--- title: "Section 1: Installing the R package bigDM" author: "Aritz Adin" date: "2024-08-13" date-format: medium format: html: toc: true --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` ## Manual for installing the `bigDM` package The R package [`bigDM`](https://cran.r-project.org/web/packages/bigDM/index.html) implements several spatial and spatio-temporal scalable disease mapping models for high-dimensional count data using the integrated nested Laplace approximation (INLA) technique for approximate Bayesian inference in latent Gaussian models ([Orozco-Acosta et al., 2021](https://doi.org/10.1016/j.spasta.2021.100496); [Orozco-Acosta et al., 2023](https://doi.org/10.1016/j.cmpb.2023.107403); and [Vicente et al., 2023](https://doi.org/10.1007/s11222-023-10263-x)). ### Prerequisites Before installing `bigDM`, ensure that you have the following prerequisites: - **R**: Make sure you have `R` installed on your system. You can download and install it from [CRAN](https://cran.r-project.org/). - **RStudio (optional)**: For a better development experience, you might want to use RStudio, which can be downloaded from [RStudio's official website](https://rstudio.com/). - **Rtools:** R version 4.0 and newer for Windows requires Rtools to build R packages containing C, C++, or Fortran code from source. [Installing Rtools for Windows](https://cran.r-project.org/bin/windows/Rtools/) - **R-INLA package**: Model fitting and inference is fully Bayesian using the well-known INLA technique through the `R-INLA` package. To install the latest stable version: ```{r, eval=FALSE} install.packages("INLA",repos=c(getOption("repos"),INLA="https://inla.r-inla-download.org/R/stable"), dep=TRUE) ``` ***IMPORTANT NOTES**:* - **At least the stable version of INLA 22.11.22 (or newer) must be installed for the correct use of the `bigDM` package.** - Visit the [R-INLA website](https://www.r-inla.org/download-install) for further details about how to install the package on MacOS and for information on version compatibilities. ### Installation 1. Install from CRAN ```{r, eval=FALSE} install.packages("bigDM", dependencies=TRUE) ``` 2. Install from GitHub (development version) ```{r, eval=FALSE} # Install devtools package from CRAN repository install.packages("devtools") # Load devtools library library(devtools) # In some Linux OS, it might be necessary to first install the following packages install.packages(c("cpp11","proxy","progress","tzdb","vroom")) # Install bigDM from GitHub repository install_github("spatialstatisticsupna/bigDM") ``` ### Verifying the installation Load the package and check its documentation: ```{r, message=FALSE, warning=FALSE} library(bigDM) packageVersion("bigDM") help("bigDM-package") ``` Run a test function: ```{r, message=FALSE, warning=FALSE} library(sf) library(tmap) library(RColorBrewer) tmap4 <- packageVersion("tmap") >= "3.99" ## 1) Load simulated colorectal cancer mortality data data("Carto_SpainMUN") str(Carto_SpainMUN) ## 2) Divide the spatial domain into provinces carto.list <- divide_carto(Carto_SpainMUN, ID.group="region") carto.NAV <- carto.list$Navarra head(carto.NAV) ## 3) Plot a map with the SMRs paleta <- brewer.pal(8,"RdYlGn")[8:1] values <- c(-Inf,0.77,0.83,0.91,1,1.10,1.20,1.30,Inf) tmap_mode("view") if(tmap4){ tm_shape(carto.NAV) + tm_polygons(fill="SMR", id="name", popup.vars=c("ID","obs","exp","SMR"), fill.scale=tm_scale(values=paleta, breaks=values, interval.closure="left"), fill.legend=tm_legend("SMR", show=TRUE, reverse=TRUE, position=tm_pos_in("right","top"))) + tm_title("Colorectal cancer") }else{ tm_shape(carto.NAV) + tm_polygons(col="SMR", id="name", palette=paleta, popup.vars=c("ID","obs","exp","SMR"), legend.show=T, legend.reverse=T, style="fixed", breaks=values, interval.closure="left") + tm_layout(main.title="Colorectal cancer", main.title.position="center", legend.outside=T, legend.outside.position="right", legend.frame=F) } ```