Archisman Panigrahi

Graduate Student (Ph.D. Candidate) $\,\cdot\,$ Physics

Massachusetts Institute of Technology, Cambridge, MA, USA

🛛 +1 (857) 706-9484 | 🗳 archi137@mit.edu | 🎢 www.mit.edu/~archi137/ | 🎓 Google Scholar

Education

Ph.D. in Physics (ongoing)

Massachusetts Institute of Technology

• C.G.P.A - 5.0/5.0

Supervisor: Prof. Leonid Levitov

Master of Science in Physics

INDIAN INSTITUTE OF SCIENCE

• C.G.P.A - 9.8/10.0

Bachelor of Science (Research) in Physics

Indian Institute of Science

• C.G.P.A - 9.8/10.0

Research Articles

- A. Panigrahi, A. Kumar; Non-Fermi liquids from subsystem symmetry breaking in van der Waals multilayers arxiv:2411.08091
- A. Panigrahi, V. Poliakov, Z. Dong, L. Levitov; Spin chirality and fermion stirring in topological bands arxiv:2407.17433
- L. Holleis, T. Xie, S. Xu, H. Zhou, C. L. Patterson, **A. Panigrahi**, T. Taniguchi, K. Watanabe, L. S. Levitov, C. Jin, E. Berg, A. F. Young; *Isospin Pomeranchuk effect and finite temperature resistivity minimum in rhombohedral graphene* arxiv:2407.13763
- M. Masseroni, M. Gull, A. Panigrahi, N. Jacobsen, F. Fischer, C. Tong, J. D. Gerber, M. Niese, T. Taniguchi, K. Watanabe, L. Levitov, T. Ihn, K. Ensslin, H. Duprez; Spin-orbit proximity in MoS₂/bilayer graphene heterostructures Nat Commun 15, 9251 (2024)
- A. Panigrahi, L. Levitov; Signatures of electronic ordering in transport in graphene flat bands Phys. Rev. B 110, 035122 (2024)
- A. Panigrahi, S. Mukerjee; Energy magnetization and transport in systems with a non-zero Berry curvature in a magnetic field SciPost Phys. Core 6, 052 (2023)
- A. Panigrahi, V. Juričić, B. Roy; *Projected Topological Branes* Commun Phys 5, 230 (2022)
- A. Panigrahi, R. Moessner, B. Roy; Non-Hermitian dislocation modes: Stability and melting across exceptional points PRB 106, L041302 (2022)

Research Experience

Aspects of spin chirality in time-reversal symmetry broken systems

WITH PROF. LEONID LEVITOV

- Demonstrated that spin chirality is spontaneously generated in time-reveral symmetry broken systems without any spin-orbit coupling
- Predicted that this effect can be utilized in detecting topological superconductors

Non-Fermi liquids resulting from subsystem symmetry breaking

With Ajesh Kumar

• Demonstrated that subsystem symmetry breaking in van der Waals heterostructures can give rise to an anisotropic non-Fermi liquid, with quasiparticle lifetime $\tau \sim \frac{1}{|\omega| \log |1/\omega|}$ and specific heat $C \sim T(\log(1/T))^2$.

Transport in ordered phases in graphene

WITH PROF. LEONID LEVITOV

- Predicted that momentum-polarized nematic phases in biased bilayer graphene can lead to resistance decreasing with rising temperature
- Demonstrated hysteresis-like switching behavior under the action of a strong electric field

Many Body Localization (MBL) and thermalization of interacting quantum spin chain

WITH PROF. SUBROTO MUKERJEE

- Studied how the Out-of-Time Ordered Correlator (OTOC) behaves for MBL and thermal systems
- Studied behavior of OTOC in MBL systems with random and incommensurate potential, with and without interaction

Topological phases in projected lower dimensional branes

JOINTLY WITH PROF. BITAN ROY AND PROF. VLADIMIR JURIČIĆ

• Verified the existence of dislocation modes, Weyl points, and Landau levels in projected crystals and Fibonacci quasicrystals

• Proposed how this method can be utilized to study higher dimensional (>3D) topological phases within 3D systems

Cambridge, MA, USA August 2022 - Ongoing

Bangalore, India Aug. 2021 - Jun. 2022

Bangalore, India Aug. 2017 - Jun. 2021

MPIPKS, Dresden, Germany (remotely)

1

MIT, Cambridge, MA, USA 2024 — Present

MIT, Cambridge, MA, USA

2024 — Present

MIT, Cambridge, MA, USA 2023 — 2024

IISc, Bangalore, India

September 2021 - April 2022

(Master's thesis)

Berry curvature effects on thermoelectric transport

WITH PROF. SUBROTO MUKERJEE

- Found a condition on the energy magnetization such that the Einstein relation holds for the transport energy current in these systems
- Analytically solved the Boltzmann transport equation (including Berry curvature effects) for two-dimensional systems

Non-Hermitian Topological Insulators and Dislocations

WITH PROF. BITAN ROY

- Obtained phase diagrams for regimes where topological states get pinned at dislocation centers
- · Proposed how dislocations can be used to probe topological phases in non-Hermitian systems, where the non-Hermitian skin effect masks the traditional bulk-boundary correspondence

Research Interests

Broadly interested in theoretical Condensed Matter Physics

- · Non-Fermi Liquids emerging due to subsystem symmetry breaking
- · Spin chirality in systems with spontaneously broken time-reversal symmetry
- · Electronic transport in two-dimensional systems and the effects of Berry curvature in transport
- Computational methods in quantum condensed matter physics
- Topological phases of matter and Quantum Phase transitions

Skills

Programming skills Julia, MATLAB/Octave, Mathematica, Python Advanced Physics Courses Strongly Correlated Systems, Advanced Statistical Physics, Quantum Field Theory I, General Relativity Languages Fluent in English, Bengali, Hindi

Talks

Indian Institute of Science, **Transport Signatures of Electronic Ordering in Graphene Flat Bands** CLICK HERE TO DOWNLOAD THE PRESENTATION Topological phases in quasicrystals: A general principle of construction APS March Meeting (virtually) CLICK HERE TO DOWNLOAD THE PRESENTATION MPIPKS, Dresden, Germany

Dislocation as a bulk probe of non-Hermitian topology

CLICK HERE TO DOWNLOAD THE PRESENTATION

Teaching Experience

Physics II: Electricity and Magnetism

TEACHING ASSISTANT

• Taught students one-on-one in office hours and graded exams

Academic Achievements

2023	Qualified among the top 16 participants in MIT Integration Bee	MIT
2022	1st Rank in India in CSIR-NET (JRF) 2021 in Physics, held in February 2022 due to COVID (score 186/200)	India
2022	1st Rank in India in Graduate Aptitute Test in Engineering (G.A.T.E.) in Physics	India
2017-22	CGPA 9.8/10 in B.S. (Research) and M.S., received Prof. R. Srinivasan Medal for highest CGPA in batch	IISc, Bangalore
2017	1st rank (99.2 %) in Board in Higher Secondary Examination, among about 0.7 million candidates	West Bengal, India
2015	2nd rank (97.57 %) in Board in Secondary Examination, among about 1 million candidates	West Bengal, India

MPIPKS, Dresden, Germany (remotely) May 2020 - September 2020

Bangalore, India

January 2024

March 2022

(remotely)

July 6, 2021

MIT

Feb - May 2024

References

- Prof. **Leonid Levitov**, Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Email Address levitov@mit.edu
- Prof. **Subroto Mukerjee**, Dept. of Physics, Indian Institute of Science, Bangalore, India. Email Address - smukerjee@iisc.ac.in
- Prof. **Bitan Roy**, Dept. of Physics, Lehigh University, Bethlehem, PA 18015, USA. Email Address bitan.roy@lehigh.edu