXU8ryp5fdG9dTyvKnl90b11PK8qeX3RvXU8ryp5fdG9dTyvKnl90b11PK8qeX3RvUUmTeFbhr75+30RS3Pm1p+b1RPLc+bWn5vVE8tz5tafm9UTy3Pm1p+b1RPLc+bWn5vVE8tz5tafm9UTy3Pm1p+b1RPLc+bWn5vVE8tz5tafm9UT5F5U5v/Q3cAAAAAAAAACnHTGAAAAAAAAKDE3DQGAAAAAAAAKDE3jQEAAAAAAABKzE1jAAAAAAAAgBJz0xgAAAAAAACgxNw0BgAAAAAAACixhoEeADD41NXVFWoNDfEQMn78+NCmT58eWltbW2irV68uOEKonmyu97dhw+J/s9Xb2xtaT09P1ccCg0G2JoYPHx7anj17DsZw4M/K5mt9fX1oB3I+yc4JWdu7d2+fXwMAYDAp+lnU/jw/093dXfhnwkAquiay65OiraOjo4+jA2qVf2kMAAAAAAAAUGJuGgMAAAAAAACUmJvGAAAAAAAAACXmpjEAAAAAAABAiTUM9ACAA1dfXx/amDFjQhs3blxodXV1oTU2NoY2duzY0GbOnBna1KlTQxs/fnxonZ2doW3cuDG0devWhbZt27bQ2traQmttbQ2tu7s7NMorm/8H0jK9vb2FHpet46xlrztsWPxvwLLH9fT0hLZnz55C44O+yOZhQ0Pcfo4ePTq07DyWHeuzlh3rs7WYrQnKq+ixPpvD2fG66LG56Nzcu3dvn38eHGxF90kH63UOZH+XrUfXFAC5AzneFt077c85JjuGuy7gYDqQNZFdYxS9FhkxYkRo2RobPnx4aNnnREWvMbq6ugo9Dhi8/EtjAAAAAAAAgBJz0xgAAAAAAACgxNw0BgAAAAAAACgxN40BAAAAAAAASix+czowqM2ZMye0Qw89NLTFixcXatnPmzt3bmhTp04NbeLEiaENHz48tJ6entCam5tDW7t2bWhLly4N7d577w3tj3/8Y2hbt24NbdeuXaFRDsOGxf9OKmv19fWFWkNDPIWOGDEitMbGxtCydVJUV1dXaHv37g2ts7Ozz4/r7e3t4+gY6urq6vr8uGxNjBkzJrQpU6aElp1jsp/X1tYWWlNTU2jZOSZ7brYmsjVGOWTzOjtPFF0nRc872T6pu7s7tOzYXHQsjuv0l2zOFV07Rfdd2X6qUsn3T0X3aNmaKrqnylpra2s6RjhQRY/rGcd6Draix/qix//s+J1dT2c/r1LJr2337NmTPraIA1lT1mM5Hcg+qehnTNk1dtaytZPtaTo6OkJrb28PLVtL2V4qe28Hsg5hKKmV63P/0hgAAAAAAACgxNw0BgAAAAAAACgxN40BAAAAAAAASsxNYwAAAAAAAIASi9+wzqCTfYF29qXyWRs+fHho2ZfZD/Yv3y6rOXPmFGpHHXVUaCeeeGJoCxcuDG3WrFmhTZo0KbRx48aFNnbs2NDq6+tD6+npCS2bm83NzYVeY/To0aGNHDkytIaGeIgbNWpUaNmaYGjLjofZfMhaNoezn5c9LpvX2ZwbM2ZMoceNGDEitLa2ttCyOdzS0lLoudn7yJ67d+/e0Bjasv1F0ZbNzYkTJ4Z2yimnhHbWWWcVeu66detCW716dWhbt24NbcuWLaFt3749tOy8k831Xbt2hcbQVvQ8kc317Fiftez4mu25Ozo6Qsvm4YGs2aJ7/aI/zzmh9hzINWfRvVPRNTZ+/Ph0jFnPzh/Z9cOePXtCy84BTU1Noe3evTu0bNzZ47q7u0OjtmRrp+jj+vu4PlCf62TrvaurawBGQn/J5lx2rM+OhdlnM42NjaFl17/Z8Ts7zmefMVUqxa8Bsr1XNmez1zmQPZX9U+0runaK7omyzz8nT54cWrZOstfN9kPZ3O/s7Awt+9wpa9lrZO9jx44docFgUHQdF/0MIHtctiY2bNhQdIhV518aAwAAAAAAAJSYm8YAAAAAAAAAJeamMQAAAAAAAECJuWkMAAAAAAAAUGLxW9d5QdmXYGct+zL77Auvs8dlP6+oYcPifwOQffl29rq7d+/u8+tSPa2traHt3LkztDVr1oSW/Z2z586ZMye06dOnhzZ79uzQZsyYUeh129raQsvG/PDDD4f2wAMPhLZ8+fLQtm7dGtqePXtC6+3tDS1bn11dXaEx8A7kOJwdD7Pn9vT0FGpFxzJixIjQpk6dGtrEiRND27t3b2jZvO7o6Cj0uOznZUaNGhVad3d3aNnaZujIjodF5/DChQtDu+KKK0I7//zzQ5s2bVpo2XxdtmxZaNlaLLrXKXqsaGlpCS1bO9k5moFX9O+czesxY8aElh2bsz3RlClTQsvm5vbt20PbsGFDaM3NzaEV3ddkrbOzM7Rsr1P052XXHdn6ZHDK1kk2X7OW/e2zn5c9Lttzjx07NrTsPFGpVCpHHHFEaNm1TCa79siugbPjfdF9YHYMydZt1hhYRff1RT9zyfbSEyZMCC27JsjmUbYPz47NRedbe3t7aNl5J7vGKLpGMq6xB6dsXjc2NoaWzc3sGJ7N9blz54Z2yCGHhLZo0aLQZs6cGdqOHTtCq1Qqleeeey60J554IrS1a9eGtm3bttCy64JsHhddA9nxIlvfDA1Fzx3Z33306NGhZfufbO+TraeRI0eGlp0nsrWTXddmx/9sjWQ/L/sdZNci2THFNTZ9kZ3Hss8AsnPW+PHjC7Xsc4Gi6y7bi2VrInsf69atC+1g8C+NAQAAAAAAAErMTWMAAAAAAACAEnPTGAAAAAAAAKDE3DQGAAAAAAAAKLH4jdBDVNEvmh8+fHho2ZdgT5gwIbTp06eHln35/GGHHRbaqFGjQsu+3Hrnzp2hZV80v3nz5tC2bt0a2vbt20PLZL+D9vb20Lq7uwv9PPrH7t27Q8u+KD2bN88++2xo2Ze2Z18Mn33h+5w5c0KbN29eaJMmTQotW5/ZHF65cmVojz32WGjZXO/o6AjtQOZrtj57enr6/PPoH9lxPZvDWSuq6N+5t7c3tGx82ZpYtGhRaDNmzAht165doWXH9ba2ttBaW1tDy9ZE0fNntiZGjx5daCwMHSNGjAgtO9ZfdtlloZ133nmhzZw5s9DrZue79evXh7Zhw4bQNm7cGFo2r7NzYLbXydZdtnaydWKfNPCyvf6YMWNCmzZtWmhHHHFEaGeddVZo2bzOjofZHH7kkUdCy/YwI0eODC07DmfXGNn8z47N2TVGtqfcs2dPaEXPJ9m5koOr6DVx1jIH8nfOnpvt2bK9U6VSqSxcuDC0+fPnFxpPU1NTaC0tLaFl54BsDRTdB2a/1+y52TUe1ZH9nbL9T3Yczj4nOvHEE0NbvHhxaEcddVSh19ixY0ehlsnWWHaeyNbDU089FdqKFStCy/Zi2XXH3r17Q3ONPThl83DKlCmFWnYNm62JbN+1YMGC0LI1tj/Hx+ycMm7cuNCy65vss6fVq1eH1tzcHFo2xuxYnzX7p6Eh+ztlLTvvT506NbTsfsJxxx0XWrb3ya47sr15dmzO1kh2TyDbI2XvLft52ViKrpHs52XnE4a2otcE2Tnm2GOPDe2YY44JLVtj2f2Orq6u0LI1ln2eVPR+WrbHuuuuu0LLrs+zMWefn/U3/9IYAAAAAAAAoMTcNAYAAAAAAAAoMTeNAQAAAAAAAErMTWMAAAAAAACAEovfMH2QNDY2hpZ9sXP2hdfZF0+PGTOm0M/LWvbF2C95yUtCW7JkSWiTJk0KLdPR0RFa9qXy2eO2bNkS2u9///vQHnzwwdCyL73Pvnx+z549ofX09ITGwZX9Ddra2kLLvmR9586doT3//POhjRgxIrRsfa5evTq0bC2OGjWq0OMy69evD23Hjh2hZb+D7u7u0Hp7ewu9bl1dXaHHcXBlc7O+vj60bL4OGxb/m6i9e/cWatlcygwfPrzQWObNmxfaaaedFtrkyZNDe+6550J78sknQ8veR3Zcz95b9rvK1nH2fjPZ+mRwyo59o0ePDu2MM84I7eyzzw7t0EMPDS1bE1u3bg3t4YcfDu2BBx4ILZv/2TmwoSFucbNjSrZ2sn1StnbskwZe0fN3Ng8XL14c2pVXXhna0UcfHVo2l9asWRPaU089Fdq2bdsKtWwOH3LIIYVadgxvbm4O7emnnw7t2WefDa2pqSm0bO0U3XdRPdncHDlyZGhjx44NLVtP2bVptr/I5kMmm9fZPmTcuHHp87M91ezZs0PbvXt3aNnnBV1dXaFl+5jscZns95+9P2vl4MmuHbL5f/jhh4d26qmnhpbtf4444ojQJkyYEFq2TrLPazZs2FDocdk8mj9/fmjTpk0LLZuXCxYsCC2b+9k5IftsK2PuD7xsTWR72uxvla2dbD+V7U2mT58eWjYPs89/sj3MunXrQqtU8uPwnDlzQsvWaHb8z65bsnNM9vsq2hgasr9dNoez6+ls/h955JGhZdfT2T2LbM0uX748tOxz4aJ7lex9ZK+bvUam6LWDz2eHtqKfL86aNSu07F7c6173utBOP/300LLzU/a5TnZfJNvXZLJzSXa/I/t8Krseu++++0LL9l0D9bmTf2kMAAAAAAAAUGJuGgMAAAAAAACUmJvGAAAAAAAAACXmpjEAAAAAAABAiTUM1AtPnTo1tEWLFoW2ZMmS0BYvXhxa9kXuDQ3x7c2ePTu0I444IrTsy+ezL57Ovsi9o6MjtD179hR6bmNjY2gzZswIbcqUKaFlXxafjTn7ovnu7u7QGDqyv2k2v4r+7bMvXs8el8316dOnh5bN4ey5ra2toWXvo+i8zlomWzsMvOzvnGlvbw8t+5tmc7joawwbFv8bq2x+jRw5MrQTTzwxtJe85CWhZXN969atoWVjLrpmi66d7OcVfS5DR319fWhHH310aG984xtDO/7440MbN25caM3NzaH94Q9/CO0nP/lJaCtWrAht9+7doY0ePTq0CRMmhJatT8f/oS37+2XzOrvueO1rXxvay172stDGjBkT2oYNG0JbtmxZaHfffXdojzzySGjZniibw4cddlho2b5rzpw5oRU9Z2VrrKWlJbTsPHEgezH6R9Hr1ezvXPS5Ra8bs71TNm86OztDy64dKpVK5aijjgpt/PjxoWVjzK7Hsz1k0T1VJntu9ntw7X3wZOeJUaNGhZZ9TnTuueeGdvLJJ4eWzcFs7WzatCm0VatWhZbtibLzziGHHBLa5MmTQ5s3b15o2TkmO3/OnTs3tEcffTQ0+6mhIzvWZ62trS20bF5nsnN/9lnPli1bQnv++edDe/zxx0PLjreVSqVyzDHHhJatlUmTJoXW1NQU2pNPPhlaNu6MPVDtK3qOyfY1s2bNCi27rs32DPfcc09oK1euDC27L5LdT8iuCbLzSfa4nTt3hpYpep1g3Qxt2fw//PDDQ8v2WJdddllo2d5/7NixoWXX06tXrw7tgQceCC07P02bNi20mTNnhpbdx8vmcHae3bFjR2jZdXd2DXMw+JfGAAAAAAAAACXmpjEAAAAAAABAiblpDAAAAAAAAFBibhoDAAAAAAAAlFj8RvSDZOrUqaFNnDgxtOyL14cPH16oZV++nX0Z9Zo1a0L7wx/+ENrmzZtD6+zs7PP4svebfcF39sX12RfNb926NbS2trbQsi/4zr5U25fPD23Z369oGzFiRGijR48Obfbs2aGddtppoR122GGh/e53vwutvb09tK6urtD6e25mP2/YMP9NzUDr6ekp1Orq6kIrOtcz2c/LZMfmuXPnhnbGGWeEtmDBgtBWrVoV2vr160PbsGFDaB0dHaEdyO8gO7dlv5eivysGXva3mj9/fmjvec97QjvhhBNCGzduXGh79+4N7emnnw7tpptuCu2JJ54IbcuWLaFlx4D6+vrQsvNYtqfs7u4OLdtPZb+/7DyR/TyqJ/s7Z9cYr3rVq0J7+ctfHtqMGTNC2759e2i///3vQ8vm9SOPPBJatg/PZOspO9Zn56I5c+aENnbs2EI/b+XKlaFlazHbs5n/Ay/7G2R/5/7eO2WK7huyNfuSl7wk/ZlHHnlkaNlcfOaZZ0LL9k/ZNXV2nin6e8jWLQMr2yOMHDkytGwPP23atNCyz5iyOZjt6++8887QfvWrX4WWzdVs7WTvIztnZfv6MWPGhJZdd2ePK3qd7POkwano9Vu2djLZZ4lNTU2hrV27NrTVq1eH9tRTT4XW0tISWravr1Tyz1mzeZytn0mTJoWWfQ6Wfb6bnWupLUWPw9m5I7vGyNZYdhzO7k9k6yQ7/mdzP9urZHM/Oy9m62Hbtm2hZe8t219l+9bscQxO2bEw29dnnydle/1snWSyz2vuuuuu0L797W+Hln3Gms3/M888M7QXv/jFoRWd69n5LhvL7t27Q8uOCweDuyIAAAAAAAAAJeamMQAAAAAAAECJuWkMAAAAAAAAUGJuGgMAAAAAAACUWMNAvfCuXbtCW7duXWjZl2pv3rw5tJkzZ4Y2YcKE0JYtWxbaypUrQ3vyySdD27BhQ2htbW2hzZo1K7QlS5aEdsopp4R2xBFHhJZ9qfwf//jH0NauXRtaS0tLaM3NzaH19vaGxtBWV1cX2rBh8b8TGTVqVGjZHM7m5gUXXBBa9mXxW7ZsCe3ee+8NraOjI7TsC9+Lztfsd1CUNTHwenp6qv4aRedIfX19aOPHjw9t3rx5oc2dOze0hoZ4+s3OMY8++mhozz//fGgHsk6yx3V3dxd6LkPHmDFjQnvTm94U2llnnRXaxIkTC71GU1NTaNm+K5vX2XOzeZitxbFjx4Y2Z86c0LK9YvZ72bp1a2jZfsp5YuCNGzcutPnz54f24he/OLQpU6aEls25NWvWhHb77beHtmLFitCy64TsNbLzXXt7e2idnZ2hTZo0KbTDDjsstOyaatWqVYV+Xna+y9asNTHwsr/Bwfi7ZNcY2fE6uz4//vjjQzv55JPT15k8eXJo69evD+2ZZ54J7amnngotu/Y4kN+XNTD4ZPMwOw5nx+tsP5CdO3bu3Bnab3/729B+85vfhJZ9htPa2hra3r17Q8uusffs2RNadr2f7Z2y95t9FpWdi7LzWNaskcEp+1tlf+fdu3eHln22O3LkyNCya9hsj5XtubNzTHb8rlTyNZ+1ESNGhJbtlYr+vKKfK1gDQ1f2GU52LJ0+fXpo2f46+3nZcThbJ9u3bw8tO15n547GxsbQpk2bFtqiRYtCy6xevTq07L1la6TodREDLzsOZ8fR7Po8u8eQrYls/5PN65tvvjm0r3/966Ft2rQptGzM2f2O7LPdqVOnhpbN62x/duedd4a2cePG0LLPdgeKf2kMAAAAAAAAUGJuGgMAAAAAAACUmJvGAAAAAAAAACXmpjEAAAAAAABAicVvJj9Idu3aFVpnZ2do2Ze2Z1/QXvQ1/vjHP4b27LPPhpZ9+XxHR0do2Ze7Z1/a3tvbG9rMmTNDq6+vD23ZsmWhZe8jG/Pu3bsLjYXak30Ze/aF79OnTw/tqKOOCu24444LbdGiRaGNGTOm0FiyddLd3R1aJvt5RVsmGwvlNWxY/O+pRo4c2ec2efLk0FpaWkJbvnx5aM8991xo7e3toTmu86eyY192vL7kkktCmzJlSqGf19bWFlo2X++///7Qtm/fHlq2n8rOWdl6Ov7440NbvHhxaNm+Kzv+Z/u9559/PrSurq7QOLiKzpFZs2aFls3r5ubm0FauXFmoZWsim19Zy8bS2NgYWrZnO/roo0ObM2dOaE1NTYVeN/v9TZw4MbThw4eHlq2Jons7hrZsLmV7omwOH3HEEaHNnz+/8Ots27YttIcffji0LVu2hJbNT3uq2pIdc1tbW0Nbv359aGvWrAlt/PjxoWV7hOzzmmyuZnMwG3O2nubOnRvaoYceGlp2TsjOn9n73bhxY2jZsT773M5aGpyyv0s2D7P9cLZ2svmwZ8+e0LJ9UjaWbP+TjS+b15VKfg2Q7QOz11m3bl1o2VrJnptdyzjHDF3ZfiP7nGjs2LGhZXMz219n62TTpk2hZfuXnTt3hpaNOTtnZZ8LnH322aFl19irV68OLfsMOGvZ74/Bqehn6dk9rKL7/8yTTz4Z2oMPPhjaL3/5y9CydVL0HHPCCSeE9tKXvjS0UaNGhZZ9fnDvvfeGln0ulj13MLFiAQAAAAAAAErMTWMAAAAAAACAEnPTGAAAAAAAAKDE3DQGAAAAAAAAKLGGgXrh7Avfsy+obmpqCi37Uu1du3aFtn379tCef/750FpbW0PLvvQ7+8LrrGVfND9z5szQ5s2bF9ru3btDW7ZsWWjr1q0LLfsC7Z6entAoh2wOjx49OrRp06aFln0x/M6dO0PbtGlTaNmayNZdtrbr6+sLjSWb19lzM3v37g2tq6ur0GtQDtlcamiIp8thw+J/dzVnzpzQOjs7Q9uxY0doDz/8cGjZustkY+nu7i70XGpPNl9f/epXhzZ37tzQsvmfHSPXr18f2tKlS0Nbvnz5C47zT40dOza02bNnh/ayl70stJNOOim07Hw3ffr00LL1+eyzz4aW/V6yfSsDb8KECaFl1w7Z36+trS20bL+S7SWKnjuy/dnw4cNDmzJlSmjHHHNMaIcffnihn5ddY2TXY9n4sj1Rtj/LjhXORbUnmyPZ/M+uCbL1ecIJJ4SWrZ1KJZ9jTzzxRGhPP/10aNm6zd4LtSU7BmXn/s2bNxdqM2bMKPS47PiaHTezNZHtibJr9mOPPTa0RYsWhZadT7Jzwpo1a0LLrlmyc6Vr56Gj6P41WzvZcTRrI0aMCG3MmDGhjRs3LrRsnUyaNCm0s846K7RKJV8X2frJ9oZbtmwJLbt+yMadfR6bHQcYurK9TnZ8zT7rz84dGzZsCC07vmZrNjtPZO24444LLbuePuecc0LL1l22RrL9Xvb5VHasYOjI/qbZmpg6dWpo2VzK5nq2f1+xYkVoRddE5qijjgrt0ksvDS37LCqbw88880xoP//5z0PL7uMN9s+T/EtjAAAAAAAAgBJz0xgAAAAAAACgxNw0BgAAAAAAACgxN40BAAAAAAAASqxhoF64q6srtJ6entAaGuIQd+/eHdpzzz0XWtEvXs++tH3kyJGFxtLY2BjarFmzQjvmmGNCy74c/OGHHw4t+9LvXbt2hdbd3R0a5VVXVxfaiBEjQsvW3ebNm0NrbW0NbcqUKaG1t7eH9thjj4WWfQl8fX19odcYN25caJmWlpZC49u5c2dog/0L6ekf2TrJzh1Zy9bT5MmTQ2tqagpt1apVoT311FOhZeesous4a+Z1OWR7mOOPPz60bP5ne4nsGJntTZ544onQtm/fXug1snl96KGHhnb66aeHNnfu3NAmTJgQ2tixY0Nra2sLbcaMGaFZO4NTNpc6OztDy647stbR0RFatufI5lz23Kxlx/Vsbh555JGhnXjiiYWem627bN+VPS7bJ2XnwGzPljXKIfvbZ8f1iRMnhjZ9+vTQsnVcqeTXwPfff39o2ecFReex/VNtyf6ee/bsCS2bW2vXrg0t+/wne43s2HzIIYeElq2T4cOHh5ZdE2fnidmzZxf6eRs2bAht69atoWXX09n50xqpPdm8zv722drJPmPN5ma2x8qeu3jx4tBOOeWU0CqVSmXevHmhjRkzJrTs893Ro0eHll2PZNfy2Wdo2bUWQ1d2LM0+/8ladu2QXRNknx1layLbv2T3IpYsWRJadj0xc+bM0LLrhGzMmaKPY3Aqeuwq+jlpdp7IHpft/7O5mR2rsz1Mtk4uuuii0E4++eTQsvW+cePG0H75y1+G9sgjj4SWnT8HO//SGAAAAAAAAKDE3DQGAAAAAAAAKDE3jQEAAAAAAABKzE1jAAAAAAAAgBJrGKgXzr4UvaenJ7Q9e/aEln2BdltbW2jZF3Jnr1H0cdkXgWdf3H344YeHln3RfPYay5YtC239+vWhZV8O3tvbGxrlkM3NbF5nc6SlpSW01tbW0LI1tmbNmtC2b98e2n333VfocQ0N8ZA0adKk0BYtWhRathaz18hatp6am5tDgz81ZsyY0MaNG1fouU888URoO3fuDK3oOStrlFc2DydPnhxaV1dXoZ/3/PPPh7Z06dLQ7r///tA2bdoUWnbMzcaXvY/sPJadO8aPHx/aqFGjQsvOn8OHDy/0OPuugZftTTZv3hzaxo0bQ5s3b15o2VyaP39+aKeffnpoU6dODS07rmeyub5gwYLQZsyYEVr2O1i3bl2h1tTUFFp2jZb9Xurr60Mrev1k7dSeon/TiRMnhpYdm1/o561YsSK0p59+OrSOjo7QsrmYNWpLd3d3aEWvibNzR3bNOXbs2EItO9Zne/js+Fp0X5P9vB07doSWXcdn+7329vbQsmM95ZDtEbLPbLNj68yZM0ObMmVKaKNHjw7tmGOOCW3u3LnpGLP5me2VsnFnnwFle6Bs7TU2NoZWdK9kXzQ0ZNeI2byeM2dOaIcddlho2Xkie43s89np06eHll3bTJgwIbTsmiW7Jli7dm1o2bVNtudynhjasmNS0ZYdW7Pr80y2x8quf7PzRPb57KxZs0I788wzQ8uuT7LPrLLPce+5557Qsn3XUDzO+5QZAAAAAAAAoMTcNAYAAAAAAAAoMTeNAQAAAAAAAErMTWMAAAAAAACAEmsYqBcu+gXaXV1doe3evTu0YcOK3f+uq6sr1Lq7u0PLvpA7+6L5E044IbRp06aFtnTp0tCWL18eWvYF2tn4KK/6+vrQGhsbQxs1alRoPT09hdrevXtD27RpU2jNzc2hrV69OrQ9e/aENnz48NAmTZoU2oIFC0KbPHlyaDt37gxt48aNoe3atSu09vb20DLZ74XBqejxP2vZ3MyO/4cffnhoo0ePDm3NmjWhdXZ2hpbNr6LnT8oh2/9ke46Ghrjly/ZT2b7r3nvvDe3Xv/51aCtXrgwtO9ZnY872NW1tbaFlY87WbLZny143G1+2Ph3rB6fsuJmd+5955pnQ5syZE1p2vM7m0qxZs0LL1s6ECRNCK7r/yfZx2ZrI5mu219myZUto2V4n+50WPe9k+8ei652hIzvmZn/nkSNHhnbkkUeGlp2zXmhf8/jjj4fW1NQUWrbO7J/4c7Jj+PPPPx9aNtezY30mWzsdHR2hZcfI7Loj2xNl6yH7PCk7L2bnjtbW1kLjoxyy83x2vM32K9keK5N9tpX9vGx9vtB4snWbfQa0efPm0LLPtzLZuIt+Ts3gk107jx8/PrSZM2eGNnXq1NCy80R23smuT7JjbvYaU6ZMKfQa27dvDy07T2TnmKxl6zNbh9nxg8Gp6P44m5vZcXTFihWhvdAx/P+v6PV+dgw+66yzQps9e3Zo2f4sex9/+MMfQnv22WdDy+b/UOQMBgAAAAAAAFBibhoDAAAAAAAAlJibxgAAAAAAAAAl5qYxAAAAAAAAQInFb3YfQNkXbWdfeJ19kfvB0NjYGNqpp54a2sknnxxaNuZ77rkntOzLwVtbW0PzBfLl1dAQl+2ECRNCmzlzZmjTp08v9PP27t0bWjbntmzZElr2ZfYdHR2hDRsW/5uVMWPGhHbYYYeFtnjx4tCmTp0a2vbt20MbPnx4aGvWrCn03La2ttCy3xUDr66urlCrr68PLTvWZ/PrpJNOCu3QQw8NbevWraG1tLSElp0Du7u7+9wOhux3mr0Pqiebw9lxLjumZc/dsGFDaL/85S9De+qpp0Jrb29/wXH+qez4P3bs2NDmzJkT2pQpU0KbNGlSaNnvIDuPPf3006E98MADoQ3U3pM/LzveZMfc3/72t6Ht2bMntFmzZoWWzev169eHlq2xXbt2hZYdN7Pzzrhx4wq9RvY7aGpqCi2bw9lYsmuvbB+XnXecE2pP9jfNjuEjR44Mbd68eaFle6fsOiab65VKpbJp06bQsv15No+zPXs2j83Z2pf9jbNzwubNm0PLjofZ/M/mVtE5OH78+NAmTpwYWmbbtm2hZZ8xZS27ts/OgQN13cHAy/YSzc3Noa1cuTK0bH6NGDEitOyaIDumZ+eDSiXfP2WfeWVrZffu3aFl55ii546i59Cin+86P1VH9nfK5kw2X7M1ke3/s88cs/mWrafs7z569OjQsjFnLRtzNpai92iy5x7IfYzs75GxHg6u7PedHR9XrVoVWna8ztZTNkey+ZodR7P7c8cff3xo2Tkie41ly5aFdv/994eWndtq5Z6df2kMAAAAAAAAUGJuGgMAAAAAAACUmJvGAAAAAAAAACXmpjEAAAAAAABAicVvRB9A2ZdqD9QXm9fX14c2f/780E4++eTQsi/Vvv3220O79957Q8u+QLu7u/sFx0ltGz58eGhTpkwJbcGCBaEdcsghoc2ZMye0iRMnhtbU1BTaM888E9r27dtD6+joCC37gvtsnRxzzDGhZV9mnz2usbExtLq6utDWr18f2vjx40ObPHlyaNmX2be1tYVG9WR/06xlhg2L/51UQ0M8DY4cOTK0mTNnhnbkkUcW+nnPPfdcaLt37w6tq6srtOz4nz0um5v9ff4s+nvm4MrOE9l8eOqpp0LbvHlzaGvWrAlt3bp1obW3txcaXzZvxo4dG9o555wT2ite8YrQDj/88NAmTZpUaCwbN24M7Tvf+U5oTz75ZGjZ75SDK5tL2TFy165doT3++OOh7dy5M7QZM2aElu1hsnP/jh07QsvOO9mazc4706dPDy3bn2U/LztPZK+RaW1tDa2lpSW0otdtA3Utx59X9JyePS7b64waNSq07LojO15n1w4rVqxIx7N69erQsjmbrYGsmZ/8H9n5pOjcytZE9vOyll3DZi0772R7sZUrV4aW7Wuy/V52/tyzZ09ojvXllc3/7DOhbP+T7f+ztZOdJzo7Ows9rlLJrxWyPVD2XrI1lV0D7N27N7Sin9tmv5uMz4EPnqL79WwuZMfS7PPF5ubm0LL5n90TyMYyevToQi373DV7vxMmTAgtG3PWsjFn1w7Z76/oftS1+MDLzvPZsTDbO2XH1mweFv1cc8yYMaGdcMIJoc2ePbvQ627bti20O+64I7TsM4XsOqZW+JfGAAAAAAAAACXmpjEAAAAAAABAiblpDAAAAAAAAFBibhoDAAAAAAAAlFj81nUqlUqlMmrUqNCOPfbY0ObPnx/ahg0bQrv55ptDW7t2bWidnZ2hZV/6TTmMHz8+tLlz54Z2+OGHh3booYeGtnDhwtCyL4Zva2sLra6uLrRdu3aFln2pfLaeDjvssNBOO+200JYsWRLalClTQsvGvHfv3kKP6+npCS2T/TwOroaGeNrK5mZ23MzmZvbzsnW3ePHi0KZPnx7a5s2bQ8uO9Tt37gwtm1/d3d2FWtHzRPa7Kqro75nqyf4G2bzes2dPaNk8zI7h2RzOXmP06NGhZXN47Nixob3lLW8J7U1velNo06ZNC23EiBGhZbL38bWvfS20m266KbSWlpbQip4nqJ7seJP9XTo6OkLL5ma25962bVto2Z4jO3dk6ySb/9n6bGxsDK2+vj609vb20LL3lo1v+PDhoTU3N4e2ffv20LK9U/Y+sr+H88TAy+Zm0f1A9txsLo0ZMya0bO1kc3jlypWhPfLII+l4snNZ0XUxUMdx+6fBp+jvP9tzZ8e+bL5lr5Ed17N9TdYmTJhQaHybNm0KLTu3tba2hpatpa6urtDsicohm8PZnMv2CE1NTaFl62Ty5MmhZeedbG+efS5WqVQqEydODC3bF2Xjyc5v2XvevXt3aNm+ktqSHSOza85JkyaFls3L7POk7B5Ddk2cvcasWbNCy/Yg2V4/W2PZ+WTFihWhrV69OrQD+dzVHmlwOpC/S9HPNTPZOSG7j/HiF784tOz6JNvH/eEPfwjt9ttvD23Hjh2h1fJ89S+NAQAAAAAAAErMTWMAAAAAAACAEnPTGAAAAAAAAKDE3DQGAAAAAAAAKLGGgR7AYJB9qfbUqVNDW7x4cWgdHR2h3XPPPaE9/fTThZ5b9IvhGdrq6upCy+bhyJEjQxs7dmxoEyZMCO2QQw4JLfuy+GnTpoWWfSH9cccdF9rw4cNDa2lpCS0b86GHHhrawoULQ8u+uH7r1q2hbd68ObQnnniiUHvqqadC27lzZ2itra2hUT1F10l9fX2hn5c9d9SoUaHNmjWrUGtvbw/t2WefDW316tWh7dixI7Surq7QsrXY29tbqGW/v+xxmey5maI/j+rJ5ki2v9i0aVNo2Tlmz549oc2cOTO06dOnh5adT175yleG9upXvzq0SZMmhZat2WydrF27NrSvfvWroX3/+98PbdeuXaHZiw0d2TEoWxPZ3zT722fzP1tPU6ZMCS2b/9kay46v2X6qubk5tLa2ttAmTpwY2t69e0Pbtm1baNu3bw8t28dlv4POzs7Qst89B1c2v7J9UnZ8zRS9PsnOCdnjsv16tp/Krp0rlXzOZvP9QPYnB2P/xOBT9G9cdI+QrbsRI0aElu1/5s2bF1p2bZ+NJXvd7Fo8e7/Zcd1ev7yyv30257J5k31u0tjYGFp2jsnm65w5c0I77LDDQqtUKpXJkycXeu2s7d69O7SmpqbQin6WeyCN6ih6ns6uObN9+MaNG0PLPmPKPtfMjv9HHHFEaNk5IZu/DQ3xFk+278rGnH1Oev/994e2dOnS0IruzYrOfeedoe1A9sxZy/ZOJ554YmjZZ7bZtf1zzz0X2s9//vPQss9xs3ldy/xLYwAAAAAAAIASc9MYAAAAAAAAoMTcNAYAAAAAAAAoMTeNAQAAAAAAAEosfkt6jRs2LN4nHzduXGjZl2pnXz6ffYH2gw8+GNrzzz8fWldX1wuOk9qWfTF89oXv2Ze27969O7Tt27eH1tbWVujn7dixI7TW1tbQ6uvrQzv00EMLvcaYMWNCmzFjRmhbtmwJ7fHHHw9t69atoT399NOhPfvss6GtW7cutOz9dnd3F2ocXNnayY7r2XwdMWJEaNnxf9KkSaFl63PDhg2hNTU1hbZq1arQsnXc0dER2t69e0Pr6ekJrajsfWS/06wxOGXHpV27doWWHfsmT54c2tSpU0ObMGFCaNkx/NRTTw3tpJNOCm38+PGhZTo7O0PL9lhf+MIXQrvvvvtCy9anuT60Ff37FT3OZXun7JibHZuz/c/IkSNDy85Fzc3NobW3t4eWyfZE2ftoaWkJregeMPt52e/AehqcsnN/Ng+zvVNjY2No2T4pu07OzjHZXMrmYTavK5Xie6Xs3Fh0fma/L8qp6DV71oYPHx5atnbmz58f2nHHHRfatGnTCr1G1nbu3BlatleEv6Tofir7rDM7fmd7/ezaPrs+yc5jlUp+Lsuu+bNr9OXLl4eWnaOy91L08yPX3gOr6O8/+9tlf/fs+jKTnSeyuZqtnezz3rFjx4a2adOm0J588snQVq5cGdpjjz0WWrYX6+/rBHO/9hTdRxe9PsnuO5xxxhmhZfuf7D7BN7/5zdBuvvnm0LJ5XTb+pTEAAAAAAABAiblpDAAAAAAAAFBibhoDAAAAAAAAlJibxgAAAAAAAAAl1jDQA+iL7Muys5Z9Cfa0adNCO+WUU0I7//zzQ8u+aH7p0qWhZV80n31ZvC98509l86GlpSW0tWvXhrZ79+7QNm7cGNohhxwS2rx580LL1k5HR0doXV1doY0cOTK0np6e0O67777QnnnmmdC2bdsWWraest9Be3t7aN3d3YXGZ30OTtnfJWsNDfH0NmrUqNCmTp0a2pQpU0Lr7OwMbdWqVaE9/fTToT311FOhbd++PbQ9e/aEls3X/p6b2fmz6O+Zgyv7G2RzJDtGrl+/PrRszi1YsCC0xYsXhzZ37tzQxo8fH1pbW1toe/fuDW3r1q2h3XTTTaF9//vfD2316tWhZcd/c5g/lc2HbD9QdP+zY8eO0IYNi/99bn19fWgjRowIbcyYMaFle7vsPJbtxbIxZ+8ta0XPRdbY0JHNwwkTJoSW7YmOPvro0M4888zQsvNJNg+z89OuXbtCq1Ty81u2R+vv+ZntlTLWxdBV9G+cHdezY3i2dubPn1+oTZ48ObTsuJ5d/2bXItm5I1uLmexYke3jzPNyKHrdmO2nsuuObP+fXcdn8zBbi5VKfu3x+OOPh7ZixYrQss/asv1dtgaKrovsd8PAKvp3Kvo3zuZ1Ni+z/c8999wTWnaOyfY+O3fuDC3bT2XXydk5Idv/F232Q+VQ9Fo3O65nnx0tWbIktPPOOy+04447LrTNmzeH9sMf/jC0G2+8MbRsnZiv/qUxAAAAAAAAQKm5aQwAAAAAAABQYm4aAwAAAAAAAJSYm8YAAAAAAAAAJRa/iXoA1dXVhZZ9gfbw4cNDGzNmTGizZ88O7fjjjw/t3HPPDW3x4sWh7d69O7Tsi+b37t0bWvbesi8M92Xx5dXd3R1a9rffsWNHaNmXtq9bty60hx56KLRsPWVfUp/N1+xxo0ePDi17b62trYVa9txsjfX09IRm7Qxt2d8v+ztnc6Roa29vDy1bO9u3bw8tOyds3rw5tG3btoXW2dlZaHzZ++1v1snQls2RPXv2hJYdN7Nzx+rVq0O7//77Q5s0aVJo06ZNK/S4zJYtW0Jbs2ZNaNmYs/dmXpdXtucuOh+yxxU9n2SvW3T/n63jbI/V1tZWqGWvkT0uu45paWkJrei+i4FX9Fqy6BzO9vXZcT2bc9n8yvZJzzzzTKHHVSqVSkdHR2j2T+yvosfrosfwrGV7/exaN9uzZY/LjuHZNcbGjRtDy47rRddN0c8o4E9lcymbw9n+oqurq9DPy9ZnpVKpTJ8+PbTsfLR+/frQss/asudmnwNka9laGRqKfu5UdD+VHf+z+b9169bQsvNJ5oXmfxFF31vR34trgnLI5mZjY2NoY8eODW3KlCmhLVq0KLRjjjkmtJkzZ4aW7X+eeOKJ0O6+++7QsrXoWJ3zL40BAAAAAAAASsxNYwAAAAAAAIASc9MYAAAAAAAAoMTcNAYAAAAAAAAosYaBHsCfKvol66NGjQptxowZoWVfoP3yl788tDPPPDO08ePHh5Z9qXZTU1Noe/fuDS37kvqsZV8sXvRL6qk92d8+093d3a+vm83N/n5c0TmcPc78L69srmfrJHvcnj17Qtu9e3do69atC62+vr7Qa3R2dhZqRd9HUdmaOJB1x9BR9BiZza9sjmTztb29PbRs7WzYsCG0ovuabO9UdP9jXvOnBtN8KLrXzx6Xzf+Ojo7Qdu7cGVq2ntra2kJraWkp9Nz+3mdycHV1dYVW9O+czZstW7aE9uCDD4aWXbNn547NmzeHls3rSiVfA66V2V9F9xLZ/j9T9Fqk6Fi2bt0aWrbusrZr167QmpubQ8uui7KWvQ/rq7wO5G9fdP+fzcNt27aF9vDDD6ev09jYGFq2z8qub4rus7LHWRe1pehnM0U/Ey2q6L2Doq97IJ+7HsjjqD1Fr02nTp0a2pw5c0JbuHBhaIsWLQpt3rx5oWXnjux6x7H6wPiXxgAAAAAAAAAl5qYxAAAAAAAAQIm5aQwAAAAAAABQYm4aAwAAAAAAAJRYw0AP4C/Jvmi7qampUFu2bFlo3/ve9/pnYFDDin4xvC+QZzDI5mFXV1ehVsusT/6SAznWZ/uzvXv3HvCYYKjK1kl3d3eh1tnZGVpra2to27Zt6+PoYF/ZfG1rayvUtmzZUpUxwWDT38fwbO089NBDfRwdDF7ZOSZr2drJ2o4dO/pnYNDP+vszF5/hMJRk83XdunWF2u23316VMdF//EtjAAAAAAAAgBJz0xgAAAAAAACgxNw0BgAAAAAAACgxN40BAAAAAAAASsxNYwAAAAAAAIASc9MYAAAAAAAAoMTcNAYAAAAAAAAoMTeNAQAAAAAAAErMTWMAAAAAAACAEnPTGAAAAAAAAKDE3DQGAAAAAAAAKDE3jQEAAAAAAABKzE1jAAAAAAAAgBIrdNO4t7e32uOgBtXyvKnl90b11PK8qeX3RvXU8ryp5fdG9dTyvKnl90b11PK8qeX3RvXU8ryp5fdG9dTyvKnl90b11PK8qeX3RvXU8ryp5fdG9RSZN4VuGjc3Nx/wYCifWp43tfzeqJ5anje1/N6onlqeN7X83qieWp43tfzeqJ5anje1/N6onlqeN7X83qieWp43tfzeqJ5anje1/N6onlqeN7X83qieIvOmrrfAreWenp7Kxo0bK+PGjavU1dX1y+CoXb29vZXm5ubK7NmzK8OG1eb/Ad2aYH9YE7AvawL2ZU3AvqwJ2Jc1AfuyJmBf1gTsy5qAfe3Pmih00xgAAAAAAACA2lSb/5kFAAAAAAAAAIW4aQwAAAAAAABQYm4aAwAAAAAAAJSYm8YAAAAAAAAAJeamMQAAAAAAAECJuWkMAAAAAAAAUGJuGgMAAAAAAACU2P8D5YabUVuM1F0AAAAASUVORK5CYII=\n"
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "encoding_dim = 8"
      ],
      "metadata": {
        "id": "gqKF82bVXyl-"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import matplotlib.pyplot as plt\n",
        "\n",
        "# obtain one batch of test images\n",
        "dataiter = iter(test_loader)\n",
        "images = next(dataiter).to(device)\n",
        "\n",
        "images_flatten = images.view(images.size(0), -1)\n",
        "# get sample outputs\n",
        "output = model(images_flatten)\n",
        "# prep images for display\n",
        "images = images.cpu().numpy()\n",
        "\n",
        "# output is resized into a batch of images\n",
        "output = output.view(batch_size, 1, 28, 28)\n",
        "# use detach when it's an output that requires_grad\n",
        "output = output.cpu().detach().numpy()\n",
        "\n",
        "# plot the first ten input images and then reconstructed images\n",
        "fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(25,4))\n",
        "\n",
        "# input images on top row, reconstructions on bottom\n",
        "for images, row in zip([images, output], axes):\n",
        "    for img, ax in zip(images, row):\n",
        "        ax.imshow(np.squeeze(img), cmap='gray')\n",
        "        ax.get_xaxis().set_visible(False)\n",
        "        ax.get_yaxis().set_visible(False)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 145
        },
        "id": "bH5JK__Mc-WS",
        "outputId": "82c93a0f-0cb6-475e-e509-d99c11f39416"
      },
      "execution_count": 18,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 2500x400 with 20 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAB40AAAFICAYAAABEN2iVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW2ZJREFUeJzt3WmYXWWZ6P2qVCWVeZ4HEpIQIAQIQtAGVHBCZRYUGo6nnVCOoLa2KK202jhdF3Zrq63Qnus44YSiIK2IERtRRNAAYUoCJEAGMs+VpKZU5f3wvucc8943ulJVu4a9fr+P/2sPz656njXslcqqPXDgwIEaAAAAAAAAAEppQG8PAAAAAAAAAIDe46IxAAAAAAAAQIm5aAwAAAAAAABQYi4aAwAAAAAAAJSYi8YAAAAAAAAAJeaiMQAAAAAAAECJuWgMAAAAAAAAUGIuGgMAAAAAAACUWH2RB3V0dNSsX7++ZsSIETW1tbWVHhP93IEDB2oaGxtrpk6dWjNgQHX+uwRrgkNhTcDBrAk4mDUBB7Mm4GDWBBzMmoCDWRNwMGsCDnYoa6LQReP169fXzJgxo1sGR3msXbu2Zvr06b09jIqwJugMawIOZk3AwawJOJg1AQezJuBg1gQczJqAg1kTcLAia6LQP7MYMWJEtwyIcqnmeVPNn43KqeZ5U82fjcqp5nlTzZ+NyqnmeVPNn43KqeZ5U82fjcqp5nlTzZ+NyqnmeVPNn43KqeZ5U82fjcqp5nlTzZ+NyikybwpdNPbn7XRGNc+bav5sVE41z5tq/mxUTjXPm2r+bFRONc+bav5sVE41z5tq/mxUTjXPm2r+bFRONc+bav5sVE41z5tq/mxUTjXPm2r+bFROkXlTnf+hOwAAAAAAAACFuGgMAAAAAAAAUGIuGgMAAAAAAACUmIvGAAAAAAAAACXmojEAAAAAAABAibloDAAAAAAAAFBiLhoDAAAAAAAAlJiLxgAAAAAAAAAl5qIxAAAAAAAAQIm5aAwAAAAAAABQYi4aAwAAAAAAAJSYi8YAAAAAAAAAJVbf2wMAetcHP/jB0IYMGRLacccdF9pFF11U6D1uuOGG0P7whz+EdtNNNxV6PQAAAAAAALqPvzQGAAAAAAAAKDEXjQEAAAAAAABKzEVjAAAAAAAAgBJz0RgAAAAAAACgxOp7ewBAz7n55ptDu+iiizr9eh0dHYUe9653vSu0V73qVaHdc889oa1Zs+bQBwb90Lx580JbsWJFaO973/tC+/KXv1yRMcGhGDZsWGif+9znQsv2CQ8++GBob3zjG0NbvXp1J0cHAAAA/LkxY8aEdthhh3X69bJz9ve///2hPf7446E99dRToT3yyCOdHgvQOf7SGAAAAAAAAKDEXDQGAAAAAAAAKDEXjQEAAAAAAABKzEVjAAAAAAAAgBKr7+0BAJVx8803h3bRRRd1+vVWrFgR2i9/+cvQZs+eHdo555wT2pw5c0K77LLLQvvsZz9bdIjQr51wwgmhdXR0hLZu3bqeGA4csilTpoR2+eWXh5bN6xNPPDG0s88+O7SvfOUrnRwddJ8XvehFof3kJz8JbdasWT0wmmJe85rXhLZ8+fLQ1q5d2xPDgW6TnWfcfvvtoV111VWh3XjjjaG1t7d3z8AojYkTJ4b2wx/+MLT77rsvtK997WuhPffcc90yrkoZNWpUaC972ctCu/POO0Nra2uryJgAiM4666zQzj333NBOP/300ObOndvp933qqadCmzlzZmgNDQ2FXq+urq7TYwE6x18aAwAAAAAAAJSYi8YAAAAAAAAAJeaiMQAAAAAAAECJuWgMAAAAAAAAUGL1vT0AoOtOOumk0C644IJCz33iiSdCO/fcc0PbunVraHv27Alt0KBBod1///2hHX/88aGNGzfuBccJ1W7hwoWh7d27N7Rbb721B0YDf9mECRNC+9a3vtULI4Ged+aZZ4bW0NDQCyMp7pxzzgntbW97W2iXXHJJTwwHOiU7V/jqV79a6Ln//u//HtrXv/710Jqamg59YJTGmDFjQsvOp0eNGhXapk2bQnvuuee6ZVyVkn2OBx98MLTsuPDEE08MbeXKld0zMKrCyJEjQ/vsZz8b2oIFC0J71atelb5mW1tb1wcGfcicOXNCu/LKK0O7/PLLQxsyZEhotbW13TOwv2DevHkVfw+gsvylMQAAAAAAAECJuWgMAAAAAAAAUGIuGgMAAAAAAACUmIvGAAAAAAAAACVW39sD+Gsuuuii0LKbu69fvz605ubm0L773e+GtnHjxtBWrlxZdIjQ66ZMmRJabW1taE888URoZ555ZmgbNmzo9Fj+4R/+IbT58+cXeu7Pf/7zTr8v9CcLFiwI7aqrrgrtpptu6onhwF/03ve+N7Tzzz8/tJNPPrlb3/dlL3tZaAMGxH/v+Mgjj4T229/+tlvHQnnV18fTpde//vW9MJKuefDBB0P7wAc+ENqwYcNC27t3b0XGBIcq2y9Mnz690HO///3vh5Z9XwD/2/jx40O7+eabQxs7dmxoX/3qV0N7z3ve0z0D60HXXnttaIcffnho73rXu0LznRp/7rLLLgvt05/+dGgzZswo9HojR45M+7Zt2w5tYNDHZcc573vf+3phJLkVK1aEln33DJU0d+7c0LLjuAsuuCC0008/PbSOjo7QbrzxxtB+//vfh1Ytxz/+0hgAAAAAAACgxFw0BgAAAAAAACgxF40BAAAAAAAASsxFYwAAAAAAAIASq+/tAfw1119/fWizZs3q9Ou9613vCq2xsTG0vn7T9nXr1oWW/ayWLFnSE8Ohl/3nf/5naNlN4LO5vn379m4dyyWXXBLawIEDu/U9oL876qijQhs2bFhoN998c08MB/6iL3zhC6F1dHRU/H3f8IY3FGqrV68O7eKLLw7twQcf7J6BUSpnnHFGaH/zN38TWnYc3peMGTMmtPnz54c2dOjQ0Pbu3VuRMcELaWhoSPtHP/rRTr/mTTfdFNqBAwc6/XpUvxe96EWhnX766YWee91113XzaCrvmGOOCe0f/uEfQrv11ltDc87Cn5s+fXpo//Zv/xbauHHjQiu6Xf7yl7+c9quuuiq07v7OC/6S8ePHh/a+970vtN///veh3XnnnaG1tLSEtmvXrtCy4/XsO6bFixeH9vjjj4f2wAMPhPbwww+H1tTUVGgs0BkLFiwILdvOZ98TZWuxK1784heHtn///tCefPLJ0O69997Qsu1Ca2trJ0fX/fylMQAAAAAAAECJuWgMAAAAAAAAUGIuGgMAAAAAAACUmIvGAAAAAAAAACVW39sD+Gsuv/zy0I477rjQli9fHtrRRx8d2ote9KLQTj/99NBe8pKXhLZ27drQZsyYEVpR2c2yt2zZEtqUKVMKvd6aNWtCW7JkyaEPjKqwevXqir/H1VdfHdq8efMKPfeBBx4o1KAafehDHwotW7O24fS0O+64I7QBAyr/bwy3bdsW2p49e0KbOXNmaIcffnhof/zjH0Orq6vr5OgoiwULFoT2/e9/P7RVq1aF9pnPfKYiY+ou5513Xm8PAQo79thj037iiScWen52nv2LX/yiS2Oiuk2cODG0Cy+8sNBz3/72t4eWfa/TlxxzzDGh3XXXXYWee+utt4bW2NjY5TFRPT74wQ+GNnbs2G59j4svvjjtr33ta0P79Kc/HdqXv/zl0FpbW7s+MEpl2LBhoS1evDi0448/PrQLLrig0Hvcf//9oWXXNp577rnQDjvssNDWrVsXWkdHR6GxQHfJru1deeWVoWXb+pEjRxZ6j+effz603/3ud6E9++yzoWXf2T744IOhnXzyyaFl+7vXv/71oT3yyCOh3XjjjaH1Fn9pDAAAAAAAAFBiLhoDAAAAAAAAlJiLxgAAAAAAAAAl5qIxAAAAAAAAQInV9/YA/ppf//rXhVrmzjvvLPS4MWPGhLZw4cLQshteL1q0qNB7ZJqbm0N76qmnQlu+fHlo2U21V61a1emxwF9z9tlnh3bdddeFNmjQoNA2b94c2j/+4z+Gtm/fvk6ODvquWbNmhXbSSSeFlm3/9+7dW4khQU1NTU3Ny1/+8tCOPPLI0Do6Ogq1om688cbQFi9eHNquXbtCe8UrXhHaRz/60ULv+z/+x/8I7YYbbij0XMrh2muvDW3YsGGhvfa1rw1tz549FRlTZ2TnCdl678o6hkq68MILu/T8bJ8Cf8m//uu/hvbf/tt/Cy37TuhHP/pRRcZUSS996UtDmzRpUmjf/OY3Q/vOd75TiSHRT82cOTO0t771rYWe++ijj4a2adOm0F71qlcVHs+oUaNC++AHPxjad7/73dA2btxY+H0on+y7zu9973uhHX/88aF95jOfCe2uu+7q9Fiee+65Qo9bs2ZNp98Dust//Md/hHbBBReENn78+EKvl10XfOyxx0L7yEc+Elp2LS5zyimnhJZ9n/T1r389tOyaYrZv+8pXvhLaj3/849C2bNnyQsOsKH9pDAAAAAAAAFBiLhoDAAAAAAAAlJiLxgAAAAAAAAAl5qIxAAAAAAAAQInV9/YA+oIdO3aEdvfddxd6bnbz7a648MILQxszZkxo2Q2+b7755m4dC/y5k046KbRBgwYVem42N++5554ujwn6g5e//OWFHrdly5YKj4QymzVrVmg/+MEPQhs/fnyn32P16tWh/fjHPw7tn//5n0Pbt29fp9/jne98Z2gTJkwI7frrrw9t8ODBof37v/97aG1tbYXGR/9x0UUXhfb6178+tJUrV4a2ZMmSioypu3z0ox8NraOjI7Tf/OY3oe3cubMCI4JD87KXvazwY1tbW0PL1gD8JQcOHAgt226uX78+tGwO9pYhQ4aE9pGPfCS0d7/73aFlP4O3ve1t3TMwqtbChQtDGzFiRGi/+93vQsvOk7Nj87/9278NLZvXNTU1NXPmzAlt8uTJof30pz8N7XWve11o27dvT9+H6jZ8+PDQ/vEf/zG0s88+O7StW7eG9i//8i+hFT3/hb4q215/6EMfCu0d73hHaLW1taFl34necMMNoX3uc58Lbe/evS84zs4YN25caHV1daF94hOfCO3OO+8MbebMmd0yrp7kL40BAAAAAAAASsxFYwAAAAAAAIASc9EYAAAAAAAAoMRcNAYAAAAAAAAosfreHkCZTZw4MbSvfvWroQ0YEK/tX3fddaFt3769ewZG6d12222hveY1ryn03G9/+9uhXXvttV0dEvRbxx57bKHHXX/99RUeCWVWXx8P+caPH9/p17vnnntCu+SSS0LbunVrp98js3r16tA++9nPhvb5z38+tKFDh4aWrbvbb789tFWrVhUdIv3EG9/4xtCyOZIdm/cls2bNCu2yyy4Lrb29PbRPfepTobW1tXXLuKCoU045pVB7IXv37g1t6dKlXRkSvKCzzjortMWLF4e2c+fO0G644YZuHcvLX/7y0E4//fTQXvKSlxR6vVtuuaWrQ6KEGhoaQjtw4EBoX/jCFwq9XnNzc2jf+MY3QsuO42pqampmz55d6H327dsXWmtra6HnUv3OP//80K655prQ1qxZE9pLX/rS0Hbt2tUt44K+JDvmuPrqq0Orra0N7fnnnw/twgsvDO2Pf/xj5wb3Aurq6kKbMWNGaNm1jTvuuCO0MWPGFHrf7Gdw0003hZYdP/YWf2kMAAAAAAAAUGIuGgMAAAAAAACUmIvGAAAAAAAAACXmojEAAAAAAABAidX39gDK7MorrwxtwoQJoe3YsSO0J598siJjonymTJkS2imnnBJaQ0NDaFu3bg3tU5/6VGh79uzp5Oigf3nJS14S2lvf+tbQHn744dB+9atfVWRM0FVLliwJ7W1ve1to2T6hJ9x+++2hXXbZZaEtWrSoJ4ZDHzRq1KjQsu115oYbbuju4XSrd77znaGNHz8+tOXLl4d29913V2RMcCi6um3u62uU/uGLX/xiaGeccUZoU6dODe1lL3tZaLW1taGde+65nRxdLnuPAwcOFHruM888E9pHPvKRLo+J8vnbv/3bQo8766yzQrvttts6/b4nnXRSp59bU1NTc//994fmeyv+t+w70Uz2vc66deu6ezjQJ9XV1YXW3t5e6Ln79+8P7cUvfnFoF110UWhHHXVUofdoamoK7eijjy7Usu+2Jk2aVOh9M5s2bQotu37S1tbW6ffobv7SGAAAAAAAAKDEXDQGAAAAAAAAKDEXjQEAAAAAAABKzEVjAAAAAAAAgBKr7+0BlMWpp54a2jXXXFPoueeff35ojz/+eFeHBDU1NTU1P/7xj0MbN25coed+5zvfCW3VqlVdHhP0V6961atCGzt2bGh33nlnaM3NzRUZE7yQAQOK/dvBF7/4xRUeSdfU1taGln22op/3E5/4RGhvfvObD3lc9B0NDQ2hTZs2LbTvf//7PTGcbjVnzpxCj3PuQF910kknFX7szp07Q7vhhhu6cTSU1YMPPhjacccdF9rChQtDe+1rXxva1VdfHdqWLVtC+9a3vlVwhNFNN90U2iOPPFLouffdd19ozuPpjOzY6dxzzw1t0aJFoR111FGhHXvssaFdcMEFoY0ZMyYdT7afyB57+eWXh5atqWXLlqXvQ3W76KKLCj0u2/5//OMfD+2nP/1paEuXLj3kcUFf8l//9V+h3X333aFl35MedthhoX3pS18K7cCBA4XG0t7eHlpdXV2h52YmTZpU6HEdHR2h3XrrraG9973vDW3Dhg2HPrAe5C+NAQAAAAAAAErMRWMAAAAAAACAEnPRGAAAAAAAAKDEXDQGAAAAAAAAKLH63h5AWbz+9a8PbeDAgaH9+te/Du0Pf/hDRcZE+Zx77rmhvehFLyr03N/85jehffzjH+/qkKCqHH/88aEdOHAgtFtuuaUnhgP/xxVXXBFaR0dHL4yk+51zzjmhnXDCCaFlnzdrn/jEJ7plXPQdjY2NoS1dujS04447LrSxY8eGtn379m4Z16GaOHFiaBdddFGh5957773dPRw4ZKeddlpol156aeHn79q1K7R169Z1aUzwQnbs2BHa3XffXah9+MMfrsiY/tzs2bNDq62tDS3b333wgx+sxJAoobvuuiu0bFt97LHHhrZs2bLQsnPnou9bU1NTc+WVV4b2s5/9LLQjjjgitPe+972hZedQVL8JEyaElp03NjQ0hPaxj30stGuvvTa0G2+8MbT7778/tMMOOyy0lStXhvbEE0+EljnmmGNCy647OL7ir2lqagrtggsuCG306NGhXXPNNaGdeuqpoW3bti20NWvWhJatxez72ZNPPjm0rvja174W2kc+8pHQdu7c2a3v2xP8pTEAAAAAAABAibloDAAAAAAAAFBiLhoDAAAAAAAAlJiLxgAAAAAAAAAlVt/bA6hGQ4YMCe21r31taK2traF9/OMfD62tra17BkapjBs3LrTsZuwDBw4s9HpLly4Nbc+ePYc8LqgWkydPDu2lL31paE8++WRot956a0XGBC/knHPO6e0hHLIJEyaENn/+/NCyfVtRW7ZsCc1xV/VpamoKbdWqVaFdeOGFof385z8P7fOf/3z3DOz/s2DBgtBmz54d2qxZs0I7cOBAoffo6Og45HFBd8vOTwYMKP7v2H/1q19153CgX/vYxz4WWrZP+PCHPxxadvwDnbF9+/bQ3vSmN4V2yy23hDZq1KhC7/HlL385tGxe19TU1DQ3N4f2k5/8JLRrrrkmtDPPPDO0OXPmhJYdQ1Jd/uVf/iW0D3zgA51+vexY593vfneh1hOyfcJvfvOb0C655JIeGA3VZufOnaFl2+Du9u1vfzu0k08+udBzGxsbQ8u2Ad/85jdDa29vL/QefZ2/NAYAAAAAAAAoMReNAQAAAAAAAErMRWMAAAAAAACAEnPRGAAAAAAAAKDE6nt7ANXo6quvDu2EE04I7c477wztvvvuq8iYKJ9/+Id/CG3RokWFnnvbbbeF9vGPf7yrQ4Kq8pa3vCW0iRMnhvaLX/yiB0YD1eejH/1oaFdeeWWnX++5554L7e/+7u9CW7NmTaffg/4jO66pra0N7ayzzgrt+9//freOZevWraEdOHAgtPHjx3f6Pb75zW92+rnQXS666KJCj9u5c2fa/+M//qMbRwP9xxvf+MbQ/vt//++hNTY2hrZt27aKjAleyF133RVatv2/9NJLQ8u2/x/72MdCa25uLjyeT37yk6EdffTRoZ177rmF3js7f6C6XHPNNaHdfPPNoX3ve98Lrb4+XmqZMWNGaAMG9J2/45swYUJo2Zq99tprQ/vUpz5VkTHBofjQhz4U2iWXXNLp17viiitC6+7vAPq6vrOFAgAAAAAAAKDHuWgMAAAAAAAAUGIuGgMAAAAAAACUmIvGAAAAAAAAACUW787OITnrrLNC+6d/+qfQdu/eHdp1111XkTFBTU1NzQc+8IFOP/eqq64Kbc+ePV0ZDlSdmTNnFnrcjh07KjwS6P/uuOOO0I488shufY9ly5aFdu+993bre9B/rFixIrQ3velNoS1cuDC0uXPndutYbrnllkKP+9a3vhXaZZddVui5TU1NhzQm6Krp06eHdumllxZ67rp169K+ZMmSLo0J+qvXve51hR73s5/9LLSHHnqou4cDh+yuu+4q1CohOwa6+eabQzv33HNDO+OMM0IbO3ZsaNu3b+/k6OiL2tvbQ8uOQebNm1fo9V75yleGNnDgwNA+8YlPhLZo0aJC79HdamtrQzvxxBN7YSRwsHe84x2hXXvttaHV1xe77PnEE0+E9pOf/OTQB1Zl/KUxAAAAAAAAQIm5aAwAAAAAAABQYi4aAwAAAAAAAJSYi8YAAAAAAAAAJVbsjtDU1NTU1IwbNy60L33pS6HV1dWFdscdd4R2//33d8/AoJuNHTs2tLa2tm59j127dhV6j4EDB4Y2atSoQu8xevTo0D7wgQ8Uem6mvb09tA9/+MOh7du3r9PvQf9x9tlnF3rcf/7nf1Z4JPDX1dbWhjZgQLF/O/i6172u0OO+9rWvhTZ16tRCz83G0tHRUei5RZ1zzjnd+nqUw9KlSwu1nvDMM890+rkLFiwI7fHHH+/KcOAvOuWUU0Irut+57bbbunk00L9lx2J79+4N7V//9V97YjjQ7/3whz8M7dxzzw3t4osvDu2qq64K7brrruuegVGVfv3rXxd63MKFC0NbtGhRaPv37w/tG9/4Rmj/83/+z9D+/u//PrRLL7200Pigp5188smhZcc6w4cPL/R6e/bsCe2KK64IraWlpdDrVTN/aQwAAAAAAABQYi4aAwAAAAAAAJSYi8YAAAAAAAAAJeaiMQAAAAAAAECJ1ff2APqqurq60O68887QDj/88NBWrVoV2j/90z91z8CgBzz66KMVf48f/ehHoW3YsCG0SZMmhXbxxRdXZEydsXHjxtA+/elP98JIqKTTTjsttMmTJ/fCSKBzbrjhhtCuv/76Qs/92c9+FlpHR0eh5xZ9XHc/98Ybb+z0c6Gvqq2tLdQyjz/+eHcPB/6icePGFXrc1q1bQ/viF7/Y3cOBfuOKK64ILTsn3rx5c2gPPfRQRcYE1SY7z8jOjc4777zQPv7xj4f2gx/8ILSnnnqqk6OjrBYvXhxa9v1ifX28nHP55ZeHNnfu3NBOP/30zg2upqZm3bp1nX4udMY555wT2ogRIwo9d+/evaGde+65of3+978/9IGVgL80BgAAAAAAACgxF40BAAAAAAAASsxFYwAAAAAAAIASc9EYAAAAAAAAoMTindOpqampqZkzZ05oJ554YqHnfuADHwht1apVXR4THIo77rgjtPPOO68XRpJ74xvf2K2vt3///tA6OjoKPff2228PbcmSJYWe+7vf/a7Q4+jfLrjggtDq6upCe/jhh0P77W9/W5ExwaH4yU9+EtrVV18d2oQJE3piOIVs2bIltOXLl4f2zne+M7QNGzZUZEzQmw4cOFCoQV9w5plnFnrcmjVrQtu1a1d3Dwf6jSuuuCK0bFv/85//vNDrjRgxIrQxY8aElq1FKJOlS5eG9rGPfSy0z33uc6F95jOfCe3Nb35zaE1NTZ0bHKWQnev+8Ic/DO1Nb3pTodc744wzCj2uvb09tGwfc8011xR6PeiM7HjlQx/6UKdf77vf/W5ov/nNbzr9emXjL40BAAAAAAAASsxFYwAAAAAAAIASc9EYAAAAAAAAoMRcNAYAAAAAAAAosfreHkBfMHPmzNAWL15c6LlXX311aD/72c+6PCboqje84Q2hZTeQHzhwYKff45hjjgnt4osv7vTrff3rXw/tueeeK/TcH//4x6GtWLGi02OhvIYOHRra61//+kLPveWWW0Jrb2/v8pigq1avXh3aJZdcEtr5558f2vve975KDOmv+vSnPx3aV77ylV4YCfQNgwcPLvS4pqamCo8EDpadT8yZM6fQc5ubm0Nra2vr8pig2mXnGJdddllo73//+0N74oknQvu7v/u77hkYVJFvf/vbob3rXe8KLfv+7brrrgvt0Ucf7Z6BUZWyY/i///u/D2348OGhnXTSSaFNnDgxtOw71ptuuim0T3ziE/kgoRtkc3jZsmWhFb1mkW1bs7VDcf7SGAAAAAAAAKDEXDQGAAAAAAAAKDEXjQEAAAAAAABKzEVjAAAAAAAAgBKr7+0B9AXvfOc7QzvssMMKPfeee+4J7cCBA10eE1TC9ddfX/H3uPTSSyv+HlBJbW1toe3YsSO022+/PbQvfvGLFRkTVMJvf/vbQm3x4sWhZcdO55xzTmjZOvna174WWm1tbWjLli0LDcrsrW99a2g7d+4M7ZOf/GQPjAb+r46OjtCWLFkS2oIFC0JbuXJlRcYE1e4d73hHaG9/+9tD+1//63+FZj8BxWzZsiW0V73qVaE999xzoX34wx8O7bLLLuuWcVEemzZtCi07737zm98c2kte8pLQ/vmf/zm0zZs3d3J00DmveMUrQps+fXpoRa+xvf/97w+tubn50AfG/+EvjQEAAAAAAABKzEVjAAAAAAAAgBJz0RgAAAAAAACgxFw0BgAAAAAAACix+t4eQE877bTTQnvPe97TCyMBoC9qa2sL7ZRTTumFkUDfcOeddxZqQGX96U9/Cu3zn/98aHfffXdPDAf+j/b29tA++tGPhnbgwIHQHnzwwYqMCfqrq666KrTrrrsutN/+9reh3XDDDaHt2LEjtNbW1k6ODlizZk1od911V2jnnntuaPPnzw9t2bJl3TMwSu2mm24q1KAv+OQnPxladp6Q+dznPhea89/u5y+NAQAAAAAAAErMRWMAAAAAAACAEnPRGAAAAAAAAKDEXDQGAAAAAAAAKLH63h5AT3vpS18a2vDhwws9d9WqVaHt2bOny2MCAAD4S84555zeHgIUtn79+tDe9ra39cJIoH+59957Q3vFK17RCyMBirroootCe+SRR0KbO3duaMuWLavImAD6qrFjx4ZWW1sb2ubNm0P7t3/7t0oMif8ff2kMAAAAAAAAUGIuGgMAAAAAAACUmIvGAAAAAAAAACXmojEAAAAAAABAidX39gD6qkceeSS0V77ylaFt3769J4YDAAAAAEAfsnv37tAOP/zwXhgJQN/3+c9/vlD75Cc/GdqGDRsqMiYO5i+NAQAAAAAAAErMRWMAAAAAAACAEnPRGAAAAAAAAKDEXDQGAAAAAAAAKLH63h5AT/vsZz9bqAEAAAAAAABd94UvfKFQo/f4S2MAAAAAAACAEnPRGAAAAAAAAKDEXDQGAAAAAAAAKLFCF40PHDhQ6XFQhap53lTzZ6NyqnneVPNno3Kqed5U82ejcqp53lTzZ6NyqnneVPNno3Kqed5U82ejcqp53lTzZ6NyqnneVPNno3Kqed5U82ejcorMm0IXjRsbG7s8GMqnmudNNX82Kqea5001fzYqp5rnTTV/NiqnmudNNX82Kqea5001fzYqp5rnTTV/NiqnmudNNX82Kqea5001fzYqp5rnTTV/NiqnyLypPVDg0nJHR0fN+vXra0aMGFFTW1vbLYOjeh04cKCmsbGxZurUqTUDBlTn/4BuTXAorAk4mDUBB7Mm4GDWBBzMmoCDWRNwMGsCDmZNwMEOZU0UumgMAAAAAAAAQHWqzn9mAQAAAAAAAEAhLhoDAAAAAAAAlJiLxgAAAAAAAAAl5qIxAAAAAAAAQIm5aAwAAAAAAABQYi4aAwAAAAAAAJSYi8YAAAAAAAAAJeaiMQAAAAAAAECJuWgMAAAAAAAAUGIuGgMAAAAAAACUmIvGAAAAAAAAACXmojEAAAAAAABAibloDAAAAAAAAFBiLhoDAAAAAAAAlJiLxgAAAAAAAAAl5qIxAAAAAAAAQIm5aAwAAAAAAABQYi4aAwAAAAAAAJSYi8YAAAAAAAAAJeaiMQAAAAAAAECJuWgMAAAAAAAAUGIuGgMAAAAAAACUmIvGAAAAAAAAACXmojEAAAAAAABAidUXeVBHR0fN+vXra0aMGFFTW1tb6THRzx04cKCmsbGxZurUqTUDBlTnv0uwJjgU1gQczJqAg1kTcDBrAg5mTcDBrAk4mDUBB7Mm4GCHsiYKXTRev359zYwZM7plcJTH2rVra6ZPn97bw6gIa4LOsCbgYNYEHMyagINZE3AwawIOZk3AwawJOJg1AQcrsiYK/TOLESNGdMuAKJdqnjfV/NmonGqeN9X82aicap431fzZqJxqnjfV/NmonGqeN9X82aicap431fzZqJxqnjfV/NmonGqeN9X82aicap431fzZqJwi86bQRWN/3k5nVPO8qebPRuVU87yp5s9G5VTzvKnmz0blVPO8qebPRuVU87yp5s9G5VTzvKnmz0blVPO8qebPRuVU87yp5s9G5VTzvKnmz0blFJk31fkfugMAAAAAAABQiIvGAAAAAAAAACXmojEAAAAAAABAibloDAAAAAAAAFBiLhoDAAAAAAAAlJiLxgAAAAAAAAAl5qIxAAAAAAAAQInV9/YAgJ5TW1sbWl1dXWgDBsR/T5K17PUGDhxY6Ln79+8PrbW1NbT29vbQDhw4EFome1zR51Je2bzuS69XlPlPX9WVNWEO0xfU18dTqK7M6+w4qeg2PDtO6ujo6PRYAOh7sn2MYyL6k+x7p6wVPZ7KnltTk6+L7Lio6PdMRdeZYy8qJVsTWRs0aFBoQ4YMCW3YsGGhZec2u3fvDq2xsTG07Ltd+yfo//ylMQAAAAAAAECJuWgMAAAAAAAAUGIuGgMAAAAAAACUmIvGAAAAAAAAACUW73QO9Du1tbWhjRw5slAbNmxYaJMmTQpt5syZoU2YMCG0+vq4Wdm/f39o27dvD23NmjWhPf/886Ht2LEjtL1794bW1tZWaCzt7e2hUX0GDCj276Sy9dSVxxUdS1de78CBA6F1dHQUatlzswZ/TTavs33CkCFDCj0324Y3NTWFZhtOd8m2w1nLtqVFn9uV7X82122vqaSuHJv0pfc4FEXXlLVHTzLf6KuKHv9kczg7runK673QY7P3KXpeXFTR7xqy94VDlc3z7Lx71KhRoY0fPz60urq6Qu/b0tISWle+dwL6Ln9pDAAAAAAAAFBiLhoDAAAAAAAAlJiLxgAAAAAAAAAl5qIxAAAAAAAAQInFu6QDfcaAAfHfdQwfPjy0iRMnhjZ79uzQTjnllNBOOOGEQs8dO3ZsaCNHjgxt0KBBoR04cCC0tra20LZt2xbaY489FtrPf/7z0H71q1+FtmnTptA6OjoKtWzM9B/Z2qmtrS30uKKtvj7uQhsaGkIbNmxYocdlr5e97549ewq1ffv2hZatu/b29tAy1kQ5FF0n2RyePHlyaMcdd1xoc+bMCS2bw0888URoTz31VGg7d+4Mbf/+/aFl23rKK5vrXWnZOqmrqwst25Zm2+GsZc+1baa7ZPO66OO6sk4GDhwYWnY+8UKPzY6fsvduaWkJrbm5ObTW1tbQurIerVH+t6JrLGMe0dOKbte78tyi5+yZF1oT2fa6u7/v6crPJttnZectlFNXzsWz74oHDx4cWtFjn+y4KZu/Ree0712hf/GXxgAAAAAAAAAl5qIxAAAAAAAAQIm5aAwAAAAAAABQYi4aAwAAAAAAAJRYvFt5CWU3ms+4QTuVNGBA/Dccw4cPD23y5MmhzZs3L7RTTz01tJNPPjm06dOnhzZ27NjQhg0bFlpDQ0No2efI1k7Wsufu3LkztLVr14bW2NgYWktLS2j79+8vNBb6j2wbnrVsftXV1XX6uQMHDgytvj7uVrPHjRkzJrRs3WXbgA0bNoS2bt260FpbW0Nrb28PLZv/HR0doRVlPfUfRef64MGDQ5sxY0Zor3zlK0M777zzQps1a1Zo2bb5gQceCO0HP/hBaA8//HBo2b6j6PbfHK4+2bzO5n+2T8i261nLjomyx2XHJk1NTaF197a5qOxnlcnGYu1Un6JrJ3tc0WOnrGXnHTU1+fHThAkTQhs9enRoGzduDO35558Pbdu2baFl6zY7pirKWukfin5P1JU1kT03274WbZmuzLei51lZK3qMZT30vqLnyZnscVnL3qPoMVa2vW1ra0vHk/Xs+V05jin688pa9r7Z+vG9VfUrui3NjpNGjBgR2rRp00LLjpGy98i+T83WYtExZ2sua9k8z1pPnANBZxQ9Vix6XJjN9a6cc3SFvzQGAAAAAAAAKDEXjQEAAAAAAABKzEVjAAAAAAAAgBJz0RgAAAAAAACgxOJdzfupojdjL3rj6cyBAwcKvcegQYMKtezm1i0tLaEVvQl81rIx0zfV1dUVelz2e96zZ09oK1euDK2+Pi75bdu2hTZ58uTQxowZE9qIESNCy9bT3r17Q9uwYUNojz/+eGh33XVXaA899FBoO3fuDC1bO9ZE9Sm6/c9aUdm8aW9vL/S4bN1la2zq1KmhZetpx44dLzjOvyYbX9E1UfTnZ431b9mcy7b/r3nNa0J785vfHNoRRxwRWkNDQ2jNzc2hLVy4MLSNGzeG1traGtpTTz0V2vbt20PLjrvM4f6t6PH/wIEDQ8vm5qhRo0KbNm1aaJMmTQpt8ODBoWXHK+vXry/0uGy+ZseFmWydZMdJWWtrayv0HvQfXTlPLtq6shaHDRsWWk1NTc2RRx4Z2pw5cwq9Zjae7Dyo6DlZV46psp9D0bVMZRSd19n8yL7rGT58eGgjR44MbciQIaEV3TYXPT/J9h1Zy47Fsu1/NleLnhfR+4rO6+wctitrIjsmyrb12drJtukvtM3ct29fp1t2rJStlWy+Z7ryvW22z7Km+q+ix0TZmpg/f35ob3jDG0KbN29eaI2NjaFl58nr1q0LbevWraFt3rw5tOycZffu3aFl3wtn+7ai3+VZD+VV9Jgt2xdl5/bZ8Vm238n2d0WPxbJjrGztZNd3ip5zdPea8JfGAAAAAAAAACXmojEAAAAAAABAibloDAAAAAAAAFBiLhoDAAAAAAAAlFh9bw/gz2U3Ns9uPD148ODQGhoaQhsxYkRoQ4cOLfTcbCz19fHHNX78+NCOOuqo0GbMmBHamDFjQstuNL906dLQlixZEtr69etDy26gnd2Q2w3ke1/2O2hrawtt8+bNoW3bti20FStWhHbPPfeElt3wPWuTJk0KbeLEiaGNHTs2tGztNDY2hrZq1arQHn/88dCym8Xv378/NPO6f8u2w1mrq6sLbcCA+G+isvlQtGWy983atGnTQjvuuONCy/Ynu3btCi1bJ9n8z1qm6M85a5mOjo5Cj6NvGjJkSGinnnpqaJdffnloc+bMCS3b/re0tIS2ffv20J555pnQdu/eHdqECRNCyzz77LOhbdq0KbTm5ubQ7E/6pqL7hOx8IjtPOPzww0NbtGhRaMccc0xo48aNC23Dhg2hPfjgg6Fl87roOdCoUaNCy47jsnOCbE1kY86O2Wzr+4/smCjbNmetK9u+osdY2ftmx041NTU18+fPDy07z87mZ3aunMnOlTNdOVai5xTdT2TfCQ0bNiy07Fw323fMmjUrtOxYPztez8519+3bF1p2zJbtE7LvnbJjneXLl4f2yCOPhLZx48ZC48vWoeOp3teVc+dM9txBgwaFln0Xm83h7Fgne73sc9TU5Mdj2VzMzke2bNkSWvb9W3ZMVfT7qO7+ToL+IZuv2f7k1a9+dWiXXnppaFOnTg1tx44doa1duza07Fg/265n+4lsfWbrOHtu1jLmfjlk+47sWCz7rufII48Mbe7cuaFl1zGyY7tsXk+ePDm07Dgue272Pe6jjz4a2i9+8YvQli1bFlr2XVlPXNvzl8YAAAAAAAAAJeaiMQAAAAAAAECJuWgMAAAAAAAAUGIuGgMAAAAAAACUWH1vvfGYMWNCmzJlSmjZjeGzlr1edoPq4cOHh1ZfH38M2XtkN8GeOXNmaNkN6UeNGhXaoEGDQmtrawtt/fr1of3oRz8K7bbbbgvt6aefDm3v3r2F3je7gbYb0ldOdhPzrLW0tIRWW1tbqO3YsSO0bP7X1dWFNmTIkNDGjRsXWrZ2srWdrcVNmzaFtmfPntD2798fmrnZv2XzdeDAgZ1+vY6OjtC6e45kr5fN68MOOyy0448/PrRsP/bII4+Els3/bLuQPS77uWQ/+4aGhkKPy7ZR2f6EvmnAgPhvB2fPnh3ae9/73tDmzJkTWnZck82R1tbW0NasWRPaqlWrQtuyZUuh982O2bK5uW/fvkKPy9YTva/o8U92rDNjxozQzj333NBOOeWU0CZNmhRadry+ZMmS0LJ5nR3/ZGMeMWJEaBMmTAgt+2zZPnXw4MGhZeuz6D7GsVjvy/bf2bY+WyfZMUK2Dc9kv/vsPYqeY2TzuqYm3/dMmzYttGw9Zu+dzeOuHD9l6zbTlZ81hyY7Rshadgyfza3sGH7BggWFnpttS7Pjmuw4JJsz2bnDvHnzQsvORbLtf7a+su+Odu/eHVr22czp3pdt/7O5VHQbl23rs+1e9txsLNn2Nptzzc3NhcZSU5PvU7Ljp+y4KNuHZvuOoj9D36mWUzb/hw0bFtqrX/3q0N7ylreENn369NCef/750O69997QHnjggdDWrl0bWrZdz/aV2b6j6DlBtpaydegco38renw8cuTI0BYtWhTaW9/61kKPy+ZStj/Jrotk8yu7tpFdZ8z2G9l1jGzf9OSTT4aWfS+2a9eu0HriGMtfGgMAAAAAAACUmIvGAAAAAAAAACXmojEAAAAAAABAibloDAAAAAAAAFBi8U7UFTB69OjQpkyZEtq8efNCmzNnTmhTp04NbcyYMaFlN9XObjyd3Sw7u7l71saNGxdadhPsjo6O0LIbbWfjmzRpUmiHH354aNlNurPXa2lpCc2N5ntf0Z930cdlN5/PnpvdPH3AgPjvSbLnZnM9m6/Z2s7WxKpVq0IzN8sh2w5nv+esZXOpu2VrIltj2X7iuOOOC+3FL35xaM3NzaHdd999oW3fvj20pqam0LK1nf386urqQuvK9oP+Y9SoUaG9/e1vD23BggWhDRo0qNB7tLa2hvb000+H9v3vfz+0n/zkJ6Fl633RokWhzZ49O7RsO9PY2Bja3r17Qyu6nqicotulTDbXX/nKV4b2ute9LrRp06aFtnv37tAef/zx0O65557QnnzyydCyY/PsGCvbT2T7nYULF4aW/Qz27dsX2vPPPx/a1q1bQ8vGXHS/Tfeor4+n8kX31UXPTbvy+8vWbNFjtpkzZ6Y92x+NHz8+tGxu79y5M7RsH9DW1hZaNu6i50uZnjh2LaPsmLboz3ro0KGhHXnkkaF15Zhj3bp1oW3cuDG0Rx55JLRsv5N9L5a1bPuffX+WbSuyc/vssxXVlX05h64r2/Xsd5WtsaxlxyZFzx2y73+y+f9C56HZd7RHH310aNl3pY8++mho2bY+0xP7UGulf8i2kdkcPPvss0PLvtd/5plnQrvllltCy847su+OsmOkTLbvyOZgNlezdZMdtxbdpjjH6Juy3332e86O1U899dTQ3vOe94SWnddm58nZdzjr168PLTvGyvZZxx57bGjZtcxsLNl+LGvZ+tyzZ09ovfVdlL80BgAAAAAAACgxF40BAAAAAAAASsxFYwAAAAAAAIASc9EYAAAAAAAAoMTi3akrYNCgQaENGTKkUMtuIJ/dFD27oXR2E+zNmzeHtnPnztCam5tDGz58eGjZzbyzm35nN5CfPXt2aEcccURo2WfLxpfdGDuTPa6joyM0N5WvPkV/p9kcnjBhQmjHH398aG94wxtCmzVrVmj3339/aK2traG1tbWFls1X+rdsO9db26Da2tpCLdu3ZevkpJNOCm3ixImhPfbYY6EtW7YstI0bN4aW7ROKrpPs55ztJ7KWrU/6pux4Kpubp59+eqHnZvMm24Y//fTToX31q18N7Uc/+lFo2bweMCD+e8ddu3aFlq3FOXPmhJYdU27durXQWIoed9Gzsvk6f/780F75yleGNnPmzNCybemKFStCu+OOO0J78sknQ9uzZ0+h98i2r9m+srGxMbSxY8eGNnny5NC2bdsW2ogRI0LL9neZbF/pfKJysnnT3dul7PeX/Z4z2fY6O8cYPXp0aCeeeGL6mocffnih9963b19o69atC2337t2hFf0ZdvdxFj0nm8NjxowJLTuHzY4vsnm9ZcuW0JYsWRLan/70p9DWr18fWnaMlc2j7Lut7Fgn+25r6NChoRU9BuxKo2cV3a5nLZsPw4YNCy1bT9n8yuZ1tv3O9icvZPr06aGdcMIJoWXHNmvWrCn03kX3g5miP39rpX/I5ke2n3j1q18d2rRp00LLvuv5zne+E9rixYtDy86Js/1ENreKrrFsf5LN3+ycJXuPbCzZe/jeqfdlv+fsdzVy5MjQjjrqqNDOPvvs0LLj/Ox4OzuHfeCBB0K78cYbQ1u9enVo2fW57Dvb7HMUXRPZcWE2luzcpLe+L/eXxgAAAAAAAAAl5qIxAAAAAAAAQIm5aAwAAAAAAABQYi4aAwAAAAAAAJRYfU+8SXNzc2ibN28OLbtRdPbcDRs2hJbdaDuT3VR+7dq1oe3Zsye07ObbWRs+fHhoCxcuDO2ss84Kbdq0aaFt3bo1tGeeeSa07Kb3RW+W3RM30KZnZb/TbI3V18fNQHYT+Ne+9rWhnXfeeaHNmzcvtNbW1tAeeuih0Pbt2xdaW1tbaEVlnzdj/ve+3touZXMkawMHDgxt6NChoY0ZMya0IUOGhNbe3h7as88+W6hl2/rs9Yr+/Iru24o2el82hwcPHhzaokWLQhs9enRo2VzKjs9WrlwZ2q233hraL37xi0Kvl71vts+aMWNGaPPnzw9twoQJoU2dOjW0J598MrTsuDVbd1RONh8GDIj//nXYsGGhnXjiiaEdccQRhZ6bnTvcd999oWXzpqmpKbRsu5l9tuxxdXV1oc2dOze0mTNnhpZ9toaGhtBGjBgRWrbuih5jUTm9tQ8uuhaz+ZqdJ0+fPj20WbNmpe+dzc9t27aFtnz58tDWrFkTWnaO0pXjz6Lrm96VzdesZb/P7PuVxsbG0FasWBHasmXLQsuOL7Jz4uyYIztPzo73Bg0aFFr2ebN9VtHzjq6ci9A3Ff3uKPsuNju+zs6JW1paQsu+i83WWDaWmpr8u9dsn7J9+/bQsnVR9Bgoa0XXgLXSf2Xb3JNPPrlQy7b1ixcvDu2//uu/Qiv6/X+m6HcF48aNCy37Dixbs9n+qegxknOM3pf9DrLtY/Y9aXasPmfOnNCy4/9sTWTXAO+5557Qvva1r4WWXe/LPlv2PW72ObLjqUy2z1q6dGmh8XX3uUlX+EtjAAAAAAAAgBJz0RgAAAAAAACgxFw0BgAAAAAAACgxF40BAAAAAAAASqy+J96kqakptKI3QM9unp7doH348OGh1dXVhbZmzZrQtmzZElpLS0uh8RW9gXb2esOGDQstu4H8008/HdojjzwSWnZz8Owm4kU/R2/daJvKyX7P2c3nzz777NBe/epXh5bdzD5bi9m8HjhwYGjZdmHAgPhvW7K1nc3XrjR6Vl/6HWRzrr6+2O4ye+748eNDa21tDS3b1mf7p2y/2BXZzz5bi/Rv2THHMcccE1q2fc2OYdauXRvaz372s9B+/OMfh7Z9+/YXHOefy/YTRx99dGhnnnlmaMcdd1xo2fHjuHHjCj33oYceCq271yKHLtvmjho1KrQFCxaENnr06EKvt3Xr1tCeeOKJ0Hbt2hVae3t7aEX3d9lYpkyZEtopp5wS2qRJk0Jrbm4OLdvWZ+uuK/tA+5NyyM4xBg0aFNrQoUNDmzVrVmhHHHFE+j7ZPmr9+vWhLVmyJLSdO3eG1pX52ZeOXfl/Ff2dZL/37Fhn9+7doe3duze0bFuffTfT2NhYaCzZPM+OYWbPnh3aUUcdFdrIkSNDy35WmzdvDi3bB2bnMUW/36N/K/r9Z3a8nh2fZXMpO0/Ijrnnzp2bjvHkk08OLfuOKnuf7NgwW3vZGvWdavUr+l3PqaeeGlo2Zx544IHQ7rzzztB27NgRWrbfyRQ9Psu+F87OO7L9WLb/zMaXjSX7mWaPo2/KzhGz7e3MmTNDy+bh448/Htrvf//70H71q1+Ftm7dutCyfUdDQ0NoJ5xwQmjZ+Uk2X7Nz7Oxz3HXXXaF197lJd/OXxgAAAAAAAAAl5qIxAAAAAAAAQIm5aAwAAAAAAABQYi4aAwAAAAAAAJRYvGN1Bezfvz++cXKz7OwG1bt27ep0O3DgQGibNm0Kbd++fYWem92MPfsc2c28x40bF9ro0aND27p1a2j3339/aE888URoW7ZsCS372WefjXLIbvg+b9680EaOHBna5s2bCz0ukz137dq1oQ0fPjy0CRMmhJat2dbW1tCy+Z89ri/daJ6elW3Xs9be3h5aNpdGjRoVWrbuduzYEdqf/vSn0Hbv3h1aNl+7e7uevceAAf6dWX+RzeGJEyeGNmLEiNCamppCW7duXWjf+MY3QvvlL38ZWratz+ZXNuapU6eG9u53vzu0M844I7RsLWbrJBvLlClTQqurqwuN3pdtlyZPnhzatGnTQhs6dGho2XF9th1ubGwMreh2M5uH2eOyY6xTTz01tAULFoQ2cODA0DZu3Bha0XOgwYMHh5b9rLJ9ZXYsRv9W9Ngpk82b448/PrRhw4alz8++L7jvvvtCW7lyZWjZcVt3Hz8V/Q6Bysh+/kV/x83NzaFt3749tGweFf0dZ98TjR8/vtDrZfu2l7/85aHNnTs3tLFjx4aWfbb169eHlu0Ds58BfVNXtnFFj1ey4/WTTjoptOnTp4e2Z8+e0LK1mM3hww8/PLSamvzcO5vvkyZNCm327NmhPf3006Ft27YttGz/lB0X+T62/8q24dmcybbrGzZsCG3JkiWhZdcsiq7FTHYMn53rZp+jpaUltJ07d4aWnU9ksjFnP9PsvDs796JnZb+XIUOGhJbN/2x7m21HH3zwwdCy70mz+ZCNL5tfc+bMCe38888PLbtml23n16xZE9r3vve90J566qnQ+vo1O98AAwAAAAAAAJSYi8YAAAAAAAAAJeaiMQAAAAAAAECJuWgMAAAAAAAAUGL1PfEm2U2cOzo6QstuKN3a2lro9WprawuNpampqdBYstfL3jdrw4YNC+2www4LbcSIEaE988wzod17772hrV+/PrTm5ubQMkV/VlSf7Cbw9fVxM7B8+fLQnn322dCef/750KZOnRra2rVrQ3vooYcKjWXmzJmhZWt2586doe3evTu0HTt2hNbXbz5P5RTdrmdzLpuvRx55ZGjZvu3pp58OLVtjLS0thcbSFUV/BkX3vdZOz8p+B9ncHDNmTGiNjY2hZdvrn//856HdfvvtoW3evDm0bPuayfZPCxcuDG3BggWhjRw5MrS6urrQsrVovvZv2e956NChoQ0YEP+dbLZOsvWUza+xY8eGNn78+ND27dsXWnt7e2jZucPxxx8f2qtf/erQJkyYEFp2/rRly5bQsmOnbL+T/awaGhpC68q5HP1H0d9ftp6ytXPUUUeFls2lmpqamm3btoX2hz/8IbTseD9be1SXonMzmwt79uwJbevWraFt2LAhtClTpoQ2atSo0LLzhCFDhoSWHetna2fOnDmFHpftF7dv3x5atm527doVmu16eWXHXdmcmzdvXmizZs0Kreg59uDBg0PLju1qavK1nCm6po444ojQsm1Ddszn3KP/yuZX9h3+3LlzQ8uOkbPz5Gz7mp0TZ7LtenbdIdvvZM/NrjFk1ye6sk/IPlvWsvXue6eelf28s+1/Ntez45rs/DJbE9m56fDhw0ObNm1aaEXHfOGFF4Z27LHHhpbNzWz/8stf/jK0xYsXh5Z999bX57C/NAYAAAAAAAAoMReNAQAAAAAAAErMRWMAAAAAAACAEnPRGAAAAAAAAKDE6nvrjdvb20PLbp7e0dERWtEbRWePy943e1zR9xgwIF53nzlzZmjz588v9HorVqwILbv5fHNzc2h9/Qba9KzsJvADBw4Mbdu2baFt2rQptGyuZzeuHzNmTGjZHN64cWNoQ4cODW369OmhTZgwIbRsTaxduza0+vq42du7d29o1lN5Ff3dZ3N91qxZoQ0aNCi0pUuXhtbY2Bja/v37C42lt2TbGWuncrKfd9ayOTdlypTQsm3f6tWrQ/vtb38bWrbvyOZrNh+y/cnEiRNDO+6440LLjuPa2tpCy34umWzM2b7NvO4/sjmyc+fO0LJ5k83N8ePHh/ayl70stJEjR4a2e/fu0LL1mR3rHHXUUaFl+5hsDmfHWM8//3xoe/bsCS07H8s0NDSElp23ZT/T7HdE9cl+99lcHz58eGgvNA8feuih0J599tnQWlpaQrMdL6ei3wnt27cvtC1btoS2Zs2a0LJjjuy8dsiQIaFl283s+KzoMXf2etl62rFjR2hbt24NrSvnJ0WPxazN/qPonMt+99n8z76bKTrXs2O7mpqampUrV4aWHe9k341lbfLkyaGNHj06tA0bNoSW7Qezn1fGeXbvqqurC23UqFGhZfMjm9fZd5jZsX52njB16tTQzj///NAWLFgQWlNTU2h/+MMfQsuuRWRrLPveteh1m6wNHjw4tGwf7Xyi92XzOlsn2XzIrjFk+4RsPmTfY2Xb6uxYJzvvOPPMM0PLtunZ58jOse+6667Qtm/fHlp/3H77S2MAAAAAAACAEnPRGAAAAAAAAKDEXDQGAAAAAAAAKDEXjQEAAAAAAABKLN7FuodkN5Rua2sr9NyiN1TvynOzVltbG9rw4cNDO+2000KbMWNGaNkNtB977LHQdu3aVWh8XdEfb8jN/5XNzaI3kG9oaAht3759oWVrdtWqVaFl6zi7CXzRMU+YMCG0o48+utDrZTezr6urC23Dhg2hNTU1FXoPa6d/y36n2RwZMmRIaMccc0xo8+fPD23AgPjvs1auXBlac3NzaNm66wnZmOl9RedrdmySHYdk29zGxsbQsu1he3t7aEW3h9mYDzvssNDGjRtX6D2y/U62ZrP1tGPHjtBWrFgR2v79+0Oj92XzITtuzn6ns2bNCi07bsheb9KkSaEtWLAgtGy7PmjQoEItW+/btm0LLZvDmzdvDi1b29naydZ2fX08ZczGnB0/ZvuT7D3oP4rui4YNGxbaEUccEdrQoUNDy9ZOTU1NzRNPPBHazp07Qyv6vUJ3y342Wcs4p6iM7OeabYOyObN169bQli9fHlo2B7P5n83r7D2y7fXUqVNDGzNmTGjZ8VQ2vuxcJPt+qqWlJbSic9W5c/XJ1snatWtDe/zxx0PLvncaOHBgaNkx93PPPRfagw8+mI5x/fr1oU2cODG0yZMnh5bNz+w4JjuHyo6Vsn1jdj5S9Ptn66fnZHMz265nv/fMqFGjQnvpS18a2umnnx7aSSedFNrs2bNDy+bbpk2bQsvObXbv3h1aNleLfk+U7Wezlu1jsvcteixF5WTbn9bW1tCy45psn5CdS2bzITv/zY5XMuedd15oRx11VGjZOs6OxbJrdtX83ZFvhQEAAAAAAABKzEVjAAAAAAAAgBJz0RgAAAAAAACgxFw0BgAAAAAAACixYndsr4DsBtrZjaKzm51nzy36HkVbZuDAgaH9zd/8TWhnn312aEOGDAnt0UcfDS27gXZzc3NoRcec6cpz6R7ZvC5qwID4bz2y+TVnzpzQ5s+fH9rw4cND2717d2g7d+4MbfXq1aFt2rQptGxtjxw5MrQpU6aEdsIJJ4R25JFHhpYZNmxYaDt27Cj0uNbW1tDq6uoKPY7K6crayZ5bXx93g4MHDw4tm5unnXZaaDNmzAht+/btoe3atSu0tra20Do6OkLLPkdX9pXd/XpUTvZ7yfYJ2XY9209kc27jxo2h7dmzJ7RsbmayMQ8dOjS0RYsWhXbssceGlq2xUaNGhZb9XLJ1d//994f21FNPhZbtx+hZ2VzK5uG6detC+8UvfhFaNq+nTZsW2r59+wq9R2NjY2iZbN0VHcusWbNCy85PWlpaQsvWRFfOlbKffdFG/5Gtu+x4uKGhIbRsDmfb9eycIFt3NTX5dnzv3r2h9dY2uyvHqVRGtv1qb28PLdtuZueN2TZ8w4YNhd4jO2/MXi/bXmfzfMGCBaGtXbs2tOw8/umnnw5ty5YtoWU/F+cE5ZXNh1WrVoV22223hfbYY4+Flp2LZ8dY2XM3b96cjnH06NGhZd+DZefo2XOztVz0HD1by1kr+npURvazzn7v2TFIts3Nzk1nzpwZ2qRJk0IbN25caBMmTAgtOxbLts3btm0L7bnnngst+7zZ96TZPiu7ZpG9Xja+7LnZe2SvR+UU/V1l267scdlxUrbumpqaQsv2O9lz586dG9r5558fWnbekX2O9evXh/bAAw+Elu2LquU4yV8aAwAAAAAAAJSYi8YAAAAAAAAAJeaiMQAAAAAAAECJuWgMAAAAAAAAUGL1vfXG2U2hsxtPZze37soNpYs+N7up/OzZs0O74oorQpsxY0ZojzzySGh//OMfQ1u3bl1o2U3gqT4DBsR/w1FfH5foiBEjQstu+H700UeHdtRRR4WWzdfW1tbQHn744dBWrVoVWia70fzxxx8f2gUXXBDawoULQxs1alRo+/fvD625uTm0cePGFWrZtqKlpSW07GdF5WT7hKItW2ODBg0KbdiwYaHNmzcvtOOOOy604cOHh7Z06dLQtm/fHlq2rc/mYdHPW1T2c6FvyuZDdrwydOjQ0Nrb20PbvHlzaFu2bAktmyNF583AgQNDe93rXhfau971rtCmTJkS2uDBgwu97759+0J79NFHQ/ve974XWvZz6cqxJ5WTnTvs2rUrtGXLloW2d+/e0KZNmxZatp/IjgeamppCy44RNmzYEFo2v/bs2RNaZuLEiaFlYy66ZrPPlv2sssdl+7Hsd0TvK3rckM2bbLs+ZMiQ0I444ojQsjWWne9s3LgxHc/zzz8fWmNjY2jZPq+7deXYyz6l5xT9WWdzJtvOZa+XHXNk56ZFj+uzdZftE7Zu3Rra448/HtqOHTtCW7NmTWjZ/in7HEVln9fc75uKfj+bzYfsvPaJJ54ILfuuMztO2rRpU2jbtm0rNL6amnwtZ8/PvlfLfg7ZMVC2Hruyvq2VviebRzt37gztySefDG3s2LGhTZ48ObQJEyaElp3bZ9vwbB5la2L16tWhZcfrY8aMKTSW7GeQfe9adJuSbQOK7j/pWdnvr+j5YHaenCn6u8+23xdffHFo2bWSbF5n2/Tse9y777670HOrhW+KAQAAAAAAAErMRWMAAAAAAACAEnPRGAAAAAAAAKDEXDQGAAAAAAAAKLH63h7AX9OVm50XfW5tbW1o48aNC+0tb3lLaCeffHJo7e3tod17772hLV++PLTspvLZzcbp37I5N2BA/DccQ4cODW38+PGhHXHEEYXa/PnzQzvmmGNCq6+Pm4Zhw4aFtnnz5tC2bdsW2tFHHx3aa17zmtAOO+yw0AYPHhxaduP65ubm0LK1mBkxYkRo2Vpsamoq9Hp0j2ydFF072RzJWkNDQ2gTJkwIbeHChaFNmTIltD179oS2du3a0LJ10traGlpR2c8l2wdmj8tk+53s9bqyj6Z7ZNvr7PecbQ/b2tpCGzhwYGjZ/iTbNmftjW98Y2jvfve7Q8v2d0Xna7Z2Vq5cGdr1118f2mOPPVbo9cz1vinbVmXzevfu3aFl2+bsWGLs2LGhZesue98dO3YUatm+aN++faFl+5gxY8aElq3FbMzZ592+fXtoe/fuDS07Jsq2M9ZO7+vu46lBgwaFls3Dosf1u3btCu3ZZ58Nraampubpp58OLVsrXfkewJytfkV/x9njsm19tu3L9k9F1132vtm6y45XnnvuudCyfcemTZtCa2xsDK3oZ8tYS9Unmw/ZMUL2PVG2rc/mcDZfs8dlxzUv1LN9WUtLS2j79+8PLTuGzPY72XO7cv5s/fSc7GedbeeyY9+NGzeGtnXr1tCyOZxt/7N5lB2vF52D2XOz6x3Z+Uk25mwbULRlP9Oi3zvRs7ryXWL23KLniNl8yLbpixYtCu2SSy4JLTvvyN4j++7otttuK/S4ar5m5y+NAQAAAAAAAErMRWMAAAAAAACAEnPRGAAAAAAAAKDEXDQGAAAAAAAAKLF4N+leVPRG21nrynOzG2OfcsopoZ1xxhmFXu/hhx8O7Y9//GNoGzduDC27Sb2bwJdD0ZvKZ7Ibw0+ePDm0GTNmhDZy5MhCr7dw4cJCz21paQlt3LhxnX5u1vbs2RPali1bQluxYkVoy5YtC23Tpk2htba2htbW1hYaPavo9jBbT3V1daFl2//DDz88tMMOOyy0jo6O0FatWhXa0qVLQ8vma3t7e2hd2S4MGBD/XVj28+vKz9T+qWdlP+/9+/eHVnRbOnfu3NCyNTFhwoTQZs+eHdqiRYtCmzlzZmiDBg0KrahsO/zEE0+EduWVV4aWHZ/ZrvcfRbc32bY0e+7OnTtDy+ZDdmw+dOjQ0LJjp3379oWWbUuz52ZjyY5Nss/b0NAQWrbfyY5/tm/fHlp23JVtU7L9In1TNg+z44aix06zZs0KbdKkSaFl6+nZZ58N7YEHHgitpqamZu3ataFla6ArunLsRXXJ9h1Ft3PZespatv0fMmRIaFOnTg0tm/vZfiI7VmxqairUin5e5wTVp+jvNJtze/fuDS2bh9n8ylq2ToYNG5aOZ/To0aFlayrbv2XHd5s3bw4t25dl67Ern9ma6l1Fz7uz+ZGdc2ZzOFsn2Xe22Xe72bFKdryeHdfv3r07tF27doW2bdu20LJzm6LnJ+Z5/5b9rooe6xQ1cODA0LLrCRdeeGFo2bY/O5/OrsV997vfDe3ee+8NLVuz1cxfGgMAAAAAAACUmIvGAAAAAAAAACXmojEAAAAAAABAibloDAAAAAAAAFBi8U7s/VR2E/js5tuDBw8Obe7cuaGdfvrpoQ0ZMiS0VatWhXbHHXeEtmzZstCym8pnN4un+mQ3kM9+962traHt2rUrtGx+HXHEEYVer6mp6QXH+eeyG8iPHDkytJaWltD27dsX2oYNG0LbtGlTaGvWrAktWzvZ49avXx/a888/X2h82e8o+xnQ+7LfVday/US2XR81alRo2bx+8sknQ1u3bl1ojz32WGjNzc2Fxtdbiv5M6X3ZdmnLli2hPfzww6FNmjQptDlz5oSWbeuzx2WvV19f7FAzm1/ZuvvlL38Z2oc//OHQsuOz/fv3FxoL1aejoyO0bH5lx2LZGsv2Hdlcz14v29Zn48v2E9lYBg4cGNru3btDy45/suOpvXv3hpYdP2Zjtp/ofdn8Ktqyc+dsXg8fPjy0KVOmhDZo0KDQsmP9bG5m5zY1Nfm67crxU/Zc87icuvv3nq2dbN+RHWNNnz49tGnTphV6j+z7rmx/kn0HkO2znBPw57LffXY8kB03ZM+tq6sLraGhIbRsf5Kds9fU1NSMGDEitNGjR4eWransHCr7rig7p8ha9rPJGn1P0bmeHTc//fTToe3cuTO01atXh5Z9j5udY2dzOhvL8uXLQ1uxYkVoGzduDC2b+9m+Izs/cZ5QXtn5RNHzjuyYaNGiRaFNnDgxtB07doSWfT/7zW9+M7Tvfe97oW3evDm0ss1hf2kMAAAAAAAAUGIuGgMAAAAAAACUmIvGAAAAAAAAACXmojEAAAAAAABAidX31htnN8Eu+ris1dfHjzJ8+PDQ5s6dG9rpp58e2pFHHhnarl27Qrv//vtDu/vuu0PLbr69f//+0Mp2U+2yyn7PWWtpaQktu7l7c3NzaF//+tdDe+CBB0I77bTTQhs8eHBo27ZtC23Tpk2h7dmzJ7RszFu3bg1ty5YthV4v+7ytra2htbe3F2rWXXkNGjQotGz+NzY2htbU1BTa0qVLQ3v22WcLPTebmx0dHaEVna+99TgqJ/sdZPMmm6/Z3NywYUNoRx99dGgvf/nLQxs3blxoo0aNCm3AgPjvE7N5vXnz5tC+9KUvhfbtb387tOz4LHsP+HPZemprawstO17fu3dvaNlcr6urCy3b72Tv29DQUOh9s7WTjXnjxo2FXq/o+UnRRt9UdL4OGTIktBkzZoR2zDHHhDZ58uTQsjmSnSdn+6eamuLH+73Fuuh7in7vVPS5WcvWTnY+kR0nZevp8MMPD23o0KGhZfuTffv2hZYdF2bn09lcLfozMM/LK/vdZ8fh2bFO0TlX9Jy9piY/Rxk/fnyh8WTrJ/tOruh3Ss6zq0vRuZ7No+xYJ/s+9eGHHw5t4sSJoY0ePTq07Jw4+y42m9PZ8VW2RrLmO9bqk22Hs3OHoucT2XntmDFjQps9e3ZoJ5xwQmjZ9b5Vq1aF9p3vfCe0n/70p6Ht3r07NHPYXxoDAAAAAAAAlJqLxgAAAAAAAAAl5qIxAAAAAAAAQIm5aAwAAAAAAABQYvW9PYA/V/QG2gMHDgxtxIgRoU2ePDm0efPmhTZ37tzQhgwZElp24/oHH3wwtPXr14eW3Sw+u6l2drNxN98uh46OjkJt//79obW0tIS2c+fO0J599tnQ7rjjjkLjKzoPszWbyT5be3t7p9/XOimH7PfclZatnWxbn83NrVu3hvbMM8+Elq3FbB0X3QYU1ZU1YT31H9kcaW1tDS07DmlsbAwtm8OLFy8ObdSoUaFNmTKl0OOyMWfvu3HjxtCyzwGd0ZXji2wOZ8fw2b4je252DpQ9d/fu3aFt2bKl0Hts3749tGwbkK2xrhyf0Tdlv79sHhY9766vj18rZPPwueeeC+3pp58OLZvrNTX58VNXjgO7whrov7K5nsm269m5btHz34aGhtCyY6epU6eGlq2nbBuenXfs2bMntGy7nn2O7GdA/9YTv9Ns+1j0WCJbn9n8HzZsWPre2X4rWwPZ8U52rLRv377QsnMtx0rlVPR3nM2PrGVzKzsmyo67ih6LFR1L0e+szPNyKHqeMHz48NAmTJgQ2vTp00M7/PDDQxs/fnxo2fdEDzzwQGi/+tWvQsuOnbryvWs185fGAAAAAAAAACXmojEAAAAAAABAibloDAAAAAAAAFBiLhoDAAAAAAAAlFi8S3oPyW6Unt14va6uLrRBgwaFNnLkyNCmTJkS2jHHHBPakUceGdqwYcNCW7ZsWWhbt24NLfscbgxPJRWdX9nczFpX7N+/v1tfj/IqOq87OjpCy+Zh9rgNGzaEtmPHjtCGDBlS6D327t0bWmtra2jZusvGB92l6HFX1tra2kLbt29faNl6gkoqup+ora0t1LpyvJ49t+j+qbm5ObTdu3eHtnHjxtAaGxsLjW/Xrl2hZfusbMzZZ3Nu0zd15XfV0tISWjZvHn744dA2b94c2uTJk0PbuXNnaKtWrQpt27Zt6Riz/VHROZuteapf0eOf+vr41diAAfFvLLJ5lD0ua9n5RENDQ2jbt28PLVs72fZ/y5YtoWXrqampKbTu/l6Avqkv7b+zsRQ9x169enX6mtl+a/To0YXGk62LbP1k5/dFf6596edPz+nKd7bZcU42B7v7fMdcLa/sd58dg2fHTtlxzdSpU0M7+uijC7Xx48eHll2Le+qpp0LL9h0U5y+NAQAAAAAAAErMRWMAAAAAAACAEnPRGAAAAAAAAKDEXDQGAAAAAAAAKLF4x+o+Jru5e9Z27NgR2qxZs0IbOHBgaIMHDw4tu1n2pk2bQmtqagqtpaUltOxm9kVvKj9gQLy2nz3XTeqBMsq2fdk2N2u1tbWhZdvwtra20Do6OkLL9k/Z+2bP7YrscxRl3wFUu65s57Lta9a68h7ZfmLXrl2hZecn2XlMdr6zf//+0Hprn0XvK3oMk7XsudmxU3bunD1u586dhR73Qu9dVLZGu3L8RHXJtpFFZdvNQYMGhZZt15cvX17oPfbs2RPa1q1bCz2u6Nz3HROVVHTOdeUcu6ampqaxsTG0zZs3h9bQ0BBads6fvXdzc3No1g9/SdHjje6eR105bnKMxF+TXRNbs2ZNoXbMMceEVvR4Zdu2baFt37690Os5ry3OXxoDAAAAAAAAlJiLxgAAAAAAAAAl5qIxAAAAAAAAQIm5aAwAAAAAAABQYvW9PYBKWrx4caHWE+rr4496//79oWU3+HaTboDKaG1tLdT6kmw/ceDAgU4/DoAXlm03u7ItbW9vL9SK2rZtW2gNDQ2hZfs25x10xt69ewu1LVu29MRwusRxEd2hra0ttGzbnLWVK1d261gGDRoUWrb978r3U9YNnVF03mTzMGuHIju22b59e2hDhgwJLVs/2Wdx/MRf0hPbze5+D9t6KukLX/hCbw+Bv8JfGgMAAAAAAACUmIvGAAAAAAAAACXmojEAAAAAAABAibloDAAAAAAAAFBi9b09gLLYv39/oce50TwAf0nR/YT9CUB1aWlp6dbH2U8AVJfW1tZCj/P9FGXS1NTUrY8DgGrnL40BAAAAAAAASsxFYwAAAAAAAIASc9EYAAAAAAAAoMQKXTR2HxM6o5rnTTV/NiqnmudNNX82Kqea5001fzYqp5rnTTV/NiqnmudNNX82Kqea5001fzYqp5rnTTV/NiqnmudNNX82Kqea5001fzYqp8i8KXTRuLGxscuDoXyqed5U82ejcqp53lTzZ6NyqnneVPNno3Kqed5U82ejcqp53lTzZ6NyqnneVPNno3Kqed5U82ejcqp53lTzZ6NyqnneVPNno3KKzJvaAwUuLXd0dNSsX7++ZsSIETW1tbXdMjiq14EDB2oaGxtrpk6dWjNgQHX+D+jWBIfCmoCDWRNwMGsCDmZNwMGsCTiYNQEHsybgYNYEHOxQ1kShi8YAAAAAAAAAVKfq/GcWAAAAAAAAABTiojEAAAAAAABAibloDAAAAAAAAFBiLhoDAAAAAAAAlJiLxgAAAAAAAAAl5qIxAAAAAAAAQIm5aAwAAAAAAABQYv8PPGV19P8UeNEAAAAASUVORK5CYII=\n"
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "encoding_dim = 16"
      ],
      "metadata": {
        "id": "ftq0FB2gX0GW"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import matplotlib.pyplot as plt\n",
        "\n",
        "# obtain one batch of test images\n",
        "dataiter = iter(test_loader)\n",
        "images = next(dataiter).to(device)\n",
        "\n",
        "images_flatten = images.view(images.size(0), -1)\n",
        "# get sample outputs\n",
        "output = model(images_flatten)\n",
        "# prep images for display\n",
        "images = images.cpu().numpy()\n",
        "\n",
        "# output is resized into a batch of images\n",
        "output = output.view(batch_size, 1, 28, 28)\n",
        "# use detach when it's an output that requires_grad\n",
        "output = output.cpu().detach().numpy()\n",
        "\n",
        "# plot the first ten input images and then reconstructed images\n",
        "fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(25,4))\n",
        "\n",
        "# input images on top row, reconstructions on bottom\n",
        "for images, row in zip([images, output], axes):\n",
        "    for img, ax in zip(images, row):\n",
        "        ax.imshow(np.squeeze(img), cmap='gray')\n",
        "        ax.get_xaxis().set_visible(False)\n",
        "        ax.get_yaxis().set_visible(False)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 145
        },
        "id": "sdUGpNvtcnXi",
        "outputId": "49a8f912-9111-4049-83a8-3bf1d7b2d209"
      },
      "execution_count": 15,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 2500x400 with 20 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAB40AAAFICAYAAABEN2iVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWgBJREFUeJzt3Wl4nmWd8P+kSbrvKy0tUApla6FQNtlRlB1FUFBGHR1xRR1xY5QRxPXRcV9gnMcVHQcFUVRABFkEAWkpILTsdKML3Zu0TZMm+b94/vM8dH4/9GqSO0nv6/M5Dt58j3s57+S8tvtsuGo7Ojo6agAAAAAAAAAopX69PQAAAAAAAAAAeo9FYwAAAAAAAIASs2gMAAAAAAAAUGIWjQEAAAAAAABKzKIxAAAAAAAAQIlZNAYAAAAAAAAoMYvGAAAAAAAAACVm0RgAAAAAAACgxOqLPKi9vb1m2bJlNcOGDaupra2t9JjYyXV0dNQ0NjbWTJo0qaZfv+r8dwm2CXaEbQK2Z5uA7dkmYHu2CdiebQK2Z5uA7dkmYHu2CdjejmwThRaNly1bVjNlypRuGRzlsWTJkprJkyf39jAqwjZBZ9gmYHu2CdiebQK2Z5uA7dkmYHu2CdiebQK2Z5uA7RXZJgr9M4thw4Z1y4Aol2qeN9X82aicap431fzZqJxqnjfV/NmonGqeN9X82aicap431fzZqJxqnjfV/NmonGqeN9X82aicap431fzZqJxqnjfV/NmonCLzptCisT9vpzOqed5U82ejcqp53lTzZ6NyqnneVPNno3Kqed5U82ejcqp53lTzZ6NyqnneVPNno3Kqed5U82ejcqp53lTzZ6NyqnneVPNno3KKzJvq/B+6AwAAAAAAAFCIRWMAAAAAAACAErNoDAAAAAAAAFBiFo0BAAAAAAAASsyiMQAAAAAAAECJWTQGAAAAAAAAKDGLxgAAAAAAAAAlZtEYAAAAAAAAoMQsGgMAAAAAAACUmEVjAAAAAAAAgBKzaAwAAAAAAABQYhaNAQAAAAAAAEqsvrcHAPSuD3/4w6ENGjQotAMPPDC0c889t9B7XHnllaHde++9oV199dWFXg8AAAAAAIDu4y+NAQAAAAAAAErMojEAAAAAAABAiVk0BgAAAAAAACgxi8YAAAAAAAAAJVbf2wMAes4111wT2rnnntvp12tvby/0uHe+852hnXTSSaHdeeedoS1evHjHBwY7oenTp4f2+OOPh/aBD3wgtG9+85sVGRPsiCFDhoT2pS99KbTsmDB37tzQXve614W2aNGiTo4OAAAAeLFRo0aFtttuu3X69bJr9g9+8IOhPfroo6E9+eSToT388MOdHgvQOf7SGAAAAAAAAKDELBoDAAAAAAAAlJhFYwAAAAAAAIASs2gMAAAAAAAAUGL1vT0AoDKuueaa0M4999xOv97jjz8e2u9///vQ9txzz9DOPPPM0KZNmxbaBRdcENrnP//5okOEndrBBx8cWnt7e2hLly7tieHADps4cWJoF154YWjZvJ49e3ZoZ5xxRmjf/va3Ozk66D6HHHJIaL/85S9D22OPPXpgNMW86lWvCm3BggWhLVmypCeGA90mu8644YYbQrvoootCu+qqq0Jra2vrnoFRGuPHjw/t5z//eWh//vOfQ/vud78b2sKFC7tlXJUyYsSI0I477rjQbr755tBaW1srMiYAotNPPz20s846K7QTTjghtL322qvT7/vkk0+Gtvvuu4c2YMCAQq9XV1fX6bEAneMvjQEAAAAAAABKzKIxAAAAAAAAQIlZNAYAAAAAAAAoMYvGAAAAAAAAACVW39sDALru0EMPDe3ss88u9NzHHnsstLPOOiu01atXh9bU1BRa//79Q7vvvvtCO+igg0IbM2bMS44Tqt2sWbNC27RpU2jXX399D4wG/rZx48aF9qMf/agXRgI97+STTw5twIABvTCS4s4888zQ3va2t4V2/vnn98RwoFOya4XvfOc7hZ77rW99K7Tvf//7oW3ZsmXHB0ZpjBo1KrTsenrEiBGhrVy5MrSFCxd2y7gqJfscc+fODS07L5w9e3ZoTz/9dPcMjKowfPjw0D7/+c+HNmPGjNBOOumk9DVbW1u7PjDoQ6ZNmxbae9/73tAuvPDC0AYNGhRabW1t9wzsb5g+fXrF3wOoLH9pDAAAAAAAAFBiFo0BAAAAAAAASsyiMQAAAAAAAECJWTQGAAAAAAAAKLH63h7A33PuueeGlt3cfdmyZaE1NzeH9tOf/jS0FStWhPb0008XHSL0uokTJ4ZWW1sb2mOPPRbaySefHNry5cs7PZYPfehDoe2///6Fnvu73/2u0+8LO5MZM2aEdtFFF4V29dVX98Rw4G96//vfH9prXvOa0A4//PBufd/jjjsutH794r93fPjhh0O76667unUslFd9fbxcOu2003phJF0zd+7c0C6++OLQhgwZEtqmTZsqMibYUdlxYfLkyYWe+7Of/Sy07PsC+G9jx44N7Zprrglt9OjRoX3nO98J7X3ve1/3DKwHXXrppaFNnTo1tHe+852h+U6NF7vgggtC++xnPxvalClTCr3e8OHD075mzZodGxj0cdl5zgc+8IFeGEnu8ccfDy377hkqaa+99gotO487++yzQzvhhBNCa29vD+2qq64K7Z577gmtWs5//KUxAAAAAAAAQIlZNAYAAAAAAAAoMYvGAAAAAAAAACVm0RgAAAAAAACgxOp7ewB/zxe/+MXQ9thjj06/3jvf+c7QGhsbQ+vrN21funRpaNnPas6cOT0xHHrZb37zm9Cym8Bnc33t2rXdOpbzzz8/tIaGhm59D9jZ7bvvvqENGTIktGuuuaYnhgN/01e/+tXQ2tvbK/6+r33tawu1RYsWhXbeeeeFNnfu3O4ZGKVy4oknhvayl70stOw8vC8ZNWpUaPvvv39ogwcPDm3Tpk0VGRO8lAEDBqT9E5/4RKdf8+qrrw6to6Oj069H9TvkkENCO+GEEwo994orrujm0VTeAQccENqHPvSh0K6//vrQXLPwYpMnTw7ta1/7WmhjxowJreh++Zvf/GbaL7rootC6+zsv+FvGjh0b2gc+8IHQ7rnnntBuvvnm0LZu3Rrahg0bQsvO17PvmG655ZbQHn300dDuv//+0ObNmxfali1bCo0FOmPGjBmhZfv57HuibFvsiiOOOCK0bdu2hfbEE0+Edvfdd4eW7RdaWlo6Obru5y+NAQAAAAAAAErMojEAAAAAAABAiVk0BgAAAAAAACgxi8YAAAAAAAAAJVbf2wP4ey688MLQDjzwwNAWLFgQ2n777RfaIYccEtoJJ5wQ2pFHHhnakiVLQpsyZUpoRWU3y161alVoEydOLPR6ixcvDm3OnDk7PjCqwqJFiyr+Hh/5yEdCmz59eqHn3n///YUaVKOPfvSjoWXbrH04Pe3GG28MrV+/yv8bwzVr1oTW1NQU2u677x7a1KlTQ/vLX/4SWl1dXSdHR1nMmDEjtJ/97GehPfPMM6F97nOfq8iYusurX/3q3h4CFDZz5sy0z549u9Dzs+vsm266qUtjorqNHz8+tHPOOafQc//pn/4ptOx7nb7kgAMOCO3WW28t9Nzrr78+tMbGxi6Pierx4Q9/OLTRo0d363ucd955aT/llFNC++xnPxvaN7/5zdBaWlq6PjBKZciQIaHdcsstoR100EGhnX322YXe47777gstW9tYuHBhaLvttltoS5cuDa29vb3QWKC7ZGt7733ve0PL9vXDhw8v9B7PP/98aH/6059Ce+6550LLvrOdO3duaIcffnho2fHutNNOC+3hhx8O7aqrrgqtt/hLYwAAAAAAAIASs2gMAAAAAAAAUGIWjQEAAAAAAABKzKIxAAAAAAAAQInV9/YA/p7bbrutUMvcfPPNhR43atSo0GbNmhVadsPrww47rNB7ZJqbm0N78sknQ1uwYEFo2U21n3nmmU6PBf6eM844I7QrrrgitP79+4f2wgsvhPYv//IvoW3evLmTo4O+a4899gjt0EMPDS3b/2/atKkSQ4KampqamuOPPz60ffbZJ7T29vZCrairrroqtFtuuSW0DRs2hPbyl788tE984hOF3vfd7353aFdeeWWh51IOl156aWhDhgwJ7ZRTTgmtqampImPqjOw6Idveu7IdQyWdc845XXp+dkyBv+XLX/5yaP/wD/8QWvad0C9+8YuKjKmSjj322NAmTJgQ2g9/+MPQfvKTn1RiSOykdt9999De+ta3FnruI488EtrKlStDO+mkkwqPZ8SIEaF9+MMfDu2nP/1paCtWrCj8PpRP9l3nf/7nf4Z20EEHhfa5z30utFtvvbXTY1m4cGGhxy1evLjT7wHd5d///d9DO/vss0MbO3ZsodfL1gX/+te/hvbxj388tGwtLnPUUUeFln2f9P3vfz+0bE0xO7Z9+9vfDu26664LbdWqVS81zIryl8YAAAAAAAAAJWbRGAAAAAAAAKDELBoDAAAAAAAAlJhFYwAAAAAAAIASq+/tAfQF69atC+32228v9Nzs5ttdcc4554Q2atSo0LIbfF9zzTXdOhZ4sUMPPTS0/v37F3puNjfvvPPOLo8JdgbHH398ocetWrWqwiOhzPbYY4/Q/uu//iu0sWPHdvo9Fi1aFNp1110X2qc+9anQNm/e3On3eMc73hHauHHjQvviF78Y2sCBA0P71re+FVpra2uh8bHzOPfcc0M77bTTQnv66adDmzNnTkXG1F0+8YlPhNbe3h7aHXfcEdr69esrMCLYMccdd1zhx7a0tISWbQPwt3R0dISW7TeXLVsWWjYHe8ugQYNC+/jHPx7ae97zntCyn8Hb3va27hkYVWvWrFmhDRs2LLQ//elPoWXXydm5+Rve8IbQsnldU1NTM23atNB22WWX0H7961+Hduqpp4a2du3a9H2obkOHDg3tX/7lX0I744wzQlu9enVo//Zv/xZa0etf6Kuy/fVHP/rR0N7+9reHVltbG1r2neiVV14Z2pe+9KXQNm3a9JLj7IwxY8aEVldXF9rll18e2s033xza7rvv3i3j6kn+0hgAAAAAAACgxCwaAwAAAAAAAJSYRWMAAAAAAACAErNoDAAAAAAAAFBi9b09gDIbP358aN/5zndC69cvru1fccUVoa1du7Z7Bkbp/epXvwrtVa96VaHn/vjHPw7t0ksv7eqQYKc1c+bMQo/74he/WOGRUGb19fGUb+zYsZ1+vTvvvDO0888/P7TVq1d3+j0yixYtCu3zn/98aF/5yldCGzx4cGjZdnfDDTeE9swzzxQdIjuJ173udaFlcyQ7N+9L9thjj9AuuOCC0Nra2kL7zGc+E1pra2u3jAuKOuqoowq1l7Jp06bQHnrooa4MCV7S6aefHtott9wS2vr160O78soru3Usxx9/fGgnnHBCaEceeWSh17v22mu7OiRKaMCAAaF1dHSE9tWvfrXQ6zU3N4f2gx/8ILTsPK6mpqZmzz33LPQ+mzdvDq2lpaXQc6l+r3nNa0K75JJLQlu8eHFoxx57bGgbNmzolnFBX5Kdc3zkIx8Jrba2NrTnn38+tHPOOSe0v/zlL50b3Euoq6sLbcqUKaFlaxs33nhjaKNGjSr0vtnP4Oqrrw4tO3/sLf7SGAAAAAAAAKDELBoDAAAAAAAAlJhFYwAAAAAAAIASs2gMAAAAAAAAUGL1vT2AMnvve98b2rhx40Jbt25daE888URFxkT5TJw4MbSjjjoqtAEDBoS2evXq0D7zmc+E1tTU1MnRwc7lyCOPDO2tb31raPPmzQvtD3/4Q0XGBF01Z86c0N72treFlh0TesINN9wQ2gUXXBDaYYcd1hPDoQ8aMWJEaNn+OnPllVd293C61Tve8Y7Qxo4dG9qCBQtCu/322ysyJtgRXd039/VtlJ3D17/+9dBOPPHE0CZNmhTacccdF1ptbW1oZ511VidHl8veo6Ojo9Bzn3322dA+/vGPd3lMlM8b3vCGQo87/fTTQ/vVr37V6fc99NBDO/3cmpqamvvuuy8031vx37LvRDPZ9zpLly7t7uFAn1RXVxdaW1tboedu27YttCOOOCK0c889N7R999230Hts2bIltP32269Qy77bmjBhQqH3zaxcuTK0bP2ktbW10+/R3fylMQAAAAAAAECJWTQGAAAAAAAAKDGLxgAAAAAAAAAlZtEYAAAAAAAAoMTqe3sAZXH00UeHdskllxR67mte85rQHn300a4OCWpqampqrrvuutDGjBlT6Lk/+clPQnvmmWe6PCbYWZ100kmhjR49OrSbb745tObm5oqMCV5Kv37F/u3gEUccUeGRdE1tbW1o2Wcr+nkvv/zy0N70pjft8LjoOwYMGBDarrvuGtrPfvaznhhOt5o2bVqhx7l2oK869NBDCz92/fr1oV155ZXdOBrKau7cuaEdeOCBoc2aNSu0U045JbSPfOQjoa1atSq0H/3oRwVHGF199dWhPfzww4We++c//zk01/F0RnbudNZZZ4V22GGHhbbvvvuGNnPmzNDOPvvs0EaNGpWOJztOZI+98MILQ8u2qfnz56fvQ3U799xzCz0u2/9fdtllof36178O7aGHHtrhcUFf8sc//jG022+/PbTse9LddtsttG984xuhdXR0FBpLW1tbaHV1dYWem5kwYUKhx7W3t4d2/fXXh/b+978/tOXLl+/4wHqQvzQGAAAAAAAAKDGLxgAAAAAAAAAlZtEYAAAAAAAAoMQsGgMAAAAAAACUWH1vD6AsTjvttNAaGhpCu+2220K79957KzImyuess84K7ZBDDin03DvuuCO0yy67rKtDgqpy0EEHhdbR0RHatdde2xPDgf/rXe96V2jt7e29MJLud+aZZ4Z28MEHh5Z93qxdfvnl3TIu+o7GxsbQHnroodAOPPDA0EaPHh3a2rVru2VcO2r8+PGhnXvuuYWee/fdd3f3cGCHHXPMMaG98Y1vLPz8DRs2hLZ06dIujQleyrp160K7/fbbC7WPfexjFRnTi+25556h1dbWhpYd7z784Q9XYkiU0K233hpatq+eOXNmaPPnzw8tu3Yu+r41NTU1733ve0P77W9/G9ree+8d2vvf//7Qsmsoqt+4ceNCy64bBwwYENonP/nJ0C699NLQrrrqqtDuu+++0HbbbbfQnn766dAee+yx0DIHHHBAaNm6g/Mr/p4tW7aEdvbZZ4c2cuTI0C655JLQjj766NDWrFkT2uLFi0PLtsXs+9nDDz88tK747ne/G9rHP/7x0NavX9+t79sT/KUxAAAAAAAAQIlZNAYAAAAAAAAoMYvGAAAAAAAAACVm0RgAAAAAAACgxOp7ewDVaNCgQaGdcsopobW0tIR22WWXhdba2to9A6NUxowZE1p2M/aGhoZCr/fQQw+F1tTUtMPjgmqxyy67hHbssceG9sQTT4R2/fXXV2RM8FLOPPPM3h7CDhs3blxo+++/f2jZsa2oVatWhea8q/ps2bIltGeeeSa0c845J7Tf/e53oX3lK1/pnoH9/2bMmBHannvuGdoee+wRWkdHR6H3aG9v3+FxQXfLrk/69Sv+79j/8Ic/dOdwYKf2yU9+MrTsmPCxj30stOz8Bzpj7dq1ob3+9a8P7dprrw1txIgRhd7jm9/8ZmjZvK6pqalpbm4O7Ze//GVol1xySWgnn3xyaNOmTQstO4ekuvzbv/1baBdffHGnXy8713nPe95TqPWE7Jhwxx13hHb++ef3wGioNuvXrw8t2wd3tx//+MehHX744YWe29jYGFq2D/jhD38YWltbW6H36Ov8pTEAAAAAAABAiVk0BgAAAAAAACgxi8YAAAAAAAAAJWbRGAAAAAAAAKDE6nt7ANXoIx/5SGgHH3xwaDfffHNof/7znysyJsrnQx/6UGiHHXZYoef+6le/Cu2yyy7r6pCgqvzjP/5jaOPHjw/tpptu6oHRQPX5xCc+Edp73/veTr/ewoULQ3vLW94S2uLFizv9Huw8svOa2tra0E4//fTQfvazn3XrWFavXh1aR0dHaGPHju30e/zwhz/s9HOhu5x77rmFHrd+/fq0//u//3s3jgZ2Hq973etCe/Ob3xxaY2NjaGvWrKnImOCl3HrrraFl+/83vvGNoWX7/09+8pOhNTc3Fx7Ppz/96dD222+/0M4666xC751dP1BdLrnkktCuueaa0P7zP/8ztPr6uNQyZcqU0Pr16zt/xzdu3LjQsm320ksvDe0zn/lMRcYEO+KjH/1oaOeff36nX+9d73pXaN39HUBf13f2UAAAAAAAAAD0OIvGAAAAAAAAACVm0RgAAAAAAACgxCwaAwAAAAAAAJRYvDs7O+T0008P7V//9V9D27hxY2hXXHFFRcYENTU1NRdffHGnn3vRRReF1tTU1JXhQNXZfffdCz1u3bp1FR4J7PxuvPHG0PbZZ59ufY/58+eHdvfdd3fre7DzePzxx0N7/etfH9qsWbNC22uvvbp1LNdee22hx/3oRz8K7YILLij03C1btuzQmKCrJk+eHNob3/jGQs9dunRp2ufMmdOlMcHO6tRTTy30uN/+9rehPfjgg909HNhht956a6FWCdk50DXXXBPaWWedFdqJJ54Y2ujRo0Nbu3ZtJ0dHX9TW1hZadg4yffr0Qq/3ile8IrSGhobQLr/88tAOO+ywQu/R3Wpra0ObPXt2L4wEtvf2t789tEsvvTS0+vpiy56PPfZYaL/85S93fGBVxl8aAwAAAAAAAJSYRWMAAAAAAACAErNoDAAAAAAAAFBiFo0BAAAAAAAASqzYHaGpqampqRkzZkxo3/jGN0Krq6sL7cYbbwztvvvu656BQTcbPXp0aK2trd36Hhs2bCj0Hg0NDaGNGDGi0HuMHDkytIsvvrjQczNtbW2hfexjHwtt8+bNnX4Pdh5nnHFGocf95je/qfBI4O+rra0NrV+/Yv928NRTTy30uO9+97uhTZo0qdBzs7G0t7cXem5RZ555Zre+HuXw0EMPFWo94dlnn+30c2fMmBHao48+2pXhwN901FFHhVb0uPOrX/2qm0cDO7fsXGzTpk2hffnLX+6J4cBO7+c//3loZ511VmjnnXdeaBdddFFoV1xxRfcMjKp02223FXrcrFmzQjvssMNC27ZtW2g/+MEPQvuP//iP0P75n/85tDe+8Y2Fxgc97fDDDw8tO9cZOnRooddramoK7V3veldoW7duLfR61cxfGgMAAAAAAACUmEVjAAAAAAAAgBKzaAwAAAAAAABQYhaNAQAAAAAAAEqsvrcH0FfV1dWFdvPNN4c2derU0J555pnQ/vVf/7V7BgY94JFHHqn4e/ziF78Ibfny5aFNmDAhtPPOO68iY+qMFStWhPbZz362F0ZCJR1zzDGh7bLLLr0wEuicK6+8MrQvfvGLhZ7729/+NrT29vZCzy36uO5+7lVXXdXp50JfVVtbW6hlHn300e4eDvxNY8aMKfS41atXh/b1r3+9u4cDO413vetdoWXXxC+88EJoDz74YEXGBNUmu87Iro1e/epXh3bZZZeF9l//9V+hPfnkk50cHWV1yy23hJZ9v1hfH5dzLrzwwtD22muv0E444YTODa6mpmbp0qWdfi50xplnnhnasGHDCj1306ZNoZ111lmh3XPPPTs+sBLwl8YAAAAAAAAAJWbRGAAAAAAAAKDELBoDAAAAAAAAlJhFYwAAAAAAAIASi3dOp6ampqZm2rRpoc2ePbvQcy+++OLQnnnmmS6PCXbEjTfeGNqrX/3qXhhJ7nWve123vt62bdtCa29vL/TcG264IbQ5c+YUeu6f/vSnQo9j53b22WeHVldXF9q8efNCu+uuuyoyJtgRv/zlL0P7yEc+Etq4ceN6YjiFrFq1KrQFCxaE9o53vCO05cuXV2RM0Js6OjoKNegLTj755EKPW7x4cWgbNmzo7uHATuNd73pXaNm+/ne/+12h1xs2bFhoo0aNCi3bFqFMHnroodA++clPhvalL30ptM997nOhvelNbwpty5YtnRscpZBd6/785z8P7fWvf32h1zvxxBMLPa6trS207BhzySWXFHo96IzsfOWjH/1op1/vpz/9aWh33HFHp1+vbPylMQAAAAAAAECJWTQGAAAAAAAAKDGLxgAAAAAAAAAlZtEYAAAAAAAAoMTqe3sAfcHuu+8e2i233FLouR/5yEdC++1vf9vlMUFXvfa1rw0tu4F8Q0NDp9/jgAMOCO28887r9Ot9//vfD23hwoWFnnvdddeF9vjjj3d6LJTX4MGDQzvttNMKPffaa68Nra2trctjgq5atGhRaOeff35or3nNa0L7wAc+UIkh/V2f/exnQ/v2t7/dCyOBvmHgwIGFHrdly5YKjwS2l11PTJs2rdBzm5ubQ2ttbe3ymKDaZdcYF1xwQWgf/OAHQ3vsscdCe8tb3tI9A4Mq8uMf/zi0d77znaFl379dccUVoT3yyCPdMzCqUnYO/8///M+hDR06NLRDDz00tPHjx4eWfcd69dVXh3b55Zfng4RukM3h+fPnh1Z0zSLbt2bbDsX5S2MAAAAAAACAErNoDAAAAAAAAFBiFo0BAAAAAAAASsyiMQAAAAAAAECJ1ff2APqCd7zjHaHttttuhZ575513htbR0dHlMUElfPGLX6z4e7zxjW+s+HtAJbW2toa2bt260G644YbQvv71r1dkTFAJd911V6F2yy23hJadO5155pmhZdvJd7/73dBqa2tDmz9/fmhQZm9961tDW79+fWif/vSne2A08P+0t7eHNmfOnNBmzJgR2tNPP12RMUG1e/vb3x7aP/3TP4X2ve99LzTHCShm1apVoZ100kmhLVy4MLSPfexjoV1wwQXdMi7KY+XKlaFl191vetObQjvyyCND+9SnPhXaCy+80MnRQee8/OUvD23y5MmhFV1j++AHPxhac3Pzjg+M/8tfGgMAAAAAAACUmEVjAAAAAAAAgBKzaAwAAAAAAABQYhaNAQAAAAAAAEqsvrcH0NOOOeaY0N73vvf1wkgA6ItaW1tDO+qoo3phJNA33HzzzYUaUFkPPPBAaF/5yldCu/3223tiOPB/tbW1hfaJT3witI6OjtDmzp1bkTHBzuqiiy4K7YorrgjtrrvuCu3KK68Mbd26daG1tLR0cnTA4sWLQ7v11ltDO+uss0Lbf//9Q5s/f373DIxSu/rqqws16As+/elPh5ZdJ2S+9KUvheb6t/v5S2MAAAAAAACAErNoDAAAAAAAAFBiFo0BAAAAAAAASsyiMQAAAAAAAECJ1ff2AHrascceG9rQoUMLPfeZZ54JrampqctjAgAA+FvOPPPM3h4CFLZs2bLQ3va2t/XCSGDncvfdd4f28pe/vBdGAhR17rnnhvbwww+Httdee4U2f/78iowJoK8aPXp0aLW1taG98MILoX3ta1+rxJD4H/ylMQAAAAAAAECJWTQGAAAAAAAAKDGLxgAAAAAAAAAlZtEYAAAAAAAAoMTqe3sAfdXDDz8c2ite8YrQ1q5d2xPDAQAAAACgD9m4cWNoU6dO7YWRAPR9X/nKVwq1T3/606EtX768ImNie/7SGAAAAAAAAKDELBoDAAAAAAAAlJhFYwAAAAAAAIASs2gMAAAAAAAAUGL1vT2Anvb5z3++UAMAAAAAAAC67qtf/WqhRu/xl8YAAAAAAAAAJWbRGAAAAAAAAKDELBoDAAAAAAAAlFihReOOjo5Kj4MqVM3zppo/G5VTzfOmmj8blVPN86aaPxuVU83zppo/G5VTzfOmmj8blVPN86aaPxuVU83zppo/G5VTzfOmmj8blVPN86aaPxuVU2TeFFo0bmxs7PJgKJ9qnjfV/NmonGqeN9X82aicap431fzZqJxqnjfV/NmonGqeN9X82aicap431fzZqJxqnjfV/NmonGqeN9X82aicap431fzZqJwi86a2o8DScnt7e82yZctqhg0bVlNbW9stg6N6dXR01DQ2NtZMmjSppl+/6vw/oNsm2BG2CdiebQK2Z5uA7dkmYHu2CdiebQK2Z5uA7dkmYHs7sk0UWjQGAAAAAAAAoDpV5z+zAAAAAAAAAKAQi8YAAAAAAAAAJWbRGAAAAAAAAKDELBoDAAAAAAAAlJhFYwAAAAAAAIASs2gMAAAAAAAAUGIWjQEAAAAAAABKzKIxAAAAAAAAQIlZNAYAAAAAAAAoMYvGAAAAAAAAACVm0RgAAAAAAACgxCwaAwAAAAAAAJSYRWMAAAAAAACAErNoDAAAAAAAAFBiFo0BAAAAAAAASsyiMQAAAAAAAECJWTQGAAAAAAAAKDGLxgAAAAAAAAAlZtEYAAAAAAAAoMQsGgMAAAAAAACUmEVjAAAAAAAAgBKzaAwAAAAAAABQYhaNAQAAAAAAAErMojEAAAAAAABAidUXeVB7e3vNsmXLaoYNG1ZTW1tb6TGxk+vo6KhpbGysmTRpUk2/ftX57xJsE+wI2wRszzYB27NNwPZsE7A92wRszzYB27NNwPZsE7C9HdkmCi0aL1u2rGbKlCndMjjKY8mSJTWTJ0/u7WFUhG2CzrBNwPZsE7A92wRszzYB27NNwPZsE7A92wRszzYB2yuyTRT6ZxbDhg3rlgFRLtU8b6r5s1E51TxvqvmzUTnVPG+q+bNROdU8b6r5s1E51TxvqvmzUTnVPG+q+bNROdU8b6r5s1E51TxvqvmzUTnVPG+q+bNROUXmTaFFY3/eTmdU87yp5s9G5VTzvKnmz0blVPO8qebPRuVU87yp5s9G5VTzvKnmz0blVPO8qebPRuVU87yp5s9G5VTzvKnmz0blVPO8qebPRuUUmTfV+T90BwAAAAAAAKAQi8YAAAAAAAAAJWbRGAAAAAAAAKDELBoDAAAAAAAAlJhFYwAAAAAAAIASs2gMAAAAAAAAUGIWjQEAAAAAAABKrL63BwD0rrq6utD69Sv270m2bdsWWm1tbWgNDQ2hbd26tdB7ZLLxDRkypNBzm5ubQ2ttbe30WKAzsu2ko6OjF0YCQHfI9utZa29v74nhANCLsmvsrPXv3z+07DiRXTu3tbV1cnRQvVxnA0DX+UtjAAAAAAAAgBKzaAwAAAAAAABQYhaNAQAAAAAAAErMojEAAAAAAABAidX39gCAyhg7dmxoRx11VGizZs0Kbdy4caGNHz8+tM2bN4f25JNPhrZ48eLQ1q5dG9rKlStDW716dWibNm0Krb29PbTa2trQMtlz29raCj2X6pPNm6Kt6Os1NDQUatlzs7nZ2tpaqGVzHfqqottYR0dHhUcC2+vKcaJfv87/m91srpv/9AVF99eZHZnDvbVN2c74b13Z/2et6HzL5nl2Xm+uUna2Acqg6PlQfX1c9skel73etm3bQsuOO0Vb0eOi76ygb/CXxgAAAAAAAAAlZtEYAAAAAAAAoMQsGgMAAAAAAACUmEVjAAAAAAAAgBKLd0QH+oxBgwaFNnHixNBOPvnk0P7xH/8xtP333z+0AQMGhNavX7F/T1JbWxtaR0dHaC0tLaG98MILof36178O7eqrrw5twYIFoW3ZsqXQWLIxZ+rq6kJra2sr9Fx2Htl86ErLtp3hw4eHNm3atND222+/Qu/x17/+NbRnn302tMbGxtAy2XbSlcdRDtlcb2hoCG3kyJGhjR07NrTm5ubQVq1aFdqmTZtCs2+mkoru6/v37x9adh63bdu20LJzmOxx3b0fLnpOlHFMKK+uzJuir1dfn39NMXjw4NDGjRsXWrY9ZseUjRs3htba2pq+dxG2i+pS9Pw/m68DBw4MbcSIEaFl87epqSm0lStXhpad6/fEHCx6XMwe197eXqgBlFHRY0x2PJkwYUJoQ4cODS27Zs++s127dm1oa9asCa0r1zFFj7Ou96Hn+UtjAAAAAAAAgBKzaAwAAAAAAABQYhaNAQAAAAAAAErMojEAAAAAAABAicW7qZdQdpP1THbTdugu9fVxc9x1111DO+OMM0J761vfGtpee+0V2oABA0IrOv+L6tcv/luU7H0nTJgQ2ste9rLQfv7zn4e2bdu20Nrb2wuNz3ZcXtlcL9qyeV30cQ0NDYWe279//9CGDRsW2sCBAws9t+i23ZXHZduTbaz6ZPN6yJAhoU2fPj204447LrQZM2aElh0Db7rpptBuu+220NatWxdadpyAFyu6/8/2r8OHDw9tl112KfR6L7zwQmgtLS2htbW1hZbJ3qOuri607Fwsa83NzaG1trYWGl92LuaYsHPryrlTpuh8yM6dampqakaOHBnaAQccENr48eNDe+CBB0LL5nZ2/Cg6bt8r7LyKnutn+80pU6aENnPmzND23HPPQq/34IMPhrZ69erQuqLodpwdT7LtMzuPy44T2fEuU/TanupT9Jrzpfa3PbF/Lbqvz/YrGedP5ZTNj+y6Y9CgQaFl3wllx6IzzzwztOx711GjRoW2Zs2a0B555JHQfvOb34T2l7/8JbSNGzeGlh0nspZtc6732dn19esGf2kMAAAAAAAAUGIWjQEAAAAAAABKzKIxAAAAAAAAQIlZNAYAAAAAAAAosfreHsDfU1dXF1p2o+jsBvJFXy+T3Xg9u8l6djPq3rpBNTu3bG5m83rChAmhtbS0hLZy5cpCr9fc3Bzac889F9qCBQtCGzlyZGiHHnpoaJMmTQpt69atoS1ZsiS0NWvWhJZti/Bi2XGi6LGj6PEk29e3t7eHtmXLlkKv179//9A2b97c6ZYdx4oen7KfVdHHOQZWn4EDB4Y2e/bs0P7hH/4htOOOOy60sWPHhlZfH09JjzrqqNCmT58e2v/+3/87tOwYmG0TlEPRY8KAAQNCGz9+fGgzZ84MbfLkyaGtXbs2tMbGxkKPy2Rjzrad7Pxs4sSJoQ0bNiy0ZcuWhbZq1arQsuMOO7fs/KfouVP2uOycqCtjqampqTnkkENCe/Ob3xxadk6VjfH5558vNJ7uPn/KPl9Xfl68tOx3kl13NzQ0hDZkyJDQjj766NBOO+200LLr39bW1tCya+ylS5eG1tTUFFpX5mX2eYcOHRra6NGjC71HNr7seJeNueh2w84j28dlc2748OGhZd93Zec12XdgNTX5fn316tWhZdtjV65ju3K8zJrvvKpL0XP47Pxl8ODBoe2+++6hHX/88aGdffbZoY0bN+4lx/li2baYXRdlx9Tse+YnnngitPXr14eWbduDBg0q9Fx2bkX3j5nu/h6yK98fFz33zJ6bzf/seNAT1w3+0hgAAAAAAACgxCwaAwAAAAAAAJSYRWMAAAAAAACAErNoDAAAAAAAAFBi8a7rPaShoSG0ESNGhDZy5MjQBg4cWOg9sucOGTIktOzG09kNpbdu3Rra5s2bC73eli1bQstujJ29b1NTU2hr1qwJLbvRfFdult3dNxHn/8l+99k2kc2lxx57LLRFixYVak899VRoL7zwQmjZvM7mQ3193IUce+yxoV188cWhDR48OLR77703tA0bNoQGf0+2jRVtmaL7w2z/2tbWFtqwYcNCmzRpUmhr164Nbf369aFl+/9sLF3Zrxf9WbFzq6urC22//fYL7fLLLw/tkEMOCW3QoEGhZXMpm5u77rpraBdeeGFoe+65Z2hf+cpXQnv88cdDa2lpCY1yyM5hJkyYENqJJ54Y2qxZs0LLztn++Mc/hpadw7e2toaWbRPZtpNtsxMnTgwt2z7HjBkT2n333Rfaxo0bQ8vOFdl5ZPO1aCu6D++K7Dqhpqam5jWveU1oxx9/fKHxZNdB119/fWhFr5UzRbdbek42h7P9/9ChQ0M75phjQsvm4PTp00PL9puPPPJIaNddd11o3X2+ks3B7Pws+xx77bVXaEuXLg1twYIFoWXHtqJ6Yj/Djst+L9k2ln0Xe/DBB4d22mmnhXbkkUcWer1Vq1alY7z77rtD+81vfhNa9r3apk2bQsuOCUX369njsv1PNrez7xBsAzuvbDvJ1ieya5GpU6eG1r9//9DGjh0bWrZ+ks2jrGXrGNn3zAsXLgwt+34q+847276y451r9t7XlfPZbP5nczj7nnS33XYLbe+99w7twAMPDG306NGhZfvW7DvWxsbG0LJtouhaYbY+l21PK1asCG358uWFxtKVa5iMvzQGAAAAAAAAKDGLxgAAAAAAAAAlZtEYAAAAAAAAoMQsGgMAAAAAAACUWH1PvMmAAQNCGzFiRGh77rlnaAcccEBogwYNCm3w4MGhZTfVHj58eGijRo0Kbddddw1t4sSJoWWfbdOmTaFt2LAhtOym1ZnsRtb33ntvaLfffnto8+fPDy27IXf2HtlNzjs6Ol5ynBRX9Cbw2Y3S77vvvtCy+ZXdyL21tbXgCIvJ5kNzc3NodXV1oWXbYrbtZDeVhxfL9lVFFd33daUNHDgwtIMPPji0Y489NrSbb745tGwfnu0rurK/tq8vr7Fjx4b2mc98JrTDDz88tOycqOi5RHZ8yh6XHSuzsbztbW8L7Wtf+1poS5cuDS3bnuh9RedS9rjsPCQ7/3/lK18Z2hlnnBHa+PHjQ3vwwQdDe+6550LLznWyY1FR2WfLrln233//0LLz0SFDhoSWnYtlP3vHjr6p6PlKNh8y2Xwt+rvP3iNre+yxR/r87Fwp25az6+zsOJNtj909j20XPafocaKtrS20bF+afWc1dOjQ0LJr8Ycffji0X/7yl6Fl39d09/VvfX382m/q1KmhnXTSSaFNmDAhtOxn+vjjjxd6XCb72TvG9E3ZNpZ9F3vggQeG9t73vje0Qw45JLSRI0eG1tLSElpTU1M6xr322iu0l73sZaEtW7YstOzY0ZW5mO1rzOPql+3TxowZE1q23pGd/zQ2Nob27LPPhpZdi8ycOTO0bP+fHcfuvPPO0H70ox+F9tRTT4WWbUvZdpydm3XlPJPKKXrdnZ3XZ98TZder2bX4BRdcENqMGTNCy9YKszFnc3PVqlWhrVmzJrTsu6hse1+3bl1o2TaWreP98Y9/DK2hoSG0bO2lu/lLYwAAAAAAAIASs2gMAAAAAAAAUGIWjQEAAAAAAABKzKIxAAAAAAAAQInV98SbZDeerq+Pb53dGLutrS207ObWQ4YMCW3kyJGhDRs2rND7Fm0DBw4MLbsZdXZz8LFjx4Y2YcKE0IYOHRpadsPwxsbG0J5++unQNm/eHFrGjea7R/a7z7S3t4e2devW0NavXx9a9jvNtp3uls3Xr3/966FNmzYttOxzZNtxX5qH2e+yL42Pv63o7yr7PffrF/+NVfa4urq60KZOnRraCSecENqkSZNCW716dWjZvj7bf3Q3c736ZOc1F110UWjHHHNMoedmsrnZ1NQU2pIlS0LLtrvs2NbS0hLa/vvvH1q23f32t78Nbe3ataH1xDbGjiu6vx48eHBohx56aGhvfvObQ9tzzz1DW7VqVWiPP/54aIsWLQqtK3Mp+2zZdcJ+++0X2owZM0JbunRpaNkxprW1NTTHhJ1HV85rsn1u9rsv+h5Zy67tX/GKV4RWU1NTM27cuLT/T9lx5rbbbgstu27vCbafyij6c832w9kcHjVqVGjZPjd7vYULF4aW7XO3bdv2UsP8u+PL9O/fP7TsmPC+970vtOyaPTuOZedJ2fcRRY93RT8bPavofj3bTk4//fTQ9t1339Cy64k1a9aE9uCDD4Y2d+7c0Gpq8uuC7H3Gjx9f6L23bNkSWravyVpXjqGOEzuHbG1j1113De2oo44KbfLkyaFl3+HPmzcvtOz71I0bN4a2bNmy0LLvcbNt7Kmnngpt06ZNoWXzvOh+vei2RO/LfqdZa2hoCC3b377+9a8P7U1velNoU6ZMCS3bp2fnHNn+e/HixaHdf//9oWXzcPbs2aFla3ujR48O7dlnnw3thRdeCC27Fs+uV3ri+yl/aQwAAAAAAABQYhaNAQAAAAAAAErMojEAAAAAAABAiVk0BgAAAAAAACixeMf2Cshuip7djHr58uWhbd26tdDjBg0aFFp2U+jspu11dXWh9e/fP7Ts5tbZ455//vnQmpqaQps5c2Zo73znO0PbZZddCrUxY8aElt2UPPu5uNF85WQ/26JzM9t2shugZ4/rbtmN6x988MHQJkyYEFr2edeuXRvaihUrQsv2AUVv+J7N/4z5v/Po7t9p9npZy14ve1y/fvHfYu23336h7bPPPqFl+4Cnn346tGwf0BOyz1Z0W6T3ZfM1m5vnnXdeaAMGDCj0HtmxaOnSpaF973vfC+2xxx4LLTvvGjZsWGiHHXZYoeeeeuqpoWXb029+85vQsu2Tyim6b87U18fLm1GjRoV20kknhbbrrruG1traGtoTTzwR2u233x7a5s2bQ+vKOUf2Mxg8eHBo++67b2jZtcOqVatCK3o+6txp55b9/rZt21bocZmunDtl2+zee++dvk/22GwbzY4p9913X2g9cR5T9GdDZRSdh9n5xUEHHRTalClTQlu/fn1o2fdE2bl09l1UQ0NDoccNGTIktKlTp4b27ne/O7QTTzwxtOyc6E9/+lNoCxYsCC073hXdvrJ9j2uMvimbw9n5xeTJk0PLtsVnn302tKuvvjq0X/7yl0WHWHPssceGduCBB4a2++67h/bcc8+Fln133RVF90n0rqLnK9n8P+OMM0I74IADQps3b15o99xzT2jr1q0LLTs3b2xsDG3x4sWhZZ+jpaWl0HsUPX8pOs99Z7vzyH5X2bnJ0KFDQzv99NNDe8Mb3hDaxIkTQ8vOB7J1wbvvvju0m266KbRHH300tGzbmT59eqG21157hZad12zcuDG07Pve7Jyyt9bx/KUxAAAAAAAAQIlZNAYAAAAAAAAoMYvGAAAAAAAAACVm0RgAAAAAAACgxOLdzysgu3n6li1bQluzZk1oW7duDW3ZsmWhZTfkzm5kvXnz5kLj69cvrqc3NDQUelx2w+vsuUVfL5N9jiVLloTW2toamhvI977sd5DNm+z3nN0Avbtlc/Paa68NbcKECaFl22K2jT3zzDOhzZs3L7SWlpbQis7hottT0ZvK23Z6X/Y7yOZcUV15bjavBw0aFNqUKVNCGzhwYGgPPfRQaAsWLCj0vt0t23a68rOi92X79VNOOSW08ePHF3q95ubm0B577LHQvvzlL4c2d+7c0Orr4ynpyJEjQ8u2sb333ju0Aw44ILTp06eHNmbMmNAeffTRQo3KKbqvL3pcHjZsWGjZfnj9+vWhZdcTV199dWgLFy4MrbvPw4v+XLJtJ/sZZOPLPm9PnHtSOdm86cq5RNHz60w2l7Lj0/Dhw9PnZ9dLTU1Nof30pz8NbcOGDUWGSJXJ9pHZnMvOG6ZNmxbaiBEjQsvOTfbdd9/Qdt1119Cy85/sPQYPHhxadhw77bTTQsvO97JjwtNPPx3aXXfdFdrKlStDy/YpRY93jjF9U/b7y/b/48aNC23s2LGhZfvqO+64I7Rf//rXoW3cuDG0iRMnhlZTU1Mze/bs0KZOnRpaNo+z7bG7r4G7+5hMZWS/9+zc5OCDDw7t8MMPDy07f8n2r9m6SFfmR/bc7DvWnpDtP7JtLntctoZEz8q2if79+4eWnTudc845oWXfk2a/+/nz54d21VVXhXbjjTeGlh13in6P+7KXvSy0ffbZJ7TsXGzTpk2hZd+VLV++vNBzs/1HT/CXxgAAAAAAAAAlZtEYAAAAAAAAoMQsGgMAAAAAAACUmEVjAAAAAAAAgBKLdxzvIdlNnLMbmxe92fPWrVtDa21tDa29vT20jo6O0LIbfBe9WXz23Ow9spt+Dxs2LLTssz300EOhPfLII6E1Nze/1DDpY7I5UnS+dkVdXV1oZ599dmh77LFHaNkN5LO2YsWK0L773e+GtnDhwkKvl21jWauvj7u47PNm20l3/5ypnKL78Kxl86Ffv/jvqbJtMZPtw48++ujQsrn5wAMPhLZ27dpC79sTbBM7txEjRoR28sknh5ZtJ9n52Zw5c0L7xCc+Edpf//rX0LLzqSFDhoSW7Zt33XXX0MaMGRPaxIkTQxs4cGBo06dPD+3II48M7bHHHgvNNtGzsv1wNl8z2e9+3bp1oT399NOh3XvvvaFl++vsfL0n5sioUaNC22233ULLfn7ZMaa3PgeV05XfX9Hzqezcqehzd9lll9CyffNLvc/ixYtDu+mmm0Izj6tfV64RJ0yYEFq238xadg4zderU0I466qjQVq5cGVp2zMrOnbLrjnPPPTe0cePGhZZdYy9ZsiS0+fPnh5Z9z2b7KodsHzx27NjQhg8fXui52TlHdg6/zz77hPaBD3wgHePhhx8eWjZnGxsbQ/vtb38bWtH9im2gumTzNduXzpo1K7Tsu/7bbrsttKVLl4ZW9HunapZ9R0fPKrqPy86nsnOdvffeO7T+/fuHtmbNmtBuvvnm0O64447Qsn16tqaYjXnmzJmhffzjHw8tO95lVq9eHdp9990XWjbmvrQP8JfGAAAAAAAAACVm0RgAAAAAAACgxCwaAwAAAAAAAJSYRWMAAAAAAACAEot3f+4h2Q20s5s9b926tdBzs5tbZ6+XPbfo+IrKbhg+dOjQ0A499NBC7/vcc8+FduONN4a2ePHi0LKfCzuPrszDTL9+8d+JHHzwwaGdfvrpoS1atCi0tWvXhpbduP7aa68NLZvDzc3NoWXbU/Y5GhoaQhs8eHBomWw/Q/XJ5lI2b7LHtba2hlZfHw+h++yzT2hTp04NbePGjaHdddddofXEPjz7vJnu3h9ROdnvdNdddw1t1KhRoWVz87HHHgvt8ssvD23evHmhFd2/NjU1hdbS0hLaLrvsEtq+++4b2rBhw0LLjh3Dhw8PbcaMGaFlP1PbRO/Lfi8DBw4s1NavXx/aE088Edqf/vSn0LL52hPzIfscp5xySmjZ9l70nC07FzPXyyvbxrLzn7q6utCyeZPN4Ze97GWhjR07Nh1Pdkz53e9+F9rq1avT5/cG20/PKfqzzs4HNm/eHNqzzz4b2ujRo0MbMWJEofeYNm1aaAcddFBo2fVJtg/PXm/y5MmhZdtx9nlvvfXW0DZs2BBa9j1bJntf1x07t+z3kn3Xmc3h7Dgxc+bM0LLz8MMPPzy0bK7X1ORzLDt2HHLIIaFNmTIltOx4smXLlvS9/yfzeOc1ZsyY0I4//vjQjjjiiNAGDRoUWrYvLbqPrJZ5lH2OomtD9Kzs95LNzey7lGy/nm0T2e85206y76cmTpxY6PWyfX92PPnGN74RWnY8yH4G2fEg+/4sO4/ryrplT/CXxgAAAAAAAAAlZtEYAAAAAAAAoMQsGgMAAAAAAACUmEVjAAAAAAAAgBKr7603zm7svG3btkKPK9qyG1QXVfTm8/36xXX3YcOGhTZr1qzQpk6dGtqqVatC+93vfhfaX/7yl9AaGxtDcwP58srm8IEHHhjahz70odDq6+OuYf78+aG1tLSElt3c/cYbbwytubk5tKI3fO/fv39oI0aMCG3QoEGhZfuZ9evXF3pfqk+2D89ati8dMmRIaEcffXRoo0aNCu3+++8PbfXq1S85zu6S7Reyz1t0W6Rvyn7Pe+yxR2htbW2hbdmyJbRrrrkmtEceeSS07JhQVDaWrVu3hvb888+Hlo256LadtaFDh77kOOlb6urqQhswYEBoRY/9RedwNm+y7a7o9UT2uOx64vTTTw/tvPPOCy07J1q2bFloS5YsCS3b7iivbL5m2112bp6dO40fPz60448/vtDr1dTU1KxYsSK0hx9+ODTnMfwt2T4320fOmTMntKamptD23nvv0BYuXBjaxo0bQ8uOWa2traGNGzcutIMOOii0hoaGQq83d+7c0LLvnbLjYtHjWNay/Ud2DkjflO3Xn3zyydCy7WTChAmhZd9PZY/Lzs2zc7GXGmPWsm1lxowZoT377LOhZdtAtq1kc9vxqe/J9kvZ/vXkk08Obf/99w8t+65z9uzZod1yyy2hZde62bl5No+yOZ21bK5m20g2f7t7jSF7PdtI35Qd0wcPHlzocevWrQstu17dtGlTaHvttVdou+yyS2jZeVd27Hjb294W2q677hpa9jmy7xSybfaZZ54JLVtnyVpf4i+NAQAAAAAAAErMojEAAAAAAABAiVk0BgAAAAAAACgxi8YAAAAAAAAAJdZrd1wuevP07AboRW+Knt20ul+/uE6ePa7o62U3/Z48eXJor3zlK0PLbtz92GOPhfb73/8+tBUrVoTW2toamhvIl0M2N0ePHh3aZz/72dD222+/0LIbyK9atSq0rVu3hpbNzexx2Ziz/UL2uLq6utDGjBkT2vDhw0Nbu3ZtaNl+oa2tLTR2HkWPHdu2bQutvj4eGovOuSOOOCK0bC7NmTMntI0bN4bWFdm209DQEFo2/x1Pdm7Z73TatGmhZfNh8+bNoT3zzDOhZfv17p4j2etl+/BFixaFNnPmzNCyz5u9R7YtFj1XpGcV/b2sX78+tC1btoQ2ZcqU0LL9eraNLVu2LLSmpqbQsuPJhAkTQjvssMNCe/e73x3a9OnTC40v26+vXLkytJaWltDs/3mxoudO2T53n332Ce2AAw4I7aXm3JNPPhna0qVL08d2p2xfk7Wi24ptqndl+8hsHmXXtffcc09oAwcODK25uTm07Fo3O+fIXu+UU04J7RWveEVoRc9rrrzyytCyn0HRa+Ki24jzqZ1bdi7x17/+NbRsOznuuONCGz9+fGjZHMnmYXa+UlOTb7fZ3F6yZEloQ4cODS07bmXPXb16dWiNjY2h+Z6p78m+1581a1ZoM2bMCC373jXbTk466aTQsu8r//KXv4S2++67h5ZdJ4wcOTK07No5O4/Lrgk++clPhvb444+Hlh3bin4fl7Wi3ws7l+pZ2e8g+07o7rvvDm3dunWhjRgxIrRs3SGbm9l5TXYtMnv27NCy73Gz88JsHmbjmzdvXmiLFy8OLdvuunKe1BPz318aAwAAAAAAAJSYRWMAAAAAAACAErNoDAAAAAAAAFBiFo0BAAAAAAAASizeJboXFb0pelfU1dUVatkNrzPZDaonT54c2stf/vLQBg0aFNr8+fNDy26g3dTUFFpbW9tLjpPqNnLkyNAuu+yy0I4++ujQsjmc3aQ+m1/PP/98aM8991xozc3NoWXbdnbz+exm9oMHDy7URowYEdrmzZtD69+/f2jZ5+2JfRQ9q+jvOZsj06ZNC23ixImhrVixIrS77rortA0bNoSWHYuybTZrDQ0NoQ0cODC0bdu2hWb+7zyy332239xzzz1DGzVqVGhbtmwJLZtL2Xtk87W758iAAQNCy/b/2c8lG9+mTZtCu/fee0Mz1/um7Pec7dOy85Bly5aFtssuu4S22267hbbvvvuGlp3XZ+frLS0tobW2toa29957h5Ydd4qew2Tb9tKlSws9F14s25dmczg75zj44INDGz58eGjZfK2pqam5//77Q8uulYueP2Wyx2XXKJmeOA7y0rLfU9Frzuw4kV0TZ9eSRX/HRedHdt61cuXK0LLjTvZ6c+fODe3OO+8MLfsZdOV7sYxtZOeW/f7WrFkT2g9+8IPQnnjiidBmzpwZWnb+kx1PHn744XSMv/vd70LbuHFjaPvtt19o2THq2GOPDW358uWh3X777aFl1xnOs3pXtq/K9qXZdfKwYcMKvV52vZo58sgjQ3vFK15R6H2LHu+ya4dszNl5XNbe+c53hpZtX105LtpG+qZszmXn67feemtot912W2jZNXt27ZzNkWwso0ePDu2QQw4JLTvHyuZcdmzLji/ZZ1u0aFFo2XX3S13v9BX+0hgAAAAAAACgxCwaAwAAAAAAAJSYRWMAAAAAAACAErNoDAAAAAAAAFBi9b09gBcreqP07n6P7Obb2eOylt1A+x3veEdou+++e2h//vOfQ7v99ttDW7lyZWjZmCmHAQMGhPb2t789tPPPPz+0gQMHhrZ169bQNm3aFNpDDz0U2hNPPBHasmXLQsvU18fdT3Yz+8GDB4c2dOjQ0IYNGxbaLrvsEtq6detCy34u2TbW2toaWk/st/jbamtrO/3c9vb2Qo/LtrsDDzwwtGy+ZtvJ4sWLQ2tpaQmt6PzKfgbZ9pQds7LntrW1FRpL0UbPGjRoUGjDhw8PLduXZs894YQTQnv00UdDW7NmTWhFz1eyeThixIjQ3vCGN4R26KGHFnq9bBubO3duaNn5mXndN2XH5S1btoRWV1cX2vLly0N78sknC73vbrvtVqhl++G77rortAceeCC0pqam0GbPnh1ath1n29369etDy7bZosdFyiubI9l5QzY3s3On7Bxr7dq16Xtn1yPZPM7GU1R2/Mj2IUWfW/TnRdcVPVZn+9dMdp3clXPkorI5M2vWrNCGDBkSWnYM/Na3vhVato11Zf9f9PM6n6o+2TnHokWLQmtsbAxtwYIFoe2xxx6hLVmypNBza2pqajZv3hxa9t1Tdow67rjjQpsxY0ah986uKbLzwK58d2H76brsd5LtD2+66abQsmviSZMmhZbth5966qnQsmPMUUcdFVr2XWfR/XX2eYs+bvr06aFl351u2LCh0HtksjntWqRvyq67s+vLrnxvmP3us8dl5+UTJkwI7cQTTwwt+74rWwP57ne/G9ovfvGL0LLjU7YP6Mr+Oztu9MTxwF8aAwAAAAAAAJSYRWMAAAAAAACAErNoDAAAAAAAAFBiFo0BAAAAAAAASqy+twdQSdlNobdt21bocZnsRtuvetWrQjv66KNDa25uDu2GG24Ibd68eaFlNxtn51b0JubZ48aMGRPakUceGVr//v0LvcfmzZtDW7BgQWjPPvtsaKtXrw6tvj7uVkaPHh1adqP57PNmz502bVpo2XY3ZMiQ0DZu3Bja888/H1q23WU/v5aWltDoWdnvpV+/Yv8mKntu1saNGxfaYYcdFtrYsWNDu+6660JbsWJFaG1tbS85zr8nG3N7e3uhlv2ssu246HsUPabSPbKfd/b7y/Zp2ZzLjh0vf/nLQ7vppptC27BhQ6H3yM6nsv365z//+dCOP/740IYNGxZaNjcXLVoU2he+8IXQsu3TvO6bst9LNtezc52VK1eGll0nZOc6y5cvD23+/PmhPf3006E98MADoW3ZsiW0p556KrSDDjootFe+8pWhZT+Xpqam0JzD8GLZeXim6P5wypQpoe22226hNTQ0hJZtTzU1NTX3339/aEXP2Ysqek2WjbvotULRcyp2TNFr7Ox30tjY2On37e5zhOwa9tRTTy30vtn3Sffee29o2fGuK7p7m2Pn1pXr0PXr14e2cOHC0LLrjpd6n6LfF2TfPWXXLWvXri3UunJ9T2UUnR8PPvhgaD/84Q9DO+KII0JbunRpaLfcckto2bHoda97XWinnHJKaJmhQ4eGlp2LZXM/+xlk10o9ca5S9DzMsaNnFT2fKjq/irbsdz9w4MDQ/uM//iO07DumbA7fd999oX3nO98Jbc2aNYVeryuKXo/1BH9pDAAAAAAAAFBiFo0BAAAAAAAASsyiMQAAAAAAAECJWTQGAAAAAAAAKLH63h5AJXX3TdHHjh0b2he+8IXQxo0bF9q1114b2jXXXBPa1q1bOzk6qlF2A/S6urrQ2traQsvmUnZD+m3btoWW3VR+0qRJoe2xxx6hzZo1K7SWlpbQFi1aFNqgQYNC23XXXQu975gxY0LbuHFjaI8++mhoo0aNCi37+Q0YMCC0VatWhUbflG1Pmf79+4d26KGHhnbEEUeE1tDQENoLL7wQWmtra6GxFJUd77L9Qra9Z/uF7PWKNnrfpk2bQlu8eHFoa9asCS3b10+bNi20d7/73aH9/ve/D23YsGGhveUtbwntoIMOCi3bFrPtuL29PbTly5eH9slPfjK0Bx54ILRs26FvKrrvy47p2XPXrl0bWn19vFzK3iObcytXriw0lsz69etDa2pqCi07nmTnihs2bAit6HGR8srOEbJ5k50jH3nkkaFNmDAhtOw6Yd68eel4GhsbQ+utc5HsZ5Mdj7Kfl/OnnlP0Z53t17N9afb77MrvOHvu1KlTQ8u+i9qyZUtof/jDH0LLjh1QSdn8z/aPQ4YMCS07T8q+18le76Vk++usLVy4MLTsuHPrrbeGlp3zFR2jY0LPKfqz3rx5c2g33nhjaNncXLFiRWjZNUa2///jH/8Y2rJly0LLvsM855xzQiv6HU52PZHN6exY2d3HwIxtpG/qyveGRX+n2bnY//pf/yu0Y445JrRsfmXnRO94xztC663v+vvSXPeXxgAAAAAAAAAlZtEYAAAAAAAAoMQsGgMAAAAAAACUmEVjAAAAAAAAgBKr7+0B9FUNDQ2hXXrppaFNnjw5tBdeeCG0T33qU6FlN9+GF8tugL5x48bQ/vKXv4Q2c+bM0MaMGRPa1q1bQ5s4cWJo5557bmjTp08Pbfz48aFl21Nzc3Nora2toWU/g+y5jY2NoS1cuDC0tWvXhpYZPnx4aCtXriz0XHpfNm/69Yv/Tqquri60CRMmhHbSSSeFNmnSpNCy/Xo2D9vb20PrbrW1taG1tbUVatm2mI05+znT+7L9+s033xzaQQcdFNrIkSNDGzJkSGjnnHNOaOedd15o9fXxVDObm0Vlc27NmjWhXXzxxaHdeOONobW0tHR6LPSsbN5k8yFr2f6r6O8+m19ZW79+faH3yMaXfbYBAwaENmLEiNCy41h2LMrOYbqyLVJe2X596tSpoR133HGhDR06NLQNGzaENm/evPS9s3OW7lb0fDGzbdu20HrinI8dU/TYUfR6oiu/42xuHXrooaFlx4Six7FszN0tO54U/VkVPb6z88h+z5s3bw5t8eLFoWXf9WTtpWTzaeDAgaFl10vZ92pLly4N7amnngqt6HdZ5vbOIZvDK1asCO32228PLTvXyeZw//79Q8vO17O5ddhhh4WWnZ9l503ZZ8uuHZ588snQsv160WNM0Wsg283Orejvquh5w6mnnhrahRdeWOj1srF8+MMfDu35559/yXGWmb80BgAAAAAAACgxi8YAAAAAAAAAJWbRGAAAAAAAAKDELBoDAAAAAAAAlFi8S3oJ1dXVhXb00UeHdt5554W2ZcuW0L74xS+GNn/+/E6ODraXzblf/epXoU2ZMiW0Qw45JLS2trbQ6uvjruHAAw8MbZdddglt4MCBoWU3pB88eHBomzdvDm3t2rWhPfHEE6Fl29icOXNCW7BgQWhNTU2hNTY2hrZ169bQ2LkNGjQotD333DO0/fbbr9DrPfnkk6E99dRToXV0dBR6vaKybSyzbdu20LJ9QHt7e6FG35T9Th999NHQbrnlltD233//0IYNGxbagAEDQuvXr3v/LWI257L9/5vf/ObQ5s2bF1r2c2Hnlu37sv1r1rL5kB3ns/1mNjezxxWVbTvZedzkyZMLvd6yZctCy7aJlpaWQq9HORQ9N8nO4bNjRzZfs/dYsmRJaM8++2yhsXRVtu1l3w1kiu4vsn1Nd58H0nVFz3Oz407R8/DscWPGjAntVa96VWjZXG1ubg6toaGhUMter+i87O6fge2h+mS/02y+Lly4MLRsn7kj5/DZHGttbQ3thRdeCK3o90LZ4+zrq1/RebRmzZrQsnOLbD+cPTf7TjQ7x8rOS7LtLpN9Z/XAAw+Eln0f3ZVjR/YzcM1efbLffbbusNtuu4X2ta99rdBzs3l41113hfa9733vpYbJ/+AvjQEAAAAAAABKzKIxAAAAAAAAQIlZNAYAAAAAAAAoMYvGAAAAAAAAACUW7xy9kyp6Q/UBAwaEdsghh4T2ne98J7RRo0aFdscdd4R25ZVXhlb0xvCUQzYfsjmcaWtrC23p0qWhfeELXwht2rRpoc2cOTO0WbNmhTZ16tTQ6urqXmqY22ltbQ2tqakptKeeeiq0b37zm6Hdc889oa1Zsya07Ge6bdu2Qi37HWWfg51HNh/q6+NhcMKECaFt2bIltGeffTa0n/zkJ6EtWbIktPb29pccZ3fJ3iOb19njemJ89KzNmzeH9rOf/Sy0lpaW0P7lX/4ltD322KNbxvXfNmzYENoHP/jB0H7605+Glo2Z6lP03Kno+VSm6P6wu8/r+/fvH1q2jTU3N4e2fPny0O68887QFi5cGJp9PS9WdNvJzv/HjRsXWnbevHHjxtAeeOCB0FatWpW+d3dve9n3BdnPIXvf7Josa74H6F1Ff59Fz5G78r4NDQ2hHXjggaEdcMABoWXXLNl7DBkyJLTsO7DsWrwr31Fk21LRn59tpPd15dypqKLfr3T13CR7n+z7nvXr14eWXVNk20q2r6ecil47FP0uMdsWt27dGtq6desKtWyuZtfdP/rRj0KbN29eaNn3Ytnn7co1mmNC9Sl67ZB9/zNp0qTQsjmybNmy0E499dTQXP8W5y+NAQAAAAAAAErMojEAAAAAAABAiVk0BgAAAAAAACgxi8YAAAAAAAAAJVbfW29c9Abo2eOyG2gPGDAgtDFjxoT28pe/PLT3vOc9oe29996hZTd8/8UvfhFac3NzaPD3ZDdyz7S1tRVqK1asKNTuvffe0Orr465h7NixoR133HGhHXvssaGtXr260Ps+8MADoa1fvz60bdu2hUZ5ZceJoseY9vb20J5//vnQ7rzzztDWrFkT2k033RTa5s2bC42lK4ruP7LHFX0uO7dsrmf71x/+8IehZec6e+65Z2hnn312aOvWrQvtxhtvDO3pp58OLRszvFi2/yq6/y/6et0tG9/QoUNDy64nHn300dCGDx8e2uOPPx5aU1NTaLYx/p6i51irVq0KbeHChaFl+/rs/H/r1q0FR9g12TafXVdl1x7Z9uOcqndlP//su6Psd1z09bqi6P4/m1utra2hZfv17Ho/+7xdOVZmim4Pjjs7j2yO9OsX/+4o+z0XfVzR87iunu9l20B2npV9D1b0fez/6Q7ZPMrOiW6//fbQih7bsuPE4sWLQ8uu44vu67v7Go2eVfR3le3rs/1odq5zyCGHhDZ79uzQsvOfbG6+6U1vCi1bx6M4f2kMAAAAAAAAUGIWjQEAAAAAAABKzKIxAAAAAAAAQIlZNAYAAAAAAAAosXh36h6S3RQ9k91Uu3///qENHz48tOnTp4f26le/OrR99tkntOzG3dnN4u+///7Qin42qKSi87Ctra1Qe/7550P72c9+VqhBJXVlrjc1NYU2b9680J544onQNm/eHNqmTZtC27ZtW6HxdUVXjjuOWbxYtp1s3LgxtIceeqhQg56W7dNqa2t7YSTFZceOuXPnhrZhw4bQBg8eHNozzzwTWmNjY2jZ8ckxgRdrb28PLTsm/OlPfwptyZIloWXnXYsXLy70uJqa7p+f2ecr+h7Zc+ld2e8u288VPSZkj+vKHMxe77nnngvt6quvDm3ixImhZdvJnDlzQtu6dWtoRedv0cdln62vH3v5f4qeO2XfzzY0NBR6bktLS6H3rYRsHmfj2bJlS6HXGzBgQGitra2hOaeiO2TzKDsXu/HGGzv9el15XFG2h51HV35X2frcQQcdFNrpp58e2qhRo0JbvXp1aHfeeWdo2bUzXeMvjQEAAAAAAABKzKIxAAAAAAAAQIlZNAYAAAAAAAAoMYvGAAAAAAAAACVW39sD+Hva2tpC27RpU2hbt24NbeTIkaFlN4vPNDU1hXbPPfeEtmHDhtBqa2tDc8N3gJ6T7XOL7puz40lzc3No27ZtCy07ZvUWxx2A/6Ov7w9bWlpCW7lyZWjr168PrV+/+G+As+NTdmxrb28vOELKINtOsvmVPS67xn700UdD27JlS2itra2h9dTczD5LX99f0HU98TvOtp0BAwaEln3v9Pvf/z60hoaG0DZv3hza0qVLQ8u+P+vun4Ftqfpk++HsfCU758jmf/Z6XZkjL/Xcoq+ZjSe7lq+vj1+b96Vrfvhvzuvpadm+MLsmOOCAA0I7+uijQxsxYkRo2bXDkiVLQsuORXSNvzQGAAAAAAAAKDGLxgAAAAAAAAAlZtEYAAAAAAAAoMQsGgMAAAAAAACUWH1vD6C71NbWhjZ48ODQhg4dGtrq1atDe+6550K77rrrQtuwYUOhsQDQu+rq6gq1TEdHR2jZvj5r2XMBKKfsmNDW1laotba2hlb0uONYRGcUva7N5mZ7e3uhBju7bDtpaGgILdsPr1mzplDLnrt169bQWlpaCj0XusvOuq/Ptott27YVakVfD6Bssn3m3LlzQ5s+fXpoo0aNCu3xxx8P7Qc/+EFozc3NRYdIQf7SGAAAAAAAAKDELBoDAAAAAAAAlJhFYwAAAAAAAIASs2gMAAAAAAAAUGL1vT2A7tLa2hranDlzQnvta1/bE8MBoI/JjhNZA4Ce1NHREVptbW2hx2UNusu2bdsKNSizbD/c3NxcqHVFQ0NDobEAxdh+ALqmra0ttLvvvrtQo2/xl8YAAAAAAAAAJWbRGAAAAAAAAKDELBoDAAAAAAAAlFihexq7rwOdUc3zppo/G5VTzfOmmj8blVPN86aaPxuVU83zppo/WyX4ef0f1fxzqObPRuVU87yp5s9WCe5z/39U82eu5s9G5VTzvKnmz0blVPO8qebPRuUUmTeF/tK4sbGxy4OhfKp53lTzZ6NyqnneVPNno3Kqed5U82ejcqp53lTzZ6NyqnneVPNno3Kqed5U82erhG3btoX/Ojo6wn/VrprnTTV/NiqnmudNNX82Kqea5001fzYqp8i8qe0ocBbZ3t5es2zZspphw4bV1NbWdsvgqF4dHR01jY2NNZMmTarp1686/w/otgl2hG0CtmebgO3ZJmB7tgnYnm0CtmebgO3ZJmB7tgnY3o5sE4UWjQEAAAAAAACoTtX5zywAAAAAAAAAKMSiMQAAAAAAAECJWTQGAAAAAAAAKDGLxgAAAAAAAAAlZtEYAAAAAAAAoMQsGgMAAAAAAACUmEVjAAAAAAAAgBL7/wCxwrU+JwjKygAAAABJRU5ErkJggg==\n"
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "encoding_dim = 32"
      ],
      "metadata": {
        "id": "sDGNrdiLX2ZH"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import matplotlib.pyplot as plt\n",
        "\n",
        "# obtain one batch of test images\n",
        "dataiter = iter(test_loader)\n",
        "images = next(dataiter).to(device)\n",
        "\n",
        "images_flatten = images.view(images.size(0), -1)\n",
        "# get sample outputs\n",
        "output = model(images_flatten)\n",
        "# prep images for display\n",
        "images = images.cpu().numpy()\n",
        "\n",
        "# output is resized into a batch of images\n",
        "output = output.view(batch_size, 1, 28, 28)\n",
        "# use detach when it's an output that requires_grad\n",
        "output = output.cpu().detach().numpy()\n",
        "\n",
        "# plot the first ten input images and then reconstructed images\n",
        "fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(25,4))\n",
        "\n",
        "# input images on top row, reconstructions on bottom\n",
        "for images, row in zip([images, output], axes):\n",
        "    for img, ax in zip(images, row):\n",
        "        ax.imshow(np.squeeze(img), cmap='gray')\n",
        "        ax.get_xaxis().set_visible(False)\n",
        "        ax.get_yaxis().set_visible(False)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 145
        },
        "id": "K3btcCl78rNa",
        "outputId": "e199517f-5298-41f9-ff11-3183114c2334"
      },
      "execution_count": 12,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 2500x400 with 20 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAB40AAAFICAYAAABEN2iVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVN9JREFUeJzt3WecXWXZ8O2ZzKT3SggplEiH0EGUJtygIJEOgt5K5xEQpQgqCoLKT1BQEUHuR1BQEakiTYo0QVACAQmEEkoICekJk0mbzMz75X2e17znia5MyczsdRwf/79drp25VtsXm1Xd3NzcXAUAAAAAAABAKXXr6AEAAAAAAAAA0HEsGgMAAAAAAACUmEVjAAAAAAAAgBKzaAwAAAAAAABQYhaNAQAAAAAAAErMojEAAAAAAABAiVk0BgAAAAAAACgxi8YAAAAAAAAAJVZb5EFNTU1VM2fOrOrfv39VdXV1e4+JLq65ubmqrq6uatSoUVXdulXmf5dgm2BN2CZgdbYJWJ1tAlZnm4DV2SZgdbYJWJ1tAlZnm4DVrck2UWjReObMmVVjxoxpk8FRHu+++27V6NGjO3oY7cI2QUvYJmB1tglYnW0CVmebgNXZJmB1tglYnW0CVmebgNUV2SYK/WcW/fv3b5MBUS6VPG8q+bPRfip53lTyZ6P9VPK8qeTPRvup5HlTyZ+N9lPJ86aSPxvtp5LnTSV/NtpPJc+bSv5stJ9KnjeV/NloP5U8byr5s9F+isybQovGft5OS1TyvKnkz0b7qeR5U8mfjfZTyfOmkj8b7aeS500lfzbaTyXPm0r+bLSfSp43lfzZaD+VPG8q+bPRfip53lTyZ6P9VPK8qeTPRvspMm8q83/oDgAAAAAAAEAhFo0BAAAAAAAASsyiMQAAAAAAAECJWTQGAAAAAAAAKDGLxgAAAAAAAAAlZtEYAAAAAAAAoMQsGgMAAAAAAACUmEVjAAAAAAAAgBKzaAwAAAAAAABQYhaNAQAAAAAAAErMojEAAAAAAABAiVk0BgAAAAAAACix2o4eANCxzj777NB69+4d2tZbbx3aYYcdVug9rr766tD+9re/hXbjjTcWej0AAAAAAADajl8aAwAAAAAAAJSYRWMAAAAAAACAErNoDAAAAAAAAFBiFo0BAAAAAAAASqy2owcArD0333xzaIcddliLX6+pqanQ404++eTQ9tlnn9Aee+yx0KZPn77mA4MuaOONNw5t6tSpoZ1xxhmhXXnlle0yJlgTffv2De2yyy4LLTsmTJo0KbTDDz88tHfeeaeFowMAAAD+1eDBg0MbO3Zsi18vu2b/6le/GtpLL70U2muvvRbaCy+80OKxAC3jl8YAAAAAAAAAJWbRGAAAAAAAAKDELBoDAAAAAAAAlJhFYwAAAAAAAIASq+3oAQDt4+abbw7tsMMOa/HrTZ06NbQ///nPoW244YahHXjggaFttNFGoR1zzDGhXXLJJUWHCF3atttuG1pTU1NoM2bMWBvDgTW27rrrhnbiiSeGls3r7bffPrRPf/rToV111VUtHB20ne222y6022+/PbT1119/LYymmH333Te0V155JbR33313bQwH2kx2nXHXXXeFdtppp4V2zTXXhNbY2Ng2A6M0RowYEdof/vCH0J566qnQrr322tDefvvtNhlXexk4cGBou+++e2j3339/aA0NDe0yJgCiAw44ILSJEyeGtueee4Y2fvz4Fr/va6+9Ftq4ceNC69mzZ6HXq6mpafFYgJbxS2MAAAAAAACAErNoDAAAAAAAAFBiFo0BAAAAAAAASsyiMQAAAAAAAECJ1Xb0AIDW22GHHUI7+OCDCz13ypQpoU2cODG0efPmhbZkyZLQevToEdrTTz8d2oQJE0IbOnToh44TKt0222wTWn19fWh33HHHWhgN/HvDhw8P7de//nUHjATWvv322y+0nj17dsBIijvwwANDO+6440I76qij1sZwoEWya4Wf//znhZ77s5/9LLTrrrsutGXLlq35wCiNwYMHh5ZdTw8cODC02bNnh/b222+3ybjaS/Y5Jk2aFFp2Xrj99tuH9sYbb7TNwKgIAwYMCO2SSy4Jbcsttwxtn332SV+zoaGh9QODTmSjjTYK7dRTTw3txBNPDK13796hVVdXt83A/o2NN9643d8DaF9+aQwAAAAAAABQYhaNAQAAAAAAAErMojEAAAAAAABAiVk0BgAAAAAAACix2o4ewH9y2GGHhZbd3H3mzJmhLV++PLTf/va3ob3//vuhvfHGG0WHCB1u3XXXDa26ujq0KVOmhLbffvuFNmvWrBaP5ayzzgpt8803L/Tce+65p8XvC13JlltuGdppp50W2o033rg2hgP/1pe//OXQDjrooNB22mmnNn3f3XffPbRu3eJ/7/jCCy+E9vjjj7fpWCiv2tp4ubT//vt3wEhaZ9KkSaGdeeaZofXt2ze0+vr6dhkTrKnsuDB69OhCz73ppptCy74vgP9j2LBhod18882hDRkyJLSf//znoZ1++ultM7C16Pzzzw9tgw02CO3kk08OzXdq/KtjjjkmtO9973uhjRkzptDrDRgwIO3z589fs4FBJ5ed55xxxhkdMJLc1KlTQ8u+e4b2NH78+NCy87iDDz44tD333DO0pqam0K655prQnnzyydAq5fzHL40BAAAAAAAASsyiMQAAAAAAAECJWTQGAAAAAAAAKDGLxgAAAAAAAAAlVtvRA/hPLr300tDWX3/9Fr/eySefHFpdXV1onf2m7TNmzAgt+7d69tln18Zw6GB/+tOfQstuAp/N9QULFrTpWI466qjQunfv3qbvAV3dpptuGlrfvn1Du/nmm9fGcODfuuKKK0Jrampq9/c95JBDCrV33nkntCOPPDK0SZMmtc3AKJW99tortI9+9KOhZefhncngwYND23zzzUPr06dPaPX19e0yJvgwPXv2TPs3v/nNFr/mjTfeGFpzc3OLX4/Kt91224W25557FnruRRdd1MajaX9bbLFFaGeddVZod9xxR2iuWfhXo0ePDu3HP/5xaEOHDg2t6H75yiuvTPtpp50WWlt/5wX/zrBhw0I744wzQnvyySdDu//++0NbsWJFaIsXLw4tO1/PvmN64IEHQnvppZdCe+aZZ0J7/vnnQ1u2bFmhsUBLbLnllqFl+/nse6JsW2yNnXfeObRVq1aF9uqrr4b217/+NbRsv7By5coWjq7t+aUxAAAAAAAAQIlZNAYAAAAAAAAoMYvGAAAAAAAAACVm0RgAAAAAAACgxGo7egD/yYknnhja1ltvHdorr7wS2mabbRbadtttF9qee+4Z2i677BLau+++G9qYMWNCKyq7WfbcuXNDW3fddQu93vTp00N79tln13xgVIR33nmn3d/jnHPOCW3jjTcu9NxnnnmmUINK9LWvfS20bJu1D2dtu/fee0Pr1q39/xvD+fPnh7ZkyZLQxo0bF9oGG2wQ2t///vfQampqWjg6ymLLLbcM7aabbgpt2rRpoX3/+99vlzG1lc985jMdPQQobKuttkr79ttvX+j52XX2fffd16oxUdlGjBgR2qGHHlrouccff3xo2fc6nckWW2wR2kMPPVTouXfccUdodXV1rR4TlePss88ObciQIW36HkceeWTaP/nJT4b2ve99L7Qrr7wytJUrV7Z+YJRK3759Q3vggQdCmzBhQmgHH3xwofd4+umnQ8vWNt5+++3Qxo4dG9qMGTNCa2pqKjQWaCvZ2t6pp54aWravHzBgQKH3eO+990J74oknQnvrrbdCy76znTRpUmg77bRTaNnxbv/99w/thRdeCO2aa64JraP4pTEAAAAAAABAiVk0BgAAAAAAACgxi8YAAAAAAAAAJWbRGAAAAAAAAKDEajt6AP/Jww8/XKhl7r///kKPGzx4cGjbbLNNaNkNr3fcccdC75FZvnx5aK+99lpor7zySmjZTbWnTZvW4rHAf/LpT386tIsuuii0Hj16hDZnzpzQvv71r4e2dOnSFo4OOq/1118/tB122CG0bP9fX1/fHkOCqqqqqqo99tgjtE022SS0pqamQq2oa665JrQHHnggtMWLF4f2iU98IrRvfvObhd73f/2v/xXa1VdfXei5lMP5558fWt++fUP75Cc/GdqSJUvaZUwtkV0nZNt7a7ZjaE+HHnpoq56fHVPg3/nRj34U2uc+97nQsu+EbrnllnYZU3vabbfdQltnnXVC+9WvfhXab37zm/YYEl3UuHHjQjv22GMLPffFF18Mbfbs2aHts88+hcczcODA0M4+++zQfvvb34b2/vvvF34fyif7rvN3v/tdaBMmTAjt+9//fmgPPfRQi8fy9ttvF3rc9OnTW/we0FZ+8YtfhHbwwQeHNmzYsEKvl60L/vOf/wztG9/4RmjZWlxm1113DS37Pum6664LLVtTzI5tV111VWi33XZbaHPnzv2wYbYrvzQGAAAAAAAAKDGLxgAAAAAAAAAlZtEYAAAAAAAAoMQsGgMAAAAAAACUWG1HD6AzWLhwYWiPPPJIoedmN99ujUMPPTS0wYMHh5bd4Pvmm29u07HAv9phhx1C69GjR6HnZnPzsccea/WYoCvYY489Cj1u7ty57TwSymz99dcP7fe//31ow4YNa/F7vPPOO6HddtttoX3nO98JbenSpS1+j5NOOim04cOHh3bppZeG1qtXr9B+9rOfhdbQ0FBofHQdhx12WGj7779/aG+88UZozz77bLuMqa1885vfDK2pqSm0Rx99NLRFixa1w4hgzey+++6FH7ty5crQsm0A/p3m5ubQsv3mzJkzQ8vmYEfp3bt3aN/4xjdC+9KXvhRa9m9w3HHHtc3AqFjbbLNNaP379w/tiSeeCC27Ts7OzT/72c+Gls3rqqqqqo022ii0kSNHhvbHP/4xtE996lOhLViwIH0fKlu/fv1C+/rXvx7apz/96dDmzZsX2g9/+MPQil7/QmeV7a+/9rWvhXbCCSeEVl1dHVr2nejVV18d2mWXXRZafX39h46zJYYOHRpaTU1NaBdeeGFo999/f2jjxo1rk3GtTX5pDAAAAAAAAFBiFo0BAAAAAAAASsyiMQAAAAAAAECJWTQGAAAAAAAAKLHajh5AmY0YMSK0n//856F16xbX9i+66KLQFixY0DYDo/TuvPPO0Pbdd99Cz73hhhtCO//881s7JOiyttpqq0KPu/TSS9t5JJRZbW085Rs2bFiLX++xxx4L7aijjgpt3rx5LX6PzDvvvBPaJZdcEtrll18eWp8+fULLtru77rortGnTphUdIl3E4YcfHlo2R7Jz885k/fXXD+2YY44JrbGxMbTvfve7oTU0NLTJuKCoXXfdtVD7MPX19aFNnjy5NUOCD3XAAQeE9sADD4S2aNGi0K6++uo2Hcsee+wR2p577hnaLrvsUuj1br311tYOiRLq2bNnaM3NzaFdccUVhV5v+fLloV1//fWhZedxVVVVVRtuuGGh91m6dGloK1euLPRcKt9BBx0U2nnnnRfa9OnTQ9ttt91CW7x4cZuMCzqT7JzjnHPOCa26ujq09957L7RDDz00tL///e8tG9yHqKmpCW3MmDGhZWsb9957b2iDBw8u9L7Zv8GNN94YWnb+2FH80hgAAAAAAACgxCwaAwAAAAAAAJSYRWMAAAAAAACAErNoDAAAAAAAAFBitR09gDI79dRTQxs+fHhoCxcuDO3VV19tlzFRPuuuu25ou+66a2g9e/YMbd68eaF997vfDW3JkiUtHB10Lbvssktoxx57bGjPP/98aA8++GC7jAla69lnnw3tuOOOCy07JqwNd911V2jHHHNMaDvuuOPaGA6d0MCBA0PL9teZq6++uq2H06ZOOumk0IYNGxbaK6+8EtojjzzSLmOCNdHafXNn30bpGn7yk5+Ettdee4U2atSo0HbffffQqqurQ5s4cWILR5fL3qO5ubnQc998883QvvGNb7R6TJTPZz/72UKPO+CAA0K78847W/y+O+ywQ4ufW1VVVfX000+H5nsr/o/sO9FM9r3OjBkz2no40CnV1NSE1tjYWOi5q1atCm3nnXcO7bDDDgtt0003LfQey5YtC22zzTYr1LLvttZZZ51C75uZPXt2aNn6SUNDQ4vfo635pTEAAAAAAABAiVk0BgAAAAAAACgxi8YAAAAAAAAAJWbRGAAAAAAAAKDEajt6AGXxsY99LLTzzjuv0HMPOuig0F566aXWDgmqqqqqqm677bbQhg4dWui5v/nNb0KbNm1aq8cEXdU+++wT2pAhQ0K7//77Q1u+fHm7jAk+TLduxf7bwZ133rmdR9I61dXVoWWfrejnvfDCC0P7/Oc/v8bjovPo2bNnaOutt15oN91009oYTpvaaKONCj3OtQOd1Q477FD4sYsWLQrt6quvbsPRUFaTJk0Kbeuttw5tm222Ce2Tn/xkaOecc05oc+fODe3Xv/51wRFGN954Y2gvvPBCoec+9dRTobmOpyWyc6eJEyeGtuOOO4a26aabhrbVVluFdvDBB4c2ePDgdDzZcSJ77Iknnhhatk29/PLL6ftQ2Q477LBCj8v2/xdccEFof/zjH0ObPHnyGo8LOpO//OUvoT3yyCOhZd+Tjh07NrSf/vSnoTU3NxcaS2NjY2g1NTWFnptZZ511Cj2uqakptDvuuCO0L3/5y6HNmjVrzQe2FvmlMQAAAAAAAECJWTQGAAAAAAAAKDGLxgAAAAAAAAAlZtEYAAAAAAAAoMRqO3oAZbH//vuH1r1799Aefvjh0P72t7+1y5gon4kTJ4a23XbbFXruo48+GtoFF1zQ2iFBRZkwYUJozc3Nod16661rYzjwf51yyimhNTU1dcBI2t6BBx4Y2rbbbhta9nmzduGFF7bJuOg86urqQps8eXJoW2+9dWhDhgwJbcGCBW0yrjU1YsSI0A477LBCz/3rX//a1sOBNfbxj388tKOPPrrw8xcvXhzajBkzWjUm+DALFy4M7ZFHHinUzj333HYZ07/acMMNQ6uurg4tO96dffbZ7TEkSuihhx4KLdtXb7XVVqG9/PLLoWXXzkXft6qqqurUU08N7e677w7tIx/5SGhf/vKXQ8uuoah8w4cPDy27buzZs2do3/72t0M7//zzQ7vmmmtCe/rpp0MbO3ZsaG+88UZoU6ZMCS2zxRZbhJatOzi/4j9ZtmxZaAcffHBogwYNCu28884L7WMf+1ho8+fPD2369OmhZdti9v3sTjvtFFprXHvttaF94xvfCG3RokVt+r5rg18aAwAAAAAAAJSYRWMAAAAAAACAErNoDAAAAAAAAFBiFo0BAAAAAAAASqy2owdQiXr37h3aJz/5ydBWrlwZ2gUXXBBaQ0ND2wyMUhk6dGho2c3Yu3fvXuj1Jk+eHNqSJUvWeFxQKUaOHBnabrvtFtqrr74a2h133NEuY4IPc+CBB3b0ENbY8OHDQ9t8881Dy45tRc2dOzc0512VZ9myZaFNmzYttEMPPTS0e+65J7TLL7+8bQb2/9pyyy1D23DDDUNbf/31Q2tubi70Hk1NTWs8Lmhr2fVJt27F/zv2Bx98sC2HA13at7/97dCyY8K5554bWnb+Ay2xYMGC0I444ojQbr311tAGDhxY6D2uvPLK0LJ5XVVVVbV8+fLQbr/99tDOO++80Pbbb7/QNtpoo9Cyc0gqyw9/+MPQzjzzzBa/Xnau86UvfalQWxuyY8Kjjz4a2lFHHbUWRkOlWbRoUWjZPrit3XDDDaHttNNOhZ5bV1cXWrYP+NWvfhVaY2Njoffo7PzSGAAAAAAAAKDELBoDAAAAAAAAlJhFYwAAAAAAAIASs2gMAAAAAAAAUGK1HT2ASnTOOeeEtu2224Z2//33h/bUU0+1y5gon7POOiu0HXfcsdBz77zzztAuuOCC1g4JKsoXv/jF0EaMGBHafffdtxZGA5Xnm9/8Zminnnpqi1/v7bffDu0LX/hCaNOnT2/xe9B1ZOc11dXVoR1wwAGh3XTTTW06lnnz5oXW3Nwc2rBhw1r8Hr/61a9a/FxoK4cddlihxy1atCjtv/jFL9pwNNB1HH744aH993//d2h1dXWhzZ8/v13GBB/moYceCi3b/x999NGhZfv/b3/726EtX7688Hguvvji0DbbbLPQJk6cWOi9s+sHKst5550X2s033xza7373u9Bqa+NSy5gxY0Lr1q3z/I5v+PDhoWXb7Pnnnx/ad7/73XYZE6yJr33ta6EdddRRLX69U045JbS2/g6gs+s8eygAAAAAAAAA1jqLxgAAAAAAAAAlZtEYAAAAAAAAoMQsGgMAAAAAAACUWLw7O2vkgAMOCO1b3/pWaB988EFoF110UbuMCaqqqqrOPPPMFj/3tNNOC23JkiWtGQ5UnHHjxhV63MKFC9t5JND13XvvvaFtsskmbfoeL7/8cmh//etf2/Q96DqmTp0a2hFHHBHaNttsE9r48ePbdCy33nprocf9+te/Du2YY44p9Nxly5at0ZigtUaPHh3a0UcfXei5M2bMSPuzzz7bqjFBV/WpT32q0OPuvvvu0J577rm2Hg6ssYceeqhQaw/ZOdDNN98c2sSJE0Pba6+9QhsyZEhoCxYsaOHo6IwaGxtDy85BNt5440Kvt/fee4fWvXv30C688MLQdtxxx0Lv0daqq6tD23777TtgJLC6E044IbTzzz8/tNraYsueU6ZMCe32229f84FVGL80BgAAAAAAACgxi8YAAAAAAAAAJWbRGAAAAAAAAKDELBoDAAAAAAAAlFixO0JTVVVVVTV06NDQfvrTn4ZWU1MT2r333hva008/3TYDgzY2ZMiQ0BoaGtr0PRYvXlzoPbp37x7awIEDC73HoEGDQjvzzDMLPTfT2NgY2rnnnhva0qVLW/wedB2f/vSnCz3uT3/6UzuPBP6z6urq0Lp1K/bfDn7qU58q9Lhrr702tFGjRhV6bjaWpqamQs8t6sADD2zT16McJk+eXKitDW+++WaLn7vllluG9tJLL7VmOPBv7brrrqEVPe7ceeedbTwa6Nqyc7H6+vrQfvSjH62N4UCX94c//CG0iRMnhnbkkUeGdtppp4V20UUXtc3AqEgPP/xwocdts802oe24446hrVq1KrTrr78+tP/5n/8J7Stf+UpoRx99dKHxwdq20047hZad6/Tr16/Q6y1ZsiS0U045JbQVK1YUer1K5pfGAAAAAAAAACVm0RgAAAAAAACgxCwaAwAAAAAAAJSYRWMAAAAAAACAEqvt6AF0VjU1NaHdf//9oW2wwQahTZs2LbRvfetbbTMwWAtefPHFdn+PW265JbRZs2aFts4664R25JFHtsuYWuL9998P7Xvf+14HjIT29PGPfzy0kSNHdsBIoGWuvvrq0C699NJCz7377rtDa2pqKvTcoo9r6+dec801LX4udFbV1dWFWuall15q6+HAvzV06NBCj5s3b15oP/nJT9p6ONBlnHLKKaFl18Rz5swJ7bnnnmuXMUGlya4zsmujz3zmM6FdcMEFof3+978P7bXXXmvh6CirBx54ILTs+8Xa2ricc+KJJ4Y2fvz40Pbcc8+WDa6qqmrGjBktfi60xIEHHhha//79Cz23vr4+tIkTJ4b25JNPrvnASsAvjQEAAAAAAABKzKIxAAAAAAAAQIlZNAYAAAAAAAAoMYvGAAAAAAAAACUW75xOVVVVVdVGG20U2vbbb1/ouWeeeWZo06ZNa/WYYE3ce++9oX3mM5/pgJHkDj/88DZ9vVWrVoXW1NRU6Ll33XVXaM8++2yh5z7xxBOFHkfXdvDBB4dWU1MT2vPPPx/a448/3i5jgjVx++23h3bOOeeENnz48LUxnELmzp0b2iuvvBLaSSedFNqsWbPaZUzQkZqbmws16Az222+/Qo+bPn16aIsXL27r4UCXccopp4SW7evvueeeQq/Xv3//0AYPHhxati1CmUyePDm0b3/726FddtlloX3/+98P7fOf/3xoy5Yta9ngKIXsWvcPf/hDaEcccUSh19trr70KPa6xsTG07Bhz3nnnFXo9aInsfOVrX/tai1/vt7/9bWiPPvpoi1+vbPzSGAAAAAAAAKDELBoDAAAAAAAAlJhFYwAAAAAAAIASs2gMAAAAAAAAUGK1HT2AzmDcuHGhPfDAA4Wee84554R29913t3pM0FqHHHJIaNkN5Lt3797i99hiiy1CO/LII1v8etddd11ob7/9dqHn3nbbbaFNnTq1xWOhvPr06RPa/vvvX+i5t956a2iNjY2tHhO01jvvvBPaUUcdFdpBBx0U2hlnnNEeQ/qPvve974V21VVXdcBIoHPo1atXocctW7asnUcCq8uuJzbaaKNCz12+fHloDQ0NrR4TVLrsGuOYY44J7atf/WpoU6ZMCe0LX/hC2wwMKsgNN9wQ2sknnxxa9v3bRRddFNqLL77YNgOjImXn8F/5yldC69evX2g77LBDaCNGjAgt+471xhtvDO3CCy/MBwltIJvDL7/8cmhF1yyyfWu27VCcXxoDAAAAAAAAlJhFYwAAAAAAAIASs2gMAAAAAAAAUGIWjQEAAAAAAABKrLajB9AZnHTSSaGNHTu20HMfe+yx0Jqbm1s9JmgPl156abu/x9FHH93u7wHtqaGhIbSFCxeGdtddd4X2k5/8pF3GBO3h8ccfL9QeeOCB0LJzpwMPPDC0bDu59tprQ6uurg7t5ZdfDg3K7Nhjjw1t0aJFoV188cVrYTTw/2lqagrt2WefDW3LLbcM7Y033miXMUGlO+GEE0I7/vjjQ/vlL38ZmuMEFDN37tzQ9tlnn9Defvvt0M4999zQjjnmmDYZF+Uxe/bs0LLr7s9//vOh7bLLLqF95zvfCW3OnDktHB20zCc+8YnQRo8eHVrRNbavfvWroS1fvnzNB8b/5ZfGAAAAAAAAACVm0RgAAAAAAACgxCwaAwAAAAAAAJSYRWMAAAAAAACAEqvt6AGsbR//+MdDO/300ztgJAB0Rg0NDaHtuuuuHTAS6Bzuv//+Qg1oX//4xz9Cu/zyy0N75JFH1sZw4P9qbGwM7Zvf/GZozc3NoU2aNKldxgRd1WmnnRbaRRddFNrjjz8e2tVXXx3awoULQ1u5cmULRwdMnz49tIceeii0iRMnhrb55puH9vLLL7fNwCi1G2+8sVCDzuDiiy8OLbtOyFx22WWhuf5te35pDAAAAAAAAFBiFo0BAAAAAAAASsyiMQAAAAAAAECJWTQGAAAAAAAAKLHajh7A2rbbbruF1q9fv0LPnTZtWmhLlixp9ZgAAAD+nQMPPLCjhwCFzZw5M7TjjjuuA0YCXctf//rX0D7xiU90wEiAog477LDQXnjhhdDGjx8f2ssvv9wuYwLorIYMGRJadXV1aHPmzAntxz/+cXsMif8fvzQGAAAAAAAAKDGLxgAAAAAAAAAlZtEYAAAAAAAAoMQsGgMAAAAAAACUWG1HD6CzeuGFF0Lbe++9Q1uwYMHaGA4AAAAAAJ3IBx98ENoGG2zQASMB6Pwuv/zyQu3iiy8ObdasWe0yJlbnl8YAAAAAAAAAJWbRGAAAAAAAAKDELBoDAAAAAAAAlJhFYwAAAAAAAIASq+3oAaxtl1xySaEGAAAAAAAAtN4VV1xRqNFx/NIYAAAAAAAAoMQsGgMAAAAAAACUmEVjAAAAAAAAgBIrtGjc3Nzc3uOgAlXyvKnkz0b7qeR5U8mfjfZTyfOmkj8b7aeS500lfzbaTyXPm0r+bLSfSp43lfzZaD+VPG8q+bPRfip53lTyZ6P9VPK8qeTPRvspMm8KLRrX1dW1ejCUTyXPm0r+bLSfSp43lfzZaD+VPG8q+bPRfip53lTyZ6P9VPK8qeTPRvup5HlTyZ+N9lPJ86aSPxvtp5LnTSV/NtpPJc+bSv5stJ8i86a6ucDSclNTU9XMmTOr+vfvX1VdXd0mg6NyNTc3V9XV1VWNGjWqqlu3yvw/oNsmWBO2CVidbQJWZ5uA1dkmYHW2CVidbQJWZ5uA1dkmYHVrsk0UWjQGAAAAAAAAoDJV5n9mAQAAAAAAAEAhFo0BAAAAAAAASsyiMQAAAAAAAECJWTQGAAAAAAAAKDGLxgAAAAAAAAAlZtEYAAAAAAAAoMQsGgMAAAAAAACUmEVjAAAAAAAAgBKzaAwAAAAAAABQYhaNAQAAAAAAAErMojEAAAAAAABAiVk0BgAAAAAAACgxi8YAAAAAAAAAJWbRGAAAAAAAAKDELBoDAAAAAAAAlJhFYwAAAAAAAIASs2gMAAAAAAAAUGIWjQEAAAAAAABKzKIxAAAAAAAAQIlZNAYAAAAAAAAoMYvGAAAAAAAAACVm0RgAAAAAAACgxCwaAwAAAAAAAJSYRWMAAAAAAACAEqst8qCmpqaqmTNnVvXv37+qurq6vcdEF9fc3FxVV1dXNWrUqKpu3Srzv0uwTbAmbBOwOtsErM42AauzTcDqbBOwOtsErM42AauzTcDq1mSbKLRoPHPmzKoxY8a0yeAoj3fffbdq9OjRHT2MdmGboCVsE7A62wSszjYBq7NNwOpsE7A62wSszjYBq7NNwOqKbBOFFo379+/fJgOiXCp53lTyZ6P9VPK8qeTPRvup5HlTyZ+N9lPJ86aSPxvtp5LnTSV/NtpPJc+bSv5stJ9KnjeV/NnWRPbruebm5g4YSddQyfOmkj8b7aeS500lfzbaT5F5U2jR2M/baYlKnjeV/NloP5U8byr5s9F+KnneVPJno/1U8ryp5M9G+6nkeVPJn432U8nzppI/G+2nkudNJX+2NWHReM1U8ryp5M9G+6nkeVPJn432U2TeVOb/0B0AAAAAAACAQiwaAwAAAAAAAJRYof89NQAAAAAArC1NTU0dPQQAKBW/NAYAAAAAAAAoMYvGAAAAAAAAACVm0RgAAAAAAACgxCwaAwAAAAAAAJRYbUcPAODfqampCa2xsbEDRgKdV3V1daHHNTc3t/NIAAAAoOvr1i3+1iq7pnadDUAl8UtjAAAAAAAAgBKzaAwAAAAAAABQYhaNAQAAAAAAAErMojEAAAAAAABAidV29ACA9lFdXR3a0KFDQzv88MND22effULr3bt3aDfeeGNof/vb30Jbvnx5aA0NDaE1NTWFtmLFikKvlz0XupJsmy36uObm5kINOoOic90cBgAA1oaamprQBg0aFNqSJUtCy763gjLo1i3+HtH3U9D1+aUxAAAAAAAAQIlZNAYAAAAAAAAoMYvGAAAAAAAAACVm0RgAAAAAAACgxGo7egBA69XWxk15t912C+26664LbcSIEaF17949tObm5tD222+/Qo9bsmRJaFOmTAnt+OOPD+21114LrampKTToDKqrq0OrqakJbfjw4aFNmDAhtKFDh4aWbTtvvPFGaPX19aFl2ye0RM+ePUPL5vUhhxwS2rrrrhvaU089FdpDDz0U2rJly4oOEdaqbF+fHROyc5i1cV6TjcUxga4m28569+4dWo8ePULLjh8rVqwIzXUGayqbb926xd9nZPvhhoaG0FatWtU2A2snRY93nf1zUG7ZnM1ati1n36Fl28XixYtDy74by/YDdD5F50dr9v8ddW6ejS/7XnjkyJGhbbjhhqEtWLAgtKlTp4bWmf4NgNX5pTEAAAAAAABAiVk0BgAAAAAAACgxi8YAAAAAAAAAJWbRGAAAAAAAAKDEajt6AEDr9erVK7TPfvazhR7X1NQUWkNDQ6HHrVy5MrTa2rhbqampCW3QoEGh9evXLzToSpqbmws9LtueNthgg9C22Wab0JYsWRLau+++G9rSpUtbPD74V9XV1aH17t07tJNPPjm0E088MbT+/fuH9rnPfa5Qe/zxx0Mzr2kr2Vzv2bNnaIMHDy7Usv31/PnzQ1u+fHlo2XEik425e/fuoWXngI2NjaGtWLEitFWrVoVmuyuvbM5lWjNHPuw9su3xv/7rv0Lbd999Q7v33ntDe/TRR0PLtlvzvZyyeThkyJDQNttss9AGDhwYWn19fWivvfZaaNlxouj1eWt06xZ/U5IdO9Zff/3Q1ltvvdBeeuml0ObOnRtadoyB/+TDjhNF99fZ47K5uGjRotBGjBgRWrZvyL7zyraB2bNnFxoLHSubM9l+M2vZ/jr7njR7j6Jzuk+fPqHtuOOOoR1yyCGh7b777qENGzYstOw72+x6IjuO3XLLLaFdddVVoc2ZMye07BgItC+/NAYAAAAAAAAoMYvGAAAAAAAAACVm0RgAAAAAAACgxCwaAwAAAAAAAJRYbUcP4D/JbiBfWxuH3bdv39C6d+8eWnbz+fr6+tBWrFhR6LnQGYwdOza04cOHhzZv3rzQpkyZEtrNN98c2l/+8pfQBg0aFNqpp54a2iGHHBLaOuusE9puu+0W2vPPPx8atER1dXWhlmlubi7UstfLHjdw4MDQxo8fH9qqVatCe++990LLjmPZ+0JLZPN6p512Cu30008PbcCAAYVer0ePHqF95StfCe3VV18Nbc6cOaE5Z6Mlsnk4bty40D760Y+GNmLEiNAmT54c2qRJk0Jbvnx5wRFG2b6+pqYmtOy8cOTIkaG99tproS1YsCC07PhE15btm7Pr7qLnOtkcKXpukn0HUFVVVbXjjjuG9uMf/zi0wYMHhzZ69OjQnnnmmdDq6uoKjJAy6N+/f2iXXHJJaDvvvHNo06dPDy27np42bVpo2XaXybbFhoaG0IqeE/Xq1Su0T3ziE6Ftu+22oa1cuTK07JwtU3SfQteW/Z2zOZedd2XXzu+88076PnPnzg2tsbGxyBBT2bEsu/bItoFsW160aFForRkfHSvb52bn4UW/d8qem33vml13f/nLXw4tO44V3ee2Zj+cbdsnnHBCaNn4fvazn4X2xhtvhGa74T/J5np2jZGtH2aPy44H2T6gUs5h/NIYAAAAAAAAoMQsGgMAAAAAAACUmEVjAAAAAAAAgBKzaAwAAAAAAABQYrUd9cbZTaY322yz0CZMmBDauHHjQstuDD9kyJDQ5s+fH9qCBQtCmz59emivvPJKaPPmzQutd+/eoWU3y85u2t6zZ8/QshvI19XVhTZ37tzQ6uvrQ2tqagqNrqN///6hnXrqqaGNGDEitPvuuy+0Sy65JLSFCxcWGkt2U/lbbrkltEMOOSS0gQMHhrbPPvuEds0114S2bNmyQuPLZGMuqlJuZl9psr9pt27F/puo7LnZ37no3z57XPYe6623Xmgbb7xxaK+//npor732WmgrVqwoNBZoiT59+oR2xRVXhDZgwIDQiu5za2pqQttjjz1Cu+2220K76KKLQnv88cdDa82xg8qTzc3s3On4448PbdNNNw0tu5545plnQsvO4bNz86L78KLHwDFjxoS26667Fhrf0qVLCzXXGF1HNkey6/PscVlbuXJl2wzs/1Vbm39NkV3zjB49OrRsjEWvqSmnbM6dfvrpoR100EGhZfMt++7oySefDC37PinbnrL3yMZc9DomO3Zk1+cTJ04MLfue7Ze//GVo77//fmjZ92JUnmy+jh8/PrQrr7wytB133DG0bA7/4x//SN/7zDPPDG3q1KmhFT1nyd47+y43Oy/K/h2ybcB1e+XLzrGyffjw4cNDy859jjvuuNCya/FMNt+y4062nrB8+fLQss8xY8aM0LJtJDs3++CDD0LLtjkqT9FznWyub7fddqHttttuoWXncSNHjgytR48eob333nuh/epXvwrtt7/9bWjZOkv2/VRnOh74pTEAAAAAAABAiVk0BgAAAAAAACgxi8YAAAAAAAAAJWbRGAAAAAAAAKDE4t2k20FNTU1o2c3OhwwZEtqOO+4Y2pgxY0Lr27dvaNmNsbP3bWhoKPS4ojeuz26WvWDBgtDmz59f6Ll9+vQp9NzLL788tEceeSS07Ab3nelG2/x/qqurQ1t33XULtTfffDO0iy66KLQlS5a0cHT5vMm22f79+4eWfbbscZnsuZlu3eJ/F9PU1BSa+d+1Ff37FZ03rZG9R8+ePUPbfPPNQxs6dGhov/rVr0Krr68PrTVzOBuzbae8svnwne98J7SNN9640HMz2bxZtmxZaNk51mabbRbaL37xi9AeeOCB0M4+++zQPvjggw8dJ5Utuz7ZdtttQ9tjjz1Cy85Xfve734U2efLk0LLrjrbel2b767Fjx4aWHYueeeaZ0F599dXQ7P+7tuzvl82bTFufD2THjux7gaqqqqptttkmtOycpbGxMbS77747tBUrVhQYYXHZWDJF/61Ze3r37h3aTjvtFFr2fc17770XWnZuMmnSpNCyuZopus0WnVvZXN1zzz1D22uvvUJ7/fXXQ8uOHdn3TlSebB8+evTo0B5++OHQ1ltvvUKvl83rrbfeOh3POeecE9oll1wS2htvvFHofTLZ9lh0vq9atarQ4+i6svWJESNGFHpu9t3Riy++GNrMmTNDy45PdXV1oV177bWh/eY3vwlt8eLFoWXHymxOZ++bXT8NHDiw0PvStWX79WyNLfuO6eijjw7tkEMOCS27dsjma/a+2TlRtp/Pjm1f/epXQ/vc5z4X2mOPPRZa9j1btt7XUdfdfmkMAAAAAAAAUGIWjQEAAAAAAABKzKIxAAAAAAAAQIlZNAYAAAAAAAAosdq18SbZDZtXrFgR2vTp00N74oknQhs/fnxovXr1Ci27gXZ28+2GhobQspuxDxs2LLQxY8aE1tTUFNq8efNCy25uvfXWW4eW3Wh75cqVoX3yk58M7dFHHw2NriPbdj744IPQ7rnnntCyv/2SJUvaZFz/R7bdnX766aFlN5XP9gEXX3xxocdlsm0701E3kGftyvbD2TysqakJLZsj2etlcy5rgwcPDu1jH/tYaNmx6PXXXy80lqKy8WX/LrW18fQgO+5QeSZMmBDaiSeeGFo2RzLZfJ0zZ05oixYtCi077+rbt29ovXv3Du3ggw8Obe7cuaFdcsklobX1sZLOKZs3Rx99dGjjxo0L7d133w3tgQceCK2+vj607BiT7YezVnT/n2072XXCeuutF1r37t1Dy45Pzqe6tuzv19jYWOi52dwseh5e9PU22GCD9LFDhgwJLdsuFixYENrtt99e6LlFZZ85OzZm2w+dT3ZMyPal2fnw1KlTQ3v66adDK7qNFdWa/XD2Pdb5558f2qBBg0J76aWXQlu8eHGLx0LX1qNHj9B++ctfhpadc2T70aLfgWXXDlVVVVX77LNPaJtuumlon/vc50J7++23Qyu63a5atSo050qVL5v/2Xc9CxcuDG3KlCmhLVu2LLRsXj755JOhZWsHkydPDi3bnop+35UpOs+z9505c2ahsdA5Ff1+sV+/fqGddNJJoR1//PGhjRw5MrSi16vZ/js7dmTrkW+++WZo2Ta23XbbhbbZZpuFll3b/OUvfwnt7rvvDq2jriX80hgAAAAAAACgxCwaAwAAAAAAAJSYRWMAAAAAAACAErNoDAAAAAAAAFBitWvjTbKbomc3cZ43b15oDz74YGj//Oc/Q1uyZElo2c23ly9fHlr//v1D6927d2gbbrhhaNnNt6dNmxbanDlzQuvTp09ov/71r0PbaKONQqutjX+67Abf2Q3ki96kns5p7ty5od1yyy2hZdtEW/vBD34Q2qBBg0LL5uY111wT2mOPPRZaNocz2fZe9LlUnqL7uWzeZM8t+riamprQ1l9//dC23HLL0GbPnh3a4sWLQ2uN7HNkx7Hsszl2VJ4hQ4aEdtNNN4XWr1+/Qq+3atWq0B5//PHQfv7zn4e28cYbh7b33nuHNnr06NCGDx8eWjav//u//zu0l19+ObTs38DxpPJk59fZuX51dXVoU6ZMCe21114LLZs32etl8zV7XHb9lO3XDz300ND23HPP0LLrounTp4dm/pdD9nfOzmuyOZfJ5nDR85Cdd945fc3s+jm7znjiiSdCy67HWyP7LNlnpmvo1atXaMOGDQst206mTp0aWra/bo1sO8nmfna+np0nPfTQQ6GNGTMmtPfffz+0q666qtBYKId11103tO233z60bP+YzZv77rsvtB/+8IehTZw4MR3PSSedFNrQoUNDu+CCC0I79dRTQ8u+V3NdzP9x0EEHhXbEEUeE9t3vfje0pUuXhpZtE1nLztdnzZpV6D1aM3/b+rm2pY5X9Ly+6HeiI0aMCC2b/4ccckhoPXv2DC07n5o0aVJot912W2hPPvlkaNl5zYIFC0LLtrv9998/tOy7o+z6KTvP3GqrrUK79957Q+sofmkMAAAAAAAAUGIWjQEAAAAAAABKzKIxAAAAAAAAQIlZNAYAAAAAAAAosdqOHsC/qq+vDy27efS0adNCy25QXfSG6nPnzi30vq+//npoTU1NLR5Lv379Co0vk93M/oknnig0Frq27G9aV1cXWtH5X9R2220X2nHHHRdaNr6nn346tO9973uhZTe4LyrbFuFfZdtE0X149rjq6urQunWL/y3WRhttFNqoUaNCe/7550PLtu2isvHV1sbDfjbmlStXtvh96Zx69OgR2g9+8IPQNt5449CyuZRtJ9dee21oF110UWgrVqwIbfbs2aFNnjw5tF69eoV2wQUXhJZtd8OHDw/tq1/9amj33ntvaAsXLgyNrqN79+6hbbvttqENGTIktHnz5oX2s5/9LLQPPvggtOy4U3R7KnoO37dv39AOOuig0LLPNmXKlNBmzpwZWlufU9J1ZOc/Rc+diurdu3dou+66a/rYnj17hpZdF996662hteY6IztXKrot2346n+xvN2bMmNCy8+Zsn7v11luHNmDAgNAWLVpUaCzZcwcOHBjaggULQlt33XVDu+uuu0Jbf/31Q8vO/0855ZTQpk+fHhrlkM3XvffeO7Ts+9TsPOnEE08M7c477wwt2wd/6lOfSseYHScyffr0Cc0+nH8nO05k32tm59Lz588Prei5U7bdZdtYdo1ddP5m25i5Xw7ZeX02vzKDBg0K7fjjjw/tqKOOCi3bV2fnIdk5/Te+8Y3Qsm2s6DpB9rhsm9hnn31Cy75ny7bZou/bmbY7vzQGAAAAAAAAKDGLxgAAAAAAAAAlZtEYAAAAAAAAoMQsGgMAAAAAAACUWO3aeJPsJs5Fb6q9atWqQq/X1jeKzm5IX/Qm9UXHMm7cuNDGjx9f6H0nT54c2uOPP17ouVSetp7/w4YNC+2ee+4JLbtx/cyZM0O78sorQ1u8eHFoRW8Wn+lMN4unc8rmSFsfY/r16xfascceW+j1nnzyydCWLl3a4rFk21PWmpqaQnPsqDwbb7xxaIcffnhoRefIn//859DOOuus0FasWBFadg744osvhpbN/+y52fnUxRdfHFq3bvG/lVx//fVDW2eddUJbuHBhaHQd2b55k002CS07JvzlL38J7Z///Gdo2XaSyfbhRZ+bbZ+bbbZZaFtvvXVo2X79+eefD23JkiWFxkLlKbr/b2hoCK015yYbbbRRaPvuu2/h58+ZMye0p556KrSi21nR9804f+oasr9nNq+z85DsXGLXXXcNLTsPmTp1amgTJkwIbeXKlaG99dZbhR537rnnhjZy5MjQsm32kUceCe2BBx4o9FzKITsPHz16dGgzZswI7Yc//GFod9xxR2jZuVh2rn/SSSelY6ytjV9zZ/vmWbNmFXoc5ZTt66+//vrQsv3rggULQmvNtWR2zMr2/605z8nY15dXti/s0aNHaEOHDg3t85//fGi9evUKLZvXH3zwQWhXXXVVaEW3p2zNIttOsuPONttsE1r22bLPkW07dXV1oT366KOhdabjkF8aAwAAAAAAAJSYRWMAAAAAAACAErNoDAAAAAAAAFBiFo0BAAAAAAAASqy2o944uyl0dqP57AbVnelm7NlYsptgd+/ePbQTTjghtOzm4AsWLAjtyiuvDG3RokUfNkz4UMOGDQvtySefLPS4bM7deeedoT3++OOhZTd3z7aTbL+wcuXKQq9HeWX74Uy2Dy96jMnm5kc+8pHQxowZE9q8efNCe+ihh0JbsWJFobFksvEV3Z4603GWNZfN///6r/8KrXfv3qFlf/v58+eHduyxx4a2fPnyQuPL9td1dXWFxpI995133in0vjU1NaH17NkztGybnTp1aqH3oONl83/w4MGhZX/n7LzmF7/4RWjZfnNtqK2Nl25nnHFGaP369Qtt8eLFod14442hNTQ0tHB0lEVrzp2yc/0vfOELofXt27fwe999992hzZw5s9B4Mtm5UrbtZccj509dQ/Z3ys4lnnjiidBGjx4dWnZ+8dnPfja07JwjO2Zl511vvvlmobGMHDmy0HssW7YstNNPPz0019j8q2yuZ+f/L7zwQmh/+9vfQsu+7832/5dddllogwYNSseYzfdsHmfPz97btXI5bb755qHtuOOOoRXdr2dzPVP0uW09B4uubZj75ZWdH2fbyZAhQ0IrOpey69DddtsttC222CK0vffeO7ShQ4eGln3H2r9//9B22WWX0LJjRPY5svd4/vnnQ3v//fdDK7qvWBv80hgAAAAAAACgxCwaAwAAAAAAAJSYRWMAAAAAAACAErNoDAAAAAAAAFBitR31xkVv5N6am6xnN9rOWqY1Y8luDr7pppuGtv/++4eW3fT79ttvD+3Pf/5zaJ3pZtl0Tuuss05oTz/9dGjjxo0LrbGxMbT7778/tEsvvTS0+fPnh5ZtiwMGDAgtu9H8rFmzCo2Pcii6X88U3a9n79GzZ8/Q9tprr9CyeX3vvfeGNnv27DYdX3YsyrYT207lyf72G2+8cWjZecOKFStCO+OMM0LL9utFtebcLnvu3LlzQyt6npmpq6tb84HRqfXo0SO02tp4GfTPf/4ztIULF4bWmjlcVLZfHzlyZGj77bdfodf7+9//Htozzzyz5gOjIhS9Tm7NNXH2egMHDgxtzz33DC07jlVVVVUtW7YstDvuuCO0VatWFRhhPsaamprQss/s/KnzKTqHM9m+/uc//3loS5cuDS07/+/Tp09o2bVDdix66qmnCo1v/PjxoWWyc6LsPWbMmFHo9SivbBt76623QhsyZEho2XZywAEHhHbIIYeEtt122xUdYrr/z44d2Xe05557bmg/+clPQsu+j1ob54a0j2xen3DCCaFl+/Wi5zpZW758eaHXy7Tm+/+i5z7ZeY55zr/K5uHixYtD69evX2jZnMvOk84777zQsmNMdj7VmnXBTDb/6+vrQ8uusW+44YbQsnO71pzLtjW/NAYAAAAAAAAoMYvGAAAAAAAAACVm0RgAAAAAAACgxCwaAwAAAAAAAJRYvEt0B2rrGzsXval2Q0NDoZbJblCd3eD77LPPDm3dddcNberUqaFddtlloS1fvrzQ+CivbP7/9re/DW3cuHGhZfN62bJlof3kJz8JbdasWaFl23a3bvG/Wcned86cOaGtXLkyNMormzeZoseY7PWy1rdv39A+/vGPh9bU1BTapEmTQmvNvM6292wbW7VqVWhtfeyl42XzoVevXqGtWLEitNdeey20xx57LLRsXmeyeZjJ5mHWss+22267hZad72XbcfZv8O67737oOOn8sr9zNv+zNmDAgNA23njj0JYsWRLa0qVLQyt6/pPN64EDB4Z2/vnnhzZ48ODQsuPJXXfdFVo2/ymHbM5lGhsbW/we2ba4zjrrhLbeeusVfs33338/tFdeeSW0ouc2Ra9Hsn8H50+dT9G/Sfa47Bz51VdfDe3CCy8M7fvf/35ovXv3Di3b7j744IPQsn14dnzK2kEHHRRaNn+/9a1vFXpcUW19PUbX0aNHj9Cya+Ljjz8+tP79+4eW7ZezbeL1119Px/POO++EtsEGG4S2+eabh7bpppuGts0224SWbWfZ92V0Ddmc22STTQo9N9v3jR07NrRLL700tOzcPLuGHT58eGjZusO8efNCy67ts7manYs98cQThd4jO35SebJzhBdffDG0Cy64ILRPfOIToWXX4vX19aFl17q77LJLaCNHjgyt6PVOUdk523XXXRfaDTfcENrMmTNDq6ura5uBtRO/NAYAAAAAAAAoMYvGAAAAAAAAACVm0RgAAAAAAACgxCwaAwAAAAAAAJRYbUcPoK1kN5/v0aNHaN27dw9t+fLloTU3N7f4fffaa6/QPvaxj4W2dOnS0P7nf/4ntBkzZrR4fJTXmDFjQttxxx1Dy+ZwNr+uuOKK0J577rlCz81kj5s/f35ojY2NhV6Pcsjma9E5XPT1Mt26xf/Gap111glt5MiRoc2aNSu0J598MrSicz0bS9ZWrVrV4vega8vOdcaPHx9aQ0NDaNOmTQttwYIFoWXbWNHtqWfPnqFlczN7vY9+9KOhnXXWWaFl54CZuXPnhpYdi+g6snlTV1cX2pQpU0Lbe++9Q/va174W2uuvvx7am2++GdrMmTNDq6mpCW348OGhDRs2LLSJEyeGVnS7mzp1amhNTU2FnkvXVvTcqTXzIXu9bK5vu+22oWXHhBUrVqTv86c//Sm07BiVKfrvkB2PnD9Vvmz+Zy07d1obsjmYfY9VX18f2oMPPhjayy+/HFrRc7ts284el12L0LVl28TKlStD6927d2jZvj6bc9n3nyeffHJokydPTsfYp0+f0H7wgx+Eln1f1qtXr9A233zz0EaNGhVadg1F15D93fv27Rta0eNENq/33Xff0D71qU+FNmDAgNBqa4st3WRjWbRoUWjLli0LLTuXyo4T2XWRNYtyyI7p06dPD+2dd94J7aabbgqt6Pe42Xed2Ta76667hnbllVeGttFGGxUaS/b9wRe/+MXQsnOs7Dqm6L6iM207fmkMAAAAAAAAUGIWjQEAAAAAAABKzKIxAAAAAAAAQIlZNAYAAAAAAAAosWJ3U++ispt0NzQ0hNbY2Nji98huUv+tb30rtHXXXTe0v/3tb6H95je/CS27WTb8q+wm8BdccEFovXv3Di27yfqcOXNCu/zyy0NrzdzM3rc122JR3brF/1Ymu+l90ZvU0/Gyv0vRlsnmQ01NTWgf//jHQ8uOCXPnzg1t5syZbTq+jDlcXtl+LtOnT5/QNtxww9B69uwZ2vLly0PL5lc2X4s+LtvGbrnlltAGDx4cWiY7B7z22mtDW7FiRaHXo3PK5tfs2bNDu+eee0LL5uHo0aNDGzt2bGgbbLBBaLW18VLrgw8+CO25554LLTsnyl4vkz23e/fuoRXdPqk82TlCW583ZMeYY489NrRsXn/Yfvjee+8Nrej1Q9H57tqbzig7xuyxxx6hzZgxI7RvfvObodXV1YXWmmuRotcndG3Z/vEvf/lLaNm185Zbbhna5MmTQ3v44YdDW7RoUbEBVuXHlOuvvz60XXbZJbQhQ4aEtnLlytC23nrr0N5+++3QWvP9VrZN9ejRIzTXLa2XXTtPmTIltPXXXz+0xYsXh/buu++G1r9//9CybSKbv0X3r9njsuv47HvhkSNHhrbpppuGln3e008/PbTsupuurTXfsbbmeiI77tTX14f29NNPh5Z9B5CdT2XvcfXVV4d23333hVbJ+2C/NAYAAAAAAAAoMYvGAAAAAAAAACVm0RgAAAAAAACgxCwaAwAAAAAAAJRYvMN6F5XdVHvlypVt+h7dusU19r333ju0MWPGhDZ//vzQLrjggtCWLVvWwtFRFtXV1aFtsskmoe27776hZXM4u+H7L37xi9CWLl1adIhBNuaiY8m27ey5PXv2DG3IkCGhrbvuuqHNnTs3tHnz5oXW0n+D7DPQMtm/ZVv/+2av16NHj9A222yz0AYNGhTanXfeGdrChQsLjSXbdopuT5RXTU1NaNnc7N69e2ijRo0KLTvG/OMf/wit6PaZzeHNN988tBtuuCG07HNksvd95plnQrvmmmsKPZeuI/v7ZcfvbA6/8cYbofXu3Tu0bB5m5yF9+vQJbdq0aaHNmTOn0HtMnDgxtKFDh4aWHRPGjRsXWrYtmv+VJ/ubNjY2tvv7Dh8+PLT1118/tOyY9eabb6av+dxzz4VWdM4WPaeCf6c1+82i861v376h/fSnPw1t4MCBod10002hvfvuu6G1Zl+/atWq0FyLlEP2t1+wYEFot9xyS6GWzcPsO6E10dDQENrDDz8c2mc/+9nQjjvuuNDWWWed0LLrpey8Lfu3KbrtZY9bsWJFoeeyZurr60PLrhGzefT666+Hlu3rs/36V77yldD233//0Hr16hVaNj+WLFkSWna+l83VbB+evUf2vUB2Hpdth9BWsu+xvvWtb4W2/fbbh5Ztn2+99VZoP/7xj0Mr2z7YmR0AAAAAAABAiVk0BgAAAAAAACgxi8YAAAAAAAAAJWbRGAAAAAAAAKDEajt6AJ1VdmPsUaNGhXbyySeHtnz58tD+8Ic/hPbcc8+Flt1oHv5Vt27xv/XYdNNNQxswYEBo2bxubGwMbezYsYVaXV1daCNGjAht5513Dq1Xr16hvfnmm6Flsm3xM5/5TGgTJkwIbcmSJaE9/PDDoU2aNCm0t956K7SpU6eGNmfOnNDoOrLtZMiQIaF9+tOfDi2b19OnTw+toaEhtNbs/7Pt2PGkvLLzkKxlhg8fHtpll10W2lFHHRXasmXLQttjjz1CO+GEE0Lbc889Q+vbt29o2faZzfVp06aFduihh4aWjZmuLZsPWVu5cmVoc+fODS2bczNmzAitpqYmtKamptBWrVpVaHzz588Pbfbs2aFlamvjJV52HMvOKbMxQ0t85CMfCS07xmTz/+9//3v6mosWLSr0/KKy+e78qZyyfX22j8xa0eNONt+Kfu+0wQYbFHpu9h1TW+/Xi35e21I5ZPOr6JxrzXaXnU9VVeXzLrv2zo4z2bnhRz/60dCy66rsuqW+vr7Qe9h+OlY2X6dMmRJa9t1f9j1MJpvrJ510UmhHHnlkaGeddVZoPXv2DK1fv36FWrY9FXXrrbeGlm1f0FYGDRoU2iOPPBLaVlttFVo217P98te//vXQsu8FysYvjQEAAAAAAABKzKIxAAAAAAAAQIlZNAYAAAAAAAAoMYvGAAAAAAAAACVW29ED6AyyG9IPGDAgtO9///uhTZgwIbR58+aF9vvf/z60ZcuWFR0i/F/ZfF25cmVo2Q3fs+dmjzvssMNCO/DAA0Pr0aNHodbc3FxoLEUfV/SzrVq1KrTevXuH9pGPfCS08ePHh3bOOeeENn/+/NDo2rK59LnPfS60sWPHhtbY2Bjak08+GVpTU1MLR5dvJ5mi2xiVJzsm/O53vwtt0003Da1Pnz6h7brrrqG98cYbhcbSs2fP0IruwzPZtvPee++Fts8++4Q2Z86cQu9BeRXdN2fzNdv/t2afm40lO6/JHtfQ0BDa4sWLQyu63cF/ku3XjzjiiNCy64RsXv/v//2/0/fJtrPWyLYB50/lVPSas7Y2foVWdH9d1LbbbhvayJEjW/x6ba3oscO2xH+SbWO9evUKLTuvae1cyrbbRYsWhZZ9b5vN7c033zy0bH8xY8aM0LJrNzpWtg9vzX49k823e+65J7QDDjggtD333DO07Lq7pqamRWOrqqqqqq+vD+2xxx4LrTXfbcG/yvaZ999/f2hbb711aNnxJNtmr7vuutDuvffe0MxrvzQGAAAAAAAAKDWLxgAAAAAAAAAlZtEYAAAAAAAAoMQsGgMAAAAAAACUWLzDdIWrrq4OrVevXqEdd9xxoR144IGhNTY2hnb99deH9sILL4TW3Nz8oeOED5PNub///e+hPfXUU6HtvvvuoWU3mu/Xr1+h1hrZTeWLbhPZ45YvXx7a7NmzQ7vmmmtC+/3vfx/azJkzQ8vGTPvJ9tdZa+u/y8CBA0M76KCDQsu2nTlz5oQ2Y8aM0Np6/9+tW7H/Bix7X8eiypNtE7/85S9D+/znPx/aVlttFVo217PWGkX3648++mhoX/rSl0LLtjtoK2tjv9m9e/fQ+vbtG9qqVatCmz9/fmiTJ08OLTunpPJk505tPYcHDBgQ2jbbbFPouQsXLgzt7bffTh/bmnFn/w41NTWhZdtFtp1RWYpemxbdbxadqz179gzti1/8Ymi9e/cOLZuXY8aMCS07Z2toaCg0vtZwjdF1ZNeSRa+7s79z0ev4Hj16FBpfe5yvFD0mDBkyJLS6urrQsvO2bNxrY9uja8i2nblz54aWnSdlsu04e49sDi5evDi0q6++OrTXX3+90HtAS2TrbhMmTAit6FzPvus/88wzQ3NNnPNLYwAAAAAAAIASs2gMAAAAAAAAUGIWjQEAAAAAAABKzKIxAAAAAAAAQInVdvQA1rbsZtnbbbddaKeffnpovXv3Du35558P7dprrw0tu9E8tER2c/eZM2eGdsghh4S2xx57hHbuueeGtuWWW4bWq1ev0Kqrq0NbuXJlaAsWLAgt2yayNnv27ELtwQcfDO2uu+4Kbe7cuaHRdWRzLmvZdlL09dZZZ53QunfvHtrSpUtD++Mf/xjaBx98UGgsRWWfrbGxsdBzW/NvRdeWzcMDDjggtPvuuy+0LbbYIrTa2pafQmZzbsqUKaEdfPDBob311luhFZ3/0JX07NkztBkzZoSWbdsvvvhiaO+++25o9v/l0NbH/uz1xowZE1qfPn1CW7VqVWgvv/xyaCtWrGjh6D5c9pmzln2+7DuEpqamthkYnVbROVNUNrc23njj0D760Y+GVlNTE1o2BydMmBDakCFDQqurqwtt+fLlhd6jrf9dWLuyeZh911lUtr/O3qNHjx6hZfvW7PXa41w/u77v169faIsWLQptxIgRoWXHsmz7cT3Ov5N9n/rKK6+Etvvuu4eWbWPZc5988snQsu9O19b5GeWUrTGceeaZoWX76mzf+sILL4R23HHHhea7o+L80hgAAAAAAACgxCwaAwAAAAAAAJSYRWMAAAAAAACAErNoDAAAAAAAAFBitR09gLUtu9H2Zz7zmdCGDx8eWkNDQ2g333xzaEuWLGnh6HLV1dWhNTc3t+l70LVl86Guri60u+++u1BrjWy+Znr06NHi565atapQo2vL5nVTU1Obvkc25xYtWhTaXXfdFVq/fv1C+81vfhNaY2Njywb3IYr+GxTdnhxjymvWrFmhbb/99qF95CMfCe3YY48Nbd999w1t7ty5oV1xxRWhPfTQQ6Fl513QlbRmP1xTUxPa1KlTQxs7dmxo9957b2j19fWh2deXQ/Z3bs2xP5ubvXv3Dm3p0qWhZceE7FjUt2/f9L0/+OCD0IqOOzsfy86pnBexNvXv3z+0bt3ibzuyOZhd/86cOTO07t27hzZw4MDQVqxY8aHjpGvK9me1tfFr4CFDhoSWzcOi33Vmz82sre91svH06dMntGwbeO+990LLjlvZ8W358uWF3nflypWFGpUv22Z/+ctfhvbrX/86tOycJpvT2bzMHtfW371RXtlx5+CDDw5tk002CS07/8mua88888zQfJ/UOn5pDAAAAAAAAFBiFo0BAAAAAAAASsyiMQAAAAAAAECJWTQGAAAAAAAAKLF4J+oKkt1oe6eddgrtmGOOCa13796hzZo1K7T7778/tOwm3UVlN73v1i2u7Tc2Nrb4PaA9FZ3/K1asaOeRUIlas3/NNDU1hTZnzpzQfvjDHxYay9KlS0PrqP11Nr7sGAP/KpuvU6dODe3cc88t1KDMih6zssctWbIktDvuuCO0l19+ObQnnngitPr6+kJjofK09bnTqlWrQsvm4Y9+9KPQRo8eHdqDDz4Y2oIFC1o4ujWT/dsUPX/KWlv/W1P53n777dDuvPPO0D72sY+FNm3atNCefvrp0JYtWxZaXV1daL5jqjzZPqmhoSG0mTNnhlb0e8jW7B+za/H22I9mn2XlypWhvfrqq6G99tproQ0bNqzQ+2bnctn7Fv13dYypfNlcyL6fgs6g6BrWqFGjQjviiCNCy9bisuPEe++9F9qkSZM+dJxrW6Xsv/3SGAAAAAAAAKDELBoDAAAAAAAAlJhFYwAAAAAAAIASs2gMAAAAAAAAUGK1HT2A/yS7eXTRG0rX1saP94UvfCG07IbcmRkzZoQ2ffr0QmPJZDcHz3TFm2UDdFVNTU2hffDBBx0wkraXHU+yYyoAHWvlypWhvfbaa6G9/vrroTU2NrbLmODDLFmyJLSbb745tGxuZuddnY3zJ9pCNo9mzZoV2sknnxzaoEGDQsu+T5o9e3Zoq1atKjhCyirbN1fSuUT2Werr60Mr+t1rtp0NHjy40PsW/Xf1PTDQ2RXdT/Xo0SO0rbfeOrS+ffsWeo8LLrggtLq6ukJjWRsqZf/tl8YAAAAAAAAAJWbRGAAAAAAAAKDELBoDAAAAAAAAlJhFYwAAAAAAAIASq+3oAfyr6urq0GpqakJramoq9HrZ44YMGVLoccuXLw/t2GOPDW3p0qWFxpLJPm82lkq5gTYAnY9jDEDXUPQaCNa27FyioaGhA0ay9jh/oi1k+/Vly5YVakAxbb2/zl5v/vz5oWXf+QJUssbGxtCmT58e2vXXXx/a6aefHtqFF14Y2q233tqywbFG/NIYAAAAAAAAoMQsGgMAAAAAAACUmEVjAAAAAAAAgBKzaAwAAAAAAABQYrUdPYB/1dzcHNqqVata/HorV64M7aijjgpt1KhRob355puhNTU1tXgsmezm4AAAAABUtuw7MKBjVFdXh9atW/ytVdHvcm3fAPn63He/+91CjY7jl8YAAAAAAAAAJWbRGAAAAAAAAKDELBoDAAAAAAAAlFihexpX0n0Yss+S3au4kj5zR6nkf8NK/my0n0qeN5X82Wg/lTxvKvmz0X4qed5U8mej/VTyvKnkz0b7qeR5U8mfjfZTyfOmkj9bZ5T9e3fFv0FXHHNRlfzZaD+VPG8q+bPRforMm0KLxnV1da0eTGexbNmy0N58880OGEnlq6urqxo4cGBHD6NdVNI2wdpjm4DV2SZgdbYJWJ1tAlZnm4DV2SZoT9mPjDo72wSszjYBqyuyTVQ3F1habmpqqpo5c2ZV//79q6qrq9tsgFSm5ubmqrq6uqpRo0ZVdetWmf8HdNsEa8I2AauzTcDqbBOwOtsErM42AauzTcDqbBOwOtsErG5NtolCi8YAAAAAAAAAVKbK/M8sAAAAAAAAACjEojEAAAAAAABAiVk0BgAAAAAAACgxi8YAAAAAAAAAJWbRGAAAAAAAAKDELBoDAAAAAAAAlJhFYwAAAAAAAIAS+38APiGnRny2/fAAAAAASUVORK5CYII=\n"
          },
          "metadata": {}
        }
      ]
    }
  ]
}