{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "gpuType": "L4", "toc_visible": true, "machine_shape": "hm", "collapsed_sections": [ "QSt2dK7xfENn", "dsYj9Kw14mBP", "rHmuqImt5Kv7" ], "authorship_tag": "ABX9TyN+/rqOVgTtyzWlb9/D8E0F", "include_colab_link": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU", "widgets": { "application/vnd.jupyter.widget-state+json": { "5fb226d1c8b84c0aa28dd793248cd93f": { "model_module": "@jupyter-widgets/controls", "model_name": "VBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_f4522ef4f8ca42f395e5bb30c35c5a57", "IPY_MODEL_0a6ec3bfaa644dd9961fb40ea2e5e9bd", "IPY_MODEL_8590a0cfb42345bfb1a02bf3d724e834", "IPY_MODEL_f596eb7843d549f68313b3a760259e3e" ], "layout": "IPY_MODEL_026da66a07cb4625a581bf314eddbcb5" } }, "fc0daa9f0dd04017a70d4400b7264865": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ddb84a134bf64999bfec40f648a86d5f", "placeholder": "", "style": "IPY_MODEL_e26636b6fc1c4942a55b7e6539490328", "value": "
Epoch | \n", "Training Loss | \n", "Validation Loss | \n", "Alignment | \n", "Uniformity | \n", "Contrastive Accuracy | \n", "Top 3 Accuracy | \n", "
---|---|---|---|---|---|---|
1 | \n", "1.015300 | \n", "1.295794 | \n", "1.272869 | \n", "-2.411410 | \n", "0.068027 | \n", "0.183673 | \n", "
2 | \n", "0.462300 | \n", "1.072861 | \n", "1.175534 | \n", "-2.800844 | \n", "0.095238 | \n", "0.265306 | \n", "
3 | \n", "0.264600 | \n", "1.086700 | \n", "1.151074 | \n", "-2.963047 | \n", "0.136054 | \n", "0.326531 | \n", "
4 | \n", "0.181500 | \n", "1.076758 | \n", "1.149029 | \n", "-3.040295 | \n", "0.129252 | \n", "0.367347 | \n", "
5 | \n", "0.140300 | \n", "1.052683 | \n", "1.142588 | \n", "-3.066312 | \n", "0.122449 | \n", "0.360544 | \n", "
"
]
},
"metadata": {}
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"CommitInfo(commit_url='https://huggingface.co/arjan-hada/esm2_t6_8M_UR50D-Ab-CLIP-v0/commit/8b840c6c73f563ccece9b4c599846cfeaa1dc2f2', commit_message='Training completed!', commit_description='', oid='8b840c6c73f563ccece9b4c599846cfeaa1dc2f2', pr_url=None, pr_revision=None, pr_num=None)"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
}
},
"metadata": {},
"execution_count": 25
}
]
},
{
"cell_type": "code",
"source": [
"# Evaluate the model on the test set\n",
"test_result = trainer.evaluate(eval_dataset=test_ds)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 37
},
"id": "YFc4m6xMOyLp",
"outputId": "4b995092-68d1-43a3-f4e9-c37357e0db03"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"