Hierarchical B-splines for the adaptive solution of
one-dimensional advection-diffusion problems

Final project for the course of
Matematica Numerica, 2019-2020

Author: Supervisor:
Ariel S. Boiardi * Prof.ssa Alessandra Aimi

Dipartimento di Scienze Matematiche Fisiche e Informatiche
Universita degli Studi di Parma

In this work we present an adaptive discretization method for one
dimensional advection-diffusion problems based on hierarchical B-
splines. After reviewing the basic theory of hierarchical B-splines
and their use in FEM and similar methods, we develop algorithms
for the implementation of said technique. Numerical examples are
provided to test the algorithms and their MATLAB implementa-
tions.

1 Introduction

Adaptive methods have been developed in the framework of finite element methods (FEM)
since the seventies and have now reached a defining place in the theory and practice of
FEM [16]. A posteriori error estimators are an essential ingredient for adaptivity, allowing
to make judicious local refinements of the discretization, based on computable estimates
of the numerical error.

Spline functions and B-splines stemmed from approximation theory, in which they
play a fundamental role. Their usage in FEM-like discretization methods was proposed
in the nineties [9] and has found a renewed interest in recent years with the introduction
of Isogeometric Analysis (IgA) [10]. In this new framework, the usage of B-splines (and
similar) as finite elements is aimed to bridge the gap between computer aided design
(CAD) and finite elements analysis (FEA). In addition it has been shown that the use of
smoother basis functions leads in many cases to better convergence properties [17].

B-splines do not provide a natural and effective way for local refinement in the multi-
variate case [14]. Univariate B-splines can be refined by knot insertion, but the resulting

*Email address: arielsurya.boiardi@studenti.unipr.it

mailto:arielsurya.boiardi@studenti.unipr.it?subject=adAHBsplineFEM

basis can become strongly non-uniform and even lose smoothness.

Hierarchical B-splines were introduced by R. H. Bartles and D. Forsey [6] in order to
allow for a finer local control of surfaces in geometry modelling. Their approach takes
advantage of the excellent refinability properties of uniform B-splines by resolving finer
details of the geometry with the superimposition of patches of coarser and finer B-spline
surfaces. An alternative construction for HB-splines was given a decade later by R. Kraft
[11]. Following an ad hoc selection procedure, this construction leads to a basis for the
hierarchical splines space, which makes them a viable option as a discretization space in
FEM-like methods.

In this work we present HB-splines following the definitions in 7, |17]; we then introduce
a model advection-diffusion problem and its discretization with HB-splines. We recall error
estimates for advection-diffusion problems discussed in [1] and adapt them to the novel
HB-spline techniques. All the theoretical discussion will be coupled with data structures
and algorithms for the implementation. Finally computational examples will be discussed
to test the proposed methods on some benchmark problems. Numerical simulations were
carried out with MATLAB implementations presented in appendix

2 Hierarchical B-splines

In this section we present some basic theory of B-splines and their refinement properties.
We then introduce hierarchical B-splines (HB-splines) and discuss some properties useful
for FEM and FEM-like methods.

2.1 B-splines

A space of univariate B-splines of degree p is uniquely defined by its knots sequence, which
is associated to a non-decreasing partition of the domain 2 of the B-splines:

a=z1<x9<...<TH,=0. (1)

Every break point can be repeated up to p+ 1 times in the knots sequence. If m; denotes
the multiplicity of the i-th break point z; as a knot and M = ;" ; m;, the knot sequence
can be written as

E=[& - ENipr] (2)

where N = M — p — 1 and since the knot sequence counts M knots, and every B-spline is
supported on p + 2 knots, the dimension of the B-spline space on the knots = is exactly
N.

The B-spline basis on the knots = can be constructed through the Cox-De Boor recur-
sion (3}, 4]:

Bio(z) = 1w € [& Sl
" 0 otherwise, 5
T & $itpt1 — T
Bi(2) = ——S B, (z)4 el T B ().
??) Giy1—& 7 1) Eirprt — & P 1(x)

Many definitions for spline spaces and B-splines are possible, but we consider as a defi-
nition, because it emphasises many features of B-splines that will be used in the following,
and provides a very efficient way to compute values of B-splines . The B-splines defined
in span a space of splines S defined by Z, whose regularity is CP~" at z;. In order
to preserve the partition on unity property of the B-splines on the whole domain, we will
consider the first and last knots with multiplicity p 4+ 1. The basis for cubic B-splines is
represented in fig. [1] for a given knot vector.

Derivatives of B-splines of order up to & < min; {p — m;} can also be computed recur-
sively with the following formula [13]:

k-1 k-1
B(k) (z) = p Bz‘(,pq) (z) B Bz‘(+1,p)71(33)
“p Civp— & Civpr1 —&ir1)

(4)

where fractions with zero denominator are considered to be zero, as also the i-th B-spline
of degree p — 1 is zero if the i-th knot is repeated p times.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 i | i L |
0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1

Figure 1: Cubic B-spline basis constructed on the uniformly spaced knot vector
= =1[00000.1250 0.2500 0.3750 0.5000 0.6250 0.7500 0.8750 1 1 1 1].

2.1.1 Implementation aspects

An efficient way to build a B-spline basis is to store the degree p and the knot sequence
= as a vector. The dimension of the space follows, being dim (S) = N. Every B-spline is
then identified by its index, which coincides with the index of the first knot of its support
in the knot vector Z. Every B-spline is efficiently evaluated at any point with . Note

that we decided to keep indices starting from 1 for the sake of clarity in the transition to
our MATLAB implementations.

2.2 Refinement and subdivision of B-splines

B-splines are more flexible in regions of the domain where the knots are more dense, the
refinement of the knot vector is therefore a necessary procedure in order to be able to
resolve small details in B-spline based approximation.

We will consider a knot vector © obtained by dyadic refinement of the knot vector =,
dividing the interval between two knots in halves. The B-spline space obtained by dyadic
refinement will be the space Sg based on the refined knot vector. Being a refinement
means that the new space is also capable to express every B-spline of the coarser space
S= by the following two scale relation @I]:

® 15 (p+1) L)
BP0 = 3 (7) B)
k=0

fori = p+1,..., N—p. The original B-spline is said to be parent of its p+2 children, which
are the B-splines of the finer space whose indices are in the summation range in . Clearly
every parent B-spline is not linearly independent of its children. The reconstruction of a
B-spline from the basis in fig. [I] by its children is shown in fig.

1

[1]

ool

SssRes e SR es s I

0.9

0.8

0.7

0.6

= R O (O 00 o~
N OL D Do O

W= D= DO N |= i =
e PSP

051 7
0.4 7
03 7
0.2 7

0.1 7

sV -

0 0.1 02 03 04 05 06 07 08 09 1

Figure 2: Subdivision of the 6-th B-spline on the = knot vector in weighted sum of its
children built on the knot vector © obtained by dyadic refinement of =.

2.3 Hierarchical B-splines (HB-splines)

A hierarchical B-spline space can be thought as a nested sequence of uniform B-spline
spaces, in which only some B-splines are considered in every level.

2.8.1 Nested spaces and domains

We consider a nested sequence of B-spline spaces of degree p
51C82C..., (6)

determined by their respective knot vectors. For | € N, the B-spline basis corresponding
to &; is denote by

B,::{ﬂ§|z’=1,...,m}, (7)

where N; is the dimension of the space §;. Furthermore we denote by O the grid of level
[associated to the partition of the domain defined by the knot vector of S;, and we call
Q € 9 a cell of level .

In the following we consider every level being obtained by dyadic refinement of the
previous one as explained in section and the two scale relation [7] between successive
levels, which gives the expression of a B-spline of level [as a linear combination of B-splines

of the finer [4 1-th level,
Nit1

Bi=> ckin (/Bf) A (8)
k=1

is given by .

Definition 1. For n € N we consider a hierarchy of subdomains of depth n as
Q=000 D...C C Q1 =0 (9)

which defines the nested domains of the HB-splines. 1 = Q is the domain of definition
if the HB-spline space, and every subdomain §2;, for [> 2, is union of some cells of level
[—1.

2.83.2 The HB-spline basis

With the previous notation, we define the basis H of the hierarchical space 8™ as follows:

Definition 2. Let {S;}; a sequence of spaces like @ with the corresponding bases {5;},,
and {€}, a hierarchy of subdomains of depth n like (9). The hierarchical B-spline basis
‘H is defined by taking H = H,—1 in the following recursion

{Hl = Bl, (10)

Hi =ALLUAT, 1=1,...,n—2,

where

Al ={B€H | supp(B) ¢ Y1},
AT = {B € By | supp (B) C Q1)

The initialization step in selects all the basis functions of the underlying space S;.
In the recursive step we first add to S7 the B-splines of the previous level whose support
is not entirely contained in ;11 (Aéﬂ), then €2;11 is covered with Afi}, i.e. by basis
functions in Bj;q which are added to the hierarchical space at level [+ 1. An example of

resulting basis H is shown in fig.

Bs

[9A9] 38I1,]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
62 2 2 2
8 10 13 17

—
S
[9A9] PU029g

0, \ / N

3 3 53 —
18 24 32 g
=
[N
5}
<
e,
Q
T T T T T T T T T T '
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

!

SISeq [eOIDIRIAT]

i

0.5 0.6 0.7 0.8 0.9 1

VAV /
A

Figure 3: Hierarchical cubic B-spline basis of three levels. Deactivated functions are greyed
out from each level.

Definition 3. We say that a B-spline 8 is active if 3 € H. In particular 8 € S™ is an
active function of level [if 8 € A; := H N By, and it is a deactivated function of level [if
B €Dyp:=H \ Higr

The hierarchical basis H is associated to an underlying hierarchical mesh Q given by

n—1
QiZU{QEQl‘QCQZ)ngQH-I}‘ (11)
=1

As for basis functions, @ is said to be an active cell if Q € Q and it is an active cell of
level [if Q € QN Q.
Linear independence of the hierarchical basis follows from its construction:

Lemma 1. The functions in H are linearly independent.

Proof. Consider a linear combination of functions of the hierarchical basis that gives zero,
and rearrange it according to the level of the functions:

n—1
OZZCBB:Z Z cgf

BEH I=1 |BeHNB,

Since HNB; C By, the functions in H N B; are linearly independent. Notice that only these
functions have support on €; \ €41, and by linear independence c¢g = 0 for § € H N B;.
Repeating for I = 1,...,n — 1 we have linear independence of the hierarchical basis. [

As can be seen from definition 2| every iteration of the constructive procedure ((10))
induces a local refinement of the hierarchical basis [17]:

Lemma 2. Let Hi,...,Hn—1 the hierarchical B-spline bases considered in definition [
We have that
span (H;) C span (Hi41), [=1,...,n—2. (12)

With this construction, refinement seems possible only within an already refined region,
since the hierarchy of subdomains @ which select the regions of refinement at every level
is in fact decreasing. As proved in [17], refinement is possible in any region as enlarging
a domain (); of the hierarchy @ produces an enlarged sequence of hierarchical bases,
constructed by the procedure . However the implementation to achieve this flexibility
is rather complicated, and since adaptive methods should take just a handful of iteration
to be advantageous we will limit our scope to purely hierarchical refinement. In other
word we will only be able to refine in smaller and smaller regions. The obvious drawback
of this choice is a limited (or no) ability to compensate for a bad refinement step.

2.8.83 Implementation aspects

In order to represent a HB-spline basis for a hierarchical spline space one needs the degree
of the splines, the sequence of B-spline bases , represented - as outlined in section
- by their respective knot vectors, and a (structured) list of active functions at each level.
However, for the sake of a more natural notation in the codes and lighter computations,
at the expense of higher memory usage, our implementation uses a bigger data structure,
resumed in table [T

Table 1: Properties of the data structure to represent a HB-spline basis.

Property Description

deg Degree of the splines.

dim Dimension of the space.

{ hknots; } Indices of active knots of the hierarchical mesh.

{ hcells; } Indices of active elements of the hierarchical mesh.

nlev Depth of the hierarchical space, i.e. total number of levels.
{A} Active functions by level.

{D} Deactivated functions by level.

{S} B-spline space from the underlying sequence for each level.

The order in the HB-spline basis is not the same as that in the classical B-spline basis,
but it needs to count also for the subdivision between levels, in particular we consider the
basis functions to be ordered according to their level and within the same level with the
usual B-spline basis ordering. If u € span (#), u is expressed by a linear combination of
basis function with the following form:

nlev
u= Z Z weB | (13)
=1 |keA,

where uy,; is the coefficient of u with respect to the k-th B-spline of the [-th level of the
hierarchical space.

3 Adaptive hierarchical B-spline approximation of a model
problem

Adaptive methods are largely used in FEM as a mean of obtaining finer approximations
while keeping a low number of degrees of freedom (DoFs), particularly for the approxi-
mation of functions characterised by harsh local behaviours. Some simple adaptive FEM
methods for the numerical solution of advection-diffusion problems have been the subject
of my Bachelor’s thesis [1], from which some results will be referenced in the following.
A general adaptive procedure can be sketched as the iteration of the following steps:

--- Solve — Estimate — Refine - - - (14)

until a stopping criterion is satisfied [5| [12]. Every module of this procedure will be
discussed in the following for a model problem.

In this section we introduce advection-diffusion problems, toward which our work is
oriented, and develop some FEM-like discretization techniques using the HB-spline spaces
introduced in the previous section as approximation spaces. We then describe the adaptive
refinement procedures and adjust some of the results from the FEM technique studied
in [1] to the novel HB-spline framework. Finally we present some algorithms for the
implementation of the adaptive procedure.

3.1 The advection-diffusion model problem and its discretization

The one-dimensional stationary advection-diffusion equation is a second-order boundary
value problem of the form

—pu” +bu' = f, zeQ:=(0,1) (15)
u(0) = up, u(l) = u;.

The solution of this problem for f = 0 and up = 0, u; = 1, which is easily derived

analytically, as shown in fig. [4] presents a boundary layer at x = 1 that becomes steeper

and steeper as the ration % increases. This problem has been chosen as a benchmark

to test our local refinement techniques because local singular behaviours, characterised

by steep gradients and harsh variations are exactly what makes adaptive methods more

compelling than classical uniform h-refinement methods in FEM [1].

1

|
3

=
i

091 —— % =10
i

b =100
0.8 %

——— 2 =500

0.7

0.6

05

04r

03r

02r

0.1r

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4: Exact solution of the advection-diffusion problem for some choices of %.

3.1.1 Weak form of the problem
The weak form of the advection diffusion problem was derived in [1]:

Find v € HY(Q) | a (u,v) = F (v) Yo € HY(Q), (16)
where a (-, -) is the bilinear form associated to the differential problem in

a(u,v) = / pu'v' — bu'vda, (17)
Q

and the functional F (-) depends on boundary conditions of the problem and on the source
term f in the right hand side of the ODE in :

F(v) = /vad:c—a(B,v), (18)

where B is built to express the boundary conditions in , in the sense that B(0) =
u(0) and B(1) = u(1). Note that B can be any function that represents the boundary
conditions, and its choice in H'(2) or other function spaces is arbitrary, but can make
calculations much more convenient or possible at all. Given the solution u € H} of the weak
problem , the solution to the problem with non homogeneous boundary conditions as
in is given by @ = u + B.

As proved in [1], the weak problem has a unique solution by Lax-Milgram’s
Lemma, since the bilinear form is continuous end coercive on H*(Q) [2].

3.1.2 HB-spline discretization

Let us now approximate the weak problem in the finite-dimensional space

sgfzspan(ﬁemmmzo), (19)

of hierarchical splines that vanish on the boundary of the domain. The discrete form of
the weak problem is the following Galerkin equation:

Find uy € St | a (up,v) = F(v) Vo € SIt. (20)

A basis for SJt, be it
Ho == H NS,

is clearly given by H, excluded the first and last B-splines, that is those whose support
contains the first or the last knot of their respective knots vectors (see fig. [3). Note that
identifying the said first and last basis functions do not immediately correspond to some
indices, but need to be looked for though all levels, as described in algorithm

Expressing the approximated solution uy with respect to the basis Hg as in , and
testing it against all basis functions with , ordered by level, we get to the following
system of linear equations:

nlev

33 upa (ﬂ,@,ﬁ) = F(B) VBeAy, YA=1,...,nlev (21)

=1 ke A;

10

The stiffness matrix associated to the discretization of the problem can be described by
blocks, where every block represents the interaction between two levels of the hierarchical
basis:

(22)

A=Ay sonme where [, = [a(56))]

1,..., nlev k EE :i;\
The load vector of the system on the other hand accounts for the source f and for the
interaction with the boundary and is expressed as

F = [mer where [F];=|F(8})] (23)

jeAN

Note that, alas, the stiffness matrix is not tridiagonal as in the FEM case, nor banded
as in a non hierarchical B-spline discretization. The matrix given by the HB-spline dis-
cretization, described in , will only present a symmetric sparsity pattern, strongly
dependent on the choice of order between and within the levels of the hierarchical basis.
We will nonetheless take advantage of the sparse nature of the stiffness matrix in order
to optimize the computation of its elements, as described in algorithm An efficient
computation of the load vector is described in algorithm

3.2 Error estimates

The refinement of the approximation space needs to be guided by some local estimate
of the approximation error, which quantifies how well the solution obtained with the
discretization can represent the exact solution of the weak-form problem .

In [1] a simple residual based a posteriori local error estimator for one-dimensional
advection-diffusion problems has been proposed for adaptive finite elements methods. As
shown therein, the global approximation error e; := |u — uy| can be estimated by a sum
of local contributions:)

2
lenlhney < n =" [S) (24)
QeQ

where C' is an unknown constant, « is the coercivity constant of the bilinear form a (-, -),
and the local residual 1n¢ is a local estimate for the error on the element () of the mesh

defined as:
ng = meas (Q) Hf +u (B” + u’;{) —b (B/ + U%) HL2(Q)) (25)

where f is the source in the differential equation (f = 0 in), B is a function that
represent the boundary conditions and uy, is the approximate solution of . It has also
been shown in [1] by numerical evidence that ng can represent the local distribution of
the approximation error element by element.

The active cells of the hierarchical space are structured in levels, similarly we consider
a hierarchical residual estimate

heta = [7’]1 ce nnlev]) (26)

11

containing the local error estimates

[771]]- = [UQJQJ'EQHQZ (27)

of the residuals on the active cells of each level.

In our implementation only the contribution of the deepest level is computed at every
iteration and added to the global error estimate, in place of the contributions on the
deactivated cells as described in algorithm [4. Even if the refinement is local it affects the
solution on the whole domain, therefore algorithm [4] does not exactly compute the local
error estimate. At every iteration of the adaptive procedure, the computed value nn1ev
reflects the actual value of the local residuals as from , while the previous levels reflect
the value of n; given by with respect to coarser approximations of wu.

This partial evaluation of the local residuals is faster and proves to be more useful
than the complete exact evaluation as will be discussed in section Moreover local
error estimates relative to previous levels have no use in the adaptive procedure, since our
error estimator is only used to represent the distribution of the error.

3.8 Adaptive hierarchical refinement

Once the local error is estimated, it its possible to choose which elements need refinement
according to a marking strategy: B-splines are selected to be refined and are replaced by
finer B-splines which are added to a new level of the hierarchical space. The refinement is
carried on respecting definition[2] The problem is then approximated in the refined space,
and the procedure is repeated until a stopping criterion is satisfied.

3.3.1 Marking strategies

The main difference between FEM and B-spline discretization is that FEM is centred on
the geometric elements of the mesh, while B-splines methods are centred on basis functions.
This basic difference becomes more apparent in the marking procedure, when elements or
functions need to be selected for refinement. Since the local and global error estimates
proposed in section [3.2] together with their properties, are based on the geometric dis-
cretization of FEM, our procedure will mark the elements and then select for refinement
the B-splines supported on marked elements.

The cell marking if performed following the equilibrium strategy by Dorfler [5], coupled
with a premarker (as suggested in |16] and discussed in [1]), and a threshold marker, which
marks for refinement the elements where the local relative residual is higher than a fixed
threshold .

3.8.2 Local refinement procedure

After a subset of the basis B-splines of the last hierarchical level, be [, have been selected
for refinement according to the marking strategies outlined in section the union of
their supports becomes the refinement region €41, and a finer I + 1-th level is added to
the hierarchical space according to the recursion in definition

12

The new level will be a subset of the basis of a B-spline space created inserting knot
that split every non-empty knot interval into halves, as in algorithm [8] In the new levels
are activated the B-splines that are children of marked functions of the previous level; and
in order to keep linear independence, we need to deactivate functions from previous level
that can be expressed as linear combinations of newly introduced B-splines. The refine
procedure in algorithm [5| assembles all the steps of the refinement.

3.3.83 Stopping criteria

Every iteration of the adaptive algorithm requires to solve the discrete problem and to
evaluate the local residual , which adds some very relevant computational costs. In
order to get a useful adaptive algorithm it is then necessary to optimize as much as possible
the number of iterations and the increase of DoF's at every iterations: if too many DoF's
are added, one gets a procedure which is very similar to uniform refinement (with the
added costs due to local error and hierarchical basis); on the other hand adding too few
DoF's will require a lot of iterations of the procedure to get useable results. As is often
the case, in medio stat virtus, and the balance is a subtle game left to the sensitivity of
the analyst.

Since our implementation only allows for refinement at the deepest level of the hierar-
chy, it is often impossible to meet requirements on global error estimates, which still are
not really significant in a numerical sense, since the constant C' in is unknown, and
might be different at every iteration. Finer stopping criteria need then to be set in place,
in order to stop the procedure at the optimal point. In the rest of this section we propose
two stopping criteria that seem reasonable to us.

Best possible improvement Refinement is only performed within the deepest level,
therefore one could - and it is often the case - build a hierarchical space in which the
possible improvement is only marginal compared to the overall accuracy.

The best theoretical - and indeed optimistic - improvement attainable by refinement
a given hierarchical space is reached if all residuals from the deepest level become zero.
Therefore, the best relative improvement with respect to the last computed global residual
estimate 7 coincides with the relative error due to the last level

nrel = 77n1ev (28)

nlev n .
If the best relative improvements is less than a significant fraction - say 10% - the refine-
ment of the hierarchical space is no longer advantageous. It is now clear why the partial
evaluation of the residual highlighted in section [3.2] makes sense: the partial evaluation of
heta gives the exact residual on the last level and allows to compare it with other first
attempt on other levels, that were considered good enough by previous iterations of the
algorithm. In other words, since the approximation available on the deepest level is a first
attempt in the new space, it makes sense to compare it with other - good - first attempts.

13

Iteration improvement We - hope to - expect an improvement at every iteration of
the procedure. If the improvement gained with one iteration with respect to the previous
one is not satisfying, i.e. less than a fixed threshold - typically 3% - the procedure is
stopped.

3.4 Algorithms for the implementation

One of the main parts of this work was the development of algorithms for the implemen-
tation of the described adaptive hierarchical B-spline discretization techniques.

An adaptive algorithm has been sketched in a very general yet expressive form in ,
and we will not provide a complete algorithm, which would be a mere assembly of the
components. Algorithms for the main components of the procedure are instead listed in
appendix [A] We tried to keep algorithms abstract and symbolic; for this reason some
procedures described here might not find a direct counterpart in the MATLAB implemen-
tations (appendix . The rationale was to keep the algorithms as language-agnostic as
possible.

3.4.1 Algorithms for the solution

The first step of every iteration of the adaptive procedure is the solution of the discrete
problem in the hierarchical space. One crucial step is therefore to evaluate the stiffness
matrix and the load Vector.

An efficient evaluation of the stiffness matrix is performed with the procedure assembly
in algorithm [I The main idea is to initialize the matrix A with zeroes and then evaluate
only the cells which give a non-zero. Following the same idea the load vector (23)) is
computed by the procedure load_eval in algorithm [2]

4 Computational examples

In this section we test our adaptive hierarchical B-spline discretization method to numeri-
cally solve three one-dimensional boundary value problems in the advection-diffusion form
(15) on the domain ©Q = (a,b), whose general weak form was discussed in section
Initial approximations spaces are constructed on uniformly spaced knot vectors. We gen-
erally used cubic B-splines, if not differently specified. All the results were obtained with
the MATLAB codes in appendix

4.1 Model advection diffusion problem

This problem was presented in , with non homogeneous boundary conditions. To
represent the non-homogeneous boundary condition u(1) = 1, we introduce a boundary
operator B = Bi‘fs?c containing the right-hand boundary basis function, as found by algo-
rithm (3| The exact solution of the problem, plotted in fig. [4, has a very steep boundary
layer around x = 1 which becomes more steep as the ratio between advection and diffusion

parameters % is increased.

14

Since the solution we are approximating has a local singularity, we hope that our error
estimator, which proved to be good in [1], can represent the error distribution also for B-
spline approximation. In fig. [5| the local residual distribution is compared with the point
evaluation of the error. We see that the estimated error, although more pessimistic, is
able to represent the distribution of the actual error on the domain.

102 T T T T T T T T T 100
Error ¢, o Error e,
¢ Local residual 7q ¢ Local residual g

6 0 ° 0 ©] 1010t

2 L
10 10-20 L

104

1030

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 03 04 05 06 07 08 0.9 1

(a) 20 DoF's (b) 100 DoFs

Figure 5: Pointwise error and local residual estimates for the advection diffusion problem
with £ = 100 approximated in uniform cubic B-splines. Residuals are plotted in the
middle of the cell on which it is evaluated.

The numerical solution obtained with the hierarchical adaptive method with parame-
ters in table [2] is plotted in fig. [fa] with the hierarchical basis of the approximation space.
As expected the hierarchical basis is much more dense around the boundary layer. The
approximate adaptive solution can represent much better the local singularity, as from
the comparison with fig. [6D] in which numerical instabilities can be observed around the
boundary layer.

Table 2: Basic parameters for the adaptive solution of the advection diffusion problem.
Parameters are only specified if different from this table.

Parameter Value
Initial DoF 40
minPercImpr)
minPercIterImpr 1
maxRelResLoc 1
0 0.5
PreMark true
PreMarkPerc 3

The same results as fig. [] can be observed in the fifth mark of the convergence plot
in fig. which also shows that our stopping criterion has worked perfectly in this test,

15

Adaptive solution Uniform solution
T T T T T T . : -

1 1
081 1 08
06 1 4 06F
£ g
2 £
= =
S 041 2 041
= =
£ £
% oa2f g 02t
3 El
“ z
0 0
02+t 1 0.2
0 01 02 03 04 05 06 07 08 09 1 0 0.2 0.4 0.6 0.8 1
1 . 1
Level 1
Level 2
0.8 Level 3 1 0.8
Level 4
. 0.6 Level 5
% Level 6
M 04
0.2

0 0.1 02 03 04 05 06 07 08 09 1

(a) Adaptive approximation and basis of the (b) Numerical solution on uniform B-spline
approximation space. The initial approxi- space with 45 DoFs.

mation was built in a uniform B-spline space

with 10 DoFs, 6 = 0.25, maxRelResLoc=0.5

and no premarking. The solution was found

in 6 iteration of the adaptive procedure with

45 DoFs. The procedure was stopped by low

improvement in the last iteration.

Figure 6: Comparison between uniform and adaptive numerical solution of the advection
diffusion problem with 2 = 500 for the same number of degrees of freedom. The L?-norm

error in the adaptive solution is 1.90303 x 10~%, while uniform solution with 76 DoFs
attained an L? error of 0.052895 4 and still shows strong instabilities.

as convergence slows reduces after the fifth iteration. The same can be said for the test
with % = 100 in fig. where a stopping criterion is satisfied at best possible iteration.
This plot also shows how important stopping criteria are in adaptive methods based on a
posteriori error estimates.

Convergence plots fig. [7]also show that the increase in the number of degrees of freedom
is higher at every iteration. One way to avoid this phenomenon is to disable premarking,
since it tends to accelerate the growth of the number of DoF, as shown in fig. [§] This also
might require to adjust some parameters in the stopping criteria or marking strategies to
get optimal results. For example fig. shows that with no premarking the procedure
stops because the estimated possible improvement is less than 5%, and to get another
iteration (which improves the approximation) we need to restrict the stopping conditions.

The comparison of convergence plots in figs. [7] and [§] shows, as expected, that the adap-

16

102 T T T T T 10°

—o— Adaptive
—<&— Uniform
10° E
102
& &
210 E
8 b5}
g g 10*F
g 2
- 10 N
2 10 =
. 108
107
—o— Adaptive
—<&— Uniform
10-7 1 1 1 L 1 108 1 1 1 1 1 1 L L L
40 60 80 100 120 140 160 40 50 60 70 80 90 100 110 120 130 140
degrees of freedom degrees of freedom
b b
(a) & =100 (b) L =500

108

—o— Adaptive
—&— Uniform

L*norm error
o
&

107
40 60 80 100 120 140 160 180 200 220
degrees of freedom

(c) £ =10

Figure 7: Convergence plot of uniform and adaptive method for advection-diffusion prob-
lem. Red mark indicates that a stopping criterion is satisfied.

tive method is advantageous with respect to uniform refinement only when the solution
of the problem has a strong local singularity. First reason is that if the singularity is not
very localised, the hierarchical refinement quickly builds a HB-spline space which can only
be refined in regions where refinement is no more beneficial. The reason why adaptive
approximation in fig. [7c| loses accuracy faster than the uniform one might also be due to
the worse conditioning of the stiffness matrix (see fig. E[)

4.2 Inner layer problem

For this example we build a problem of form whose solution is a modified Runge

function
1 1

B 1—1—04(;1:—%)2 - 1+ 9
on the domain © = (0, 1). The solution plotted in fig.

The construction of the differential problem with such solution and its weak formulation
were discussed in [1] and do not add much to the present work, since the machinery of the

u(x) (29)

17

L*norm error
<
S

L?-norm error

<
&

—o— Adaptive —o6— Adaptive

—<&— Uniform —<&— Uniform
1 0-6 L L L L L 1 O-G L L L L
40 45 50 55 60 65 70 40 45 50 55 60 65
degrees of freedom degrees of freedom
(a) & =100 (b) £ =500
H H

Figure 8: Convergence plot of uniform and adaptive method for advection-diffusion prob-
lem without premarking. Coloured markers indicate that a stopping criterion is sat-
isfied: red marker for parameters in table [2| orange if minPercImpr = 2 and blue if
minPercImpr = 7.

0

0
20 20 -
40 - 40 +
60 60
80 80 -
100 - 100
120 - 120 1
140 - 140 1
160 - 160

180 180

200 ¢ 200 £
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
nz = 1402 nz = 1980

(a) Uniform, cond (A) = 3.2057 x 103. (b) Adaptive, cond (A) = 1.3354 x 10%.

Figure 9: Sparsity patterns of stiffness matrices from the last iteration in fig.

HB-spline adaptive methods only depend on some parameters of the problem. For this
example b = u = 1 and boundary conditions are homogeneous. The source in (15 turns

the out to be
a(3 —2z) 2072 —1)°

o=+ oG- +1]

but since is can be generated within MATLAB with the symbolic engine or using any

(30)

fa(z) =

18

computer algebra system, we will skip this step in the next examples.

1

a =30

09 r a=100 ||
o = 1000
a = 10000
0.8 J
0.7 -
0.6
0.5
04
03
0.2
0.1

0 L " . I h . h
0 0.1 02 03 04 05 06 07 08 09 1

Figure 10: Exact solution for the problem with inner layer varying the parameter a.
Numerical solutions for this problem are plotted in fig. the region where refinement

is concentrated is, correctly, that around the inner layer, both for stronger and weaker
gradients.

1
o 081 = 0.8
ié 06 %; 0.6
E E
Zo4f E o4l
z |
& 0.2 ~ 0.2

0 0 : L : L

10 04‘1 : : 0;9 1 10 0‘,1 0‘,2 0;3 0;4 0“5 0“6 0.‘7 0.‘8 0.‘9 1
E 05 \ \ // / CE o \) // /

0 \. /" 0 . /

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(a) @ = 1000, adaptive procedure stopped (b) a = 10000, adaptive procedure stopped
after 5 iteration with 46 DoF and L2-error after 6 iteration with 53 DoF and L?-error
0.000017. Corresponding uniform solution 0.000008. Corresponding uniform solution
has L2-error 0.004 767. has L2-error 0.016 557.

Figure 11: Adaptive numerical solution for the problem with Runge-like solution. Solver
parameters in table

Convergence plots in fig. [[2] show again that the adaptive procedure gives best results
when the solution to approximate has stronger local gradients. Nonetheless, even for

19

Table 3: Basic parameters for the adaptive solution of the inner layer problem.

Parameter Value
Initial DoF 18
minPercImpr)
minPercIterImpr 1
maxRelResLoc 1
0 0.15
PreMark false

relatively smooth solution, like the case in the convergence plot fig. a couple of
adaptive steps can still be a valuable way to accelerate convergence. This is a feature of

HB-spline based adaptive methods that does not appear in the results obtained with FEM
in [1], in which adaptivity is clearly non competitive with uniform refinement for smooth

solutions.
102
L 108k
2
3
_
10
—o6— Adaptive
—<&— Uniform
108 N
15 20 25 30 35 40 45 50 55
degrees of freedom
(a) a =100
107! T T T
102
]
2 10°
3
Tt
) 10
10°
—o— Adaptive
—<&— Uniform
10-6 L L

15 20 25 30 35 40 45 50 55 60
degrees of freedom

(¢) a = 10000

102

L*mnorm error
o
&

L*norm error
o
&

<
IS

10°
10

—o— Adaptive
—<&— Uniform

20 25 30 35 40 45 50 55
degrees of freedom

(b) a = 1000

60

—o6— Adaptive
—<&— Uniform

20 30 40 50 60
degrees of freedom

(d) a = 100000

70

Figure 12: Convergence plot of uniform and adaptive method for inner layer problem. Red
mark indicates that a stopping criterion is satisfied.

Table 4: Comparison of L2-errors of adaptive and uniform solver varying parameters from

table
Changed parameters Final DoF L?-error L?-error uniform
a = 100
=05 42 1.17299060 x 10~° 2.916 76848 x 10~°
0=0.75 50 7.51331503 x 1079 1.11288650 x 10~°
PreMarkPerc=>5 52 1.14551090 x 10™® 1.97261723 x 107°
Initial DoF=30 48 3.70032936 x 107¢ 1.32365277 x 10~
Initial DoF=40 62 7.16259927 x 1076 5.20080565 x 106
a = 1000
0=0.5 49 7.82155658 x 1076 4.11206960 x 10~%
6=0.75 45 7.42479848 x 107% 2.37779231 x 103
PreMarkPerc=3 53 8.42728273 x 1076 4.63757054 x 10~
a = 10000
0 =0.75 71 257610561 x 107° 7.64295270 x 1073
PreMarkPerc=1 56 8.61369267 x 1076 2.96968296 x 102
Initial DoF=30 65 1.26464621 x 107° 9.95404764 x 1073
a = 100000
PreMarkPerc=2 107 8.04697808 x 107° 1.96379839 x 102
0=0.75 7 3.866 22780 x 107> 2.84416946 x 102
Initial DoF=30 72 1.53616691 x 10™° 3.978598 54 x 102
Initial DoF=400 421 2.26285201 x 107° 8.10153674 x 10~°

Another remarkable difference with the adaptive FEM results in [1] is that the new
HB-spline adaptive methods converges much faster. For example, to obtaine the same
result as the one in the last marker of fig. the AFEM method would still require 9
iterations and roughly 650 DoF, almost ten times the degrees of freedom required for the
HB-spline method. Unfortunately this does not necessarily make HB-splines more efficient
since for linear finite elements the stiffness matrix was computed explicitly and almost no
numerical quadrature was required.

This advantage still does not mean that the HB-spline adaptive method can obtain
any accuracy. In fact too many iterations of the adaptive procedure do not necessarily
converge, as from many of the convergence plots show so far; on the other hand, starting
with a very fine initial approximation space, makes adaptivity almost useless, as in the
last row of table [l

21

Table 5: Parameters for the solver for the step function problem.

Parameter Value
Initial DoF 17
minPercImpr 10
minPercIterImpr)
maxRelResLoc 5
0 0.15
PreMark false

4.3 Step function problem

The next example is inspired by Gibbs phenomenon [8], we test our method to numerically
solve a problem which has as solution a regularized step function

u(z)

on Q) = (—1,1). Asin the previous example b = 1 = 1 and the source term is automatically
symbolically computed in MATLAB . The solution is plotted in fig.

1 T
k=9
— k=27
0.8 k=281 |
—Fk =243
0.6 - b
04r B
02 B
0 | | | | 1 1 1 | |
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 13: Exact solution for the problem with step function solution varying param-
eter k € N.

Numerical solution obtained with the hierarchical adaptive procedure are plotted in
fig. [[4 The evolution of this approximation throughout the successive refinements is
represented in fig. Convergence plot of the same scenario in shown in fig.

Comparing convergence plots in fig. we see that the stopping criteria are working
well in both instances, but unfortunately the procedure turns out again to be sensitive on
the choice of the initial approximation space in unpredictable ways, sicne starting with a
fine space in this case stops convergence earlier and gives an overall worse result (even if
marginally).

22

1 T T T T x(' T T T T
0.8 B
o
R=l
= 06f I
wn
=
=2
g 041 N
g
Z,
0.2 1
O 1 1 1 1 Jl 1 1 1 1
-1 0.8 0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8 1
1 T T T T T T T T T
2 N Ve
£ 05 \ / \
& \ /NN
\. a

0-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 14: Adaptive numerical solution for the step function problem with £ = 91. Pa-
rameters of the adaptive solver are in table The solution was found after 6 itera-
tions with 52 degrees of freedom and the procedure required 3.35 seconds. L-error is
5.954 48217 x 10~%. Computation of the uniform solution with the same number of DoF
required 0.39 seconds and has an L?-error of 0.01923717.

Quadratic B-splines have been tested, but they do not seem to give good results. An
explanation might be the symmetry of their shape with respect to the knots distribution.
This hypothesis is (partially) confirmed by a comparison with fourth and fifth degree B-
splines: the former tend to behave like quadratic, while the latter like cubic. Anyway,
more tests are necessary in this regard.

5 Conclusions

In this work have discussed hierarchical B-splines in the framework of the adaptive nu-
merical solution of advection-diffusion problems in one dimension. We first reviewed the
definition and basic properties of HB-splines as a locally refined B-spline basis. Hier-
archical refinement turns out to be very flexible, because it is suitable for any degree
of smoothness in combination with B-splines. We then developed adaptive methods for
advection-diffusion problems based on HB-splines, borrowing and adapting some tech-
niques and results from adaptive finite element methods. Algorithms for the main parts
of the procedure have been developed. Numerical results obtained on some test problems
show that the adaptive procedure we presented is able to resolve localised singularities in
the solutions with a modest increase in the computational cost. Moreover adaptive HB-
spline approximation can also be a valuable tool for more regular solutions, contrarily to
adaptive FEM, which is almost exclusively competitive for very strong local singularities.

23

L?-norm error

Figure 15: Sequence of refinements of the numerical solution in fig.

—o6— Adaptive
—<&— Uniform

20 25 30 35 40 45
degrees of freedom

(a) Initial space with 17 DoF.

50 55

60

65

L*-norm error

2

o8
|
o8 06 /
04 08
M m |
: .
02 02
©s s o4 02 o 02 o4 05 08 1 L e s wa 0z o o2 oe os os Y0 es s o4 92 0 0z o on os
| —_— | —_—
\
‘ o8 ‘ 06 ‘
/ . \ §
| . | .
| -
e — 0 0
02 02
95 w8 o1 02 o 02 o4+ o5 o5 1 T 05 ws o1 92 o 02 s os o5 1 T 05 we o+ 02 o 02 s os o5 1

102

10°

10 3
—o— Adaptive
—<&— Uniform
106
30 35 40 45 50 55 60 65 70

degrees of freedom

(b) Initial space with 30 DoF.

Figure 16: Convergence plots for the step function problem with k£ = 91.

24

75

The regularity of B-splines made for much faster convergence with respect to FEM,
with almost one tenth of the degrees of freedom needed on average, but, on the other
hand, convergence of the HB-spline approximation is much more unpredictable and in
some instances very sensitive on the parameters of the solver, and mainly to the choice of
the initial approximation space. It is unclear to us weather this sensitivity is inherent to the
method or induced by our algorithms or coding. The main shortcoming of our approach
is the inability of our algorithms to deal with refinement on a previously unrefined region.
This locks the refinement in only one direction and seriously limits the possibility of
improving the approximation; more work need to be done in this direction.

25

A Algorithms

Algorithm 1: Efficient assembly of the stiffness matrix (22)).

Input: Data of the problem, hspace with data of the HB-spline space S*
Output: Stiffness matrix A for the discretization of the problem in S*
procedure assembly(probdata, hspace)

L =nlev // Deepest level of the space
[A]j,k +— 0, V5,k=1,...,dim (SH) -2 // Initialize A with zeroes
j+1 // Row index
for ir=1,...,Ldo // Loop on all levels
Ay \ {ﬂ%r’ﬂll\;d- -)} // Exclude first and last B-splines from active

im(Syp

forall jlr € A;, do
k<1 // Column index

for lc=1,...,Ldo

A\ {B%Ca 511\?dim(slc>}

if #A;. > 0 then // Consider only levels with active B-splines
// We want to skip all levels which contain functions with no

support in common with the selected B-spline

if supp (;ﬁ,) NUgea,, supp (8) # 0 then
forall klc € A;. do // Column index in current level 1lc

if supp (B}f.) N supp (Jll’;) # () then
AL a (B 8%)

k< k+1
else
L k<« k+ #A, // Account for all skipped functions
| J<J+1
return A // Stiffness matrix

B MaTtLAB codes

The main original content of this work has been the development of algorithms for hierar-
chical B-spline adaptive discretization technique and the implementation in MATLAB . The
complete library adHBsplineFEM (for advection-diffusion HB-spline FEM), is available at
the following GitHub repository: https://github.com/arielsboiardi/adAHBsplineFEM.

26

https://github.com/arielsboiardi/adAHBsplineFEM

Algorithm 2: Efficient evaluation of the load vector.

Input: Data of the problem, hspace with data of the HB-spline space S™
Output: Contribution of the boundary conditions to the load vector F
procedure load_eval(probdata, hspace)

L =nlev // Total number of levels
[F], =0, Vr=1,...,dim (SH) -2 // Initialize F with zeroes
if ug # 0V ur # 0 then // Only if boundary conditions are not trivial
BDfun < "left" // First loop is the left boundary
r<1
d«+1

first <1, last + L

foreach upp € {ug,ur} do

// Repeat on both boundary conditions
if UBp 7& 0 then
61155 = get_bd_fun(BDfun, S™)

for 1 = first: d: last do

A\ {8 Bl }

// Basis function for upp

if #A4, > 0 then // Only of levels with active functions
if supp (8;22) N Ugea, supp (8) # 0 then
if d=-1 then // Second loop right boundary
L Reverse order of A,
forall a € A; do // Loop on all active functions
if supp (B%) Nsupp (BszD) # () then
[Fl, < [F], —uBp - a (857 B})
r<r+d
else
rer+d-#{i>al B €A}
break
else
L rr+d-#4 // Account for skipped functions
BDfun < "right" // After the first loop, the right bc is selected
first <L, last <1 // Levels are now read in reverse order
d<+ -1
| 7« dim (§*) -2 // F is filled from the end
if f# 0 then // Contribution source term in the equation
r<1

for 1=1,...,L do

forall a € A; \ {51175(}11111(81)} do
supp (ﬂi) = [gaa £a+P+1]
[F]T . [F]T+f§§aa+p+1 fﬁé
rer+1

return F // Load vector

27

Algorithm 3: Find boundary functions in the hierarchical space.

Input: Boundary function BDfun to search, hierarchical B-spline space S™ where
function is searched
Output: Level of the space Lgp where the boundary function is found, index ¢ of the
function in the space St
procedure get_bd_fun()
L = nlev
141 // It is assumed that BDfun is the left-boundary function
for 1=1,...,Ldo
if BDfun is "last" then
L i = dim (S1) // Index of right-boundary function of level 1
if g} € A; then
| return L,:

Algorithm 4: Partial evaluation of local error estimate.

Input: Approximated solution wuy, data of the problem, approximation space S™, last
computed local error estimate heta

Output: Local error estimates heta for u, € S™.

procedure hLocRes (u;,, S™, heta)

L = nlev // Current deepest level of hspace
S, // B-spline space of deepest level
== [fl fdim(SL)+p+1] // Knot vector of &
QL = [Ql QN] // Cells of mesh of level L
n=20 // Initilize

// Remember that wu; here is the solution , therefore uy € S()H
for j=1,...,N do

if Qj €eQng. & Qj #* ? then // Only consider active non empty cells
L | T, = meas (@) 1 + 1 (B" +u) = b (B' +)

heta, =17

// In order not to cout two times the same error, we set to 0 the error
estimates of the previous level that sit on deactivated cells.

for Q; € Q;-; do

if Q; ¢ Q then
L [hetaL_l]j =0

28

Algorithm 5: Refinement procedure for a hierarchical B-spline space.

Input: HB-spline space hspace, marked functions of hspace to be refine.

Output: Refinement of hspace

procedure refine(hspace, marked_fun)

L = nlev // Deepest level of hspace
marked_fun < marked_fun U get_supp_fun(S;, marked_fun)

D <+ D;, Umarked_fun

Ay + Ap \ marked_fun

hcellsy <+ hcells; \ get_cells(marked_fun)

hknots; < knots_from_cells(hcells;y) // Get knots delimiting cells
nlev < L+1 // Add new level
SL+1 <— dyadlef (SL)

Ar+1 ¢ get_children(marked_fun)

Dpi + AG,

hcellsy,y < get_cells(Ar.g)

hknotsy+s < knots_from_cells(hcells;ss)

dim (hspace) = dim (hspace) — #marked fun + #A+1 // New dim.
return hspace // Refined hierarchical space

Algorithm 6: Find B-splines in & which have common support with selected
functions of S.

Input: B-spline space S, indices fun_indof B-splines in &
Output: Indices of the B-splines in & with common support with those of indices
fun_ind
procedure get_supp-fun(S, fun_ind)
== [§1 §N+p+1:| // Knot vector of S
forall i € fun_ind do
supp (5;) = [fia§i+p+1] // Support of the i-th B-spline
L selected < {j <1 | &§ =& U{) > i | §pr1 = Sivptr}
selected = {ikl <... < ikn+1} // Indices of selected functions
// Now if two selected B-splines have adjacent supports, all B-splines between
them have support in common, and are therefore to be selected
for j=1,....,ndo
dist Z'ijrl — ik:j
if 1 < dist <p+1 then
L selected < selected U {i | iy, <i <ip,,,}

L return selected

29

Algorithm 7: Get cells in the support of given B-splines.

Input: Indices fun_ind of B-splines in &
Output: Indices cell_ind of the cells that support the given functions
procedure get_cells(fun_ind)

forall i € fun_ind do

cell ind = cell indU{j | i <j <i+p} // supp (8;) = i, Eivpr1)
// To get knots in the support of [; it is sufficent to let j go up to
i +p+1
return cell_ind // Cells in the support of B-splines with indice fun_ind

Algorithm 8: Dyadic refinement of B-spline space S.

Input: B-spline space S
Output: Refinement of S by dyadic subdivision of the knot vector
procedure dyad_ref (S)

== [51 §M+2p+2} // Knot vector of S
fori=1,.... M +2p+1do // Total number of knots -1

O < &i

k+—k+1

h &1 —&

if h > 0 then

L O &+ 2
k+—k+1

ek = §M+2p+2
0= [91 gk] // Refined knot vector
return Sg // B-spline space built on O

Algorithm 9: Determines the children of given B-splines in the refined space,
according to the subdivision formula .

Input: Indices fun_indof B-splines in &
Output: Indices C of B-splines in the refinement of S that are children of the given
B-splines
procedure get_children(fun_ind)
C+0 // Initialize
forall i € fun_ind do
Cie{j>0]2—p—1<j<2i}
L C+CUC;

return C // Indices of children B-splines of fun_ind

30

References

[1] A. S. Boiardi. “FEM adattivo per problemi di trasporto e diffusione”. Bachelor’s
Thesis. Universita degli Studi di Parma, Apr. 2019. URL: https://github.com/
arielsboiardi/adAFEM/blob/master/Report/FEM_adattivo_problemi_diffusione_
trasporto.pdf.

[2] S. C. Brenner and R. Scott. The mathematical theory of finite element methods.
Vol. 15. Springer Science & Business Media, 2007. DoI: |10 . 1007 /978-0- 387 -
75934-0.

[3] M. G. Cox. “The numerical evaluation of B-splines”. In: Journal of the Institute
of Mathematics and its Applications 10.2 (Oct. 1972), pp. 134-149. po1: 10.1093/
imamat/10.2.134.

[4] C.De Boor. “On calculating with B-splines”. In: Journal of Approzimation Theory 6
(1972). Collection of articles dedicated to J. L. Walsh on his 75th birthday, V (Proc.
Internat. Conf. Approximation Theory, Related Topics and their Applications, Univ.
Maryland, College Park, Md., 1970), pp. 50-62. poOI: 10 .1016 /0021 -9045(72)
90080-9.

[5] W. Dorfler. “A Convergent Adaptive Algorithm for Poisson’s Equation”. In: SIAM
Journal on Numerical Analysis 33.3 (1996), pp. 1106-1124. pDOI: [10.1137/0733054.

[6] D. R. Forsey and R. H. Bartels. “Hierarchical B-spline Refinement”. In: ACM SIG-
GRAPH Computer Graphics 22.4 (June 1988), pp. 205-212. DOI: [10.1145/378456.
378512.

[7] E.M. Garau and R. Vazquez. “Algorithms for the implementation of adaptive isoge-
ometric methods using hierarchical B-splines”. In: Applied Numerical Mathematics.
An IMACS Journal 123 (2018), pp. 58-87. DOI: 10.1016/j .apnum.2017.08.006.

[8] E. Hewitt and R. E. Hewitt. “The Gibbs-Wilbraham phenomenon: An episode in
fourier analysis”. In: Archive for History of Exact Sciences 21.2 (June 1979), pp. 129—
160. DOI: [10.1007/BF00330404. URL: https://doi.org/10.1007/BF00330404.

[9] K. Hollig. Finite element methods with B-splines. Vol. 26. Frontiers in Applied Math-
ematics. Society for Industrial and Applied Mathematics (STAM), Philadelphia, PA,
2003. por1:110.1137/1.9780898717532.

[10] T.J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. “Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement”. In: Computer Methods in
Applied Mechanics and Engineering 194.39 (2005), pp. 4135-4195. po1: 10.1016/
j.cma.2004.10.008.

[11] R. Kraft. “Adaptive and linearly independent multilevel B—splines”. In: Surface fit-
ting and multiresolution methods. Ed. by A. Le Méhauté, C. Rabut, and L. L. Schu-
maker. Vanderbilt University Press, Nashville, TN, 1997, pp. 209, 218.

[12] K. Mekchay and R. H. Nochetto. “Convergence of adaptive finite element meth-

ods for general second order linear elliptic PDEs”. In: SIAM Journal on Numerical
Analysis 43.5 (2005), pp. 1803—-1827. DOI: [10.1137/04060929X.

31

https://github.com/arielsboiardi/adAFEM/blob/master/Report/FEM_adattivo_problemi_diffusione_trasporto.pdf
https://github.com/arielsboiardi/adAFEM/blob/master/Report/FEM_adattivo_problemi_diffusione_trasporto.pdf
https://github.com/arielsboiardi/adAFEM/blob/master/Report/FEM_adattivo_problemi_diffusione_trasporto.pdf
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1093/imamat/10.2.134
https://doi.org/10.1093/imamat/10.2.134
https://doi.org/10.1016/0021-9045(72)90080-9
https://doi.org/10.1016/0021-9045(72)90080-9
https://doi.org/10.1137/0733054
https://doi.org/10.1145/378456.378512
https://doi.org/10.1145/378456.378512
https://doi.org/10.1016/j.apnum.2017.08.006
https://doi.org/10.1007/BF00330404
https://doi.org/10.1007/BF00330404
https://doi.org/10.1137/1.9780898717532
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1137/04060929X

L. Piegl and W. Tiller. The NURBS book. Monographs in Visual Communication.
Springer-Verlag Berlin Heidelberg, 1997. DOI: [10.1007/978-3-642-59223-2.

D. Schillinger et al. “An isogeometric design-through-analysis methodology based
on adaptive hierarchical refinement of NURBS, immersed boundary methods, and
T-spline CAD surfaces”. In: Computer Methods in Applied Mechanics and Engineer-
ing 249-252 (Dec. 2012). Higher Order Finite Element and Isogeometric Methods,
pp- 116-150. DOI1: [10.1016/j.cma.2012.03.017.

L. Schumaker. Spline Functions: Basic Theory. 3rd ed. Cambridge Mathematical
Library. Cambridge University Press, 2007. DOI: [10.1017/CB09780511618994.

R. Verfiirth. A Posteriori Error Estimation Techniques for Finite Element Methods.
Numerical mathematics and scientific computation. Oxford University Press, 2013.
DOI: |10.1093/acprof : 0s0/9780199679423.001.0001)

A.-V. Vuong et al. “A hierarchical approach to adaptive local refinement in iso-
geometric analysis”. In: Computer Methods in Applied Mechanics and Engineering
200.49 (2011), pp. 3554-3567. DOI: |10.1016/j.cma.2011.09.004.

32

https://doi.org/10.1007/978-3-642-59223-2
https://doi.org/10.1016/j.cma.2012.03.017
https://doi.org/10.1017/CBO9780511618994
https://doi.org/10.1093/acprof:oso/9780199679423.001.0001
https://doi.org/10.1016/j.cma.2011.09.004

	Introduction
	Hierarchical B-splines
	B-splines
	Implementation aspects

	Refinement and subdivision of B-splines
	Hierarchical B-splines (HB-splines)
	Nested spaces and domains
	The HB-spline basis
	Implementation aspects

	Adaptive hierarchical B-spline approximation of a model problem
	The advection-diffusion model problem and its discretization
	Weak form of the problem
	HB-spline discretization

	Error estimates
	Adaptive hierarchical refinement
	Marking strategies
	Local refinement procedure
	Stopping criteria

	Algorithms for the implementation
	Algorithms for the solution

	Computational examples
	Model advection diffusion problem
	Inner layer problem
	Step function problem

	Conclusions
	Algorithms
	MATLAB codes

