
Message Queues
Function and Role in ML Inference

What is this talk about?

● Multi-stage horizontally scalable inference pipelines with Message Queues
● An introduction to message queues
● A guide on designing services with message queues

A bit about me.

$ sudo lifectl status arindas.service

● arindas.service - MLOps Engineer: Arindam Das

 Company: Claritas Healthtech

 Industry: Medical Image enhancement, Disease prediction from reports

 Role: Machine Learning Models -> Production scale Web Services

Open Source: Low latency Distributed systems, end user utilities

 Building: laminarmq, a resource efficient alternative to Apache Kafka

Jun 18 12:00:00 body life[1]: Starting Talk: “Message Queue: Function and”--.

https://github.com/arindas/laminarmq

Message
Queues A brief description of the

requirements for message queues.
An introduction.

What are message queues?

Well, we see the word “queue” in it.

Queue: A FIFO data structure of elements.

However, from this definition we don’t know: Storage? Access?

Additional req. in 202X
● Internet accessible (HTTP /

gRPC)

Additional req. in 202X
● Internet accessible (HTTP /

gRPC)
● Access control (RBAC)

Additional req. in 202X
● Internet accessible (HTTP /

gRPC)
● Access control (RBAC)
● Persistent (on Disk, In mem)

Additional req. in 202X
● Internet accessible (HTTP /

gRPC)
● Access control (RBAC)
● Persistent (on Disk, In mem)
● Availability with Replication

Additional req. in 202X
● Internet accessible (HTTP /

gRPC)
● Access control (RBAC)
● Persistent (on Disk, In mem)
● Availability with Replication
● Consistency among Replicas

Additional req. in 202X
● Internet accessible (HTTP /

gRPC)
● Access control (RBAC)
● Persistent (on Disk, In mem)
● Availability with Replication
● Consistency among Replicas
● Support multiple channels

Additional req. in 202X
● Internet accessible (HTTP /

gRPC)
● Access control (RBAC)
● Persistent (on Disk, In mem)
● Availability with Replication
● Consistency among Replicas
● Support multiple channels
● Reasonably Fast

Additional req. in 202X
● Internet accessible (HTTP /

gRPC)
● Access control (RBAC)
● Persistent (on Disk, In mem)
● Availability with Replication
● Consistency among Replicas
● Support multiple channels
● Reasonably Fast
● Effortless

What is a message queue (in 202X) ?

● Internet accessible (HTTP / gRPC)
● Access control (RBAC)
● Persistent (on Disk, In mem)
● Availability with Replication
● Consistency among Replicas
● Support multiple channels
● Reasonably Fast
● Effortless

A Message Queue is a queue of
“message” elements which fulfils
all these requirements.

Message
Queue Enabling horizontally scalable

asynchronous processing
Usage model

Background: Client Server model

client -request--> server

client --response- server

(Synchronous request handling, blocking in nature)

Background: Client
Server model
(contd.)

Server overwhelmed. What now?

● Delay requests
● Refuse connections past

MAX_CONNECTIONS limit
● Rate limit requests

Some requests are lost!

Message Queue:
Asynchronous
Processing
client -> req_msg

req_msg -> req_q

server -- req_msg -- req_q

server -:process(req_msq)

server -> resp_msg -> resp_q

client -- resp_msg -- resp_q

Server pull: when resources available

Queues buffer messages.

Non blocking! No requests are lost!

Message Queue: Multi-stage horizontally scalable
asynchronous processing

client –(req_msg)-> topic_a_in

Message Queue: Multi-stage horizontally scalable
asynchronous processing

[stage #a] server --(req_msg)– topic_a_in

Message Queue: Multi-stage horizontally scalable
asynchronous processing

[stage #a] server -:process(req_msg)

Message Queue: Multi-stage horizontally scalable
asynchronous processing

[stage #a] server –(a_out_msg)-> topic_a_out_b_in

Message Queue: Multi-stage horizontally scalable
asynchronous processing

[stage #b] server --(a_out_msg)– topic_a_out_b_in

Message Queue: Multi-stage horizontally scalable
asynchronous processing

[stage #b] server -:process(a_out_msg)

Message Queue: Multi-stage horizontally scalable
asynchronous processing

[stage #b] server –(b_out_msg)-> topic_b_out

Message Queue: Multi-stage horizontally scalable
asynchronous processing

client --(b_out_msg)– topic_b_out

Message Queue: Multi-stage horizontally scalable
asynchronous processing

[stage #a] -= a(x); [stage #b] -= b(x)

Message Queue: Multi-stage horizontally scalable
asynchronous processing

x -> a(x) -> b(a(x)) | x : client input message

Message Queue: Multi-stage horizontally scalable
asynchronous processing

Difference: Queue of input elements X = {x0 , x1 , …}

Message Queue: Multi-stage horizontally scalable
asynchronous processing

Difference: Parameters are passed to “function”(s) over the internet

Message Queue: Multi-stage horizontally scalable
asynchronous processing

Difference: Parallelism at every stage with stage server replicas

Message Queue: Multi-stage horizontally scalable
asynchronous processing

Difference: Load balancing at every stage by message queue

MQ: Load balancing / Horizontal scaling
in practice

Apache Kafka:
Topics and partitions

[message_queue]

├── topic_x

│ ├── partition_0

│ ├── partition_1

│ └── partition_2

├── topic_y

│ └── partition_1

└── topic_z

└── --.

Apache Kafka:
Topics and partitions

Two types of clients:

● Producers: produces / writes to
partitions.

○ Direct Write -> partition
○ Load balanced write with

topic partitioner (Round
robin, Hash based etc.)

● Consumers: consumes / reads
from partitions.

Apache Kafka:
Consumer Group
In Apache Kafka, consumers are part of
consumer groups.

When multiple consumers subscribe to
the same topic and are part of the same
consumer group, each consumer receives
messages from a different subset of
partitions.

Different consumer groups read
messages independently of each other.

RULE: A single partition can be read only
by a single consumer in particular
consumer group.

Fig Credit: Kafka The Definitive Guide

https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/ch04.html

Apache Kafka:
Consumer Group
In Apache Kafka, consumers are part of
consumer groups.

When multiple consumers subscribe to
the same topic and are part of the same
consumer group, each consumer receives
messages from a different subset of
partitions.

Different consumer groups read
messages independently of each other.

RULE: A single partition can be read only
by a single consumer in particular
consumer group.

Fig Credit: Kafka The Definitive Guide

https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/ch04.html

Apache Kafka:
Horizontal Scaling

Multiple producer clients produce to
the topic. The messages are load
balanced to different partitions with the
topic partitioner.

A stage server has multiple replicas.

Each stage replica has a consumer. All
the stage replica consumers subscribe
to same topic and are part of the same
consumer group.

Each replica receives messages from
a subset of partitions.

Primary distinction between synchronous and
asynchronous processing
Synchronous Processing: Requests are delivered to server as soon as they arrive.
Enough resources? Handle. No? Delay or drop.

Asynchronous Processing: Server pulls in a request when it has capacity to
handle request. Until then requests are buffered in queue.

(Asynchronous architectures like this are also called event driven architectures
where individual messages are treated as events.)

Message
Queue Reasons to choose message

queues for asynchronous
processing over databases.Advantages over Database

Why use message queues at all? Databases seem fine!

● Topics can be represented with tables
● Rows can be messages
● Partitioning with partitioning function over row primary key

This is indeed possible. Used in production in some places.

However, message queues have some fundamental advantages:

- Speed
- Resilience
- Ease of use

… but how? Let’s find out!

Advantages due to different storage data-structures

Message queues rely on segmented_log(s) while conventional relational
databases rely on data-structures from the B-Tree family.

Let’s briefly discuss the segmented_log data structure to understand its
performance characteristics.

segmented_log: An
introduction

What is the simplest data structure for
representing a sequence of elements?

An array.

However, we need persistence. So
let’s use a file instead. We sequentially
append to the end of the file, and read
from the start to implement a queue.

(You can quite literally map a file to a
contiguous region of memory in the
process address space with the
mmap() system call on Linux)

segmented_log: An
introduction (con.)
However problems with a single large file:

● Difficult to move and copy
● Few bad disc sectors -> whole file

unrecoverable

Solution:

● Split index range into smaller files
called segment(s)

● Maintain an entry for each segment
with index range and file handle

● Maintain the segment entries sorted
by index

● Last segment entry:
write_segment

● Remaining segment entities:
[vector] read_segments

segmented_log:
Reads and Writes
All writes are appended to the
write_segment.

If write_segment size crosses a threshold:

● Close the old write_segment
● Reopen it as a read segment
● Push it back to the [vector]

read_segments
● Create a new write_segment

For reading a record with a particular index:

● First, locate the segment containing
the record from the vector of
read_segment or if not found the
write_segment

● Read the record at the given index
from the segment

segmented_log performance compared to B-Tree

● segmented_log writes on average: O(1), B-Tree insertion: O(log n)
○ Appending to write_segment: O(1)
○ Rotating write_segment to read_segments complexity = vec-:push_back()

complexity
■ vec-:push_back(): O(1) on average
■ Worst case (very rare): O(len(vec))

● Mitigated with exponential memory reservation
● Multiple disjoint memory region allocation, new elements pushed to last region.

Reduces worst case to O(regions) ~ O(1)
○ Average write complexity: write O(1) for append + O(1) for write_segment rotation = O(1)

segmented_log performance compared to B-Tree

● segmented_log: guaranteed: O(log len(segments)), B-Tree: O(log n)
○ n / len(segments) -= 1000

-> log(n) - log(len(segments)) -= 3 * log(10)

○ Reading from a single segment: O(1)
○ Locating segment for reading: binary search (possible because segments sorted by indices)

O(log len(segments))
○ Average read complexity = O(1) + O(log len(segments)) = O(log len(segments))
○ If we can guarantee

■ constant number of records per segment,
■ constant record size with padding,
■ Identifying segment for record in O(1) is possible with integer arithmetic
■ O(1) reads possible

segmented_log performance
compared to B-Tree

● segmented_log: Lesser
number of memory indirections
for sequential iteration than
B-Tree

○ Uses a vector,
contiguous memory
allocation, very cache
friendly

● B-Tree has a tree like structure
with pointers

○ More memory
indirections

○ Increased memory page
faults

○ Decreased cache locality

segmented_log performance compared to B-Tree

● segmented_log: Higher disk page cache locality due to sequential appends
○ Same disk page referenced many times, very disk page cache local

● segmented_log: optimized on SSDs due to append only nature

● In conclusion: segmented_log: faster reads and faster writes than
B-Tree on average

Message Queues and Database Comparison (contd.)

● Modern databases using LSM Tree (Cassandra, DynamoDb), similar
performance characteristics to segmented_log

● Message Queues don’t need query parsing and execution engine
● Databases rely on transactions for consistency, message queues rely on

consensus algorithms
○ Distributed databases -> distributed transactions
○ Two Phase commit, sophisticated transaction algorithm, blocks on failure
○ Message Queues -> consensus alg. (Raft, Paxos etc.), non blocking, resilient to failure

● Explicitly designed to provide queue like semantics, easier to use

Gaps are decreasing…

● Apache Kafka provides SQL interface for streaming analytics
● Redis, In Memory Key Value store comes with message queue semantics out

of the box

… but, where’s ML?

Plant medicine
effectiveness

Case Study: Analysis of plant
medicine effectiveness on crops.

A case study depicting horizontally
scalable asynchronous ML
inference in action.

Case Study: Plant medicine effectiveness on Crops

->

Plant Pharma Company

The new medicine

Don’t @ me, I don’t know chemistry

Case Study: Plant medicine effectiveness on Crops

->

Plant Pharma Company

Very cool and all, but… How
effective is it?

We need quantitative
analysis.

Case Study: Plant medicine effectiveness on Crops

Company partners with a farm
to test out medicine.

Uniform medicine distribution,
say: 120 ml / sqft

Farm is divided into experiment
and control areas.

Medicine administered only in
experiment area

Case Study: Plant medicine effectiveness on Crops

Company employs a fleet of
drones to monitor plant health.

The farm is marked at various
positions with GPS. Each
drone has a subset of positions
to go to.

Drone takes photograph of
each position at some time
interval (e.g Daily)

Each image has at max 20
leaves.

Case Study: Plant medicine effectiveness on Crops

… btw, the plants are
in a greenhouse.

They don’t move
around a lot.

The Machine Learning
engineers are to analyze
the photographs taken by
the drones and measure
the effect of the medicine
on the leaves.

How do we go about
solving this?

Take a look at this fungus affected
plant.

Intuitively:

● Disease progresses -> disease
area increase

● Plant heals -> disease area
decreases

Area? Hmm…

Use semantic segmentation!

From a single image with multiple leaves, multiple disease types can be detected
along with the area covered by each type.

… but no semantic segmentation dataset! 😭
(At least, in this scenario.)

That would have been an ideal case. However, life is seldom ideal.

The ML Engineers only have the following datasets:

● Leaf object detection dataset
● Disease grade classification for 5 diseases (the grades correspond to severity)

Solution Architecture

The machine learning engineers come up the following models:

● A leaf object detector
● 5 disease grade classifier models. Each disease grade classifier models has 4 classes. (0 - healthy,

4 - most severe)

Plan of action

Plant image -> Leaf obj detection -> Leaf bounding boxes -> Leaf image Crops -> Disease grade
classification on individual leaf images -> Store prediction in DB -> Aggregate Queries for insights

The software engineers design a solution using a suite of ML inference services and drone controllers.

Drone Image
Collector

● Moves to specific position
● Clicks plant image
● Upload plant image to S3

bucket at specific path

s3:-/${STORAGE_BUCKET}/
${position_id}/${date}/
image.png

● Produces a message on
“drone_image” topic,
containing the S3 image path

Leaf image cropper

● Consumes a message from
“drone_image” topic

● Downloads image from S3
using the S3 path in the
message

● Obtains predicted bbox set with
corresponding torchserve / tfx
serving HTTP / gRPC endpoint
for the drone image

● Uses predicted bbox set to crop
out leaves

● --.

Leaf image cropper
(contd.)

● --.
● For every cropped out leaf, it

uploads it to S3 at a specific
path:

s3:-/${STORAGE_BUCKET}/
${position_id}/${date}/
${cropper-model-id}/${c
ropper-model-version}/$
{leaf_crop_idx}.png

● For every cropped leaf, it
produces a message on the
“cropped_leaf” topic
containing the S3 path.

Disease De-Multiplexer
service

It broadcasts all the messages in the
cropped_leaf topic to all the disease
input topics.

This service might not be necessary in
some message queues where they
provide utilities to do this automatically.

Individual disease
grader service

● Each disease has 4 grades. 0
- healthy, 4 - most severe

● Consumes message from it’s
dedicated input “disease_#n”
topic

● Downloads cropped leaf image
from S3 with the path in the
message

● Predicts grade for cropped leaf
image using tfx serving /
torchserve HTTP / gRPC
endpoint

● …

Individual disease grader service

● …
● Writes a record of prediction details to DB with the following schema:

Data Analysis
● Aggregate analytical queries on

prediction data to obtain
insights

● Determine whether disease
severity grade decreases on
average for all leaves when
using medicine

● See if some diseases are
unaffected

● See if there are any side effects
where severity of some disease
increases with medicine

● Compare with control farm area
leaf images to verify effect

Audits and Reproducibility

● We keep model information with predictions to enable prediction with different
models with different versions.

● To regenerate results, we simply need to regenerate messages.
● We can regenerate messages by dir walking S3 bucket. But we can do better!
● We can directly replay the messages in any topic.

○ New disease_3 model?
○ Replay messages in disease_3 input topic.
○ Only disease_3 service runs!
○ The remaining services are unaffected!

Scaling up horizontally

● We can have multiple replicas of the leaf cropper service or the individual
disease grader service.

● Each replica has a consumer -> consumer group -> receives messages from
partition subset -> load balanced

● Web services and TFX serving / Torchserve endpoints can be scaled
independently!

● Multiple replicas can use same TFX serving / Torchserve deployment!
● Possible because comm. over network!

Support for multiple environments

● We don’t specify whether service instances are:
○ Containers
○ K8S pods
○ Linux processes

● As long as they communicate over a message queue, it doesn’t matter!
● High Flexibility -> Multi - Cloud architecture possible!
● Can even run the entire system on a beefy laptop! (with some loss of

throughput)
● All of this possible because the design is correct.

Conclusion

Message Queues act as a general communication layer between different
cooperating web services. They enable asynchronous processing of requests,
horizontal scaling at each layer and higher capacity for handling requests. These
properties make them an excellent communication layer between different
Machine Learning inference services.

Thank you!

Slides and transcript at: https://github.com/arindas/tfug-ml-mq-infer

https://github.com/arindas/tfug-ml-mq-infer

