\n"
]
},
"metadata": {},
"execution_count": 6
}
]
},
{
"cell_type": "markdown",
"source": [
"Brief description of the columns in the dataset:\n",
"\n",
"**`abs_pos`**: Indicates amino acid position where the mutation has been made.\n",
"\n",
"**`aa`**: Represents the substituted amino acid at a given position. For example, * represents substitution with a stop codon, and Y represents substitution with a codon coding for amino acid Y.\n",
"\n",
"**`codon`**: A nucleotide triplet that codes for a given amino acid. For instance, TAA codes for *, and TAC codes for amino acid Y.\n",
"\n",
"**`lib_type`**: Indicates whether a mutation is a substitution (sub) or a deletion (del).\n",
"\n",
"**`barcode`**: Represents each unique variant or replicate. Fitness is essentially determined as the normalized frequency of barcode counts.\n",
"\n",
"**`is_wt`**: Indicates whether the substitution is wildtype or not. A value of 0 represents not wildtype.\n",
"\n",
"**`a`**: Reflects the fitness value for first biological replicate.\n",
"\n",
"**`b`**: Reflects the fitness value for second biological replicate."
],
"metadata": {
"id": "ZLjMBGV6FREj"
}
},
{
"cell_type": "markdown",
"source": [
"## Data processing"
],
"metadata": {
"id": "bf4ah9yz6Nkq"
}
},
{
"cell_type": "markdown",
"source": [
"In this segment, we will dive into Exploratory Data Analysis (EDA) and transform the data into a format amenable for supervised machine learning. Our goal is to create a pair of lists: `sequences` and `fitness`. `sequences` will be a list of protein sequences. `fitness` will be a list of score for each protein sequence. 'fitness` refers to quantitative value of property of protein sequence related to function that the experimenter is interested in optimizing."
],
"metadata": {
"id": "aE4jgI7p5GPp"
}
},
{
"cell_type": "code",
"source": [
"# Remove rows containing stop codon (truncated proteins smaller than 621 AA)\n",
"# And remove rows with data for 622 aminoacid position (rep78 is only 621 AA long)\n",
"fitness_data_sub = fitness_data.loc[-((fitness_data['aa'] == '*')|(fitness_data['abs_pos'] == 622))].copy()\n",
"fitness_data_sub"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 424
},
"id": "38Y5knN54KGa",
"outputId": "83ba963a-8550-4b7c-a6c5-7f587f918b89"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" abs_pos aa codon lib_type barcode is_wt a \\\n",
"8 1 A GCA sub CAGTGTCACAGACTGTCTCA 0 0.846289 \n",
"9 1 A GCA sub CAGTGTCAGAGACTCACTCT 0 0.511128 \n",
"10 1 A GCC sub GTCTCAGAGACACAGTGTGT 0 0.675473 \n",
"11 1 A GCC sub TGACTCAGAGTCTCACAGAG 0 0.518410 \n",
"12 1 A GCG sub ACTGTCACACACTCTCTGAG 0 1.064481 \n",
"... ... .. ... ... ... ... ... \n",
"80831 621 W TGG sub GACAGTCACTCAGTGAGACT 0 0.805424 \n",
"80832 621 Y TAC sub CTGACTGTGTCTCTCACACT 0 0.690574 \n",
"80833 621 Y TAC sub GACAGACTCTCTCTGTGTGA 0 0.950902 \n",
"80834 621 Y TAT sub GACTGTCAGTCTCTCTCTGA 0 0.846289 \n",
"80835 621 Y TAT sub TGTCTCAGTGAGTCTCTGAC 0 0.610418 \n",
"\n",
" b \n",
"8 1.032180 \n",
"9 1.132121 \n",
"10 1.059506 \n",
"11 0.789974 \n",
"12 0.725189 \n",
"... ... \n",
"80831 0.843358 \n",
"80832 0.691127 \n",
"80833 0.712097 \n",
"80834 1.251792 \n",
"80835 1.282817 \n",
"\n",
"[75796 rows x 8 columns]"
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
abs_pos
\n",
"
aa
\n",
"
codon
\n",
"
lib_type
\n",
"
barcode
\n",
"
is_wt
\n",
"
a
\n",
"
b
\n",
"
\n",
" \n",
" \n",
"
\n",
"
8
\n",
"
1
\n",
"
A
\n",
"
GCA
\n",
"
sub
\n",
"
CAGTGTCACAGACTGTCTCA
\n",
"
0
\n",
"
0.846289
\n",
"
1.032180
\n",
"
\n",
"
\n",
"
9
\n",
"
1
\n",
"
A
\n",
"
GCA
\n",
"
sub
\n",
"
CAGTGTCAGAGACTCACTCT
\n",
"
0
\n",
"
0.511128
\n",
"
1.132121
\n",
"
\n",
"
\n",
"
10
\n",
"
1
\n",
"
A
\n",
"
GCC
\n",
"
sub
\n",
"
GTCTCAGAGACACAGTGTGT
\n",
"
0
\n",
"
0.675473
\n",
"
1.059506
\n",
"
\n",
"
\n",
"
11
\n",
"
1
\n",
"
A
\n",
"
GCC
\n",
"
sub
\n",
"
TGACTCAGAGTCTCACAGAG
\n",
"
0
\n",
"
0.518410
\n",
"
0.789974
\n",
"
\n",
"
\n",
"
12
\n",
"
1
\n",
"
A
\n",
"
GCG
\n",
"
sub
\n",
"
ACTGTCACACACTCTCTGAG
\n",
"
0
\n",
"
1.064481
\n",
"
0.725189
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
80831
\n",
"
621
\n",
"
W
\n",
"
TGG
\n",
"
sub
\n",
"
GACAGTCACTCAGTGAGACT
\n",
"
0
\n",
"
0.805424
\n",
"
0.843358
\n",
"
\n",
"
\n",
"
80832
\n",
"
621
\n",
"
Y
\n",
"
TAC
\n",
"
sub
\n",
"
CTGACTGTGTCTCTCACACT
\n",
"
0
\n",
"
0.690574
\n",
"
0.691127
\n",
"
\n",
"
\n",
"
80833
\n",
"
621
\n",
"
Y
\n",
"
TAC
\n",
"
sub
\n",
"
GACAGACTCTCTCTGTGTGA
\n",
"
0
\n",
"
0.950902
\n",
"
0.712097
\n",
"
\n",
"
\n",
"
80834
\n",
"
621
\n",
"
Y
\n",
"
TAT
\n",
"
sub
\n",
"
GACTGTCAGTCTCTCTCTGA
\n",
"
0
\n",
"
0.846289
\n",
"
1.251792
\n",
"
\n",
"
\n",
"
80835
\n",
"
621
\n",
"
Y
\n",
"
TAT
\n",
"
sub
\n",
"
TGTCTCAGTGAGTCTCTGAC
\n",
"
0
\n",
"
0.610418
\n",
"
1.282817
\n",
"
\n",
" \n",
"
\n",
"
75796 rows × 8 columns
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"
\n",
"\n",
"\n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
"
\n",
"\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 7
}
]
},
{
"cell_type": "code",
"source": [
"# check if any fitness values are inf\n",
"fitness_data_sub.loc[(fitness_data_sub['a'] == np.inf)|(fitness_data_sub['b'] == np.inf)].head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 112
},
"id": "30By450K6Wlv",
"outputId": "c99ac25a-b194-45ae-badd-2ffa9ed2eea7"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" abs_pos aa codon lib_type barcode is_wt a b\n",
"4784 38 G GGG sub AGACACTGAGTGAGAGAGTC 0 inf inf\n",
"21505 166 S TCA sub CTGAGAGTGAGACACACAGA 0 inf inf"
],
"text/html": [
"\n",
"
\n"
]
},
"metadata": {},
"execution_count": 29
}
]
},
{
"cell_type": "code",
"source": [
"!mkdir -p data"
],
"metadata": {
"id": "zhjGEPWwnQbB"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Save the pandas dataframe using `pickle` system\n",
"with open('data/fitness_by_mutation_rep7868aav2.pkl', 'wb') as f: pickle.dump(fitness_by_mutation, f)"
],
"metadata": {
"id": "zp_hN6aoCWUk"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Data normalization"
],
"metadata": {
"id": "M7f2rAocADDU"
}
},
{
"cell_type": "markdown",
"source": [
"The dataset exhibits substantial noise, inherent to high-throughput measurements. In the modeling phase, we streamline our approach by exclusively utilizing the median fitness value for amino acid substitutions spanning the entire protein length. We also perform transformation to normalize the median fitness value such that wildtype fitness corresponds to a value of 1."
],
"metadata": {
"id": "TjqN5O4YAXdg"
}
},
{
"cell_type": "code",
"source": [
"# Load the Rep78 DMS data for supervised training saved as pkl file\n",
"# with open('data/fitness_by_mutation_rep7868aav2.pkl', 'rb') as f: fitness_by_mutation = pickle.load(f)\n",
"fitness_by_mutation.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 400
},
"id": "c1h00LgLAG_G",
"outputId": "1ea12177-1439-47ad-af55-e4d3334cd2c9"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" aa_mutations fitness_values \\\n",
"-1 [0.4618301444042837, 1.8924231230151436, 0.952... \n",
" 0 M1A [0.846288745135642, 0.5111275214408407, 0.6754... \n",
" 1 M1C [0.4204436063464981, 0.5026736592340829, 0.381... \n",
" 2 M1D [0.3147959865123928, 0.5590239058996285, 1.036... \n",
" 3 M1E [0.7982236642760111, 0.5118219881819288, 0.920... \n",
"\n",
" sequence num_fitval \\\n",
"-1 MPGFYEIVIKVPSDLDGHLPGISDSFVNWVAEKEWELPPDSDMDLN... 6270 \n",
" 0 APGFYEIVIKVPSDLDGHLPGISDSFVNWVAEKEWELPPDSDMDLN... 16 \n",
" 1 CPGFYEIVIKVPSDLDGHLPGISDSFVNWVAEKEWELPPDSDMDLN... 8 \n",
" 2 DPGFYEIVIKVPSDLDGHLPGISDSFVNWVAEKEWELPPDSDMDLN... 8 \n",
" 3 EPGFYEIVIKVPSDLDGHLPGISDSFVNWVAEKEWELPPDSDMDLN... 8 \n",
"\n",
" median_fitness std log10_fitness \n",
"-1 0.933207 0.670053 -0.030022 \n",
" 0 0.838670 0.248496 -0.076409 \n",
" 1 0.635236 0.347019 -0.197065 \n",
" 2 0.477791 0.284308 -0.320762 \n",
" 3 0.735683 0.461709 -0.133309 "
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
aa_mutations
\n",
"
fitness_values
\n",
"
sequence
\n",
"
num_fitval
\n",
"
median_fitness
\n",
"
std
\n",
"
log10_fitness
\n",
"
\n",
" \n",
" \n",
"
\n",
"
-1
\n",
"
\n",
"
[0.4618301444042837, 1.8924231230151436, 0.952...
\n",
"
MPGFYEIVIKVPSDLDGHLPGISDSFVNWVAEKEWELPPDSDMDLN...
\n",
"
6270
\n",
"
0.933207
\n",
"
0.670053
\n",
"
-0.030022
\n",
"
\n",
"
\n",
"
0
\n",
"
M1A
\n",
"
[0.846288745135642, 0.5111275214408407, 0.6754...
\n",
"
APGFYEIVIKVPSDLDGHLPGISDSFVNWVAEKEWELPPDSDMDLN...
\n",
"
16
\n",
"
0.838670
\n",
"
0.248496
\n",
"
-0.076409
\n",
"
\n",
"
\n",
"
1
\n",
"
M1C
\n",
"
[0.4204436063464981, 0.5026736592340829, 0.381...
\n",
"
CPGFYEIVIKVPSDLDGHLPGISDSFVNWVAEKEWELPPDSDMDLN...
\n",
"
8
\n",
"
0.635236
\n",
"
0.347019
\n",
"
-0.197065
\n",
"
\n",
"
\n",
"
2
\n",
"
M1D
\n",
"
[0.3147959865123928, 0.5590239058996285, 1.036...
\n",
"
DPGFYEIVIKVPSDLDGHLPGISDSFVNWVAEKEWELPPDSDMDLN...
\n",
"
8
\n",
"
0.477791
\n",
"
0.284308
\n",
"
-0.320762
\n",
"
\n",
"
\n",
"
3
\n",
"
M1E
\n",
"
[0.7982236642760111, 0.5118219881819288, 0.920...
\n",
"
EPGFYEIVIKVPSDLDGHLPGISDSFVNWVAEKEWELPPDSDMDLN...
\n",
"
8
\n",
"
0.735683
\n",
"
0.461709
\n",
"
-0.133309
\n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"
\n",
"\n",
"\n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
"
\n",
"\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 32
}
]
},
{
"cell_type": "markdown",
"source": [
"To recapitulate here is a brief description of the columns in the dataset:\n",
"\n",
"**`aa_mutations`**: Indicates amino acid mutations, where, for example, \"M1A\" signifies a change from amino acid \"M\" at position 1 to amino acid \"A\". A blank line at row index -1 denotes no amino acid mutation, representing the wild-type sequence.\n",
"\n",
"**`fitness_values`**: Represents the fitness values corresponding to each protein variant.\n",
"\n",
"**`sequence`**: Displays the wild-type protein sequence at index -1 and mutated protein sequences for all other indices.\n",
"\n",
"**`num_fitval`**: Indicates the number of fitness values associated with each protein variant.\n",
"\n",
"**`median_fitness`**: Represents the median of the num_fitval column.\n",
"\n",
"**`std`**: Signifies the standard deviation of the num_fitval column.\n",
"\n",
"**`log10_fitness`**: Reflects the log10 transformation of the median_fitness column."
],
"metadata": {
"id": "ODtTPeB2Et-z"
}
},
{
"cell_type": "code",
"source": [
"sns.histplot(np.log10(fitness_by_mutation['median_fitness'].values), kde=True)\n",
"plt.xlabel('log10(fitness)')\n",
"plt.ylabel('Density')\n",
"plt.title(\"Distribution of median fitness values\");"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 519
},
"id": "84JXfHPZBvi2",
"outputId": "445f59d0-2d40-4e3b-8fa0-15e59077cdbe"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
":1: RuntimeWarning: divide by zero encountered in log10\n",
" sns.histplot(np.log10(fitness_by_mutation['median_fitness'].values), kde=True)\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHTCAYAAAA3YFyxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB42klEQVR4nO3deXhTVfoH8G+WJmnSJd0XuoQdyk4RWYSCoCiyCQgqIKIgAuMy4rCMIOC4gIo4ijgdRXbxJ4qgqCjKjuyrQNlpobR039M0TXN/f2AzhLSlS9KbpN/P8+Rpe+65975JetO355x7jkQQBAFEREREVCGp2AEQEREROTMmS0RERERVYLJEREREVAUmS0RERERVYLJEREREVAUmS0RERERVYLJEREREVAUmS0RERERVYLJEREREVAUmS+RW+vTpA4lEItr5n376aUgkEiQmJlrKEhMTIZFI8PTTT4sWFyD+a2MvFy9exKOPPorQ0FBIJBJotVqxQ3KI0tJSzJs3D82bN4dSqYREIsGmTZuc5vfJ3e3cuRMSiQTz588XOxRyAkyWyOlIJBKrh1KpRFBQEDp37oyJEyfi559/RllZmUPOrdPpoNPpHHJsR6soUXM3ZWVlGDZsGH766ScMGjQI8+bNw6xZs6rcR8zkYv78+ZBIJNi5c2eN9128eDHeeOMNhIeH49VXX8W8efPQqlWrSus3hPefSCxysQMgqsy8efMA3PoDmZubizNnzmDNmjVYvnw5unTpgnXr1qFFixZW+6xevRp6vV6McAEA77zzDmbNmoVGjRqJFkNlxH5t7OHq1as4e/YsJk2ahP/+979ih+NQW7ZsgZeXF7Zt2waFQmEpLy0tRUJCAnx9fUWMjqhhYbJETqui5u+0tDS88MIL2LBhA/r3748jR44gODjYsj0qKqoeI7QVFhaGsLAwUWOojNivjT2kpKQAAMLDw0WOxPFSUlIQEBBglSgBgIeHR5UtTETkAAKRkwEgVPWrWVZWJvTp00cAILz00ktW2+Li4mz2NZvNwsqVK4Xu3bsLgYGBglKpFCIiIoQHH3xQ+OqrrwRBEIQdO3ZYznvnY/z48VaxxcXFCampqcKzzz4rhIeHC1KpVFixYoUgCIIwfvx4AYBw9epVyz5Xr161HCchIUEYOnSo4OfnJ6jVaqFnz57CL7/8YvMc582bJwAQduzYYbPt9uPd+Zrd+YiOjq7ytSl/PT/99FOhS5cugkajEdRqtdClSxdh2bJlQllZmU398tcgIyNDmDRpkhAaGiooFAohJiZG+OKLL2zq382RI0eE4cOHC0FBQYJCoRCioqKEKVOmCCkpKTbnregxb968So9d/jpW9Ch/z8pt3bpVePjhh4WAgABBoVAITZo0EV599VUhJyfH5rgnT54UHn/8cSE6OlpQKBRCYGCg0KlTJ+Gll14SjEajIAiCEB0dXem5q1L+O1TZe1nX97+0tFR46623hGbNmgkKhUKIiIgQZsyYIZSUlFQYT0JCgjB+/HghIiJC8PDwEIKDg4UnnnhCOHfunE3dmzdvCtOnTxdatGghqNVqwdfXV2jRooUwfvx44fLly5Z61bkmqzJ58mQBgLBp06YKtx84cEAAIIwYMcJSdv78eWHmzJlCbGysEBgYaPldmzRpknD9+nWbY5R/Jtz5+xUdHW31ut6uquvWEa8j1R+2LJHLkUqlmDNnDnbu3In169djyZIlVQ5cfu211/DOO++gcePGGDVqFHx9fZGamorDhw9jw4YNGD16NHQ6HebNm4cPP/wQAPDyyy9b9u/YsaPV8bKzs9GtWzd4eXlh+PDhkEqlCAkJuWvcV69eRffu3dGuXTtMnjwZqamp+L//+z88/PDD+PLLLzF69OjavBwAbnVZbtq0CSdPnsRLL71kGfRcncHP48aNw5dffonIyEhMnDgREokE3333HaZOnYq9e/di3bp1Nvvk5uaiZ8+eUCgUGDlyJEpKSrBhwwY888wzkEqlGD9+fLXi3rJlC0aMGAFBEDBy5EhER0fj6NGj+PTTT7F582bs3bsXjRs3tjzHxMRErFq1CnFxcejTpw8AWL5WpE+fPsjNzcW///1vdOjQAcOGDbNsu/19XbBgAebPnw9/f38MGjQIwcHBOHXqFN5//3389NNP2L9/P3x8fAAAp06dwr333guJRIIhQ4agcePGyM/Px6VLl7Bs2TK8+eab8PDwwMsvv4xNmzZh165dGD9+fLXHwg0bNgw6nc7md7Gq97Im7/+TTz6JPXv24OGHH4aPjw9++uknvPvuu0hPT8eKFSus6m7duhXDhw9HaWkpBg8ejGbNmiE5ORkbN27Ejz/+iB07dqBz584AAL1ej549e+Ly5ct44IEHMHjwYAiCgKSkJGzevBkjR45EkyZNAFTvmqzK+PHjER8fj9WrV2Po0KE221etWgUAVuPUNm7ciP/85z/o27cvevToAYVCgTNnzuDzzz/HDz/8gCNHjjis+9xRryPVI5GTNSIbqMZ/3waDQZDL5QIA4cqVK5byilpP/P39hUaNGglFRUU2x8nIyLD6uar/Gm+Pbdy4cUJpaanN9qpalgAIr776qlX9w4cPC3K5XNBqtUJeXp6lvKYtS5Wd+3YVvTZffvmlAEDo1KmTUFBQYCkvLCwUYmNjBQDCunXrKnwNnn32WcFkMlnKz5w5I8hkMqF169YVnv9OBQUFgr+/vyCVSoXdu3dbbVu4cKEAQHjggQesyiv7b78qlb1e5bZv3y4AELp3727TirRixQoBgPDyyy9byl555ZVKWzWys7OtWuOqeh/vprLfxbq+/507dxaysrIs5YWFhULTpk0FqVQqpKamWj0XrVYrBAQECGfOnLE61p9//iloNBqhU6dOlrLvv//e5rUqV1JSIuTn51t+rsk1WZkWLVoICoXC6rkIwq3PBj8/PyE4ONjqGk1OThYMBoPNcX755RdBKpUKzz//vFW5vVqWHPk6Uv3h3XDkkpRKJQICAgAAGRkZd63v4eEBmUxmUx4YGFjjcysUCrz//vuQy2vWMOvr64vXX3/dqqxLly4YM2YMcnNz8d1339U4lrr64osvAAALFy6El5eXpVyj0WDRokUAgM8//9xmP7VajQ8++MDqNY2JiUHPnj2RkJCAwsLCu5578+bNyM7OxujRo9GrVy+rbdOnT4dOp8O2bdtw7dq1Wj236vroo48AAJ999plNS8zTTz+Njh07Vti65unpaVPm5+cHqdS5P1YXLVoEf39/y88ajQZjxoyB2WzGkSNHLOWrV69Gbm4uFixYgJiYGKtjtG3bFpMmTcLx48dx9uxZq20VvS4KhQLe3t5WZXW9JsePHw+j0Yj169dblf/www/IycnBmDFjrK7RRo0aQalU2hznwQcfRJs2bfDLL79U67w15ejXkeoHu+HIZQmCAAB3nTtozJgx+PjjjxETE4NRo0YhLi4O3bt3r/XdRDqdzmpQeXV17ty5wg+6Pn36YNWqVTh+/Hi1u6/s5dixY5BKpRV2ZcXFxUEmk+H48eM225o3b27plrpdZGQkACAnJ8cq+ars3ABw//3322yTy+Xo3bs3EhMTcfz4cYcOTt+/fz88PDywYcMGbNiwwWa70WhERkYGsrKyEBAQgNGjR+Pf//43hg0bhpEjR6J///7o2bMnmjZt6rAY7alLly42Zbe/b+X2798PADh58mSFN1tcuHABAJCQkICYmBjExcWhUaNGWLhwIY4dO4aBAweiZ8+e6Nixo01SZI9r8qmnnsLcuXOxatUqTJs2zVJeURcccOvzYt26dVi5ciVOnjyJnJwcqylI7hxIby+OfB2p/jBZIpdkMBiQnZ0NAAgKCqqy7pIlS9CkSROsWLECCxcuxMKFCyGXyzFw4EAsXrwYzZo1q9G5Q0NDaxVzZeOayo+Xl5dXq+PWRV5eHvz9/Sv8QyGXyxEYGIj09HSbbZWNnyn/T74682CVP9/K7h4sL8/Nzb3rseoiKysLJpMJCxYsqLJeYWEhAgIC0LVrV+zZswdvvfUWvvnmG6xZswYA0LJlS8ybNw9PPPGEQ+Otq4reu4ret6ysLAC3WtyqUt6K6OPjgwMHDmDevHn4/vvvLS01gYGBmDp1KubMmQMPDw8A9rkmIyIi0K9fP2zbtg0JCQlo3bo10tPTsXXrVnTs2BHt27e3qv/KK6/gww8/RFhYGAYMGIBGjRpZWm9WrlyJpKSku56zNhz5OlL9YbJELmnv3r0wmUwICQm568BZmUyGl19+GS+//DLS09Oxd+9efPXVV9iwYQPOnDmDM2fOVNg8X5nazoKdlpZWYfnNmzcBwOq/6vKuHJPJZFPfnsmDr68vsrOzUVpaavMBbDKZkJmZWWELkr3ODfzv+d8pNTXVqp6j+Pr6wmw2W5Lv6ujevTu2bNmCkpISHD16FFu3bsXHH3+MJ598EkFBQejfv78DI64f5a/7yZMnbRKPykRERGD58uUQBAFnz57F9u3b8cknn+CNN96A2WzGv/71LwD2uybHjx+Pbdu2YdWqVVi4cCHWrVsHk8lk00Kbnp6Ojz76CG3btsUff/xh08J7Z1deVaRSKYxGY4XbKro2Hfk6Uv1x7s51ogqYzWa89dZbAG7d2VMTwcHBGD58OL7++mvcf//9uHz5Mk6fPm3ZLpPJHDY7+LFjx1BQUGBTXj67c6dOnSxlfn5+AIDr16/b1L99XMntypvoaxJ/p06dYDabsXv3bpttu3fvRllZmeUuHXsrf74VzW5tMpmwZ88eAKjz+e/2unTr1g05OTk4c+ZMjY+tVCrRo0cPvPHGG5axT5s3b672ue3J3ufq1q0bAFjeh5qQSCRo06YNXnjhBWzbtg0AsGnTpgrr3u2arMrw4cPh4+ODtWvXwmw2Y9WqVZDL5TafC1euXIHZbMaDDz5okyglJyfjypUr1X5ufn5+SEtLQ2lpqc22iq7N+nodybGYLJFLSU9Px+OPP46dO3ciKioK//znP6usX1JSgn379tmUl5aWWloS1Gq1pTwgIAAZGRkoLi62b+C41e30xhtvWJUdOXIE69atg6+vLx599FFLedeuXQEAK1assGpdun79us0xbo8dQI0GRD/zzDMAgNmzZ1vN7q3X6y3LiDz77LPVPl5NDBs2DP7+/li/fj0OHDhgte3DDz/E1atX0b9//zqPV/Lz84NEIqn0dfn73/8OAJg0aZJl0svbFRUVWcX3xx9/VPj7Ud5yeOfvE1Cz96S27H2uCRMmQKvVYsGCBTh06JDNdrPZbJXonjlzpsLW0ztfl5pek1Xx9PTEqFGjcOPGDSxZsgQnT57EwIEDbcYUlrc+79271yqZLCwsxKRJkypswa1M165dYTKZbKZZWLlyZYXPy1GvI9UvdsOR0yofDGk2my3LnezduxdGoxFdu3bFunXr7nrnTHFxMe677z40a9YMsbGxiI6OhsFgsIxzGDJkCFq3bm2p369fPxw+fBgPPfQQevfuDaVSiQ4dOmDw4MF1fj69e/fG559/joMHD6Jnz56WeZbMZjPi4+Oturvuvfde9O7dG7t370bXrl1x//33Iy0tDT/88AMGDBhQYYtTv3798N5772HSpEkYMWIEvL29odVq8be//a3SmJ588kls3rwZX3/9Ndq0aYNhw4ZZFmy9evUqRo8ejTFjxtT5uVfEy8sLX3zxBR577DHExcXhscceQ1RUFI4ePYpff/0VoaGhiI+Pt8t57r33XuzZswdjxoxBixYtIJPJMGTIELRv3x79+vXDwoULMXv2bDRv3hwDBw5E48aNUVhYiKSkJOzatQv33Xcftm7dCgB49913sX37dvTq1QuNGzeGl5cXzpw5g59//hl+fn547rnnLOfu27cvpFIpZs+ejdOnT1taDOfMmVPn53Wn2rz/VQkICMA333yDRx99FN26dUO/fv3Qpk0bSCQSXL9+Hfv370dWVhYMBgMAYNu2bfjHP/6B7t27o0WLFggODkZycjI2b94MqVSKf/zjHwBqfk3ezfjx4/H5559j9uzZlp/vFBoaiscffxxfffUVOnbsiAcffBB5eXnYtm0bVCoVOnbsiBMnTlTrfC+88AJWrFiBKVOm4Pfff0dkZCROnDiB/fv3Y9CgQdiyZUu9vI5Uz8SduYDIFu6YhVihUAgBAQFC586dhYkTJwo///xzhTNLC4LtXEJGo1FYtGiR8NBDDwmRkZGCUqkUAgMDhXvvvVf49NNPbWYtLiwsFJ5//nmhUaNGgkwmq3QG78rcbQbvs2fPCkOGDBG0Wq3g6ekp9OjRQ9i6dWuFx8rJyREmTpxomdm6TZs2Qnx8fJXzBi1evFho1aqVoFAoajSD9yeffCLExsYKnp6egqenp9C5c2dh6dKlVc7gXd3nfzeHDh0Shg0bJgQGBgoeHh5CZGSk8Pzzzws3btywqVubeZYEQRAuXrwoDBo0SPD39xckEkmFM3jv2bNHeOyxx4SwsDDBw8NDCAwMFDp06CD8/e9/Fw4fPmyp98svvwhPP/200Lp1a8HHx0dQq9VCixYthBdeeEFITEy0OfeaNWuEDh06CCqVqlpziJWr6TxLglC7918Q/jef1J2vSfn5pk2bJjRr1kxQKpWCt7e30LJlS2Hs2LHCd999Z6l39uxZ4e9//7vVDNnR0dHCiBEjhH379lnq1fSarI5mzZoJAAR/f/9K9y8qKhL++c9/Ck2bNrXMGD516lQhMzOzwtemqt+1PXv2CL169RI8PT0Fb29vYeDAgcLJkyfvOj+aPV9Hql8SQfjr/msiIiIissExS0RERERVYLJEREREVAUmS0RERERVYLJEREREVAUmS0RERERVYLJEREREVAWnm5Ty4sWLWLduHbZt24bLly+joKAA0dHR6N+/P2bPnm2z6KbJZMLixYvxxRdfIDExEQEBARg6dCjefPNNy4y2t8vKysKcOXOwefNmZGVlQafT4dlnn8Urr7xiWUyyJjIzM/HLL79Ap9NZFmUkIiIi51ZcXIzExEQMGDDgrhMcO92klDNnzhQ0Go3w+OOPCx9++KEQHx8vTJgwQZDJZIKfn5+QkJBgVX/s2LECAGHQoEHCf//7X2H27NmCp6en0LZtW6GwsNCqbn5+vhATEyPIZDLhhRdeED777DNh3LhxAgDh6aefrlW8a9eutZlEkQ8++OCDDz74cI3H2rVr7/q33ulalkaOHIlZs2ZBq9Vayp577jl069YNkydPxuuvv46vv/4aALB9+3asXbsWQ4YMsVq8MjY2FiNHjsTixYvx+uuvW8rfe+89nD17FosXL8Yrr7wCAJg4cSJ8fX2xdOlSTJgwAb17965RvOVrDq1du7ZGU/QTERGReBISEjB27FjL3/GquMwM3vn5+fD19UXLli1x7tw5AMDTTz+NVatWYefOnYiLi7Oq37hxY8hkMly6dMlSptPpkJGRgczMTKsus8TERDRu3BjPPvssPv/88xrFdezYMcTGxuLo0aMOW52diIiI7Ksmf79dZoD3jRs3AAAhISGWsoMHD0IqlaJbt2429bt3747Lly9bVrFOS0tDUlISOnbsaDO2SKfTISwsrMIVoYmIiKhhc7puuMrMnTsXADBhwgRLWXJyMgIDA6FUKm3qR0REWOr4+/sjOTnZqryi+re3Qt0pNTUVqampNuUJCQnVfxJERETkclwiWXr77bfx7bffYtiwYRg/frylXK/Xw8/Pr8J9VCqVpc7tXytKrMrrl9epSHx8PBYsWFCr+ImIiMh1OX2y9O9//xuvvfYa+vTpg3Xr1kEikVi2qdVqlJSUVLifwWCw1Ln9a1X1y+tUZPLkyRgyZIhNefkAMSIiInJPTp0sffDBB5g+fTr69euH77//3iaZiYiIwIULF1BSUmLTYnRnt9vt3XIVSU5OrrSLDgDCwsJs5ngiIiIi9+e0A7wXLVqE6dOn46GHHsKWLVsqbPXp2rUrzGYzDh48aLNt//79aNq0Kfz9/QHcGhgeFRWFEydOoLi42KpuUlISUlNT0bVrV8c8GSIiInJZTpksvf3225g1axYGDRqETZs2WcYf3WncuHEAgMWLF1uVb9y4EYmJiZbtt9fX6/X49NNPrcrL97+zPhEREZHTdcN98skneO211xASEoLhw4djw4YNVtu9vLwwbNgwAED//v3xxBNPYP369Rg8eDCGDh2Kq1evYsmSJYiJicH06dOt9p0xYwa++eYbzJgxA4mJiejQoQN27dqFNWvWYNy4cTZzNRERERE5XbJ0+PBhALfmRXrmmWdstkdHR1uSJQBYtWoV2rVrhxUrVmDatGnw9/fHuHHj8NZbb8HLy8tqXx8fH+zZswdz5szBhg0bEB8fj+joaLzzzjt49dVXHfq8iIiIyDW5zAzezoozeBMREbket5zBm4iIiEgMTJaIiIiIqsBkiYiIiKgKTJaIiIiIquB0d8MRkX0ZDAYYjcZa769QKCqd64yIqCFgskTkxgwGA6J0OmSkpdX6GEEhIbiWmMiEiYgaLCZLRG7MaDQiIy0Nr6/bBZXa6+473MGgL8QbY+JgNBqZLBFRg8VkiagBUKm9oNLUPFkiIiIO8CYiIiKqEpMlIiIioiowWSIiIiKqApMlIiIioiowWSIiIiKqApMlIiIioiowWSIiIiKqApMlIiIioiowWSIiIiKqAmfwJiKnxoWAiUhsTJaIyGlxIWAicgZMlojIaXEhYCJyBkyWiMjpcSFgIhITB3gTERERVYHJEhEREVEVmCwRERERVYHJEhEREVEVmCwRERERVYHJEhEREVEVOHUAEVkxlZmRnFOM1DwDUnOLEDr+Qwxcdhgechn8NQqE+qjQppEPOkZoEavzg1IuEztkIiKHYrJERACA7CIjTl7Pxfm0ApSYzAAAmQSQqbygUcgAiRRJWXocu5aDH/9MBQBoFDL0bhGEQe3D0T8mmIkTEbklJktEDVy+oRQHrmThXGoBBAABGgXu0fkgws8TXpJSzB0xCAeuX4ePjw8AQG8sQ8LNQpxIzsfuS9nYevomfj59E76ecgxuG4wx9zRCI+3/Zsvm2mxE5OqYLBE1UIIg4GRyHvZdyoTJLCDCzxPdmwQgzFcFiUQCACjIKQIkUkRGRlZ6HKlGC01MXxjbP4C1xSasOXgd+vP7kH9oI4w3L3FtNiJyeUyWiBzMYDDAaDTWen9HtMwUlZjw8+mbuJFbDB+VHPe3CkZ0gMamXpmpFBDMmLXiV/hoA6o8piAIuJFvxMmUQiS37g1N694I0chw6ovZKCkpYbJERC7LKe+GW7hwIUaPHo3mzZtDKpVCLq88p+vTpw8kEkmlj+bNm1vVnz9/fqV1R44c6einRg2MwWBAlE4HX1/fWj+idDoYDAa7xZSeb8BXh6/jRm4x2jXyxZh7oytMlG6n/Gtttqoenl7eaBYegBFdovFk1yi0DvVGhr4MIaPfxIS1p3DgSpbdngMRUX1yypal2bNnQ6vVolOnTigsLERGRkaldV977TVMnDjRpnzr1q1Yt24dhgwZUuF+S5YsQWBgoFVZdHR03QInuoPRaERGWhpeX7cLKnXNF4I16Avxxpg4GI1Gu7TMXEwrwK9n0yAIwIMxIWgd5lPnY1YkyFuJB9uEolOoCvGr1uKkZAAe/+8B9GwWgFceaInYaD+HnJeIyBGcMlm6dOkSmjZtCuBWy1FVydIDDzxQYXl8fDwAYNKkSRVuHzZsGHQ6Xd0CJaom1V8tM2IRBAEHrmTh4NVsqBUyDGofhjBfT4ef11slR/bWj7H7P69h+cFUbDp+AyMu/YHBHcIx6+FWaKR1fAxERHXllN1w5YlSbZ07dw579+5Fr1690KpVq0rrFRQUoLS0tE7nInJ2ErkSv13MxcGr2QjyVuLxeyLrJVG6XaSfJz4Y1RG//j0O/VsH44eTKbj//Z344Nfz0BtN9RoLEVFNOWWyVFeff/45gMpblQCgQ4cO8PHxgVKpRIcOHSz7ELmTm/klCBmzCFeyDWgW7IXHYiPgrfIQLZ5mwV74fPw9WPNsV0QHqPHR9kvo+/5O/PTXvE1ERM7IKbvh6sJoNGLVqlXw8/PDY489ZrNdq9XimWeewX333YfAwEAkJiYiPj4ekyZNwvHjx/HJJ59UeNzU1FSkptp+oCckJNj9ORDZw/FrOZi06jiUoc0QG+GFni1CLVMCiK1X8yD89GIvrD90DYu3XcDUdccwsF0o3hjaFoFeSrHDIyKy4nbJ0qZNm5CZmYkXXnihwgGxL7/8sk3ZlClT0KdPHyxbtgzjxo1Dt27dbOrEx8djwYIFjgiZyO42Hb+BGd+eghRAxqZ30GXhR06TKJWTy6QY112Hh9qG4fXNp/HTnzdx6GoO/v14R/RsFnj3AxAR1RO364arThfcneRyOebMmQMA2LJlS4V1Jk+ejKNHj9o81q5dW/egiezEaDJjwQ9n8PL/nUCARoGVT3WA/vw+scOqUpC3Ep+OjcW/H+8IQ2kZxi4/iA9/uwCzWRA7NCIiAG7WsnT16lX89ttv6NatG9q1a1ejfRs3bgwASE9Pr3B7WFgYwsLC6hwjkaPcyC3Gi+uP42hSDrrq/LH0yU5QofaTYda3oR0boX2EFtPWHcOHv13ElYwivD6gsdhhERG5V7K0fPlyCIJQo1alchcuXAAAhIaG2jssIocSBAH/d/g63vwxAYUlJjzXuwn+MaAlPGRS5Oe7TrIEAI0DNfh2Sg+89NVxfH8yBSk5RZAo1GKHRUQNnNskS2VlZVi5ciV8fHwwevToCuuYTCYUFRXB19fXqlyv12PevHkAgKFDhzo8ViJ7OX4tBwt/PoeDV7MR6qPCx092Qt+WwWKHVSeeChk+HRuLf205i5V/JCJ41AIYy8zgYilEJBanTJbWrFmDpKQkAEBSUhIEQcCbb75p2V4+vuh2P/30E27cuIHnn38eGk3FSzcUFhZCp9NhyJAhaN26NYKCgpCUlISVK1ciOTkZM2fORGxsrGOeFJGdlJkF7L6YgXUHruG3hDRIJcATXaMw6+FW8PUUb1oAe5JJJZg3OAYSswkrDgBbz+Xg0VgveMjcbpglEbkAp0yWli9fjl27dlmVzZ071/J9RcnSZ599BqDqgd2enp547LHHcOjQIWzZsgX5+fnQarWIjY3F0qVL2apE9U4QBJjMAszCrcHMEty6Y638xjWTWYBUo8WpG/lIuZCHg1eysfdSBtLySwAAA9qE4B8DWqJZsLco8TuSRCLBy311+PfSZUCXIdh6+iYGtQ9zurv6iMj9OWWytHPnzhrv8/3339+1jlKptCRVRPWtuLQMSVlFuJatR3aREXn6UhhM5rvuF/m3tRi76qTl5yaBGrzYLwqPxUYg0t+9x/NIJBLk/P5fdB4wCpcyi7D/ShZ6NOW0AkRUv5wyWSJyJx6B0fj9Yg4uZ6Wi/GZ4jUIGfy8F1Ao55FIJpH+1lgjlNQRAAFBmMuHYtm8x5+9T0SLcH/fo/BDs0/BG78Q11SLfmIPDiTkI9FKiRYj7taQRkfNiskTkIHnFpXjt+/MIf/YTXMoyINLfEy1CvKEL0MBLWb1Lz1BUiN/+sQzPbngHPj4+Do7YecmlEgxuH471h2+N0wrxUbnN+Cwicn4cLUnkAPsuZWLAkt3YcjodxVeOYHjbAAzvFIG24b7VTpTImpdKjgFtQlFaJuCXMzct47yIiByNyRKRnX195Dqe+uIQCgylmD+wOdI3zEeQl0LssNxClL8aHSO1SM0z4GhSjtjhEFEDwWSJyI7+s+syZnxzCqE+Knz/wn0Y3pGTnNpbz6YB8NcocOBKFrIKS8QOh4gaAPYHEN2FwWCA0Xj3mbDXHLqB9367gmZBavzn8bYIUpqRn59fDxE2LHKZFA+0DsH/HbmOnRcyMLxTI04nQEQOxWSJqAoGgwFROh0y0tKqrKdu2ROBQ2fClH0DO/79DzR/tdBqu6nM5MgwG5xQXxXahPvgTEo+LqYX8u44InIoJktEVTAajchIS8Pr63ZBpfaqsM7NAiO2nM2CUi7FsH6d4f3I/yZUzctMw6JJA1FWVlZfITcYPZoG4FJ6IfZczIQuQAOFnKMKiMgxmCwRVYNK7QWVxjZZKi4tw++XMiCRSDC0YyME3TEHkkFfaLMP2YdaIUf3pgHYeT4Dx67loFuTALFDIiI3xWSJqJYEQcC2s2koLDGhf+vgBjlZZHXVduzW3fZrF+6LE9dycfxaLjpEauHpIavVeYiIqsJkiaiWTlzPxdXMIrQK9UZMWMOdMLIqpcYSQCJFZGRknY5T2ZgvqVSCbk0CsPXMTRxNzMF9zbkUChHZH5MlolrI0Rux73IWtJ4e6NsymHdjVaLMVAoIZsxa8St8tDXvJqvOmK8WIV44kqTAieRcdIzSctJPIrI7fqoQ1ZAgCPjtbBrKzAL6x4RwYHE1KCsZ83U31RnzJZFI0L1JAH44lYojidno0zK4NiESEVWKn/JENXQqOQ8peQZ0iPBFI62n2OEQgMaBGgR7K3EmJR96I6dpICL7YrJEVAOFBhP2Xc6Et0qOHk05PsZZSCQSxEb7wWQWcCo5T+xwiMjNMFkiqoG9lzJRWiagb8tgdr85mWZBXvD19MDJ5FyUlpnFDoeI3Ag/7Ymq6UZOMc6nFUAXoEbjQI3Y4dAdpFIJOkVpYSg142wKl5khIvthskRUDWZBwM4L6ZBJJIhrESR2OFSJmDAfeHrIcOxaDsyCIHY4ROQmmCwRVcO59GJkFhrROVoLrVohdjhUCQ+ZFO0a+SLfYEJiVpHY4RCRm2CyRHQXEoUnjiQXQK2QoUu0v9jh0F20beQDiQQc6E1EdsNkiegufLo+iuJSM7o1DuCgbhfgrfJAk0ANkrL0yDNwGgEiqjt+8hNVIb2gBD73DIfWU4424VzSxFW0j9ACAM6m6cUNhIjcAmfwJrdmMBhgNBprvf/H2y9DqlDh3ihvSKVc0sRVRPp5wk/tgfMZekjkHGNGRHXDZInclsFgQJROh4y0tFrtL/cNQfikeJSknkejLnF2jo4cSSKRoF0jX+y+mAnP5t3FDoeIXByTJXJbRqMRGWlpeH3dLqjUNV+XbMelXFzILEbu7rUwD+nlgAjJkVqF+WDvpUx4tX9A7FCIyMUxWSK3p6rFIq7ZRUZczCxGmJcMSdf/dFBk1ZefX7tJFmu7nzvw9JBB56fCZXN73Mg1wMeHY86IqHaYLBFVYP+VLAgAOoUqcUDEOEqNJYBEisjIyDodx1TWMO8KaxnkiSvZBnz/ZxpaRwWLHQ4RuSgmS0R3SC8w4FJ6IZoEahCkFveG0TJTKSCYMWvFr/DRBtR4/7zMNCyaNBBlZWUOiM75RWiVMBVkYfMpJf7xcFsO0ieiWmGyRHSH/ZezAADdmgQAhhyRo7lFWYuuRAAw6AsdEI3rkEokKDq9HSnej+HAlSz0aBYodkhE5II4zxLRbVJyi5GYpUeLYC8EeSvFDofsoPD0bwCAjcdviBwJEbkqJktEt9l/JQsS/NWqRG7BlH0DbcK8sPX0TRhKG2Z3JBHVjVMmSwsXLsTo0aPRvHlzSKVSyOWV9xbu3LkTEomkwkdgYMVN7llZWZgyZQrCw8OhVCrRsmVLvPvuuzCZGuYgWLrlWrYeyTnFaB3mAz8NJzJ0JwPbBKOwxITt59LFDoWIXJBTjlmaPXs2tFotOnXqhMLCQmRkZNx1n+eeew69elnPhaNSqWzqFRQUoHfv3jh//jymTp2K9u3bY/fu3Zg5cyYSEhKwYsUKuz0Pch2CIGD/5SxIJcC9jblYrrt5KCYIi3+/gk3Hb2BguzCxwyEiF+OUydKlS5fQtGlTAECfPn2qlSx1794dY8eOvWu99957D2fPnsXixYvxyiuvAAAmTpwIX19fLF26FBMmTEDv3r3r9gTI5VzNKsLNfAPaN/KFj6eH2OGQnQV5KdCjaSB2ns9Anr4Uvmq+x0RUfU7ZDVeeKNWUXq9HcXFxlXVWr14NtVqNKVOmWJVPnz7dsp0alvJWJZlUgnvYquS2hnQMh7HMjJ9Pp4odChG5GKdMlmrjpZdegkajgVqtRmRkJGbPng293nrF8bS0NCQlJaFjx47w9PS02qbT6RAWFoZDhw7VZ9jkBC6mFyKz0IgOEb7wUjplYyvZwUNtQ6GQS7H5RIrYoRCRi3H5vwweHh545JFHMHDgQERGRiIjIwPfffcdFi5ciN9++w27du2CWq0GACQnJwMAIiIiKjxWREQELl26VOG21NRUpKba/keakJBgp2dCYigzC/jjchYUMim6RLNVyZ35qDwQ1yIIvyekIauwBAFenBqCiKrH5ZOlnj17YsuWLVZlzzzzDGbNmoVFixbho48+wqxZswDA0tKkVFb8IalSqWxao8rFx8djwYIFdoycnMHplDzkFZeie9MAeCpkYodDDjawXSi2nU3Dr2fT8ETXKLHDISIX4TbdcHeaO3cupFKpVSJV3sJUUlJS4T4Gg8FS506TJ0/G0aNHbR5r1661f/BUL4wmMw5eyYZGIUOnSK3Y4VA9uL9VCDxkEvx8+qbYoRCRC3H5lqXKaDQaBAcHIz39f/OqlHe/lXfH3Sk5ObnSLrqwsDCEhfGWY3dy/FoOikvLcH/LYHjI3Pb/BrqNr6cH7msWiD0XM5GrN0Kr5nxaRHR3bvsXIj8/H2lpaQgNDbWUhYSEICoqCidOnLC5ay4pKQmpqano2rVrfYdKItAbTTh6LQdatQdiwn3EDofq0cPtwmAyC9h2Nk3sUIjIRbh8spSVlWVTJggCZsyYAUEQMGzYMKtt48aNg16vx6effmpVvnjxYst2cn+Hr+agtExAj6YBkHEl+gblgdYhkEkl2MquOCKqJqfshluzZg2SkpIA3GrxEQQBb775pmX7nDlzLN8/9NBDCAkJQZcuXRAREYGMjAxs3rwZBw8eRO/evTFt2jSrY8+YMQPffPMNZsyYgcTERHTo0AG7du3CmjVrMG7cOMTFxdXPkyTR5BWX4tSNXIT4KNEsyEvscKie+WkU6NE0AHsuZiLfUAofFSeoJKKqOWWytHz5cuzatcuqbO7cuZbvb0+WRo4ciR9++AGffvopcnJyoFQq0bp1ayxZsgTTpk2Dh4f1B6GPjw/27NmDOXPmYMOGDYiPj0d0dDTeeecdvPrqq459YuQU/ricCbMA3NcsEBIJW5UaoofbhmHPxUxsT0jHsE6NxA6HiJycUyZLO3furHbdmTNnYubMmTU6flBQEOLj4xEfH1/DyMjV3cgtxoW0QugC1Ijwq/jOR3J/D7YJwZxNf+KnP1OZLBHRXbn8mCWi6jILAnadz4BMIkHvFkFih0MiCvRSomtjf+y6kIGiEpPY4RCRk2OyRA3G6Rt5yCgsQacoLfx4y3iDN7BdGEpMZuw4n373ykTUoDllNxw5D4PBAKPRWOv9FQoFVCqVHSOqHb3RhD8uZ8FLKcc9Oi5rQsCANqGY9/0Z/PznTQxqHy52OETkxJgsUaUMBgOidDpkpNV+PpqgkBBcS0wUPWHaeT4DJSYz+rUKhkLOBlUCQnxUiI3yw47z6Sg2lnG5GyKqFJMlqpTRaERGWhpeX7cLKnXNb7E36Avxxpg4GI1GUZOlK9nFuJheiKZBGjQL5lQB9D8PtQ3FkaQc7L6YgQFtQu++AxE1SEyW6K5Uai+oNK6ZZEhVXth7NR9KuRR9WwZzqgCy8mBMKN78MQG/J6QxWSKiSjFZIofLz8+v9b51GfMkCAICHn4JxaVmPBgTAo2Sv+5kLSpAjZYh3vg9IR1lZoGzuRNRhfjXgxym1FgCSKSIjIys9THqMuZp7eEUqFt0R7MAFVqFetc6BnJv/WOC8cmOyzhxPRex0X5ih0NETojJEjlMmakUEMyYteJX+GgDarx/XcY8Hb+WgyXbr6I0+wZ63dOZ3W9Uqf6tQ/DJjsv4LSGNyRIRVYjJEjmcsp7HPF3L0mPS6qOQSSXI2LQQioHf1Nu5yfV0iNAi0EuJ386mYeZDrcQOh4icEO+hJreSVViCp744iKyiErwzpCVKM66KHRI5OalUgv6tg3ExvRCJmUVih0NETojJErmNzMISPL3iMBKz9HhjSBv0bxUodkjkIvq3DgEA/JZQ+znFiMh9MVkit5CUVYSRn/6BP2/k4e/9W2Bcd53YIZEL6dksECoPKZMlIqoQxyyRy9t2Ng2zvj2FHL0Rbw5ri7HdosUOiVyMp0KG+5oFYcf5dOTqjdBy7UAiug1blshlpeUb8Pf/O4FJq4+gtMyM/4yNZaJEtfZATDDKzAIX1iUiG2xZIpdSZhZw4nouvjp0DZtO3EBpmYB+rYLx9vB2CPERf8Fecl33twqBRPInfjubjkc7RYgdDhE5ESZL5DRMZWaUmMww/vW1sLAE6pY9seFYKtKLb+BKRhEOJ2YjV18KALhH54fJvZuiX2suY0J1F+StRKdILXZdyECJqQxKORfWJaJbmCyRKARBwI3cYlxOL0J6gQGZhUYYy8w29YKGzca/tl4CAEglQJtwX4y9NwgPxISgQ6S2nqMmV1XdJXd6NdHi2LVc7DidjB5Nbk1QWZcld4jIPTBZonplFgT8eSMPR5NyUGAwAQCUcimCvJXwUsmhlEmh9JBCIZdCWlaKjR++hm/Wr0HLRgGI8FNDIecwO6q+mi654xEQifCJn+LJfyxEzm//AVC3JXeIyD0wWaJ6k5ZvwPZz6UgvKIFaIUNstB9ahXojQKOosBvNUFSItef2oGcTP/j41N8M4OQ+arrkjiAI+OpEBry6D8WrUyeipLio1kvuEJH7YLJE9eJyRiF+Pn0TgiAgNtoPXXX+bCWielOTJXcaBxXjZHIe9FBAo+ZYOCLi1AFUDy5mleDHU6lQyKQY1SUS9zULZKJETqtxoAYAcDWLS58Q0S38i0UO5dmsK/YlFcFbJcdjXSJ4ez85vUZaT8ilEiRm6sUOhYicBJMlcpj8EjMCB02HUibBiM4R8OOsyOQC5DIpIv3VSMkrRonJ9g5NImp4mCyRQ5SWmbEzqRgSDxXiGnvBx9ND7JCIqq1xgAaCAFzPLRE7FCJyAkyWyCEOXMlCjsGM3D1rEe7DRIlciy5QDYDJEhHdwmSJ7C67yIgT13MR4ClF/sFvxQ6HqMa8VR4I9FLgWm4JAN4RR9TQMVkiuxIEAbsuZMAsAF3DVYDAMR/kmnQBGhhMZijCmosdChGJjMkS2dWVzCJcy9ajdag3gjVcW4tcl+6vKQQ8m94jciREJDYmS2Q3giDgwJUseMgk6NksUOxwiOokzEcFpUwCzyZdxA6FiETGZInsJilbj8xCI9qG+0Kj5OTw5NqkUgkitUoow5ojo9AodjhEJCImS2Q3RxNzIJUAnaK0YodCZBdRfrcmUd17OVvkSIhITE6ZLC1cuBCjR49G8+bNIZVKIZdX3kqxa9cuvPDCC+jQoQO0Wi20Wi1iY2PxwQcfoLi42Kb+/PnzIZFIKnyMHDnSkU/Lrd3MMyA5txgtQ7zhreJUAeQeInyVEAQzdl9iskTUkDllX8ns2bOh1WrRqVMnFBYWIiMjo9K6M2fOxLVr1/Doo49i6tSpMBqN2Lx5M6ZPn45169Zh3759Fa4WvmTJEgQGWo+riY6OtvtzaSiOXssBAHSO9hM5EiL78fSQoiTlPA4oPWA0mbmmIVED5ZTJ0qVLl9C0aVMAQJ8+fapMlhYuXIj77rvPqvXphRdewJNPPon169fjiy++wNSpU232GzZsGHQ6nd1jb4iKSky4nFGIaH81Ar2UYodDZFfFlw+jqFFrHEnMRg/euEDUIDnlv0nliVJ19OnTp8JuuscffxwAcOrUqUr3LSgoQGlpac0DJCvnbxZAEIA24T5ih0Jkd8WXDwMAtp9LFzkSIhKLUyZL9nDjxg0AQEhISIXbO3ToAB8fHyiVSnTo0AGff/55fYbnNgRBwNnUfCjlUjT+a14aIndSmn4VwV4KbD/PZImooXLKbri6KigowLvvvgsPDw+MGTPGaptWq8UzzzyD++67D4GBgUhMTER8fDwmTZqE48eP45NPPqnwmKmpqUhNTbUpT0hIcMhzcBXpBSXIKjKifSNfyGVum3tTA3dfM39sPHETSVlFiA7gPwVEDY3bJUsmkwmjR49GYmIilixZghYtWlhtf/nll232mTJlCvr06YNly5Zh3Lhx6Natm02d+Ph4LFiwwFFhu6yE1HwAQGt2wZEb693UDxtP3MSOc+l4umdjscMhonrmVk0BJpMJTz75JH7++WfMmDGjwsSoInK5HHPmzAEAbNmypcI6kydPxtGjR20ea9eutVf4LsdkNuP8zQL4axQI8ebAbnJf3Rr7QSGTYvv5ym82ISL35TYtS6WlpXjiiSfw7bffYvbs2Xj77bdrtH/jxrf+W0xPr3hcQlhYGMLCwuocpzu5nl0Mg8mMztHekEi4Mju5L7VChnub+OPAlSzojSaoFW7z0UlE1eAWV7zRaMSoUaOwefNmzJs3D/Pnz6/xMS5cuAAACA0NtXN07utyRiEAoFmwl8iREDlWfn4+ukf7YM/FTGw7dR19WwRUe1+FQlHhXG9E5DpcPlkyGo0YMWIEtmzZgrfeegv//Oc/K61rMplQVFQEX19fq3K9Xo958+YBAIYOHerQeN2FWRBwJaMI/hoF/NQKscMhcohSYwkgkSIyMhJyv3A0eu6/eOa1xcj+teIbQSoSFBKCa4mJTJiIXJhTJktr1qxBUlISACApKQmCIODNN9+0bC8fXwQAY8aMwZYtW9CzZ09ERUXZjCFq2rQpunfvDgAoLCyETqfDkCFD0Lp1awQFBSEpKQkrV65EcnIyZs6cidjY2Hp4hq7vZp4BxaVlaNuIA7vJfZWZSgHBjFkrfoWPNgDrT6TD695BmP78hGp1PRv0hXhjTByMRiOTJSIX5pTJ0vLly7Fr1y6rsrlz51q+vz1ZOnz41oRx+/btw759+2yONX78eEuy5OnpicceewyHDh3Cli1bkJ+fb1lLbunSpWxVqoHyLrimQY7vgsvPz6/X/YjupFR7QaXxQuNAPU4m50EPBQI0vKmBqKFwymRp586d1a6bmJhY7bpKpRKfffZZzQMiK4Ig4HJGEbyUcgQ78C6427tA6sJUZrJTRNTQRQdocDI5D0lZegRwaR+iBqNOydLGjRsxdOhQyGQye8VDLiC7yIi84lK0j/B16F1wd3aB1FReZhoWTRqIsrIyB0RHDVGEnydkUgkSs4q4aDRRA1KnZGnkyJEIDw/HM888g4kTJyIqKspecZETu5JZBABoUk/Lm5R3gdSUQV/ogGioIfOQSRGh9URyTjGMJjMUcreaqo6IKlGnK33atGnQ6/V488030bRpUwwePBhbtmyBIAj2io+c0LVsPeRSCRppPcUOhajeRQeoUSYISM7Rix0KEdWTOiVLH3/8MVJSUvDFF1+gS5cu+PHHHzF06FBER0fjjTfeQEpKir3iJCdRWmZGaq4B4VpPrgVHDZLurxbVxCwmS0QNRZ3/2qlUKjz99NPYv38/Tp06halTp6KwsBDz58+HTqfDo48+iq1bt9ojVnICKbnFKBMERPmrxQ6FSBRaTw/4enogKauIrehEDYRdmwbatm1raW1asWIFQkJC8P333+ORRx5B48aN8f7776OoqMiep6R6di371n/TTJaooZJIJIgOUCPfYEKOvlTscIioHti9H6WoqAirV6/Gxx9/jBs3bkAQBHTo0AFZWVmYMWMGWrVqhRMnTtj7tFRPrmXr4ekhQ6AXZ+2mhksXUN4Vx3/+iBoCuyVLx48fx/PPP4/w8HA8//zzOHfuHCZOnIhjx47h2LFjSElJwcKFC5GZmYkXX3zRXqeleqQ3mpBZaESkvycXzqUGrXwKgSSOWyJqEOo0dYBer8f69esRHx+Po0ePQhAEtG7dGs8//zzGjx8PH5//LYXh5eWFGTNm4Pr161i+fHmdA6f6dz27GAC74Ig8ZFI00nriRk4xSsvM8ODNDkRurU7JUnh4OAoKCiCTyTBixAhMnToVffr0qXKfRo0awWAw1OW0JBKOVyL6H12AGtey9bieo0eTQMcv+0NE4qnTv0Pe3t6YP38+rl27hq+//vquiRIATJ06FVevXq3LaUkkN3KL4evpAW+Vh9ihEIku+q9xS0mZ7Iojcnd1allKSkqCVFqzfMvHx8eqe45cQ1GJCXnFpWgd5i12KEROwU/tAR+VHIl/TSHAcXxE7qtOLUv9+/fH6tWrq6yzdu1a3H///XU5DTmBlNxb45XCOWs3EYDyKQQ0yDeYkMspBIjcWp2SpZ07dyIxMbHKOklJSdi1a1ddTkNOICXv1jizRr5MlojK6QJujd/jFAJE7s3ht3AUFxdDLq9Tbx85gZTcYnh6yKBVc7wSUblIfzVkEgmXPiFyc3VOlirrpxcEAUlJSfjpp58QGRlZ19OQiIxlZmQUlCBcq+K4DKLbeMikCPdT4UburSkEiMg91ThZkkqlkMlkkMlkAID58+dbfr79IZfL0aRJE5w4cQKPP/643QOn+pNeWAoBHK9EVBFdgAZlZgHJOcVih0JEDlLj/rHevXtbWhd2796NqKgo6HQ6m3oymQwBAQHo168fJk6cWOdASTw3840AgHCOVyKyoQvQYM/FTCRlFaFxoEbscIjIAWqcLO3cudPyvVQqxYQJE/D666/bMyZyMjcLjJBLJQjyVoodCpHT8VN7wFsl57glIjdWp5HXV69ehVartVMo5JQkUqQVliLURwWZlOOViO4kkUigC9Dgzxt5yNEb4afmItNE7qZOA7yjo6Ph6+trr1jICXkERsFkFhDqqxI7FCKnVT6FABfWJXJPNWpZeuONNyCRSDBt2jT4+/vjjTfeqNZ+EokEc+fOrVWAJC5lWAsAYLJEVIUIPzWkklvzLXWM1IodDhHZWY2Spfnz50MikWD06NHw9/fH/Pnzq7UfkyXXpfgrWQrxYbJEVBmFXIpwrSeSc4phKjNDLnP4FHZEVI9qlCzt2LEDABAVFWX1M7kvZVhzaBRSeCk5sShRVXQBGiTnFCM5pxg63hVH5FZq9BcwLi6uyp/JvRSXlsEjSIcgDWftJrobXYAaey/d6opjskTkXthWTJU6d7MQEqkMwV68u4fobvw1Cngp5RzkTeSG6pQsJSYm4qeffkJR0f8WkTSZTJg3bx46dOiAHj164LvvvqtzkCSO06mFAIAgL7YsEd3NrSkE1MgtLkWu3ih2OERkR3UaiLJgwQJ8//33SEtLs5S9+eab+Ne//mX5edSoUdizZw+6detWl1ORCP5MKQAAdsMRVZMuUIPTKflIytJDy/mWiNxGnVqW9u/fj379+kEuv5Vzmc1mLFu2DK1atcK1a9dw6NAhaDQaLFmyxC7BUv06nVKA0qzrUMrZW0tUHZG3TSFARO6jTn8F09LSEB0dbfn5xIkTyMzMxLRp0xAREYEuXbpg6NChOHz4cJ0DpfqVXWREcq4BJSkXxA6FyGXcOYUAEbmHOiVLpaWllkV1AWDfvn2QSCS4//77LWURERFITU2ty2lIBKeScwEAxpsXxQ2EyMXoAjQwmQXcyC0WOxQispM6JUsRERE4deqU5eeffvoJgYGBaN26taUsPT0dPj4+dTkNieBMSj4AwJh2SeRIiFxL9F9Ln3BhXSL3UadkadCgQdi2bRteffVVzJkzB9u2bcOQIUOs6ly4cMGqq646Fi5ciNGjR6N58+aQSqWWMVGVMZlMWLRoEVq2bAmlUonw8HBMmTIFWVlZFdbPysrClClTEB4eDqVSiZYtW+Ldd9+FyWSqUZzu7GxKPiQAjOmJYodC5FIC/ppCgOOWiNxHne6GmzFjBjZt2oQPPvgAANCoUSMsWLDAsj09PR379+/Hiy++WKPjzp49G1qtFp06dUJhYSEyMjKqrD9hwgSsXbsWgwYNwquvvoqrV6/iww8/xN69e3HgwAFoNP+bIK6goAC9e/fG+fPnMXXqVLRv3x67d+/GzJkzkZCQgBUrVtQoVnd1OiUPugBPJJYaxA6FyKVIJBJEB6hxJiUf+Qb+A0bkDuqULAUHB+PPP//E77//DuDWjN7e3t6W7ZmZmXjvvfcwYMCAGh330qVLaNq0KQCgT58+VSZL27dvx9q1azFkyBBs3rzZUh4bG4uRI0di8eLFeP311y3l7733Hs6ePYvFixfjlVdeAQBMnDgRvr6+WLp0KSZMmIDevXvXKF53k28oRVKWHg/HBGGn2MEQuSBdgAZnUvJxLbdE7FCIyA7qfE+4p6cnBg0ahEGDBlklSgAQExODl156Ca1atarRMcsTpepYvXo1AFgSn3IjRoyATqezbL+9vlqtxpQpU6zKp0+fbnW8hizhr/FKrUK9RI6EyDVF+ntCKgGuM1kicgsuP4HOwYMHIZVKK5z0snv37rh8+TKys7MB3JrqICkpCR07doSnp6dVXZ1Oh7CwMBw6dKhe4nZmp/9KllqHcH0rotpQymUI8/VESr4RkHFSVyJXV+el5LOzs/HFF1/g0KFDyMnJQVlZmU0diURi6aqzt+TkZAQGBkKpVNpsi4iIsNTx9/dHcnKyVXlF9S9dqvjur9TU1AqnQEhISKht6E7rTEoeAKBVCFuWiGpLF6DGjdxiqCLbiB0KEdVRnZKlc+fOWcYUCYJQab3b52KyN71eDz8/vwq3qVQqS53bv1aUWJXXL69zp/j4eKvB6+7sbEo+Gmk9oVXzP2Ki2ooO0GDf5Sx4NukidihEVEd1SpZeffVVpKenY9asWXjuuecQGRkJmUxmr9iqRa1Wo6Sk4nEBBoPBUuf2r1XVL69zp8mTJ9tMiwDcalkaO3ZsjeN2VobSMlxML8T9rYLFDoXIpQV6KaBRSFHaJFbsUIiojuqULO3ZswePPPII3n77bXvFU2MRERG4cOECSkpKbFqM7ux2u71briLJycmVdtGFhYUhLCzMXmE7rfM3C1BmFtA23FfsUIhcmkQiQaSvEkXGSNzINXByXiIXVqcB3oIgICYmxl6x1ErXrl1hNptx8OBBm2379+9H06ZN4e/vDwAICQlBVFQUTpw4geJi66UIkpKSkJqaiq5du9ZL3M6qfObuNuH8YCeqq0jtrX/g9l7OFjkSIqqLOiVLsbGxOH/+vL1iqZVx48YBABYvXmxVvnHjRiQmJlq2315fr9fj008/tSov3//O+g3N2dRbg7tjmCwR1VkjXyWEMhP2XskROxQiqoM6dcO9/vrrGDBgAHbu3Ik+ffrYKSRgzZo1SEpKAnCrxUcQBLz55puW7XPmzLF8379/fzzxxBNYv349Bg8ejKFDh+Lq1atYsmQJYmJiLPMnlZsxYwa++eYbzJgxA4mJiejQoQN27dqFNWvWYNy4cYiLi7Pb83BF51IL4OvpgTBfFQoKSsUOh8ilKeVSlNxIwCGVAiWmMijl9Tumk4jso07J0vXr1zF06FA8+OCDeOKJJxAbGwutVlth3aeeeqrax12+fDl27dplVTZ37lzL97cnSwCwatUqtGvXDitWrMC0adPg7++PcePG4a233oKXl/Xt7z4+PtizZw/mzJmDDRs2ID4+HtHR0XjnnXfw6quvVjtGdyQIAs7dLECbcB+H3sFI1JAUXzkKVVQ7HLqajV7Ng8QOh4hqoU7J0tNPPw2JRAJBELBmzRqsWbPG5o+sIAiQSCQ1SpZ27txZozg8PDwwe/ZszJ49u1r1g4KCEB8fj/j4+Bqdx90l5xSjsMSE1mHsgiOyl+IrR+DX52nsPJ/BZInIRdUpWeKis+7l3M0CAECrUO+71CSi6irNSESwtwI7z6dj7iBxb4ghotqpU7I0fvx4e8VBTuBc6l9rwrFliciu7mvqj40nbuJalh5RARXP5UZEzsvl14Yj+zl3swASCdCCy5wQ2VWvprdWGdh5IV3kSIioNuySLGVkZOA///kPXnrpJUycONGq/NChQzZzGpFzSriZD12ABmpFnZcMJKLb3KvTQi6VYMc5JktErqjOydLy5cuh0+kwbdo0fPzxx1bjmNLS0tC9e3d8+eWXdT0NOVixsQyJmUUcr0TkAF5KOe7R+WP/lSwYSm0XGyci51anZGnbtm147rnn0KJFC3z33XeYMmWK1fa2bduiTZs22LRpU11OQ/XgYnoBzALQKpTjlYgcoW+rIBhKzThwJUvsUIiohuqULC1atAhhYWHYtWsXhgwZguBg28VX27dvj7Nnz9blNFQPzqXeuhOudRhblogcoW/LW5+PO89niBwJEdVUnZKlI0eOYNCgQVUuEBkREYGbN2/W5TRUDxJu3roTjnMsETlGs2AvNNJ6Ysd5jlsicjV1SpaMRiM0Gk2VdXJzcyGTcYp/Z3cutQAahQyNtJ5ih0LkliQSCfq0DEJSlh5XM4vEDoeIaqBOyZJOp8PRo0errHPw4EG0bNmyLqehenAxvQDNQ7whlXKZEyJHKe+K411xRK6lTsnS0KFDsWfPHmzYsKHC7StWrMCpU6cwYsSIupyGHCy7yIjMQiPnVyJysB7NAqCQSdkVR+Ri6jShzowZM/DVV1/hiSeewDfffIO8vDwAwNKlS7Fnzx5s3LgRzZs3xwsvvGCXYMkxLqTdGtzdIoSDu4kcSa2Q494m/jh4JRt6o4lzmhG5iDpdqX5+fti1axeeeuopq9alF198EQDQq1cvfPnll3cd10TiuvhXstScyRKRw/VpGYw9FzOx/3IW+rUOETscIqqGOv9bExUVhZ07d+LUqVPYv38/srKy4Ovri27duiE2NtYeMZKDXUgrBMBlTojqQ9+WQfjXFmDH+XQmS0Quwm5twO3bt0f79u3tdTiyE4PBAKPRWGWdcym58FLKoIYR+fmllvL8/HxHh0fU4DQO1CDKX40d5zIgCAIkEt5UQeTs7JIsJSUlISMjAxKJBEFBQYiKirLHYamODAYDonQ6ZKSlVVkv4m9rYcq9Ca324Qq3m8pMjgiPqEGSSCTo2zIIq/Yn4VJ6Ibu/iVxArZOlzMxMvP3221i/fj3S063v7AgJCcGYMWMwe/Zs+Pv71zlIqh2j0YiMtDS8vm4XVOqKu9iKS8uw+mg62ujC8OII62kg8jLTsGjSQJSVcS0rInvq0yoYq/YnYef5DCZLRC6gVsnSxYsX8cADD+D69esQBAFyuRwBAQEQBAHZ2dm4efMmPvjgA3z77bf47bff0KRJE3vHTTWgUntBpak4WcrM0QMAgrQamzoGfaHDYyNqiLo3CYBSfmsKgUm9+flI5OxqPM+S2WzGmDFjcO3aNcTFxeG3335DYWEhUlNTcfPmTRQUFODXX39F7969kZiYiLFjxzoibrKTrMJb45kCNAqRIyFqOFQeMnRvGoDDidkoMJTefQciElWNk6Vff/0VR44cwahRo/D777/j/vvvh0Lxvz+0SqUS/fv3x/bt2zFy5EgcPHgQ27Zts2vQZD/ZRbeSJX8mS0T1qm/LYJSWCdh3KUvsUIjoLmqcLH377bdQKpX4+OOPq7yLQyKRYOnSpfDw8MA333xTpyDJcbKKjFDIpPBScnI8ovpUvvTJrguczZvI2dU4WTp27Bh69uyJoKCgu9YNDg7Gfffdh2PHjtUqOHK87CIjArwUvH2ZqJ5FBajRJFBjmUKAiJxXjZOl69evo02bNtWu36ZNGyQlJdX0NFQP9EYTikvL2AVHJJI+LYNxM9+AczcLxA6FiKpQ42QpPz8fWq222vW1Wi0KCvhB4IzKB3czWSISR99Wt1roubAukXOrcbJkNBohk8mqfwKp9K4zSJM4ygd38044InF0bewPTw8Zdp7PEDsUIqpCrUb1cnyLe8iyJEtKkSMhcm9VLR3UVeeLvZeykZyeDR9VxR/JCoUCKpXKUeER0V3UKlmaP38+5s+fb+dQqL5lFxmhkEuhUVa/pZCIqq/UWAJIpIiMjKy0jlfHhxEwYBpa9h4C/fl9FdYJCgnBtcREJkxEIqlVslTTOzfYEuV8BEFAVlEJAjS8E47IUcpMpYBgxqwVv8JHG1BhnYISE748noGek95A36Zam+0GfSHeGBMHo9HIZIlIJDVOlsxmsyPioHqmN5bBUGrm4G6ieqCsYskhlQbw1+QhOc8IpVrDf16InFCNB3iTe+DgbiLnoQtQQ28sQ3pBidihEFEFmCw1UFzmhMh5NA7UAACuZhaJHAkRVcTlk6X58+dDIpFU+bhx4wYAYOfOnZXWCQwMFPmZ1C/LnXBevBOOSGxhvp5QyqVMloiclMsvCDZ8+HA0a9bMpjwpKQlz5sxB586d0ahRI6ttzz33HHr16mVV1tAGTmYVlUApl0Kj4J1wRGKTSSWIDlDjQlohCg0meFUyhQARicPlr8j27dujffv2NuVz584FcCsxulP37t0xduxYh8fmrARBQHahEf68E47IaTQJ9MKFtEJczSxCuwhfscMhotu4fDdcRcrKyrBixQpoNBo8+eSTFdbR6/UoLi6u58icg95YBoPJzMHdRE4kOkANqQS4klkodihEdAe3TJZ+/vln3LhxA6NHj4a3t7fN9pdeegkajQZqtRqRkZGYPXs29Hq9CJGKg4O7iZyPykOGcK0nrucUo7SMU7QQOROX74aryGeffQbAtgvOw8MDjzzyCAYOHIjIyEhkZGTgu+++w8KFC/Hbb79h165dUKvVFR4zNTUVqampNuUJCQn2fwIOxsHdRM6pcaAGyTnFuJ6tR5OgiudlIqL653bJUmpqKn788Ue0a9cO9957r9W2nj17YsuWLVZlzzzzDGbNmoVFixbho48+wqxZsyo8bnx8PBYsWOCwuOtTVtGtuVzYDUfkXJoEarDnYiauZBYxWSJyIm7XDbdixQqUlZVh0qRJ1d5n7ty5kEqlNonU7SZPnoyjR4/aPNauXWuPsOtVdqERSrkUat4JR+RUtGoF/NQeuJpZVONlpYjIcdyqZUkQBCxfvhyenp4YN25ctffTaDQIDg5Genp6pXXCwsIQFhZmjzBFdWtNON4JR+SsmgR64ei1HKQVlCDUp2FNaULkrNyqZen333/HlStXMHLkSGi12mrvl5+fj7S0NISGhjouOCehN5ahhHfCETkty2zeGZygkshZuFWy9PnnnwNApV1wWVlZNmWCIGDGjBkQBAHDhg1zZHhOgYO7iZxbmK8KKs7mTeRU3KYbLjMzE9999x1atWplMzt3uYceegghISHo0qULIiIikJGRgc2bN+PgwYPo3bs3pk2bVs9R1z9OG0Dk3KRSCXSBGpy7WYACQyk8xA6IiNwnWVq9ejWMRmOVA7tHjhyJH374AZ9++ilycnKgVCrRunVrLFmyBNOmTYOHh/t/LGUV8k44ImfX+K9k6WpmEVr4uc3HNJHLcpur8JVXXsErr7xSZZ2ZM2di5syZ9RSRc8oq4p1wRM7uf7N5F6GFH5c+IRKbW41ZoqoJgoDsIiMCeCcckVNTymWI8FMjObsYJSbO5k0kNiZLDUj5nXD+XuyCI3J2zYK8UCYIuJ5bInYoRA0ek6UGxHInnIZ3whE5uyZBf00hkG0QORIiYrLUgJQP7uadcETOT6OUI8xXhWu5JZDIec0SiYnJUgOSbWlZ4gcvkStoFuwFk1mAStdR7FCIGjQmSw1IVpERKt4JR+Qymv61mK66RQ+RIyFq2Nxm6gCqmuVOOC/eCUfkKnw9PRCglqOsWVeUlvGuOCKxsGWpgSiyrAnHwd1ErqSxvwoyTx8cvZYndihEDRaTpQaCg7uJXFNjfxUA4PfztmtbElH9YDdcA8HB3USuyc9TjtLsG9hxQQGzWYBUym50ovrGlqUGIosL6BK5JIlEAv2FP5BeaMSJ5FyxwyFqkJgsNRDZRUaoPHgnHJEr0l/YDwD45fRNkSMhapiYLDUAgiAgq8iIAI2Sd8IRuSBj6kUEeyvwy5mbEARB7HCIGhwmSw2AvtQMo8nMLjgilyWgX4sAJGbpce5mgdjBEDU4TJYagGy9CQAHdxO5sv6tAgEAW06liBwJUcPDZKkByCkuBcDB3USurHOkL0J8lPjhZCq74ojqGZOlBiCn+K+WJS8mS0SuSiaVYFD7cFzL1uPE9VyxwyFqUJgsNQA5ehM8PWRQKzitFpErG9IhHADw/Ul2xRHVJyZLDUB2sYldcERuoH2EL6ID1NhyKhVlZnbFEdUXJktuTuYThNIyAYHsgiNyeRKJBEM6hCOjoAQHr3D5E6L6wmTJzSmCdACAAC8uoEvkDsq74n7gXXFE9YbJkpvz+CtZYssSkXtoHuKNVqHe+OnPmzCazGKHQ9QgMFlyc4rAaACcNoDInQzpGI684lLsuZghdihEDQKTJTfnERQNL4UMSjnXhCNyF4Pb8644ovrEZMmNlZaZ4REQAX81pwwgcieR/mp0jtJi29k0FBvLxA6HyO0xWXJjiVnFkMg8mCwRuaHBHcKhN5bht4Q0sUMhcntMltzYxYwiAIC/2kPkSIjI3h5pHwapBNh8gl1xRI7GZMmNXcrQAwBblojcULC3Cj2bBWLn+XRkFZaIHQ6RW2Oy5MYuZhRBKDNBq2KyROSORsZGwGQWsImtS0QOxWTJjV1ML0JpdjJkUonYoRCRAwxoEwpvlRzfHE0WOxQit8ZkyU0VlpiQkleC0owksUMhIgdRecgwuEM4ElLzcfpGntjhELktJktu6kJaAQDAmJEobiBE5FCPxUYAAFuXiBzILZIliURS6eP06dNWdU0mExYtWoSWLVtCqVQiPDwcU6ZMQVaWey1Kef7mrWSJLUtE7q1jpBbNgr2w6cQNlJg45xKRI7jNyN9evXrhueeesymPjIy0+nnChAlYu3YtBg0ahFdffRVXr17Fhx9+iL179+LAgQPQaDT1FbJDlSdLbFkicm8SiQSju0TirZ8S8MuZNMtCu0RkP26TLDVp0gRjx46tss727duxdu1aDBkyBJs3b7aUx8bGYuTIkVi8eDFef/11R4daL87dzIdaIUNZfrrYoRCRg42IjcB7v5zHugNJTJaIHMAtuuHKlZaWoqCgoNLtq1evBgC88sorVuUjRoyATqezbHd1giDg/M0CNAtSix0KEdUDf40CD7UNxcGr2biUXih2OERux22SpW+++Qaenp7w8fGBVqvF2LFjkZiYaFXn4MGDkEql6Natm83+3bt3x+XLl5GdnV1PETtORmEJcvSlaB7kHl2KRHR3Y+6NAgCsP3RN5EiI3I9bdMN16dIFI0aMQIsWLVBSUoK9e/fis88+w88//4x9+/ahVatWAIDk5GQEBgZCqVTaHCMiIsJSx9/f32Z7amoqUlNTbcoTEhLs/Gzqrny8UnO2LBE1GF0b+6NZsBe+PZaMfwxoCZWHTOyQiNyGWyRLhw8ftvr5iSeewKBBgzBw4EC8/PLL2Lp1KwBAr9fDz8+vwmOoVCpLnYrEx8djwYIFdozacSzJUjBblogaColEgie6RuFfW87ix1OpGPHXlAJEVHdukSxV5OGHH8a9996L33//HQaDASqVCmq1GiUlFa+hZDAYAABqdcWtMZMnT8aQIUNsyhMSEu46sLy+nfsrWWrGbjiiBmVk5wi8/8t5rPwjEcM7N4JEwtn7iezBbZMlAGjcuDEOHjyI7OxshIeHIyIiAhcuXEBJSYlNV1xy8q0J3cq74+4UFhaGsLAwh8dsDxfSChDkrYSf2kPsUIjITvLz8+9aRwJgcLtgfH0sFbvPJqNTpC8AQKFQWFrPiajm3GaAd0UuXLgADw8PBAQEAAC6du0Ks9mMgwcP2tTdv38/mjZtWuF4JVdSZhZwIa0ArUK9xQ6FiOyg1FgCSKSIjIyEr6/vXR9Lpg4FAIx87RNLWZROZ2k9J6Kac/mWpaysLEsydLv169fj2LFjGDx4sKUVady4cVi9ejUWL16M3r17W+pu3LgRiYmJmD9/fn2F7TDXsvUwlJrRMoTJEpE7KDOVAoIZs1b8Ch+t7WddRX5MyMKNVr3w3BMjIC8rxhtj4mA0Gtm6RFRLLp8svfnmm9i3bx/uv/9+REVFwWg0Yt++ffj2228RFhaGDz/80FK3f//+eOKJJ7B+/XoMHjwYQ4cOxdWrV7FkyRLExMRg+vTp4j0ROzl/81ZTfQu2LBG5FaXaCyqNV7XqdtZJkHwyBeeyS9ElrHr7EFHlXD5Z6tu3L86dO4d169YhMzMTgiBAp9Ph73//O2bOnIng4GCr+qtWrUK7du2wYsUKTJs2Df7+/hg3bhzeeusteHm5/ofK2ZRbyVJMmI/IkRCRWHQBavipPfBnch7aBSnEDofI5bl8sjRkyJAK71KrjIeHB2bPno3Zs2c7MCrxnE3Nh1wqQfMQL5Toi8QOh4hEIJFIEBvth98S0pGQXvF0KERUfW49wLshOpOSj+Yh3lDKOSEdUUPWMtQbXko5/kwtAmQu/38xkaiYLLmR7CIjUvMMaBPOLjiihk4ulaJTpBb6UjO82twvdjhELo3Jkhs5k5IHgOOViOiWto18oZBJ4HPvCJjMgtjhELksJktu5Mxfg7vZskREAKCQS9EuVAMP/0bYejZD7HCIXBaTJTdiuROOyRIR/aVdmAZmQyHi916DqcwsdjhELonJkhs5k5KH6AA1vFVc5oSIblHKpcg/8j2Ssovxw6kUscMhcklMltyE3mjClcwijlciIhv5RzbDWynDR79fYusSUS0wWXITCakFEASOVyIiW0JJEcbc0whXM4vw7bFkscMhcjlMltzE2dTywd2+IkdCRM7oqXsbwV+jwJJtF2EoLRM7HCKXwmTJTZwtnzaALUtEVAEvpRx/69sMN/MNWPlHotjhELkUJktu4uT1PAR7KxHiw1XFiahiY7pFIcLPE8t2XEKevlTscIhcBpMlN2AoLcP5tAK0j9CKHQoROTGlXIZXH2yJfIMJ//79otjhELkMJktu4ExKPsrMAjpEcLwSEVVtSIdwdIzUYtX+RFxIKxA7HCKXwGTJDZxKzgUAtI/UihoHETk/qVSCBUPaoMwsYP73ZyAIXAaF6G64FLUbOJV8a3B3+0ZsWSKiiuXn51u+b+wrxaMdQvDdyTR8e+gKHmwdVOW+CoUCKhXHQ1LDxWTJDZxMzkWUvxp+GoXYoRCRkyk1lgASKSIjI63KpWpfNJoUj5dX7kbK51MgmEoqPUZQSAiuJSYyYaIGi8mSiyswlOJKRhEGtQ8TOxQickJlplJAMGPWil/how2w2vZnahH+SMrHsA9+wT2R3hXub9AX4o0xcTAajUyWqMFisuTi/rxxqwuuA++EI6IqKNVeUGm8rMo6N9HgfKYBJ1OL0D46EL6eXFeSqCIc4O3iLOOVeCccEdWQTCpBXIsglJkF7L6QIXY4RE6LyZKLO5WcC6kEaMvB3URUC5H+ajQP9sKVzCJcSi8UOxwip8RkycWdvJ6HZsFe0CjZo0pEtRPXIghKuRQ7zqdz3TiiCjBZcmE38wy4kVuMTpF+YodCRC5Mo5SjV/NA6I1l2HspU+xwiJwOkyUXdjQpBwAQq2OyRER1ExPmg0h/T5xJycf1bL3Y4RA5FSZLLsySLEUzWSKiupFIJOjXKgRyqQS/n0tHaZlZ7JCInAaTJRd2NCkbfmoPNAnUiB0KEbkBX08P9GgagLziUhy4kiV2OEROg8mSiyo2luFMSj5io/0gkUjEDoeI3ESHSC1CfVQ4fi0XN/MNYodD5BSYLLmoU8m5MJkFdGYXHBHZkVQiQb/WwZBKJPj1zE2YzFxol4jJkos68td4pS7R/iJHQkTuJtBLiW5N/ZGjL8XBa/l334HIzTFZclHHknLgIZNw5m4icojOUX4I91Xh9E09VNEdxA6HSFRMllyQ2Szg6LUctAn3hcpDJnY4ROSGpBIJHmwTCg+pBAEDX0a+wSR2SESiYbLkgq5kFiJXX8opA4jIoXw9PdBd5wO5TxAW/npZ7HCIROPyydLFixcxf/589OzZE6GhodBoNIiJicGLL76I1NRUq7o7d+6ERCKp8BEYGCjSM6i5/Zdv3dJ7b2OOVyIix2oV5An9pUPYcjodP/2ZevcdiNyQyy8otnz5cixduhSDBw/GqFGj4OnpiQMHDmDZsmVYu3Yt/vjjD7Rq1cpqn+eeew69evWyKlOpVPUZdp38cTkLUglwb5MAsUMhIjcnkUiQtfUjhP/jK/zzuz/RKUqLMF9PscMiqlcunyyNHDkSs2bNglartZQ999xz6NatGyZPnozXX38dX3/9tdU+3bt3x9ixY+s5UvswmwXsv5KFNuG+8PX0EDscImoAzEW5WPBIC7z0zVm89NUJfDnxXshlLt8xQVRtLv/b3qVLF6tEqdzjjz8OADh16lSF++n1ehQXFzsyNIc4d7MAufpS9GjKViUiqj99WwRgfPdoHLqajY+3XxI7HKJ65fLJUmVu3LgBAAgJCbHZ9tJLL0Gj0UCtViMyMhKzZ8+GXu8aC0f+cfnWiuDdmSwRUT2bPbA1YsJ88PH2i5axk0QNgct3w1Vm7ty5AIAJEyZYyjw8PPDII49g4MCBiIyMREZGBr777jssXLgQv/32G3bt2gW1Wl3h8VJTU20GjANAQkKCY55AJQ5cyYJcKsE9Og7uJqL6pfKQYemTnTDo4714+f+O4+eXesNfoxA7LCKHc8tk6e2338a3336LYcOGYfz48Zbynj17YsuWLVZ1n3nmGcyaNQuLFi3CRx99hFmzZlV4zPj4eCxYsMChcd+NqcyMg1ey0SFSC43SLd86InJyTYK88Oawtnjl65N4dcNJLB/fhetTkttzu264f//733jttdfQp08frFu3rloX8dy5cyGVSm0SqdtNnjwZR48etXmsXbvWnuFX6XRKPgpKTOjOu+CISETDO0dgeOdG2H4uHf/dfUXscIgczq2aJz744ANMnz4d/fr1w/fff19pl9qdNBoNgoODkZ6eXmmdsLAwhIWF2SvUWtl36dZ4JQ7uJiKx/WtoW5xKzsOirecQE+6DXs2DxA6JyGHcpmVp0aJFmD59Oh566CFs2bKl2okSAOTn5yMtLQ2hoaEOjLDudpxLh0YhQ6yOM3cTkbg0Sjn+Oy4WGqUcf/vyOK5lucZNMkS14RbJ0ttvv41Zs2Zh0KBB2LRpU6UTTGZl2d69IQgCZsyYAUEQMGzYMAdHWns5RUYcu5aDns0CoZRzPTgiEl+TIC989Hgn5BtK8dyaIygq4fpx5J5cvhvuk08+wWuvvYaQkBAMHz4cGzZssNru5eVlSYIeeughhISEoEuXLoiIiEBGRgY2b96MgwcPonfv3pg2bZoIz6B6dl/MgFkA7m8VLHYoREQWfVsF49UHW+K9X87jH9+cxCdPduaAb3I7Lp8sHT58GACQlpaGZ555xmZ7dHS0JVkaOXIkfvjhB3z66afIycmBUqlE69atsWTJEkybNg0eHs47I/b2c7fGU/VlskRETmZqn6Y4k5KHn/68iWU7L2Na32Zih0RkVy6fLK1cuRIrV66sVt2ZM2di5syZjg3IAcrMAnZdyEBMmA9CfFxnDTsiahgkEgneG9kBVzKK8P6v59EkUIOH24l7QwyRPbnFmCV3d+J6DnL1peyCIyKnpVHK8dlTXRDopcRL/3cCRxKzxQ6JyG6YLLkAdsERkSuI9FdjxdP3QC6VYOLqI7iYViB2SER2wWTJyQmCgF/OpMFfo0DHSK3Y4RARValtI18sG9MZhQYTxnx+EElZRWKHRFRnTJac3IW0QlxKL8RDbUMhk/IOEyJyfn1aBuPDxzsis7AET352ECm5xWKHRFQnTJac3I+nUgAAg9pzsCQRuY5B7cOxcER73MgtxuP/PYDkHE5aSa6LyZITEwQBW/5MRaCXEvc25hInRORaRnWJxMLh7XA9R49R/9mPxEx2yZFrcvmpA9xZQmoBrmQU4anu0eyCIyJR5efn12q/ga20kA6LwaxNZzHyP/uxcsI9aNvI187RETkWkyUn9uOft7rgHuF8JUQkklJjCSCRIjIystbHCAoJwec/HcKrG89gVPx+fDKmM/q25N295DqYLDkpQRDw46lUBHsrcY/OX+xwiKiBKjOVAoIZs1b8Ch9tzYcDGPSFeGNMHPo00+LLifdi4uojmLjqCP45sDWe6anj0ijkEpgsOakiYxlahnpDF6iBlF1wRCQypdoLKo1XnY7RReePb6f0wKTVR/CvLWdx5kYe3h7eDioPLg5Ozo3JkpPyUsoRP66L2GEQEdlV0yAvbJrWE3//6gQ2Hr+BUzfy8OHojhzHRE6Nd8MREVG98lF54LOnumDGQy2RmFmER5ftw392XYbZLIgdGlGFmCwREVG9k0olmNqnGb6b2hOR/mos/Pkcnvz8ACewJKfEbjgiInK4yqYeiPaRYP3THbD496v4+lgqHvhgF16Ii8bo2HDLlCkKhQIqlao+wyWywmSJiIgcpiZTD6iadEHAg1OxcFsZFqz+Bdm/fgLjzUsICgnBtcREJkwkGiZLRETkMDWdeqC0zIyjyYX4U9IcYeM/RMsAD/w2dzgyMzPh4+NTqxjYMkV1xWSJiIgcrrpTD6gA9InxQduoEuw4n47zWQaET/4MMcOmoeD4T4DZVONzs2WK6orJEhEROZ1ALyVGdo7AsYvJ2HkmA/79n0PjQVNwb5QPdH7Kak9mWT4pptFoZLJEtca74YiIyClJJBI09fNAymfPo1OYJ/SlZvx6IQc/ns9DXpkcKo3X3R/quk2kSQSwZcnpGQwGGI3GWu1b24UviYiciWAqQYcwT8Q2DcWBK1k4k5KPrw5fR6tQb3RvEgAfTw+xQyQ3x2TJiRkMBkTpdMhIS6vTcUxlNe/jJyJyNhqlHP1ah6BDpBZ7L2bi3M0CXEgrQLtGvrhH5w+Nkn/SyDH4m+XEjEYjMtLS8Pq6XbVqSs7LTMOiSQNRVlbmgOiIiMQR6KXEsE6NcC1bjz8uZ+Jkch7OpOSjU5QWnaP8uNYc2R2TJRegquUClgZ9oQOiISJyDlH+akT6ReJKZhH+uJyFw4k5OJWch9hoP3SM1MJDxmG5ZB9MloiIyGVJJBI0DfJC40ANzt8swIErWfjjchaOX8tFbLQfWvixlYnqjskSERG5PKlEgtZhPmgR4o3TKXk4kpiDvZcycUQugU/3USgwmFDLOS2JOHUAERG5D5lUgg4RWozvEY37WwXDQyaFX++n8NAnh7Bo6znczDOIHSK5ICZLRETkduRSKdo18sXoDkHI/PED+GsU+HTnZdy3aDte/uo4/kzOEztEciHshiMiIrclk0pQdHo7Nk/eiKMpBny+5yo2nUjBphMpuEfnhyfvjcLDbcN4Bx1VickSERG5PalEgn6tQ9CvdQjOpORh+d6r2HIyFYcTT+L1zWcwrGMjjL4nEm0b+YodKjkhJktERNSgtAn3xQejOmLuIzHYdOIGvjp0HWsOJGHNgSS0DPHGI+3D8Ej7MDQN4lIpdAuTJSIiapD8NApM6NkYT/fQ4WRyHv7v8HVsPZ2KD7ZdwAfbLqBVqDcGtgvD/a2CERPmA6m0eov3kvthskRERG7vbmtlNvGVYnb/aLzaNxKHk/Lw67lM/H4+05I4BXop0btFIOJaBKFns0AEeinrKXJyBg0yWdq4cSPeffdd/Pnnn1AoFOjVqxfefvtttG3bVuzQiIjIjkqNJYBEisjIyJrvLJVBGRGDgLa94d/vMWw8dgMbj90AADQJ1OAenT+66Pxwj84f0QFqSCRseXJXDS5ZWr58OSZOnIi2bdti0aJFMBgM+Pjjj9GjRw/s27cP7dq1EztEIiKykzJTKSCYMWvFr/DRBtR4f4O+EG+MicPB+Fkoliix73IOjl7Pw7Hr+fi/I9fxf0euAwC8lTK0DPFCqxANWoV6oXmQBtH+nlArZFAoFFCpVPZ+alSPGlSylJOTg1deeQURERHYt28ffP6aznXUqFGIiYnBSy+9hO3bt4scJRER2ZuylmtsVtUyJfMKgDIiBspGrWEIaYK8/CY4ck1tVceUnw5JYQbGDR2A6EAvhGk9Ee6rQrjWE8HeSsi5fp1LaFDJ0ubNm5Gfn49XXnnFkigBQFRUFEaOHIlVq1bh+vXrtWuuJSIit1OTlilBEJBfUobMolLk6E3INZiQowpFpsoHXx5OtqkvlQBBXgoEeyvhp/aAv9oDWrUHtJ5y+Kk9oPX0gJ/aA0E+aoT6ecFLJXfZxYENBgOMRmOt9xe7da5BJUsHDx4EAPTo0cNmW48ePbBq1SocPnyYyRIREVmpbsuUpxcQcltOVZCThXmPD4ZMo4XMJwhyn0DIfYIg8w6C3DsQxT6BuOEVAJnaBxKZx12Pr/KQwkvpAS+lDF4qObyUcngpPeBd/v1fX1UeMqg8pFDKrb+qPGRQym99lUklkEkkkEklkP71vVQKqzIAMJsFmAXALAhW35eZBQgCYDKbUVomoLTM/Nfj1vfGMjNMZQKKig2Y8rcXUVBYeOs5SuWQyOSQ/PUVd37/18+3fy/PuYorPy8XLWFqUMlScvKtzD4iIsJmW3lZeZ07paamIjU11ab8xIkTAICEhAQ7Rfk/hYWFAICrZ45BofKs+f652QCApLPHofGu+URrDX1/Z4iB+zfs/Z0hBu5vh/2FMoz+2z+h8apsJV8jBCEDJgEwlgmWR6kZ0BuMOLr7Vzzy6EiYBCmKS80oLjShONuMnFIzio0mFJeaYTILNY6tXrW8H9613FUCoOjmJRw6dAheXvab+6r873ZxcfHdKwsNyP333y8AEC5fvmyz7ffffxcACO+8806F+86bN08AwAcffPDBBx98uNFj7dq1d80fGlTLklp9a+BdSUmJzTaDwWBV506TJ0/GkCFDbMpzcnKQkJCATp06wdOz+q0/CQkJGDt2LNauXYvWrVtXez+qf3yvXAvfL9fC98u1uNP7VVxcjMTERAwYMOCudRtUsnR7V9udb3JVXXQAEBYWhrCwsAq39evXr9YxtW7dGp07d671/lR/+F65Fr5froXvl2txl/erZ8+e1arnmsPqa6lr164AgP3799tsKy+755576jUmIiIicm4NKlkaNmwYvL298dlnn1lNfX/t2jVs2LABffr04Z1wREREZKVBJUt+fn547733kJycjJ49e2Lp0qVYvHgxevfuDYlEgg8//FDsEImIiMjJNKhkCbg1UHvDhg1Qq9WYMWMG/vWvf6Fdu3bYt28fOnToIHZ4RERE5GQa1ADvciNHjsTIkSNFjSEsLAzz5s2rdNA4OQ++V66F75dr4fvlWhrq+yURBEEQOwgiIiIiZ9XguuGIiIiIaoLJEhEREVEVmCwRERERVYHJkh1t3LgR3bp1g0ajgZ+fH4YMGYLTp09Xe3+9Xo9Zs2ZBp9NBqVRCp9Nh9uzZ0Ov1Doy64arL+7Vy5UpIJJIKH126dHFw5A3PwoULMXr0aDRv3hxSqRRyee3uTeE15nj2eK94fdWPixcvYv78+ejZsydCQ0Oh0WgQExODF198scKF4yvTEK6rBnk3nCMsX74cEydORNu2bbFo0SIYDAZ8/PHH6NGjB/bt24d27dpVuX9ZWRkGDhyIXbt2Ydy4cejduzdOnjyJ9957D4cOHcK2bdsglTK3tZe6vl/l/vnPf9osnRMQEOCIkBu02bNnQ6vVolOnTigsLERGRkaNj8FrrH7Y470qx+vLsZYvX46lS5di8ODBGDVqFDw9PXHgwAEsW7YMa9euxR9//IFWrVpVeYwGc13ddalduqvs7GzBx8dHiIiIEPLy8izlSUlJgkajEfr27XvXYyxfvlwAILzwwgtW5e+//74AQFi1apXd426o7PF+rVixQgAg7Nixw4GRUrlLly5Zvo+LixNkMlmNj8FrrH7Y473i9VU/Dh8+LOTk5NiUx8fHCwCExx577K7HaCjXlRuke+LbvHkz8vPzMXHiRPj4+FjKo6KiMHLkSOzYsQPXr1+v8hirV68GAEyfPt2qfOrUqfD09LRsp7qzx/t1u8LCQpSUlDgiVPpL06ZN63wMXmP1wx7v1e14fTlOly5doNVqbcoff/xxAMCpU6fueoyGcl0xWbKDgwcPAgB69Ohhs6287PDhw5XuLwgCDh8+jPDwcERHR1tt8/T0RMeOHavcn2qmru/X7YYOHQpvb2+oVCo0b94c7777Lkwmk/2CJbvgNeaaeH2J48aNGwCAkJCQKus1pOuKyZIdJCcnAwAiIiJstpWXldepSHZ2NvR6fYX7lx8jPz/favFfqr26vl8AoFarMWrUKLz//vv44Ycf8J///AchISGYOXMmHn30UZjNZvsHTrXGa8y18PoS19y5cwEAEyZMqLJeQ7quOMDbDspH/CuVSpttKpXKqk5N97/zGLd3G1Ht1PX9AoBRo0Zh1KhRVmXPPfccnnzySXz11Vf4+uuvLU3ZJD5eY66F15d43n77bXz77bcYNmwYxo8fX2XdhnRdsWXJDtRqNQBU2K9uMBis6tR0/+oeg6qvru9XZSQSCebNmwcA2LJlSx0iJHvjNeb6eH053r///W+89tpr6NOnD9atWweJRFJl/YZ0XTFZsoOqum6q6vIp5+/vD7VaXWnXT3JyMnx8fFw+M3cWdX2/qtK4cWMAQHp6ei2jI0fgNeYeeH05zgcffICXX34Z/fr1w48//litBKchXVdMluyga9euAID9+/fbbCsvu+eeeyrdv3yitZSUFCQlJVltKy4uxokTJ6rcn2qmru9XVS5cuAAACA0NrWV05Ai8xtwDry/HWLRoEaZPn46HHnoIW7ZsqXZLUEO6rpgs2cGwYcPg7e2Nzz77zGog27Vr17Bhwwb06dMHkZGRAG713Z47d85mdtRx48YBABYvXmxV/umnn6K4uNiynerOHu9XVlaWzXFNJhNmz55tOQeJg9eY6+D1Jb63334bs2bNwqBBg7Bp0ybLOKM7NfTrSiIIgiB2EO4gPj4ezz//PNq2bYvJkyejpKQEH3/8MbKysrB371506NABALBz50707dsX48ePx8qVKy37l5WVoW/fvtizZw+eeuopyyyoy5YtQ69evfDbb79BJpOJ9OzcT13fr/DwcNx3331o164dwsLCkJKSgq+++goJCQl4/PHH8eWXX961v5+qb82aNZb/XJcvX45r165hwYIFlu1z5syxfM9rTFz2eK94fdWPTz75BH/7298QEhKCd955Bx4eHlbbvby8LIlpg7+uRJ0S081s2LBB6Nq1q+Dp6Sn4+voKgwYNEk6ePGlVZ8eOHQIAYfz48Tb7FxQUCP/4xz+EqKgowcPDQ4iKihJmzJghFBYW1tMzaFjq8n5Nnz5d6NKlixAQECDI5XLB19dX6NWrl7BixQrBbDbX47NoGOLi4gQAlT5ux2tMXPZ4r3h91Y/x48dX+V5FR0db6jb064otS0RERERV4JglIiIioiowWSIiIiKqApMlIiIioiowWSIiIiKqApMlIiIioiowWSIiIiKqApMlIiIioiowWSIiIiKqApMlIiIioiowWSIil/HRRx8hJiYGnp6ekEgk+PDDDyGRSNCnTx+xQyMiN8ZkiYhcwldffYWXXnoJKpUKL7/8MubNm4du3bpVWHf+/PmQSCTYuXNn/QZJRG5JLnYARETVsWXLFsvX8PBwS3lCQgLUarVYYRFRA8BkiYhcQkpKCgBYJUoA0KpVKzHCIaIGhN1wROTUyrvUduzYAQCQSCSWR/nPt49Z0ul0WLBgAQCgb9++NvUB4Omnn4ZEIkFiYiLi4+PRrl07qFQqhISE4LnnnkNeXl6FsSQnJ+Nvf/sbmjRpAqVSiYCAAAwZMgSHDx+2qVtQUIB//etfaNu2LXx8fODt7Y2mTZti9OjROHr0qFXd77//Hv369UNYWBiUSiXCw8MRFxeHZcuW1em1IyL7YMsSETm18kRo5cqVSEpKwrx586qs//LLL2PTpk3YtWsXxo8fD51OV2ndGTNm4JdffsHgwYPx4IMPYseOHfjss89w6dIlbN++3arusWPH8OCDDyI7OxsDBgzA8OHDkZmZiU2bNuG+++7Dd999h4EDBwIABEHAQw89hD/++APdu3fHxIkTIZfLkZycjB07dqBXr16IjY0FAPz3v//F5MmTERoaisGDByMwMBDp6ek4deoUVqxYgalTp9b+xSMi+xCIiFxAXFycUNFHFgAhLi7OqmzevHkCAGHHjh0VHmv8+PECACEyMlJISkqylJeWlgq9evUSAAgHDx60Km/atKmgVCqFnTt3Wh3rxo0bQnh4uBAaGioYDAZBEATh1KlTAgBh2LBhNucuKysTsrOzLT937txZUCgUQlpamk3djIyMCuMnovrFbjgiarBef/11REVFWX6Wy+WYMGECAODQoUOW8h9//BGXL1/GCy+8gLi4OKtjhIeHY8aMGbh58yZ+//13q22enp4255RKpfDz87Mqk8vl8PDwsKkbGBhY8ydFRHbHbjgiarC6dOliUxYZGQkAyMnJsZTt378fAJCUlIT58+fb7HPx4kUAt+7MGzhwIGJiYtCxY0esX78eSUlJGDp0KO677z506dIFCoXCat8xY8Zg+vTpiImJweOPP464uDj07NkTQUFB9nqaRFRHTJaIqMHSarU2ZXL5rY/FsrIyS1lWVhYAYMOGDVUer7CwEAAgk8mwfft2vPHGG/jmm28wc+ZMAIC3tzfGjx+Pd955B15eXgCAV155BYGBgVi2bBk++ugjy0SbcXFxeO+99ypM6IiofrEbjojoLnx9fQEAmzdvhiAIlT5uH3zu5+eHJUuW4Pr167h48SI+//xztGrVCkuXLsWUKVOsjv/UU0/hwIEDyMrKwo8//ohnn30Wu3fvxoABA5CRkVGvz5WIbDFZIiK3I5PJAFi3DtVF+Uzhe/bsqdX+zZo1w7PPPotdu3bBy8sLmzdvrrCeVqvFwIED8dlnn+Hpp59GdnY2du/eXeu4icg+mCwRkdsJCAgAAFy7ds0uxxs6dCiaNm2KTz75BD/99FOFdfbv3w+9Xg8AuHr1Kq5cuWJTJycnByUlJVYDv3fs2AFBEGzqpqenAwBnJydyAhyzRERup2/fvpBKpZg9ezZOnz5tuftszpw5tTqeh4cHNm7ciAEDBuCRRx5Bjx490LFjR6jValy/fh2HDx/GlStXkJqaCrVajZMnT2L48OG455570Lp1a4SHhyMjIwObN29GaWmpZQwTADz66KPw8vJCt27doNPpIAgC9uzZg8OHDyM2Nhb9+/e3y2tCRLXHZImI3E7r1q2xatUqvP/++1i2bBkMBgOA2idLANC+fXucPHkSH3zwAbZs2YIVK1ZAKpUiLCwMnTp1woIFCyy3+nfp0gWzZs3Crl27sHXrVuTk5CAoKAixsbF48cUX8fDDD1uOu3DhQvzyyy84duwYfvrpJ6hUKkRHR2PRokWYMmVKhVMKEFH9kggVtf8SEREREQCOWSIiIiKqEpMlIiIioiowWSIiIiKqApMlIiIioiowWSIiIiKqApMlIiIioiowWSIiIiKqApMlIiIioiowWSIiIiKqApMlIiIioiowWSIiIiKqApMlIiIioiowWSIiIiKqwv8DRkxO6rFL5A4AAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"## Visualizing the training set"
],
"metadata": {
"id": "-8G1VQvPI0MA"
}
},
{
"cell_type": "markdown",
"source": [
"Prior to training a model on the hidden states, it is advisable to conduct a swift visualization. This step ensures that the the hidden states indeed encapsulate meaningful representation for the sequences we want to classify."
],
"metadata": {
"id": "a1BLZblLh-tq"
}
},
{
"cell_type": "markdown",
"source": [
"### PCA"
],
"metadata": {
"id": "4tEhnAS9I6DA"
}
},
{
"cell_type": "markdown",
"source": [
"PCA, or Principal Component Analysis, is a technique for reducing the dimensionality of data. By transforming original features into uncorrelated variables called principal components, PCA simplifies data representation while retaining key information."
],
"metadata": {
"id": "KiMMXJcfrBi_"
}
},
{
"cell_type": "markdown",
"source": [
"Here, we plot the first two principal components on the x- and y- axes. Each point is then colored by its scaled effect (what we want to predict).\n",
"\n",
"Visually, we can see a separation based on color/effect, suggesting that our representations are useful for this task, without any task-specific training!"
],
"metadata": {
"id": "kWfhqg-_i7-v"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.decomposition import PCA\n",
"num_pca_components = 60\n",
"pca = PCA(num_pca_components)\n",
"X_train_pca = pca.fit_transform(X_train)"
],
"metadata": {
"id": "VgPb6CXBi7NS"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"fig_dims = (7, 6)\n",
"fig, ax = plt.subplots(figsize=fig_dims)\n",
"sc = ax.scatter(X_train_pca[:,0], X_train_pca[:,1], c=y_train, marker='.')\n",
"ax.set_xlabel('PCA first principal component')\n",
"ax.set_ylabel('PCA second principal component')\n",
"plt.colorbar(sc, label='Variant Effect');"
],
"metadata": {
"id": "rXhFmkl7jBUE",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 553
},
"outputId": "da023f6e-2e0a-4f2d-e10a-dcd201c94576"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAIYCAYAAADq2s3EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU5RbA4d/MlvRKCYEAofdeRIoGEMQGqIioNBvYEUWxXLF7bdeGXVGKBURQsCJI772HXhJCEtJ7tszM/WNDMCZAstmQEM57nzzX3Zn95uyG7J79yvkUwzAMhBBCCCGE+Be1sgMQQgghhBBVkySKQgghhBCiRJIoCiGEEEKIEkmiKIQQQgghSiSJohBCCCGEKJEkikIIIYQQokSSKAohhBBCiBJJoiiEEEIIIUpkruwALhXJycksWrSIyMhIfHx8KjscIYQQokzy8vI4duwYV199NTVr1qzw68XExJCcnFwhbdesWZMGDRpUSNvVjSSKF8iiRYsYOXJkZYchhBBClMs333zDHXfcUaHXiImJoVXLSHLzKmbzOF9fX6KjoyVZLAVJFC+QyMhIwPUH1qpVq8oNRgghhCij6OhoRo4cWfh5VpGSk5PJzTOY+WEYrZpZPdp29EE7ox9KJDk5WRLFUpBE8QI5PdzcqlUrOnfuXMnRCCGEEO65kNOnWjSz0LG9ZxNFnYrppayuZDGLEEIIIYQoUbVMFOfPn0+PHj3w8/MjJCSEwYMHs3v3brfa2r59OxaLBUVR+OabbzwcqRBCCCHORjd0NA//6IZe2U/rolLtEsVp06Zx8803k5OTwxtvvMGzzz7Ljh076NmzJ7t27SpTW06nk7vvvhtvb+8KilYIIYQQZ6NjVMiPKL1qlSimpaXx2GOPERERwZo1a3jooYeYNGkSq1atQtd1JkyYUKb23n77bQ4ePMjkyZMrKGIhhBBCiKqrWiWKCxYsIDMzk3vuuYfAwMDC+xs0aMCwYcNYtmwZsbGxpWrrwIEDvPjii7z66qtERERUVMhCCCGEOAsDA93D/zOkR7FMqlWiuGHDBgB69uxZ7Njp+zZt2nTedgzD4O6776ZDhw48+OCDng1SCCGEEOIiUa3K45w4cQKgxB7A0/edPudcPv74YzZs2MCWLVtQ1bLl0vHx8cTHxxe7Pzo6ukztCCGEEJc6DQPN8GwPoCY9imVSrRLF3NxcALy8vIodO70g5fQ5ZxMTE8PTTz/NpEmTaNeuXZlj+Oyzz3jxxRfL/DghhBBCiKqmWiWKvr6+ANhstmLH8vPzi5xzNuPHjycsLIwpU6a4FcP48eMZPHhwsftPV7QXQgghROkYFbBKWeYolk21ShT/Obz8723yzjUsfdpPP/3En3/+yWeffVZkiPrUqVMAJCYmcujQIerWrXvWhDM8PJzw8PByPQ8hhBBCiKqgWi1m6d69OwDr1q0rduz0fd26dTvr448fPw64egWbNWtW+HO6PM6kSZNo1qwZK1eu9HToQgghhPgXDaNCfkTpVasexaFDhzJhwgS++OILHn300cISOTExMcydO5eoqCjq168PuOYqxsTEEBQUVNgDeP3115fY47h8+XI++ugjHnnkEfr06UOnTp0u3JMSQgghLlEy9Fz5qlWiGBISwltvvcV9991Hr169GD9+PDabjalTp6IoCu+9917huRs3bqRv376MGTOG6dOnA9C0aVOaNm1arN3s7GzA1Rs5bNiwC/FUhBBCCCEqXbVKFME1bFyjRg3eeustnnzySaxWK3369OHVV1+lffv2lR2eEEIIIUpJM/B8eRzpUCyTapcoAgwbNuy8PX9RUVEYpfzHN3bsWMaOHeuByIQQQgghLh7VMlEUQghRevuPJZKZnU/75vXwssrHgqg6DECvgDZF6ck7ghBCXMI+/2E1s37ZhKoqRIQF8+VLd+DjbanssIQQVUS1Ko8jhBCi9JxOjRkLNuLUdOwOjbhTGazZfqSywxKikJTHqXySKAohxCVKURVMpjMfA4Zh4GWRgSYhxBmSKAohxCXKpKo8M24gJlUBoEeHRvTs1KiSoxLiDN04vfLZcz+6dCiWiXx1FEKIS9ig3q3p06Up+TYHNYL9KjscIYrQ8fxiFk+3V91JoiiEEJc4Px8rfj7Wyg5DCFEFSaIohBBCiCpJR0FD8XibovRkjqIQQgghhCiR9CgKIYQQokrSK2DxiSxmKRvpURRCCCGEECWSHkUhhBBCVEk6VMAcRVEW0qMohBBCCCFKJD2KQgghhKiStApY9ezp9qo7SRSFEEIIUSUZhoJueDaxMzzcXnUnQ89CCCGEEKJE0qMohBBCiCpJhp4rn/QoCiGEEEKIEkmPohBCCCGqJNcWfp7t05It/MpGehSFEEIIIUSJpEdRCCGEEFWSjudXPUuPYtlIj6IQQgghhCiR9CgKIYQQokrSK2DVs/Qolo0kikIIIYSokjRDRTM8O/jp6faqO3m1hBBCCCFEiaRHUQghhBBVkoGC7uE+LUOGnstEEkUhhBDV0o79cezYd4KWjevQvV3Dyg5HiIuSJIpCCCGqnTVbj/DUOwtQVQXDMHjq3oFce0Wbyg5LlJFs4Vf5ZI6iEEKIaueX5btwajp2h4bDqfPz3zsrOyQhLkrSoyiEEKLaqRcWjMVswuHUMJtV6tUOquyQhBv0Clj1rMuq5zKRV0sIIUS1c/fNl9O9fUN8va20b16PR0f3reyQhLgoSY+iEEKIKsMwDH5cuJU//95Nw/qhPHrfVQQG+JS5HV9vK28/cWMFRCguJB3PF8jWPdpa9SeJohBCiCpj5doDfDZjBQ6HxvHYZLJzbLz5wrDKDktUEh0VzcODn54ut1PdyaslhBCiyjh45BS67urzcTh1DhxKrOSIhLi0SaIohBCiyujcoSFKwVCj1WKiW+fIyg1IVKrTi1k8+SOLWcpGhp6FEEJUGZ3bN+CVZ4fy98p9NIgIZcRN3So7JCEuaZIoCiGEqFIu79aEy7s1qewwRBWgV8AWfp5eHFPdSaIohBCiyjgRn8bStfsJDfZjUFQbzCYZJhSiMkmiKIQQokpIOJXBnZNm4nTqKCps3nmcFyZeX9lhiUqkGwqa4eHyOB5ur7qTr2pCCCGqhPXbj6HrBg6nht2usWztfgzDqOywhLikSY+iEEKIKiG8ViB6QWKoADVC/VEU6f25lGkVUEfR0+1Vd/JqCSGEqBK6d4xk1I3dCfT3pkG9UN54unw7q8yft4nbR3zMww/NJDY2xUNRigvJQEEvKGnjqR9DFrOUifQoCiGEqBIUReGuW3tx1629yt3Wtq3H+OzTZTidGklJmTz7zFxmzrrPA1EKcWmRRFEIIUS1ExOTgsmk4HSCrhskxGdUdkjCDTL0XPnk1RJCCFGlGIbBsRMpJCRlut1Gl66N0HUDRVGwWk10v6yxByMU4tIhPYpCCCGqDE3Tmfz6T2zccQzDgHtH9GL0zT3K3E5ERCgffTyGJUv2EBrqz5ChnSsgWlHRpDxO5ZNEUQghRJWxbU8sm3fHoOmu1c+fz17NsGs74+tjLXNbTZqG0aRpmKdDFOKSIomiEEKIKsOAImtSDcN1n7g0yRZ+lU/mKAohhKgyOrepT4fWEZhMKqqqcPfwnvi50ZsohPAMt3oUGzduzKOPPsojjzxy1nM++ugj/ve//3HkyBG3gxNCCHFpMZlU3nl2GEdikvH2thBRJ7iyQxKVSDdUNMPDPYoebq+6cytRPHbsGOnp6ec8Jz09nePHj7vTvBBCiEuYqio0jaxV2WGIKsA19OzhxSwy9FwmFZZWZ2VlYbXKcIEQQgghLn4HDx7khRdeoFevXtSpUwc/Pz9at27NI488Qnx8fKnbyc3N5amnniIyMhIvLy8iIyN5+umnyc3NrcDo3VfqHsWYmJgit9PT04vdB6BpGjExMcybN4/GjaVulRBCCCHc4yqP4+mhZ/d6FKdNm8aHH37IDTfcwPDhw/Hx8WH9+vV8/PHHfPPNN6xdu5aWLVuesw1N07j22mtZsWIFo0aN4oorrmDHjh289dZbbNy4kcWLF6OqVWtovNSJYmRkZJHN2d9//33ef//9s55vGAbvvPNO+aITQgghhKgChg0bxlNPPUVwcHDhfePGjaNHjx6MHz+eKVOm8MMPP5yzjRkzZrBixQoefvhhPvjgg8L7IyMjmTRpEt988w2jR4+uqKfgllIniqNHj0ZRFAzDYObMmbRv356OHTsWO89kMlGjRg369+/PwIEDPRmrEEIIIS4hVWkLv65du5Z4/4gRIxg/fjw7d+48bxszZ84E4PHHHy9y/wMPPMBzzz3HzJkzL95Ecfr06YX/PXPmTG688UamTJlSETGV2/z583nzzTfZtWsXVquVPn368Nprr9G2bdvzPvaPP/7g008/ZefOnSQlJaGqKg0bNmTYsGFMmDChyDcJIYQQ5WcYBrpuYDJVrSE3IUojLi4OgLCwcxd3NwyDTZs2UbduXRo2bFjkmI+PDx07dmTTpk0VFqe73Fr1rOu6p+PwmGnTpnHPPffQtm1b3njjDfLz85k6dSo9e/ZkzZo1tGvX7pyP3717NwB33nkn4eHhOBwONm7cyCuvvMLs2bPZvHkzfn5+F+KpCCFEtbdjZwzPPT+PnBwbA65qy5OTrkNVi88hi4lNYfeuEzRuXJuWLcMrIVJRGQxD8fiWe0ZBe9HR0SUeDw8PJzy89P/GnnvuOcCVN5xLamoqubm5Z+20ioiIYN26dWRmZhIYGFjq61e0arUzS1paGo899hgRERGsWbOm8IUePnw4rVu3ZsKECSxduvScbTzxxBM88cQTRe574IEHaN26NZMnT2bevHlVrltYCCEuVi+98jPZ2TYAlq/Yx+U9mnLlFUUXBOzdG8fEx77DZFJxOjUmT76e/v1aV0a4ohoZOXJkifc///zzvPDCC6Vq47XXXmPevHkMHTqUMWPGnPPc06uavby8Sjzu7e1deF61SBRTU1P56quv2LhxI2lpaWiaVuwcRVH4+++/yxVgWSxYsIDMzEwee+yxIi9ygwYNGDZsGDNmzCA2Npb69euXue3IyEiA89aPFEIIUXqnk0QARYGMjLxi5/zyyzYcDg2Hw/U5M2fOBkkULxEaSgXMUXT1KH7zzTe0atWq2PHS9ia+//77PPvss0RFRfHtt98WWfBbEl9fXwBsNluJx/Pz84ucV1W4lSju27ePqKgokpKSMIyz78J5vhfN0zZs2ABAz549ix3r2bMnM2bMYNOmTaVKFLOzs8nPzyc7O5utW7cyefJkLBaLLNARQlzSDMMgKzsfH28rFoup3O3ddGNX5v+0GVVV8Pa20Lt382LnhNbwx2Ix4XBoqKpCaKhM/xHl16pVKzp37uzWY9955x0ef/xx+vfvz8KFC0uV3IWGhuLr68uJEydKPH7ixAkCAwOrVG8iuJkoTpo0iVOnTvHUU08xbtw46tevj8lU/jeM8jr94kdERBQ7dvq+s/2C/u2hhx5ixowZhbfbtGnDwoULz1sjKT4+vsTCm2ebCyGEEBcLu8PJ5Ck/snVHDN7eFv77/E107tDw/A88h3H3RNGlcySpqdl079aE4ODiH7i3jejBrl2x7N4dR926ITw6Qb6wXyoMVI9vuWeUs4fyjTfe4KmnnmLQoEH89NNPhUPG56MoCl27dmXlypUcP368yIKWvLw8tm/fXmJHV2VzK1FctWoV1113Ha+99pqn4ymXc43//3PsvzSefPJJRo4cSUpKCmvWrGHVqlWkpKSc93GfffYZL774YhmiFkKIi8Oiv/ewO/okAPn5Dv77v9+ZO/P+crWpKApduzQ65zn+/t588P4odN0ocaGLqL5cQ8+e/Z2Xp73XXnuNZ599luuvv54ff/zxrPMNc3NziYmJISgoqMhQ9qhRo1i5ciX/+9//itRR/OSTT8jLy2PUqFFux1ZR3EoUDcOgdeuqNz/kXOP/ZR37b926deFzvPXWW5k3bx7Dhg3DZDIxYsSIsz5u/PjxDB48uNj90dHRZ504K4QQF4PcXDv8Y7pRXr7jgl5fkkRRmT766COeffZZwsLCuOmmm5g7d26R4/7+/gwdOhSAjRs30rdvX8aMGVOkvOCdd97JzJkzmTp1KhkZGYU7s3z88cdERUVVyTzBrUSxS5cu7N+/39OxlNs/h5f/PUH1XMPSpXHTTTcREBDAp59+es5EsazL6oUQ4mJxVVQrvv9xA0qeHadTZ+wdvSo7JFHNucrjeHjo2c1yO6drHCYmJnLXXXcVO96wYcPCRPFsTCYTv//+Oy+99BJz5szh+++/Jzw8nMcff5wpU6ZUiWl8/+ZWojhlyhSuvvpqli9fTlRUlIdDcl/37t359NNPWbduHQMGDChybN26dQB069bNrbY1TcNut5OWllbuOIUQ4mJUI9SfWZ/dw849sdSqFUjzJucuMCxEdTJ9+vQivYPnEhUVddbFvv7+/rz55pu8+eabHoyu4riVKMbGxjJkyBAGDhzIbbfdRpcuXc66Y8mFrDk4dOhQJkyYwBdffMGjjz5auHIoJiaGuXPnEhUVVbji+WzzBxISEqhTp06xtj/55BNsNhuXX375hXkyQghRBQUEeNOrR7PKDkNcIqraHMVLkVuJ4tixYwv3fZ41axazZs0qVgrHMAwURbmgiWJISAhvvfUW9913H7169WL8+PHYbDamTp2Koii89957heeebf5A27Zt6dmzJ126dCEiIoLU1FSWL1/O77//TmRkJM8///wFez5CCCGEEJXJrUTx66+/9nQcHjN+/Hhq1KjBW2+9xZNPPlm41/Orr75K+/btz/v4CRMmsHjxYj755BNSUlLw8vKiWbNmPPfcc0ycOJGQkJAL8CyEEEIIYRgVUB7Hw+1Vd24liufbpqayDRs2jGHDhp3znLPNH3juuecK920UQgghhLiUVau9noUQQghRfWiGgubhHkDNzVXPl6pyJYpJSUnMmzeP6OhocnJy+PLLLwvvP3r0KO3atcPHx8cjgQohhBDi0mKgoHt48Ykhi1nKxO1Ecdq0aTzyyCPk5+cXLlw5nSgmJiZy+eWX8/nnn3P33Xd7LFghhBBVz6JFu/j2u3UEBfkw6fFraNiwZmWHJITwELf6cxcvXsy4ceNo3rw5P/30E/ffX3QLp7Zt29KmTRt+/vlnT8QohBCiitq/P57/vfMHJ06ksndvHE88Ofus9eOEKCvNUCvkR5SeWz2Kb7zxBuHh4axYsYLAwEC2bdtW7Jz27dsXFrkWQghRPcXEpGA2m3A6dQwDkpOzcTg0rFaZAi9EdeDWX/LmzZsZMWJEYUHrkkRERJCQkOB2YEIIIaq+du3rF04/MptVWrQIlyRReIyBgu7hxScyR7Fs3Pprttvt+Pn5nfOc9PT0KrlnoRBCCM+pExbExx+N4fffdxAU7MvNN3Wt7JCEEB7kVqIYGRnJli1bznnOhg0baNGihVtBCSGEuHg0alSLBx+8qrLDENWQaws/D5fHkR7FMnHr1R8yZAirVq1i7ty5JR7/+uuv2blzJzfffHO5ghNCCFF1GIbBug2HWbRkN5lZeZUdjhDiAnCrR/HJJ59k9uzZ3Hbbbfz4449kZGQA8OGHH7Jq1Srmz59Ps2bNePjhhz0arBBCiMrzvw8W8deS3Siqgv9X3nz92V0EBkitXFFxDKMC5ihKwe0ycStRDAkJYcWKFYwePbpIr+IjjzwCQJ8+ffjuu+/OO49RCCHExcGp6fz25w7OVL7JZ/3GIwzs36YywxLVnI6K7uGhZ0+3V925vTStQYMGLF++nJ07d7Ju3TpSUlIICgqiR48edOnSxZMxCiGEqGQmVcHHx0purh0AXTcICpLeRCGqu3LXMGjfvj3t27f3RCxCCCGqKEVReOk/Q3n+1QXk5dm59ur2dO/SqLLDEtWcbnh+b2Zd6sGXiRS7EkIIUSpdOzfi1x8noOsGJpMM3wlxKXA7UXQ4HCxYsICNGzeSlpaGpmnFzlEUhWnTppUrQCGEEFWHoiiYTLIYQFwYegUsZvF0e9WdW4niyZMnGTBgAPv27Tvnnp6SKAohRNW3cu0Bpn+7Bj8/LyY+MIDGkbUqOyQhRBXhVqL4+OOPEx0dzW233ca9995L/fr1MZtlFFsIIS42x2NTePGNhTidOooCE5+ZzfxZD8rQsqgSdENFNzy86tnD7VV3bmV3f/31F1dccQXffvutp+MRQghxAcWcSMVsNuF06hgGpGfkkZ1jIyhQVjQLIdxMFPPz87nssss8HYsQQogLrHWLcODM3MP69UIJDPCu5KiEcNFRPL7lni5b+JWJW4li27ZtOX78uKdjEUIIcYHVCPXn03dG8dOvW/Hz8+K2m7ujKPJBKqoGHc8vPtE92lr151ai+MQTTzB69Gj27t1L69atPR2TEEKIC6hRw5o89uDAyg5DCFEFuZUo1q5dmxtuuIGePXsyYcIEunTpQnBwcInnXnHFFeWJTwghhBCXKKMCFrMYspilTNxKFKOiolAUBcMwePnll885TFFSfUUhhBBCCFH1uZUoTpkyReawCCGEEKJC6SgeX3wii1nKxq1E8YUXXvBwGEIIIS4mJ1MyAahbI7CSIxFCVCSpki2EEKJMXp+zlB9W7gTg1is7MHl430qOSFRXuqGgyRZ+larcieLq1avZtm0b6enpBAUF0blzZ3r37u2J2IQQQlQxxxPTmLtqZ+H2rT+s2MGIqI40rB1SyZEJISqC24nili1bGDVqFPv37wfAMIzCeYstWrRg5syZdO3a1TNRCiGEqBI0vegML0UBXTcqLR5RvemGUgFb+EmPYlm4lSgeOnSI/v37k5mZSe/evenXrx/h4eHEx8ezdOlSVq9ezYABA9i4cSPNmjXzdMxCCCEqSaM6oQzs0oLFWw9gGDCoa3Miw6Q3UVQMV6IoQ8+Vya1E8eWXXyYrK4s5c+Zwyy23FDn2wgsv8OOPPzJixAheeeUVZsyY4ZFAhRBCVD5FUXh17CDGDHCNGDWvV1OqYAhRjbmVKC5ZsoQbb7yxWJJ42rBhwxgyZAhLliwpV3BCCCGqHkVRaBFRq7LDEJcAowLK4xhSHqdM3Br4T05OpmXLluc8p2XLliQnJ7sVlBBCCCGEqHxu9SjWqlWLvXv3nvOcffv2UbNmTbeCEkIIIYTQqYA5itKjWCZu9Sj269ePhQsXMnv27BKPz5s3jwULFnDVVVeVKzghhBDu03SdBTuj+Xr9FuLSMys7HCHERcjtLfwWLFjAHXfcwUcffUTfvn0JDw8nISGB5cuXs3r1agICAvjPf/7j6XiFEEKU0tML/+LP6AMAfLhyPb/dN5o6gQGVHJUQpWdUQHkcQ1Y9l4lbiWLTpk1ZsmQJo0ePZs2aNaxZswZFUQoLsLZo0YIZM2ZIaRwhhKgkhmHwy+596AXvywoKKw8dY3jndm63mZmVx47dJwirHUjzJmGeClUIUYW5XXC7W7duREdHs3btWrZu3UpGRgZBQUF06tSJXr16eTJGIYQQZaQoCjX8fEnKzgFAN4xy9SYmp2Rx98PTyct34HTqPHhvX26+oYunwhWiRFJHsfKVewu/nj170rNnT0/EIoQQwoM+uXUwE+f9TmpuLiO7daRPk4Zut7V4+V5ycu04HBoAM75dK4miqHB6BZTHkcUsZVPuRNHhcBAdHV3Yo9iqVSssFosnYhNCCFEO7erWYcnDd3mkLV8fa5HC2j6+Vo+0K4So2tyeIZqSksK9995LcHAwnTp1Iioqik6dOhEcHMy9994rNRSFEKIaGXRVO9q0rAuAj4+FZx67tpIjEpcCo2Do2ZM/spilbNzqUUxMTKRXr14cOXKEoKAgunfvTp06dUhISGD79u1MmzaNZcuWsWbNGsLCZMKzEEJc7LysZt597Vays234+Foxmzy7ElUIUTW59Zf+zDPPcOTIER599FGOHz/OsmXL+P7771m2bBnHjx9nwoQJHDlyhGeffdbT8QohhKgkiqIQEOAtSaK4YDzdm1gRi2OqO7d6FH/99Vf69OnDO++8U+xYYGAg7777Lps3b+aXX34pd4BCCCGEEKJyuJUoZmVl0bt373Oe06dPH7Zu3epWUEIIIUovJT2bLz5cypEDCfSJaskdY/ugqtJrIi5+huH5cjYFpUVFKbmVKLZs2ZL4+PhznhMfH0+LFi3cCkoIIcT5GYbBK78u4/sNO0A3CM6xc+KbtYTW8Oe6IZ0rOzwhRDXg1kSTCRMmMGfOHHbu3Fni8e3bt/PDDz/w6KOPlic2IYQQ57At5iQ/bt7luqEqpLewYndqHNh37i/yQlwsdCpgjqLUUSwTt3oUGzVqxIABA+jevTujR4/miiuuICwsjMTERFasWMGsWbO45ppriIyMZOXKlUUee8UVV3gkcCGE8JTk5CyOH0umUeNahIb6V3Y4pZZts6P+o7YhqoLJotKtR5PKC0oID5KC25XPrUQxKiqqcG/nL7/8kmnTphUeO73f88KFC1m4cGGxx2qa5maoQgjhebt2xvLE49+hqiqKAu9PHU3TZhdHWa/ujerToEYwMSkZODWNSMWPJ/4ziN5Xtqzs0IQQ1YRbieKUKVOKVOgXQoiL1cwZqwq2pdNQFPj+u7U89/yNlR1WqXhbzMy573bWHjqOn5eV7o0i5L1ZVCtGBZSzkYLbZeNWovjCCy94OAwhhKgcXlYzqqqg6waqquLlVe6dTS8ob4uZfq2aYBgGqak5+Pt74eUl26gKITzj4npHFEIIDxt3Xz/2Rp8kIz2XkBA/xoy9+OZR22wOJj05mz174/DyMvPqS8Po3DmyssMSotwqokC2FNwuG0kUhRCXtAYNazJn7sOkpmRTo6Y/ZrOpskMqsz8X7eLgoUQAbDYnb/7vd2Z/+0AlRyWEqA7cThRPnDjBu+++y/bt2zlx4gQOh6PYOYqicPjw4XIFKIQQFc1iMRFWJ6iyw3Bbvs0BnKkibLMVfz8ui192RrNgezQk2HGk2GnZuA4TxkTh620tZ6RClI0U3K58biWKy5cv59prryU/Px+z2UxYWBhmc/GmDPltCCFEhRtwVVt+/HET2Tn5OJ06d9/p/vD5sv1HeObnv1BSNPwSDRQDjp1IZd3Oo+gWhSu7NGXi7VGy37MQlwi3EsUnn3wSTdOYOXMmt99+O6oqbxhCCFFZQkP8+Pqre4jee5JatQOJbFjT7ba2HI9D0w28811JIoDDqZGcko3TS2HBil3UDwtmxMDS7/ySb3cw+7ctJKZkcc0VrWnfvJ7b8YlLi8xRrHxuZXi7du3itttuY+TIkVUySZw/fz49evTAz8+PkJAQBg8ezO7du0v12F9++YV77rmHNm3aEBAQQK1atbj88sv56quvcDqdFRy5EEK4x9/Pm27dGpcrSTyVmkXT0FBMqorDT+Gfn6d6wVu93aFxJC6Fub9uYdLLPzJj7nqcmn7Odqd88Btf/7Sen//eyYMv/cDB46fcjlFcWgwUDMPDP1Jwu0zc6lEMCQkhNDTU07F4xLRp07jnnnto27Ytb7zxBvn5+UydOpWePXuyZs0a2rVrd87H33vvvfj5+TF06FBatWpFRkYGs2fP5u6772bevHn8+uuvUqdMCHFR+Om3bXw6YwUmk8qTD11NVK8WJZ5nGAavfvEXv67cgwJc3aspifVtBDRWCbKZybHZ2XI4DkPTMakqVl3h05krsTs0tu2KxW53cu8dvc8ax4adx7A7XJstmEwqm/fE0qxh7Yp4ykIID3MrUbz++utZsWKFp2Mpt7S0NB577DEiIiJYs2YNgYGBAAwfPpzWrVszYcIEli5des42vv32W/r161ckGXz00UeJiori999/548//uDaa6+t0OchhBDlFXsyjQ++/BtNc40fv/j2r3Tp0JAAf+/Cc/YeiGfv/pN4+1v5c0004FoSs3rNIRZ9cj9BAT6u+wyD39dEcyg2icvbR/LzL9sKEz+7Q2PzjmPnTBQj69XgcEwSmm6g6zpN6rvf6ykuLUYFbOEnPYpl49a48WuvvUZGRgYPPvggOTk5no7JbQsWLCAzM5N77rmnMEkEaNCgAcOGDWPZsmXExsaes43+/fsX6zE0mUzccsstAOzcudPzgQshhIelpuW4tlpVwFDAqetkZOYVHl+76TAPTv6WD6Yt5fWpf6L/a/Fhvs2Brrvu23MonpS0bHq0bUj3Ng3p2Lo+VourjJDVYqJj2wbnjOXNSUPo1q4hkfVCeXR0X7q3a+jhZyuEqChu9SjWrFmTP//8k8suu4yZM2fSvHlzgoKKl5ZQFIW///673EGW1oYNGwDo2bNnsWM9e/ZkxowZbNq0ifr165e57bi4OADCwi6OPWCFEJe2ls3q4ONjwZFjA0BRYPXGQ4wY2g2AH3/ZglaQCCoaGA4ds9WV/NWvE8zQiV/ibbUw6vqufPXTelRVwTDgiTv7M+z6ztgcTjZsPUq7VvW4e8SZ91yb3YmqKFgsZ+pRhtUI5N2nbr5QT11UI7KYpfK5lSju2bOHvn37kpaWBsC2bdtKPO9Cz+U7ceIEABEREcWOnb7v9Dllbfezzz4jJCSEIUOGnPPc+Ph44uPji90fHR1d5usKIYS7vKxm6tYNIfNgAuCqHbd9T2xhougf4I0BKLh6HHULRPVpRqvwWnw+ew1qjoYjS2Pa92vQLAq4Rpr5ackOBke1Y9TNlzHq5suKXPPTWSv57qeNqIrC4+MHcMPA9hfwGQshKoJbieJjjz1GSkoKL730EmPGjKFu3bqYTJW/m0Fubi4AXl5exY55e3sXOae0srOzGTJkCJmZmcybN++8i3g+++wzXnzxxTJdQwghKkKPTo04ciwJu0PDajHRtcOZId9H7u7H6o2HcNg1csJVdC+VJfsPs+ZIDGqOhuEsSCLzDVSzikMxMJtU6oUFl3itg0dPMXvBZgwDNMPg7U8XE9WrOQF+3iWeL0RpGAYYUnC7UrmVKK5bt46bbrqJ//znP56Op1x8fX0BsNlsxY7l5+cXOac0srOzufbaa9m2bRsffvghN95443kfM378eAYPHlzs/ujoaEaOHFnqawshqj9N11EVpcJGX8be2hOr1cyOvSfo3qkRN193pvZhzVB/fvzyPqYv3MD0rdsBsDld3YY+2pnp/iZVoV6tYE5mZ9O8QW0eH9OvxGtl59hQVQWtoOdRNwzy8x2SKApxkXMrUbRarURGRno4lPL75/Byq1atihw717B0SbKysrjmmmtYu3Ytn3zyCePHjy/V48LDwwkPDy9D1EKIS42m67z8yZ/8tWYfgf7evDlpSIUUoTaZVEYN68GosxwPDfLlvuG9+W7nLuwFSaKmG3RoV5/de+LQNFci+9xD19KyWZ1zXqtti7o0blCTY7EpGIZBjy6NqRnq7+FnJC41RgXMUfR0D2V151aiGBUVxcaNGz0dS7l1796dTz/9lHXr1jFgwIAix9atWwdAt27dzttORkYGgwYNYuPGjXz55ZfcddddFRKvEOLS9Pe6/SzbcADDMMjIyuO5939lwUel+zLqab5eFt696wamfP8XNoeTh6/txU3d2zD7503EJ2QwsG+b8yaJ4Nov+6PXbmPjtmNYrSa6dYg8b0/pD0u28+WCdfh6W3n+nqvp1KJ0X+SFEBeOW+Vx3nzzTfbu3cvrr79epfZzHjp0KAEBAXzxxRdkZmYW3h8TE8PcuXOJiooqXPGcm5vLvn37ii08ycjIYODAgWzatInp06dLkiiE8LiMrLwiSVRmTn4lRgN9WjVi2UvjWfvfB7mtT0e8vCyMubUnT024hs7tz1365p+8rGb6XNaUyzo1QlXPnSTuP36K975fTnpWHieTMpj47s/n3eFFXHo8vitLwY8oPbd6FF955RXatm3Ls88+yxdffEHHjh3PWh5n2rRp5Q6ytEJCQnjrrbe477776NWrF+PHj8dmszF16lQUReG9994rPHfjxo307duXMWPGMH369ML7r7rqKjZv3syQIUNQFIVvvvmmyDXat29P+/aykk8I4b4ruzfjyx/XoeAa6h1+den3TT6XhFMZfPD1MtKz8hh142Vc3qWxR9qtCCeTMzCb1MLkMDffTl6+XeY0iiJ0KqA8jhTcLhO3EsV/JlZHjx7l6NGjJZ53oRNFcC0mqVGjBm+99RZPPvkkVquVPn368Oqrr5Yqwdu8eTPgKt69YMGCYseff/55SRSFEOVSOzSA794ey7rtR6kd6k83DxSgNgyDR174gcSkTDTd4OkDP/P1/0bT6F+7oGiaTkZ6LkFBvpjMbg0qlUrSqUySTmXSuGkY3t6WYsc7tYjA22pB1w0URaFNkzr4+xavWCGEqFxuJYpnSwyrimHDhjFs2LBznhMVFVXisHlVGkoXQlQdTk1n/p/bORKTxBXdm9GznL11NYL9uD6qrduPjz2ZxoK/duDra+WW6zpjNZs4mZhReNxiMXHwWFKRRDElOYuJD8/iZFwawSF+vPPBSBo09Px2eqtX7ueVF39CURSCg335+PM7CfnXwpZgfx++eXkkf6yNxs/byg192l7w2rui6nOVx/F8m6L03EoUGzaU7ZeEEJeWD2cuZ8HindgdGn+s2MubT93IZR0jKyWWtIxc7pk8i7x8ByZVZcX6g0z/32gaN6hJTFwqTk3H6dRp3bToIpRvZqwmMcGVTGZm5PLJh4v571u3eTy+Tz5agtPpGlJOT8/l9992cMeoXsXOqx0SwJjrunv8+kIIz3ErURRCiEvNqo2HsTsKSshoOhu2H620RHHPgXg0TUfXDXRd4/DxJNIzc3n/heF8NWcN6Zl5DL++CxHhIUUel5dnR9ddCZyuG+Tl2iskvn8vZDnfwhYhzsZA8ficQkPmKJZJuSaorF+/nnvuuYcuXbrQpEkTOnfuzL333svatWs9FZ8QQlQJzRvXxmJ27UBlsZho0rBWpcXSoG4IjoIeOwUI8PMiwM+bkCBfHh83gJcnDaZdy+J1GYfdehlWqxlvbwtms8qosX0qJL4Jjw3CYjGhqgphdYK4fnCnCrmOEKLiud2j+J///If//ve/xeb0bd++na+++orJkyfz2muvlTtAIYSoCp6+/2re/mIxh44n079nC66NalNpsTSoF8rzj17Hl9+vxtfHyhP3DcRsPv82qk2b1WHm9w9w8GACDRvWIrxucIXE17VbY+b+NIGUlGzqRYSUKjYhSiJb+FU+txLFuXPn8tprr9GwYUOee+45+vXrR3h4OPHx8SxdupSXX36ZN954g44dOzJ8+HBPxyyEEBdcoL83L028obLDKNSvZwv69WxR5sfVqBlAjZoBHokh9mQaM+etx6npjLrpMho3OLMwxj/AG/8AKXUjxMXOrURx6tSphIWFsWnTJmrWPPPGEBkZyV133cXgwYNp27YtH330kSSKQghRzeTm2njquR/ZtfsEhgq6j4m1mw8z99NxBPpLcig8R6+ALfw83V5151aiuGPHDkaPHl0kSfynmjVrcssttzBz5sxyBSeEEJeq3Fwb7328hP0HEujZoyn3jOmDyVRxdQ/L4rs5G4jed9J1QwclX8Nh1di9P44/ft9BcmoOo27pQc+ezSo3UHHRk/I4lc+tRNHpdOLr63vOc3x9fXE6nW4FJYQQl7r3P/mbZSv34XBoxCemU7OGPzcP6VLZYQGQmpZdWP5GwfXBqygKr77/B2n5ru0Id/1vAZ8FjaBNG8/t35yXbyc3z0FosK/UXBTiAnHr62mTJk349ddfC8ss/Juu6/z+++80adKkXMEJIURJ4hLTWbJmH8dOpFR2KBXmwMEEHAXleOx2jQOHEio5ojOuv7YjFosJq9WMokBk41q88uRg0mw2UBRQFHQT/LVir8euuXL9Qa4d9SFD7/qESS/Nw+nUPNa2qMoqYp/n6vMlY+bMmezcufOc5+zevbtcI7xuJYq333470dHRDBkyhIMHDxY5dvjwYYYNG8bevXu5/fbb3Q5MCCFKsnv/Se54dDr//eQvxkyaybptVXunKHf16dkMq8W1WthsVrm8e9NKjuiM1i3r8uUnd/LIA1fx4XujmPHRXXRoVbznsFmTMI9d88X3fsWu6egKbN8Ty/J1B8//ICGqubFjx/Lzzz+f85wFCxZw5513un0Nt4aeH3vsMf78809+++03/vjjD+rWrUt4eDgJCQnExcWh6zq9e/fmscceczswIYQoyZzftuBwajgKepS++WkDl3dqVMlRed7Ykb2pEerP/kMJ9OjWhCt6Na/skIpoUL8GDerXKLzt621lwqgr+WDWCgygZ/tGXDewvUeutWT1PvKdmqtrwwCHrmOzOTzStqjazvQCerZNd73++uts27aNrVu3cvjwYVRVLfM0u+nTp581cevSpQubN292O76SaJpWrqkabiWKVquVxYsX8/bbb/PVV19x+PBhTpw4AbiGpe+66y4mTZqExVJ8I3ghhCiPQH9vzCYVp6ZjUhUCA3wqO6QKoaoKQ66/uApVN61bkxFR7WnYoCY3XNux3PMIDcPgxz+389XctRgKYBSMbJsUrry8aiXO4tLw9NNPExwcTKdOncjOziYpKcnttp555hlatWpV5L4aNWqc5Wz3HThwgJCQkPOfeBZuF9y2WCw8/fTTPP3002RnZ5ORkUFQUBD+/v7nf7AQQrjpnlt7sSM6jqMnUqhdM4ArujRh5g/r6Ni2Pu1be27hxKVo/c5jvPTpn+Tbndx78+Xcdk3pF89s3HyEZ5+fh6bpWMwmUlKyuXN0+XZ+WbbhIB/OWuHqPVZcmaJZVRnQuyX+fl7laltcHKpaeZxDhw4Vrr+IiooqV6I4YMAAoqKiyvy4u+66q8jtn3/+mWPHjhU7T9M0YmJiWLVqFdddd52bUXpor2d/f39JEIUQF0RIkC+z3hlDXr6Dpauiefujv0CB6bPX8uozQ7m8qyyic0devoMn31mAvWBI/6PZq+jaugHNSrlV4eq1BwtXQtsdGkuXR5c7UYw+lICmnVk0aTKbuPbKNjwyNqpc7QrhLk8v0s3OzsZiseDlVfovPtOnTy/8b0VR2L59O9u3by/xXEVRuOyyy3j33XfdjtGtxSxbtmzhpZdeIjExscTjCQkJvPTSS2cNXAghykNRFHx9rPyyeJdrvqJDw6np/LF0T2WHdlHKyc7n4XumFSaJACaTSlJaVqnbiGxYE6v1zOKbxpFl2wvb7nCi60UL3HVuUx/V5Or9sVpMDOzdksn3DcTH21qmtsXF63QdRU//VAVDhgwhICAAb29vmjVrxptvvlmq+Y5Hjx7l6NGjHDlyBMMwePTRRwvv++dPTEwMmZmZrF27lsaNG7sdp1s9iv/73/9YvXo1zz33XInHw8LCmDZtGocOHZKi20KIChMRHszBI4k4nToWi4l6dYIrOySPMQyDvQfiyc6x0bFNBF5eFTfn+9eftnAyNhVTDQuat4qiKAT5e9Oheb1StzHk+k7EnUxj9ZoDNGlcm8ceHVSqx+m6wX/f+Y2/lu7Fx8fCy8/eSLfOkQBc3qkRLzxyHUvW7CMyogZjbrzMnacnLmYVsNczBYlidHR0iYfDw8MJDw/37DX/wdfXl+HDh3PVVVcRHh5OXFwcs2bNYvLkyaxatYoFCxagqmfvx2vYsGHhfz///PP07du3yH2e5laiuG7dOvr27XvWicqKotCvXz9WrlxZruCEEOJcHrmnP8mpORw4nECndg0Yc+vllR2Sx3z49TLm/74NVVWpGxbEF2+PwruCkkWbzQm6gW98Po4AM95+Vt55ZSh+vqUfDjOZVB6+/yoevv+qMl179bqDLF+9H4C8PAcvvrGQX+c8Uni8X4/m9OshC1eE540cObLE+59//nleeOGFCrvu8OHDi21vPG7cOG6//XZmz57NDz/8wIgRI0rV1vPPP18RIRbh1tBzQkICERHnnjRet25d4uPj3QpKCCFKIyjQh/dfuZU/vp/Aa8/cWCSRMgwDo6qMMZWRze7kh4VbcDp17HYn8YkZbNhacfUirxncCT9/bywWE5YsJ0aexoOPzuLwkVNlbstudxaZV3g+Wdn5RTodcnPtF+3vTXieUQEFt42CgtvffPMNW7ZsKfYzfvz4C/48FUUpTPp+/fXXUj9u7ty59OvXj5MnT5Z4PC4ujv79+zN//ny3Y3MrUfT19T3vSp+kpKQyTc4UQghP+X7BJvqNeI+BIz9gyep9lR3OWR1PSOOLBeuYv2xnkZ1GTCYVs/nM27NhGPh4V9zQc63agXz9w4OENAjG4W/BhoHd7mTBb9tccZ5I4dH/zOHuR2ewan3Jha4Nw+CjT//m6uv/xzWD32HpstLtytKrR1P8/bzw8jJjsZgYNrSLbM8nLohWrVrRuXPnYj8VOex8Lo0auerBnjpV+i9oX375Jenp6dStW7fE4/Xq1SMjI4Mvv/zS7bjcShQ7duzIggULyM7OLvF4ZmYmCxYsoGPHjm4HJoQQ7jh2IoVPv12Fw6mRl+/g5fd/IzvHdkFjyMm1sXl3DHGJ6Wc9Jy4pg5HPz+KrXzbwzvfLeO7zPwqPmU0qTz00CJPJ9RZ95eXN6dohskJj9g/wplbdYFSL65omk0qAvze6bjDh2Tls3xXLwSOneP6NhRyLSS72+L3RJ/l5oSuxdDg0/vvmb6Uqih0c5Mv0T+5i8qPX8OZLw7j/riiPPi9xcTMq6KcqOnDgAAB16tQp9WN27dpF165dz3lOt27dzrvN37m4lSiOGzeOpKQkBgwYUOziO3bsYODAgSQnJzNu3Di3AxNCCHekZeRiUs/0SOm6QXZO/gW7flJqNrdO+Ion/juf2x79miVrS+7RXL/7GABOTcfm0Fi65SCGYRSu/L06qg1/fvcIv816iCmPXY+qVnwv28SHBhIc5AtAwwY1GTHsMnLz7KSm5aAXDAebLSaOxRbfYzsrO79IjE5Nx24v3X7MgQE+9L+yFZ07NJTeRFFt5Obmsm/fvmLT8FJSiv/9OJ1Onn76aQCGDh1a6mukpqZSu3btc55To0YNkpOLf7krLbcWs9x666388ccfzJw5k06dOhEWFka9evWIi4sjMTERwzAYPXo0t912m9uBCSGEO1o3Cye8dhAJSZkAtG1el7BagRfs+r8s3UVmTn5hTcGPv1nJVT1bFjknJTOHVXuOkmdooLi+sYcG+HLTyI9Jz8il/5WtePqxa/H2slTYApaSNGxQkx+/fZDcPDt+vlYURcEwDJpE1uL4iRQ0TcfQDVo1Lz4016lDA+qEBZF4KgNDN7jyihYEBHhfsNhF9VTVtvCbNWsWx48fB+D48eMYhsErr7xSePw///lP4X9v3LiRvn37MmbMmCK1D9u1a0fv3r1p164d4eHhnDx5ktmzZxMdHc2IESO48cYbSx1PzZo1OXjw3PueHzx4kODg4FK3+W9uF9yePn06PXv2ZOrUqezZs4eEhAQA2rZtyyOPPMI999zjdlBCCOEuL6uZL94YyYr1B7BYzET1aHZBe6ksZhPqP65nsRR9m9V1g7vf+oGTKZnoCmBRiKwRjBafT2paDgAr1hygW+dGXN2/zQWL+zRVVYrseqIoCu+/eivf/riBrBwbN13XqcTE28vLwqcfjmbj5qP4+Fjo2rn67b8txLRp01ixYkWR+/5ZKvCfieLZ3H777axYsYKlS5eSkZGBn58f7du35+uvv2bMmDFler/q1asXCxcuZN++fbRs2bLY8ejoaBYsWMANN9xQ6jb/rVw7s4wbN45x48aRm5tLeno6wcHB+Pr6lqdJIcRF6NiJFGIT0mjTrC6hQZX/HuDrY+Wavm0r5do3DuzAotXRHIlJxstqZvK4AUWOZ+TmE3MqvfC2j9XCQ8Ov4I1Xfim8z+5wsmhDNI7UXPwDvOkzoE3hfEWAtKw88u0O6oQGXJAkODDAh/vvjDrveT4+Vq7s06LC4xGXkIqYVFiO9pYvX17qc6Oiokpcwf/222+7H8C/TJo0ifnz59O7d2+mTJnCoEGDCkd4//jjD15++WU0TWPSpEluX8MjW/j5+vpKgijEJWrxmn28/OEfmM0qJpPK16+PIqIaFb4uK39fL2a8OYpTyVkEB/ri421B03SysvMJCvQh0NeLmoG+pGbloRsGDk2jcd0a3Dy4C7N+WOfaNUKBZbHH2bnyAD7pGquXRvOfN1111+Ys285b3y8DA6I6NeHN+264IPMXhagMVW3ouarp1q0bH3/8MQ8++CATJ05k4sSJRY6bTCY++eQTLrvM/WL1HkkUhRCXri/mrMGp6Tg1HZOqsPDvnTxwxxUVcq2jCal8+dcGVEVl3KDLqF8ruEKuU14mVSW8dhAAx2NTePSZ2aSm5xJRN4SO7erT3CeI9EA/rF4W7rnuMhrUDubuUb2ZvmErtlwnDl8FwwR5XmCyOVm1eA8zVm5h3tbdHI1NxQIowJpdx9i4L4YerStuVwYhRNV277330rt3bz7++GM2bNhQOMLbo0cP7r//flq1alWu9iVRFEKUi+8/9t1VVRVfn4rZhzcrz8bod2aTk28HBVbvPcrvL96Nj/XCLfZwx/uf/016Rh4AJxLSiEtMRzcMzCaVd1++lQ5tXJsXKIrC5d2asnz3YQynBrqBNc2176sW4c27i9dg1zSwgh4I3hmgKOBwlm5lsRAXpYrYm7mq1scph1atWjF16tQKadut8jhCCHHaU/cNJKBg8UOj+jW4ZVCnCrnO0YRUbA4nekEJmcxcG3HJGRVyLU/KybEVlpYxDAr/W1UVdkXHkW93MOv3TXwwZwV3R3Vl/NWXMfSyNgxr0AR/u0JwqB+9h//jNVXAKPiKXyPQV3oThRAVSnoUhRDl0rJxGL99cT/ZuTaCAnwqbHFFg9rBhXPxFMDbaiY89MKVvXHXmBE9ee6/P2M2m7A5HKiqilPT0Q2D1s3DeeKDhWzbfwKnpjN3yQ5mvzaGerVcw9ZMGgLAjth45u937YeMAard9Z+1QwKwmE2V8KyEuDBOb+Hn6Tarm19++YVvv/2W6OhocnJyOHToEOBa9fzLL79wxx13UK9ePbfalkRRCFFuZrOJ4MCKXdAW7OfDFw/fwoe/rkFVFCYM6Y2fd8UMc5dGnt3Bt6u2kZqVx5DurWlRt1aJ5/Xs3oTpH97JsZgUIuqFMHfBZk4kpNO3Zws+/XIZ+w8mglVBD1ZRzCa2RMeeSRQLdKgfzud33sgbPy/n2IlUlGwDq9lE04iaF+KpCiGqKMMwGDt2LN988w0APj4+5OXlFR4PCQnhmWeewTAMJk+e7NY1ZOhZCHHRaBdZh88euplPHryJlhHn3o2gok34aiGfLFrPN6u2ccd73xObnH7Wc+vXC6XP5c1o1KAmTz48iA9eHcHGTUc4fCQJBTDZDcw5rgVBDcNDSmyjR5MGfP/w7VzbugW1gvzo074Rj9zcp2KenBBVhQEYiod/KvtJec7HH3/MrFmzuPPOO0lNTS1WBqdOnTr06tWL3377ze1rSI+iEEKUkabrrDsQU3hbVRU2HTpB/ZrBpW4jMTETTXPt3qIAfhYL990RRYdmxYeHHE6NnxfvICUjl7sHdePVe68p71MQQlQD06ZNo0OHDnzxxRcoilLi1J9mzZqxaNEit69RqkTxpZdecqtxRVGKVCwXQojqwKSq1A0JJCE9C90wcGo6jcNCy9TGjYM78f7HS1BVFV3XefuZm+nQrn6J5055/1fWbTuKU9OZ+dMGFAV6dW7CKxOvx2qR7/ui+jIqYNWzx1dRV6L9+/czfvz4c84Nr127NklJSW5fo1TvMC+88IJbjUuiKISoSAcTk/lz1wHqBAVwY+c2mE0XbjbNp+NvZMrsxaRk5XBnv650bFS3TI+/4ZqOhNcJ5vCRU3Tu0JBmTcPOeu7qzYfR9DOfboYBG3ceY96i7dx2fVe3n4MQVV4V25mlqjGbzeTn55/znLi4OPz9/d2/RmlOWrZsmdsXEEKIinA0KZXhH3+HphuYVIXNx07wxi0Xbki2Ue1QZj1ya4nHDh1L4vNvVmEYBvfc3psWTUpOArt2iqRrp8jzXiusZiDxSRlFekKcTp3U9Bx3QhdCVBOtW7dm+fLlGIZRYq9ifn4+S5cupVMn98uWlSpRvPLKK92+gBBCVIRVB44BCk5dw6nDX7sP8cYtlR0V5ObZeejZ78nNs4MBO/aeYN4X4wnw93a7zbefupGXPvyDEwlp5ObZsVrM6IbBwN6tsNucLP5rFzabg35XtSE42M+Dz0aIyiVb+J3bqFGjeOihh5g4cSLvvPNOkWOapvHYY49x8uRJXn/9dbevIZNbhBAXpfqhQRgFY0iqolA3OKCSI3I5mZhBvs1Z2Pvn1HRiT6bRunm4221G1qvBV/8dCcDm3THEnEylW7uGRNQJ5rEJ37B/XzwYMOf79Xw1czx+BQXQhRDV2/jx41m4cCEffPABc+fOJSDA9T44bNgw1q9fz8mTJxkyZAh33HGH29eQ8jhCiItSVMvG3NOnGzX8fWkZXosPRw6u7JAAqFcnCD8fK6qioCoKVouJBvXKttDlXLq2bcBNAztSPzyEtNQcdu2IxW5zYrc7yc7KZ8/uEx67lhBVguHhn2rEZDLx66+/MmXKFGw2GwcOHMAwDObPn09ubi7PPfccc+fOLdc13O5RjI+P55VXXmHRokXExcVht9uLnaMoCk6ns1wBCiFESRRF4aGrLuehqy6v7FCK8PG28snrt/PV7DUYBowdfjn+FdTD5+fvhdVqxm53vc86nTo1a1aNnlUhxIVhNpt54YUXeP755zlw4AApKSkEBQXRsmVLTKby79zkVqIYFxdH9+7dSUxMpE2bNthsNho2bIiXlxdHjhzB6XTSsWNHgoKCzt+YEEKUUmZGLlMmzWF/9EmatQzn5bdHEBRcsTvCuKNBvVBeePyGCr+Ol5eFl14bxpv//RW7zcHYu6+kcZPKLUQuhCfJHMWiQkNDeeqpp3jyyScBV/nCqKgorrjiChRFoUWLFh6/pltDzy+99BIJCQn8+eef7NixA4A777yTffv2ceTIEa6++mry8vKYP3++R4MVQlzapn28lAP74tE0nUP74/nyoyWVHVKl69qtMT/Mf4Sff3ucoTdJqRwhqrP09PQi5XBeeOEFli9fXqHXdCtRXLRoEYMGDeKqq64qdiwiIoK5c+eSl5fH888/X+4AhRDitOSkTJxODXANs55KzKzkiIQQFcrT8xMv8nmKYWFhnDhxYechuzX0nJCQwPDhwwtvm0ymIptQ+/v7M2DAABYsWMAHH3xQ/iiFEAIYfHM3tm46itlswunUGHpLt8oOSQhRoZSCH0+3eXHq0aMHs2bNwmQyER7uqqRQmh7F8myA4laiGBgYWGTxSkhICHFxcUXOCQoKKteWMUKIqs1md7Jx5zG8rGa6tm2Iqlb8m+9lvZrx/ud3sm9PHC1a16NF67LthiKEEBezt956iwMHDvDZZ58V3rd8+fLzJosXPFFs2LAhsbGxhbc7dOjA0qVLyc3NxdfXF13X+euvv4iIiHArKCFE1eZwatw35XuOxaViGAa9uzThlYkVv3gDoHmrujRvJQmiEJcE2cKviKZNm7Jr1y6OHj1KXFwcUVFRjB07ljFjxlTYNd1KFPv378/nn3+Ow+HAYrEwZswYRo8eTc+ePRkwYACrV69mz549PPPMM56OVwhRBezaf5KjJ1KwO1zzBZeuP0ByWjY1Q9zfT1QIIcT5qapKkyZNaNKkCQCRkZEVuoOeW4ni3XffTUhICMnJyYSHhzNy5Ei2bNnC1KlT2blzJwAjRozg2Wef9WiwQoiqwc/Hiq6f+VquKgreXpZKjEgIUS1Jj2IRnTt35r777mPcuHEAfP311+Xax7k03Fr13KxZMyZPnlw4kRLg3XffJT4+nnXr1hEfH893332Ht7f7e5sKIaquFo3DuPW6zgCYVIUn770Kf1/ZNs5TDMPg79X7+Hr2GvYdSvBIm38t2c31N77HdUPfZdFfuzzSphDiwtq+fTsJCWfeE+666y5+/vnnCr2mR/d6rlWrFrVq1fJkk0KIKurBO67k7mE9MZlULObyV/8XZ3z1/Rq++2kjum4w88f1fPjqbbRp4f68zJSUbN783+9omqsr5a13/6Bz50hqyS4uospTwOMFsi/eVc81atQgOTm58LZhVHz3aLkTxdjYWLZt20ZGRgZBQUF06tSJ+vXreyI2IUQVJ8PNFeOPpbsL538qisLydQfKlSimZ+Ti+nA8/aGikJ6eK4miEBeZjh07MmvWLOrVq1c4qrt9+3Zmzpx53seOHj3arWu6nSgePHiQBx54gKVLlxY71q9fPz766COaN2/ubvNCCHHJqhceQnJaDpqmYzGr1A0reTtUp6ZzMimDGoG++J1j6D+yYU0iI2sSG5sKQP2IEBpF1qyQ2IXwKAM83ml2Ec9RfP3117n22mt5+umnURRXz+iCBQtYsGDBWR9jGAaKolzYRPHQoUP07NmTlJQUmjRpQu/evalTpw4JCQmsXr2av//+m969e7N27VqaNm3qVmBCCHEpiY1PY8ZPGwC487ZefDZjBTEnU7ny8uYMHtih2PlZOfnc++L3xJxMw2xWeXvSjXRv27DEtk0mlanv3MHS5dEA9ItqhVmmC4iLgSxmKaJLly4cOnSIjRs3EhcXx9ixYxkyZAhDhgypsGu6lSg+/fTTpKSk8P777/Pggw+iqmfWxOi6ztSpU5k4cSLPPPMMP/zwg8eCFUKI6ig33864/3xHVrYNgDWbDzPv43vx9bae9TE//b2Dk6cy0A0Du0Pjza+WcP8dfXjvh5WYTSpPjezPZa3PJI4+Plauu6Z4wimEuLgEBATQv39/AMaOHUvHjh2rXh3Fv//+m2uvvZaHH3642DFVVZkwYQKLFi1iyZIl5Q5QCCGqu9iTaeTk2dELxthy8u3EnkyjReOwsz7GqelFhuRsDifPfv47Tk0HYOIHP/PXO/fJanRxcTPw/GKWi7hH8d+OHj1KcHBwhV7DrfI4drudjh07nvOcTp064XA43GleCCEuKXXDgrCYTCiGgSXbiSXFTvSO2HM+Zkjf9gQFeGO1mDCbVG68qgOqcuYD1anppGTmVnToQohK1LBhQ4KCSp7DfFpmZiYxMTFuX8OtRLFDhw4cOnTonOccOnSI9u3buxWUEEJUJYZhcCQllaOpacXKUWhOjc/fWcRdQz/gzf/MIy/XVub2A/y8+fCF4dS1+mDN01HyNT776G+W/b3nrI+JPZFKkGYmRLUy6Y6+3DaoC8H+PljMJqxmEw3qhFCvVskfILsPx/PSV4v48MdVZP8j3vjkTJZtOsiJxPQyPwchKoQBiod/LvYeRZPJxMsvv1zkvjlz5nDTTTeVeP67775Lo0aN3L6eW0PPzzzzDDfeeCN//PEH11xzTbHjv/32Gz/99FOFF4E8m/nz5/Pmm2+ya9curFYrffr04bXXXqNt27bnfez+/fv58ssv2bZtG9u2bSM1NZW7776bL7/88gJELoSoagzD4Jk/FzNv114Abmnflleu7l+44vCn79azcM5GHHYnp+LTMVtMPPb80DJfp1WTOvhhIq1gxxuHQ2Pb1uP07d+m2Lm5eXaeeOFHbHYnAO9/8BeffvQ3Pn5eXHdVSyLCQ7g5qj1mU/G+gJjENMa98QMOp4bFrLJ1/wm+evY2dh08yYOvzcWkqjg0jfeeuImubRqU+XkIISqWYRjFvrDu27fvnCufy8OtRDElJYVrrrmG66+/nv79+3PFFVcQFhZGYmIiK1asYOnSpdxwww0kJycXq+3j7vLs0po2bRr33HMPbdu25Y033iA/P5+pU6fSs2dP1qxZQ7t27c75+HXr1vH222/TqFEjunXrxqJFiyo0XiFE2TidGl/9toGdR+Lp1a4RI/p3KkzaKsLR1DTm79pbOH/wx527uad7FxqFhgBwMPokjoKEzWHXOLg33u1rtW1fn8RTGTjsGhaLiTZtI0o8Lz0jF7vDdU10A5wGNqcTm83J+t+i+WXehLO+JtsPxGFWFRyAw6mz63A8Tk3n2982F9RudNVvnL5w41kTRcMwcDg1rBaP7tkgRMku8h7Ai51bf+Vjx45FURQMw2DJkiUlLlpZuHAhv/zyS+Ht8tbxKY20tDQee+wxIiIiWLNmDYGBgQAMHz6c1q1bM2HChBLrPv7TDTfcQGpqKiEhIRw7dqxc3bXi4mEYBlujY8nIzueydpH4+Zx9tamoXB//vIbZf2/D7tDYuv8EVrOJm6Mu3Gref39m9ezbitV/R+N0aFisZnr3b+V22w8/OhAfHwsH9ifQ+4oWDBxU8hfbsFqBNIiowcmEdHSHViSqnBwbDoeG1Vry23uz+rVwFCx4MakKdWsGYTap+Pt6YTKpaJqOSVUIOMsimLj4NB579gcSEjNo2bwOb788nAB/2a5ViOrKrUTx66+/9nQcHrFgwQIyMzN57LHHCpNEgAYNGjBs2DBmzJhBbGzsOXeOqVGjxoUIVVSSPJuDWX9t5lRaNjf0bEOHpq7dLt6esZSFy3ejqgo1g/2Y+eooSRarqI17Ywp3LbE7NTbvi63QRLFRaAg3tm3NT7tdQ883t2tDZEhw4fErB7ZFVVW2rDtE8zZ1GTS0s9vX8vKy8OAjA897nsmk8vEbt/Pz79vJys7jz993Yrc5MYAuXSP5ZvEWdN3gpivbExroW+SxrSLDePHea5j5+yZqBPny5EhXmY3xt/Ri+/44TiSmUzPEn4dvv6LEa7/38RJOJWUCcOjIKb79YT333RXl9nMW4pyMCtjCz+NbAlZvbiWKFVmvpzw2bHAVq+3Zs2exYz179mTGjBls2rRJthi8hD356a9s3heL3anxy9q9fPOfO4isE8K8JTsKz0lOz2HdjqNc1aPFBYlJNwyiU0/hZ7ESGRhyQa55MevSMoIj8SnYHRpWs4lOzUseni2L0zuchAb6FisnoygK/71mAPde1hUFV+L472HdPle1ps9VrcsdR1kE+HszangPAEYM7cbyVfvx8bXy2d8bWbbwBGDw88pd/PjqWLytrq0WV+89yoe/rsXbaubZuwfSqn5tomMSefTFBWTm5nP39d25ulsLAny9UdWSP0zTM3PRC+ZRak69YHtAISqIFNyudNVqgsmJEycAiIgo/sFx+r7T51SU+Ph44uOLz1GKjo6u0Ote6vbFneLYqTQ6NapHWLD/Wc/bGB1TWGfObFLZsj+WxnVD8bKYsRXM+dJ1gwC/C1N7zqnrjPlrLusTYjEMgwc79ODxzn0uyLUvVg/d1Aer2czOwyfp3b4xt/QtX29idp6Ne16dzdGTqZhMKm8/Mpie7YpOOVEUhSY1Qst1nYoUGurPTUO6cOhEEvE/ZKHprn/jKZk5HI5LoU2jOpxMzeTRLxbi0HQU4N4Pf+TvV+7lofd/Ii07D4C3566gdWQd2jbyOeu17rilBy+/+QtmiwlN0xlyXacL8RSFEJWkWiWKubmub7ZeXsU/5L29vYucU1E+++wzXnzxxQq9hijql817eX7OYiwm15Zk30+8jcZhJU8haBQeypGTKWi6gabpNI2oiUlVefGBa5jy8e/YHRqDerU861ZonrY+PoZNiSdwFnywf7B9HePbdcffIkWSz8ZiNvHgTb091t6ClbuJPZWObhjoTo3XZ/zNwrfv8Vj7F1LNYH9UVaHguxAYEBYaAMCxxLSCFc06BpCVZyMhLbswSQSwmFROJKXTtlGds14jqncLIuqGcPhYEm1b1aVeuPSCiwokPYolmj59OsuXLy+8fezYMQD69etX7NzTx9xVqkSxcePGKIrCkiVLaNSoEY0bNy5V44qicPjw4XIFWBa+vq65ODZb8Tpm+fn5Rc6pKOPHj2fw4MHF7o+OjmbkyJEVeu1L1Wd/bcCp6Tg1HVVRmL9+D5OGnJlftfdwAi999idZuTaGDejA1mB/ElKzuL1/J7q2cE1DiOrWjKVfPozTqeHtZblwwStKkd01ZObMhed0akU+OE4n7RejYH8f3nl4CG98uxTDMHh8RBQ1g/xwODRMeTpmJ6iKgqoqhIcEEFEziO4t67Pj8Ek03UBVVbqUYii/aePahIUFFg5BCyEurGPHjpWYAP4zefyn8lSGKFWiqOt6kYv8+/bZ/LvOT0X75/Byq1ZFVx6ea1jak8LDwwkPD6/Qa4iiAn29UXB91ptNKoH/mGOm6waPvjWfzGzXF4Vp89fzxfMjaNW4eI+J2aSWWHeuotgdTvQkJ20Da7M9PQHdMPA/qPDpzNU8fle/8/6N5ebbeeLzX9l6MI7mETV55/7B1Aj0K3MchmHwx7zNrF+2jxbt6nHr3VditpjcfVoXncF92jJ36Q7SsnLRNINHbz3zJcOp6zg0DR/LBfzyUE6Xt43k5//eVXg7L9/OgxO/ITY2FS9dp233CJp3jGBs/66YVJX3HhzKvJU7yczN5/rLW1PrHFM3Tpv50wY+/X41ACOu68IjY6Iq6umIS530KBazbNmyC3q9UiWK/85ay9uNWVG6d+/Op59+yrp16xgwYECRY+vWrQOgW7dulRGaqEAvDB/AuE/nkZqdS8t6tRl5xZk5Uza7szBJBDCbVeJOZZSYKF5ITqfGvW/+wKETSWiGQQgq5jwDc77CwtidXHNFa9o0O/cXjs9/X8/mAydwODWiY07x1pzlvH7vdYXHY+LTsDmcNImoedaFCQBLFm7jk9d/xWHX2L7xMDlZ+Yx74lqPPdeqLiTQl7mvjWX/8VOEhQYQXtNVMWHJ/sM8Nu83bE6NGzu05r+DB1ZovcaKsnL1AeJOpuFwulaKH90az6fP31b4XLytZu64qvQrtVPSc/hs9urC23P/3MZ1fdvSpEFNzwYuhCjRlVdeeUGvV63mKA4dOpQJEybwxRdf8OijjxaWyImJiWHu3LlERUUVrnjOzc0lJiaGoKAg6QG8yDWvW5NlL44jz+7E91/Dxj7eFrq2rs/OgyfRdQOzqtKpVcX2KpfG7qMJHIhNKvzwVg0w2Vwf3KqikJtnP28b8SlZhY93ajonUzILj304eyXf/rEFRVHo0a4hb08ciqJAZq6NAB+vIonjlvWHyfFSUFUV8p1sXX/hpotUFT5eFjo2r1d4WzcMHp//O7aC1/e33fu5pnVzrmxWdJGLzenkzdWr2BofT79GjXjwsh5F9luuClRVKdKDcq4vDaVhLygufpqiULhDjBCeVwHlcWSST5lUq0QxJCSEt956i/vuu49evXoxfvx4bDYbU6dORVEU3nvvvcJzN27cSN++fRkzZgzTp08vvD8jI4OpU6cCkJ6eDsD27dt55ZVXANc+1zfccMOFekqilBRFKZYknvb2pKEsWLqLrFwb1/ZuTY2gsg/Pepqft7Xo1AxFwWJyJWuN6oXSsfX5k9kbe7Vl2fZDmFQVTdcZXlBLMCMrj1m/bS44y2Dj7hhWbDvM+/NXEXsqnbCQAD5/YhgRtYLJybezLC+FjFaBoEDgiXzadYk853UP7DrB25N/IDsjlxH39WXwqF5uvgpVl6brhavgwZW8Z5Uw9/n1VSuZvWsXNk1jX1ISAV5ejO3kfh3FinBl7xYs+HUbe/edBGDiQ+XrGa1TK5D+l7dgxcZDoECHlvVo0bi2p8IVQlQxbiWKr7zyCi+++CLHjx+nbt26xY7HxcXRqFEjXn75ZSZPnlzuIMti/Pjx1KhRg7feeosnn3yycK/nV199lfbt25/38WlpaTz33HNF7tuyZQtbtmwBXDUkJVG8uHhbLdw6qGp9eDerX4s7BnZhxh+bUFWFJ27rS9OwmuTbHHRpWx+L+fxzBHu0bsjXT9zKtkNxtGoQdmYRQgk5wII1u4kv6HFMysjmvbkrefuBwSzZfIAshwMKeplyG/hy7+ODznpNwzB47p6vyEx3VQ/44o3fad6+Pi07VK89gS0mE6O6d2T2ll2oikJNf1+i/tWbCLApLg6b5up1tGkaW06erHKJotVq5oO37+BEXCqBAT4EB5dvQZ+iKLw44Tp27T/J/kMJ+HhZSEnNoXbNAA9FLMQZiuH68XSbovTcShR/+eUXoqKiSkwSAerVq0ffvn35+eefL3iiCDBs2DCGDRt2znOioqJKXGwTGRl5wRfhiEvTwzf34d7re6CoCl5u7pnbJrIObSKLzrcM8vfhrqGXMX3BRlCgV8dGGBalsH6krhtk5bqGtv+9eMdsNmE9x6pvu81ZmCQCmMwqCbGp1S5RBHjm6iiuatmU9Lx8ejVuiL9X8Z16oiIbcTg1FZumYTWZuCIy8sIHWgqqqtCgvud2nVIUhZ27T/DVd6sxm1QUVeHr98dSt06wx64hhKga3Pp0OnTo0HlLvbRu3ZpvvvnGraCEuFRUVCme8Tf3YvCV7bA7nDSoE8LuIwms2nkUk0nF4dS461rXoq4BXZsz84/NHIpPBsCSYOOnn7dw49AuJbbr5W2hU89m7NlyFF03MJlNtL+siUdj13Qdk1q21ecJpzI4lZpN80a1PfaaKorCZZHn3sVpYs+eBHp7sTU+nr6RjRjWuo3b19t/MIEvv1qBAdx715W0aFa5C67O54efN+F06jidOhaziSUroxk9/PLKDktUN7LqudK5lSjm5eWdtx6ht7c3WVlZbgUlhCi/06t3Ado1CWf+K2OJPp5Is4ha1K8dDLiKV2tWjZww13CMd5rGb39sP2uiCPDCp6P5c+4msjPy6De4E6G1yj7kmJWTz+ETKdQPC6ZGsGvOaE6enUn/+5lt+05Qr3YQ70++mYiw4PO2tWT1Pl7+4HdUVaFGsB9fvjmS4MCKrZd6mklVGde1/JUUsrPzmfjEd+TlOQDYszeOud8+gL+/d7Fzdx+J58WvF5GTZ2fc4MsZekW7cl/fHYGBPqRnuop1K6pywV5zIcSF5VaiGBERwfr16895zvr166lXr945zxFCuGf+nr18tH49Id4+/PfqgTSreWZY8UBSMlk2G+3D6xTuVgMQXiOQ8Bqu5PFkfDp//rWT5Pw89jrTMbwUDCCljYXa2rkTP6uXhcEji++nXhpJadk8+v5PHIhJQjXAisr7T95M51b1+fa3Tew+5Nr+Mj4pk9e/WsyHT99y3janTl+GpuloGqSm5/D70t3cPrS7W/FVlpPx6TgcWuFtp1PnZHw6zf/Vq6jpOg+/O5/sXBsG8Po3f9O6UR2a1691gSOG5x6/nskvzSMtPYfLOkVy7VVtL3gMQoiK51Z14UGDBrFy5UrmzJlT4vHZs2ezYsUKrrnmmnIFJ4QobndiIk8v+otjaensiI9n9NwfC+fVvrNqNYNnfsOo2XO5+u2veH/BKuKSM0jOyWHVkWPEZ2aRmpbDuAen892cDfy1cCehe5yc3h7GMCscX3uE/HOU5/lt5R6GPf4Vd035jsOxyWWK/dUZizkYmwSADtg0nY/muGrypWXmuXZJwVWeJjWjdNttmv41z/LftyvasZOpzFu6g2373d9Hvn5EKL6+rrJFqqrg42Mhol7xrfFy8+1kFSSJ4JpjeuJUutvXLY8WTcL4ecYDLJ3/OK8+eyPmUizAEqKsTi9m8fRPddG4cWM++OCDc57z0UcflXpHvZK41aM4efJkvv32W26//XbmzJnDoEGDqFevHnFxcfzxxx8sXLiQ0NBQnnrqKbcDE6KqMgyDXTEJ6LpB+4bh5a5LV1aHU1Kxmkw4dR0dOJWTg13TMAyDT9ZvxDDAJwHSMjP4budaZq/YRnZdBUUBTTeY2LRrQQ+ca3GLJRNUm4phBt/YfLJO5XBgZ2yJcw/3HU3kv9MW49R0FAUeeX0ev344jv0HEkhOyaZjhwb4+519n+oTp9KLbFmIAuaC+YhD+rbjt1V7UFUFp1Nn1PWuIV3DMDiVno2vt5UAn+JtPzFuAM+8uQBN04kID+H6/hduKHbv0QTufWUOJtW1WGjy6P4MiSr79X18rHz03khmfbcWDBh5e098fYs/V38fLzo0rUv08URXXVCTiY7NKnfk5kIn5kKIM44dO1ZYyu9s0tPTOX78uNvXcCtRrFevHosWLeKWW27h559/ZsGCBYXHDMMgMjKSuXPnVvh2eUJcaIZh8OQ3v/P3rkMAXN68IVPvGnJBk8VuERHohoGqKJhVlTbBNZk2bQVpGbl4ZRnk+yn4xtkJ2ZEOCujmdNIH18AZ4OrxmbdzD/k2x5nnpELIjixMNgO/mHycikJo7cAi18zKs7Fk50EOHErEbFZxajqGASkZOUz/djXffb8ek0klIMCbLz+5i6BAnxJjvymqPR/+uAqH05WkeptNPDrStctAy0ZhfPPf0ezYH0fjiBq0aRKOU9OZ+MUCVu05hqoovDRyINd3b012ng2bw0mNQD9qhPjRr1cLnJrGmJsvx6+EBKui/LpyD06nxulX89s/t7iVKAJE1Avl6SeuP+c5iqLw0WM38+PyneTk2bihdxtCZW6gqM6MCii47fEC3lVbVlYWVmvxqg2l5XbB7a5du3LgwAF++eUX1q9fT3p6OsHBwfTo0YMbbrgBy0W0N6oQpRWbksFfOw6iF3SLrd1/nAPxSbSsd/6Cw06nxtJ1B8jLt9P38hYElrBQoTTqBgbw08jbmbtrN0He3qz4ficzs7dhTtOpY1c40V0l4GCWa3jFANVhEBSdS0r3AMw2OJWQjTnUhHeGhsVqxq9JEKeOJeF9LBPdqtL39suIaHRmzluuzcGt735LUmYOhtPA6tBQVQWTqtK6cRhzfthYuPrVMPJZsXIfg6/vVGLstw/sQkTtYA7EnCKyTg16to/E1/vMG1iDOiE0qHNmyHXl7iNsPBALuIajX/p+CXa7xquz/0Y3DK5o04jtK48UlP5RWLL2APcM78mdt1yY1bc1Q/yxmE3Yna7XpFZIxRdz9/ayMPLqsy82EkJUbzExMUVup6enF7sPQNM0YmJimDdv3oUfej7NYrFw0003cdNNN5WnGSEuGlaTqUhlBQMDaynmZhmGweQ3fmbbHlfSM2Peema9eyd+Pq4kKTfPjq4bJQ7bJp7KZNHiXfj6eXHDNR3w8rLQvGZNnu0bxYLte9lRMxulhooRqVL3ALzZox+zV/1Jak56Ye1to6DH0+JQMJkUHIHgCDSBAbXzwapYyW1eAwXINCnoulHYS7p4/2YSMjJxOF3P3B5icEfH9oSFBjD86k7cPvpTbLYzu5j4+J77m+sVHZtwRcfSldRxbVF45tu/U9N5dc4S9IJfwtro43ibFXCeOe3LH9YydGAHQoIqvqft9qs7s23/CTbtiaF+7WCeuWtghV9TiEuKlMcpJjIyssjuSu+//z7vv//+Wc83DIN33nnH7etVqy38hKhodUICuKp5Yxbvd+2HfFP3tjQOc6041nSdXJsDf29rsS3SMrLyWL/taOHt9Mw8duyNpWeXJny/cDMfzVqBYRjcMaQbD4w6s+F7enou9zzwNfn5dhRVYeXqA7z/1m0oisLR48m8//caUJXC9720Gjph4UE8+dotPDX2SwzNQPc2oUcG4GVXsBs6JqfhyqkMA9VuEHsyDcNMYczrthxhw/ajXN65MUdz9vFn6pc4tdacXvtm9jIx+sbLqBXgh9mk8syT1zPlpZ+w2Zx07tiQfle28tjrfUW7xtSvGURMUjqarnNL7w7MWb698LiqKmiGXmwzGk3XPRbDuXh7WZj6xM0YhlHsd263O9m3J46AQB8aNZEt7oQQnjF69GgURcEwDGbOnEn79u3p2LFjsfNMJhM1atSgf//+DBzo/pfYciWKmzdvZuPGjaSlpaFpWrHjiqIU2w5PiIvZ1j2xbFp+CD9dx2w2EbvjFNwCu2ISGP/ZfLLybXRqVJfPxt2Ej9U1/SIlPQenUweLgoYBOjg1jRoh/qSm5/DRrOWFCzxm/7qFQVFtaFy/JgC79pzA4dAK5/Tt3B1Ldo6NhFMZ3P/4t6Q2BoJwbcGnG2g+Kg/P/53v7hnOiIkD2RIdS6Ou9Zl34gBZOblgBnsIWLLBkmbgk+lq19ANFMMo7Hk83UO4PW0dfiHZNO0Uy+Ht9VFNUCskiP5vfkmQjzfT7r6Z7l0b88u8R8nPdxAQ4E1CZhZTl68jz+7gnl7dSIhNZ+5f26gdGsAjd1x53r22o48k8Oq0xWTn2hh3c0++e+J2vli0gS+XbGT26u2E1/AnOT0XVVFoHF6DMcM68b/Pl5Bnc6CqKjf0b0fNEH/P/uLP499Jos3m4JF7vyY2JgVdMxh5Zx9G3tXngsYkRLVxkfcAetr06dML/3vmzJnceOONTJkypcKu51aimJmZyU033cSyZcvOud2dJIqiOsnKyeel939Dt+uogK5rHDx2CoDnZi8iK98GwN7YRH5Yt5PRV3Tmv18uZuGK3QAoJsX1hqdA6xb1aNE4jPhTGUWuoSpKYdFlgDp1ggpLxgD4+Xnh62Nl+eoD6LqO/1EDewsTTl8DxVDQFbA7nIx7aiY+sTbXt850B6371mL9kVgcuo7Jx0QtLx9sR9NcjRpgcpz+OzbwC7bSvmVddm47jtkrGLNioXHbeJq2PUXKwQ5s2ZENQGZePi/8tIQfHrwdi8WExeJaiX37V3M4lZWDpuss2XcY/yMaut3AbFKJiU/j65fvOOtrrOk6j7w5j8wc12v56pd/0axBLWYu31o43JySm8f9N1xO2wZ16NSkHhaziYG9WrHvcAJms4lmkRVXU9CpO/gr/jOO5eygvl8bBoXfj0UtPl1g/ZqDxMWm4rC7fnezvlrJbaN7YTLLCmEhykL2ej43/QKMnriVKD7xxBMsXbqUPn36cOedd1K/fn3MZhnFFtXbnF82k/aP2n6KAR1aukqTZOefqTuoGQY5+Xb2HE7gjzV7C+8v/FKlgK0g+atTK5ArL2vGmi1HUIDWzcJp2SSs8DHNmoTxyANXMePbNaiKwuB+bcnPtVO7VgAms4rJrlFrj4bDB9Ibm1BQcGgajnQb5oIk5eC+eN5/9lo+slg4dCqFG9q35K6eXZj4nzlsP5mAOUNDLchFDaBNw9rcd8fn5ObY0HWdKyd2IavZTsK86xHk3YmN+t7Cc7NstiKvUUp2LiczzuzIZBgGhrcKdg2npnMgJonEU5n89Ps2TCaVYTd0JiT4TA9jTp69MEmEgjqBielFhpIVFGoF+9O9xZn9pVVVoXWz8PP+Dstr2clvWbV3Ayb/XDKdK/BW/RgQfm+x8yxmU5EyQCaTSrHxcSGEuAi4ld0tWLCAzp07s2zZMtQy7skqxMUqO9e14ARcn/mB/t689vgQAO4f2INX5i/FbFKxmEwM6daaxMRMimQHigKGgdVionvbBgV3Kbz82GC2743Fqel0btugWF26wdd14vjm4yz6cTM/7Ipn0Tfr+Gj+w+zdH8/SVfvINTlJb6SiW0BxGhh+DnTVQDODyQkmk0L9sBCmjriBA4cSOHw0ieSkLN55aTgDX/0SbW82qqNg3qICxzNTyc7Kcw2XA7u+hkcnP0PbJg1JCMlhwdp9eEfbUPJ0GrY1Y7c7sVpdbyV7DyfgpZqw6WcKZ5Pves0sZpWWkWGMe2wWWdn5KAr8vSKaWZ/cjcXiWhAU4OtFmyZ1OHg8Cc0wMJlUOjSvx4PX9WLqr6sxqSp1awTSv33TCvgNn1t2jo13X0wgK70dGNDupn3Uu/xwiede1rMZHbtGsnHdIVRF4dHJ10q9QSHcIYtZzis1NZWvvvrqvFMB//77b7fadytRzMjIYNSoUZIkikvKkAHt+fXvXRi4St1Muvcq/HysOJwax1LSiKwTQpPaNXjyhiupHeRPWFAAbZuGs/tQPIZh0KpxGP4+Vto3r8eoG85sMaeqCp3bNjjrdZ0Ojd+/X1/45pYSn866v/fy1IRBzM87SmZ+wYmKgb2eAyXfTEIfM6oD6i7L4677r+KXhGg+/WUVLMnHy2LGgU6zAZFk6060+maCDjswOcARAMfa5hG6pSDBzXeQfDSZlx75hpphgbz6xZ20iNZJjM/F4Wfl4J543v5wEc88dh2rdx7h6U9/xfDSUQIARcFih7E39eDwwVPUDg2gd9tInnv158Ji34lJmcQnZtAgItT1FBSFD58axtzF28nNt3PDFW0JDfLlzv5dubJNI9Ky82jTIIzZS7bx65o91A0J5Lm7B1IrpOz7TZfV9ws3kZlqKqzBFv1bM+66uuSaiSazyitv3UrSqUx8fb3wD3CvFNLZ6LrBb3/u4MDBBC7r1pjePZt7tH0hxMVh3759REVFkZSUdN6pgO5yK1Fs1qwZiYmJbl9UiItRo/o1+X7q3ew+cJKG9UILF5x8sGgN367Zjt2pcTw5nbb16zD2yi6YTSpTnx7G7oMn8bKaadkozL0/VsXgXzV5iD2ShKYbZNpsZzbiNECxmwAFVNAtBomX+7I4+zirNx8hdLOCd74Gx9Oxagb707Owdw3C8IbU1hYMDBz1NbrVq4UWeIrU5CzUguFru81J8qlMJo74hIzUbFQDvLJt5NcJ5Lc1e6nXqAaJebk4NR1VB2uO63kahk5qbh5vTnT1vCanZKPpZ56MxWKiZmjRhSe+3lbG3FB8r+bGdVyryxdv2s/n89eipDlJ1FMYvvEL3n5+GDZDp0WDWtQIPPdimcMxScSfyqR5o9pkZOYRViuwxJqWdocTm91JgJ/rWEJyZpFCvU6HiQ6BgwDISM/lzVcWcvTwKXpd2YLR917JJ9+sYvXGQ1gMheui2jDmjl4e61Wc9d1avpu9DrtD48+/dvGfp27gyj4tPdK2EFWK9Cie06RJkzh16hRPPfUU48aNo379+phMnt1O061E8cEHH+Spp54iLi6OevUqd/soIS6kWqH+9O1RtPdmy9E47AVzDu1Oja3H4hh7pasgstmk0rHl2Xco0nWDX3ZGcyw5nZYWf1ZNW0duro1Rj19Dp8ubAa4SB6qXGa3g26Kq67Tu2IDv9+zAUA2U08PbCqgqBcPjCqCgOuBUQibmhiY0bw1rUg6K5hpm9kqy43sij9wGPmj+Os4QjTr1AvhPp/7cGTwLW7g3NXcDZhU0HXO+k8y0XFdCChiageLQyA81891fWxkU1RqzSUHJcmIPMrlWYhtwZP1xGO7axeWDv1aT2hR841w7wtx7Tx98z1N38d8OxiZDthOlYNqi06HzyMtzoYarLNHXT42gWUTNEh/78+Id/O+rpZgUBc3uRFVVzCaV956/hXYtz7yXLd94kClTf8Ph1OjfozkvPXw9Qwd1ZNGKvRgF1w0JDcRicb2FvvPGr2zddASnU+f3BdvYGpvIgdhk19C7YfDNvA34+3sz/KZuZXquZ7Ni1X7sDte/OadTZ+26Q5IoCnEJWrVqFddddx2vvfZahV3Dra+311xzDQMHDqRXr158/fXX7Ny5k5iYmBJ/hKjuejePxKug6LbVbKJX84alfuyrPy7htc/+YPova3nn7ulsWR7N3o1HePq2j1m2OhqA3VuOgUl1zXFUFBSrhe59W/LzAdeiElO+gXeKjikXWsT5YFFMhd/CdQucOJGFmgwZlxmg6yi6DoaBYoDZbmCYweeEHcOpEJ4XxEPP/kBeDRPemQaGxeS6rknFu04QJpOCblLQrCqGAlmNrDi9VVI1G98s2YZdN/BOcuKd7MSSpeEf6yBxfRxpmbnc9uxM/vxrL5ZkyApXie+lsN4ej6brJKRkcvRAPDlZeed9zXq0aYjyry24DN0g3+4k3+5g1l+bz/rYL+asQdN0HDYnhgGapmOzO/lwxvIzbRkGL370e0Gxb1i15TBrth6mXbO6vPTkYJq0CKNHj8Z8+eqZ1dvHjiQVzum0253EJKQX7t4DYMdgz9648z630mreLKxwXqfVaqLJJVCnMS/Pfs6hNVE9nV717Omf6sIwDFq3bl2h13CrR/F0VXDDMLjnnnvOep6iKDidzrMeF6I6GH/VZXhbLWw7FkfvFpEM79G+VI87fDCRFR9uxJ+CNy6zGex2V2+dYTD1s8X07d2KlKQsTBa1cF6fpunomkHz2jXZty2BGrt1DAUUHXKzMqgVrJLUwVrQ86eQHwRXOxtzKieN1JxToBkYioLha8Xhr4JuEHxAI+SAk2MNTmLOV1B8VEz2f7ybKgo16gTR+bYuTFuyFVcWquMINOHtMOEs6GZTULAFmwk4YXcltXl2vH2trN91zLW/tO46xzvFwNZUJcCw0m/iJ2Tn2jB0nfAd6bz24Vg69Dj7YpXOLSKYeHd/pn72t6vgtqbj9HUlTaqiFtavLImPt5W0zOLJ6D8TEN0wCnvrXE9dYc/+eN564zdycu3cNLgzD4zrV2QaQesO9TmZnImuGVgMaNMinE17YguH2S0oXNat+BZa+XYHSzYdQNMNBnZvgY9X6bY+feSBq9A0nX374+nZoyk3D+1aqsddjLKz8nlywjcc3J9AjZr+vPXBKOo3rFHZYQlRJXTp0oX9+/dX6DXcShRPVwUXQoBJVbkrqitQtg/rhT9tQdHPrIvWg/xQ8uxggGFScPhYMAyDJq3r4ihIXAwFakeGsmjDPmrGW6mTYcFh2FAL8hzd2wROzTUsq5wZkt6w8Qg+e5OxagUnGgaKzUnNTZnYA82YdTOg4JXiRPez4p1qYA8wg67ineVE0Qz2m7LZuXw7hcujVZW2XqF0vLwhs5dudzUL6F4q5vQ8MAxQFS67rxc1gv2LzE00TApd69Vjx5/HyE/Od70RKQopDX1478WfefB/w2kSUZOQwDPb8GXk5PPTxt0oisKNfdoQ1bUph46ewuRl4qlpf5CenUdYiD/3XH/ZWV/zZx8YxKTX55OXZ8esqAWdpSoPjokq8vu8/fquzP5jCyZVpVaIPwvnbyY3x1UC6adft9KxfQN6Xd4MwzD4Yu4a/loRjaEqqGaVBo1q8d+nb+TruetYteEQviYTQwZ24JqBRRe+aLrO+DfncuhEMgDfL97KrCl3YCnFlpC+vl48O/mG855XHcz5di1HjyQBkJaawwf/+523PhhVyVGJC0cpMjfYY21WE1OmTOHqq69m+fLlREVFVcg13EoU/1kVXAhxfn8fPcyB1GR614+kXW1XncSAAG/MZhWnU8cAAiICyTcc5FtUMlsGg5HPmNe+Z2ib5hi1/Mn0dWILVomJMNi9YAleKa6i394KBUPNrvlwXuk6ar6O7l2w5V4WpDdU8d7r2urOMKs4/b0wLCYsOU6sGU50HxVbTS/ya5oxVDA7QNUVjGALecEW7FYdm7+Od1rRt9jYuDRuuqojgX5eZObYXO37m0jvWQM93wn+Fq4b0IEWEbW4fVBnvl+0FX8fL1578DraN61L7x/eO7MftQG6t5loH4XH/vczqqLw+XMjaN6wFnank9vf/47EdFex7x/X7WL+E6Mw1bCy5XgcU+6/mpY1a1IjyLWt4GmarvPWTytYvP0gjcNC+e/oa/jzqwfJybVhtZiJOZlKzRB/Nm87xrEjSfS9oiWBAT48ePsVXNG1KelZeXRsGcHgYe8BoJsgX4HH31+I+qmKVVVxpNuw6q55n7pucPRoElaLmfG392H87Wd2Y9GcGr/P20L8iVR69WuFb5g/+44nFibQxxNSORCbRJtGdTz8r+/ilpWZj1YwDUDXDTIzzj89QVQjspjlnGJjYxkyZAgDBw7ktttuo0uXLgQHB5d47ujRo926hlTJFqKCTdu2mTfXrwbg3Q1r+WboLXSvG8Gtd1zOlk1HOHQgkRo1/GnWtA4bMm3khFtcC0GAgyeS2WB4ketlkNbWp/D+fD8DJQvyaimYDQ1LhophBhQnakI+BmYc/lbM2eAIMnAEQHKfIML/SMPWtLZrdrKioGfa8DqVg8NXJa21D6BgzjUwnK5FMqeTGJu/a36k5mNgyoPTK1oM3UDRDf56ezwrdx0hJ99B95b1Wbz1ALFJ6VzXvRUt67vmzz14Sx8evKUPumGgFkxd8fOxkp1nL0wWVQcYXgo2uxNFgRm/bODVh67nUEIKCWlZODQdXYVj6Wk8NfdP/tx/sKBMl8ErQwYwJLToXJ15a3cxf90ubA6N9Ow8nvt2EZ/cfxPBBT2VLRqH8fizP7C7YP7gtz9sYPond+Lr60W75nUL2xk0oB2Ll+/FhoHmrWCYDHS7ht2pYdL+WSsTIs+yM8zHr//G4l+247A7Wfj9ev7zYdEdanTDIDTAt8THXspuuLELi//ciaooOJwat4/pXdkhCVFljB07tnAq4KxZs5g1a1axEd/Te9FLoihEFfXtnp3Y/1EAdeGBfXSvG0FAoA8fT7ubvDw7MXGp3P3UtxhBZjTzmT9yzamzc80RjGKjkQqKYaCH6Jxq50DRXauITfFWLHHeOANUDBNovqBbXOVyciN9Se5rwT9eKVwprftbyTXbSekegF4wPc7AwFbLQLfq+CSoWPNdiRi6gcMbnBZQdAXdDDYNlh06yo2DOtK/k2uVdnJ2DnP27OZwUipL445xa/PWZGfk07ZDXd6MWc7hzBQ616zHV1feyvuTb+aZD34hIzufXm0bEpeRzf5jSRi6jjnPYPvaI7xnWszwW7q7ehxVCuP8c/cBNAU0kwa6wYc/rmbnthPc0rcjLRu6ktOYpPQzq4N1naOJqUVexbT0XLZsP37mdkYODz87m6TUbHp1b8Lj4wdgMqlcNagddsXgr2V7UZwG1oLalYYCmBQ0LxXVoVOjZgCvvXpLkWs4HBrLV+1zJZp2Z2G1o4NbY3nh7kH8d9YSDAMeu/VKwmsGlu0fl4ccPpDAL/M3Exjky/CRPT1e97E8mjQL46vv7mPv7jgiG9Wi0SWwcEf8Q0UsPqlGPYpff/11hV+jVIniXXfdhaIovPbaa4SFhXHXXXeVqnFFUZg2bVq5AhSiKog5lMjiuRsJCPFl8OjeePsW39/3nzRNR1UVFEWhQWAQsRkZOA0dL5OJ+oFBhecpioKvrxfLNhzEKOjlM9sMnD7gZTFjMVTs+XmYAe9kjfxarozRlK9Q29sXJTmH9PpgWMB00oIp1YzurWCyuXrtOoTX4RS5xGZmuAqF+5sA18ITAwPdqpDQPwBLulI4pzG3oY7mA6iQV0en1hod72TQvFQUA+wBCkZBMmuosCr6OIlp2dQJdRW9nvr3Oo6npAMQn5LBR3+vwzsVPk/ZiKN2wW4vqQl8uGcNz3Tqz8Kp44k9lc7oV78jO8+G5mVgytMx5Rtk5+Xz26KdALw1+jom//AHubprgZxhuDpGdcPANwnSnTksjN/Nn+v3cW3d+hyPTqRep3BMJhVDd+3ycm3XoiVk/HytWCymwjmg+YbOwZgkdM3gr+V7aRhRg8TsHOb+uR1yHCi4drspTOULhvwNi4pmUdFVePH1hTz12LVE1A3BMAyeev5Hdu2Jw2FRoaYv1qRcVFUlolFN+vZoxTU9WpXyX2HFSIxPZ8K9X+NwODGZTWzddIQPvzr7IsXKEFYnmLA6wZUdhhBVzpgxYyr8GqVKFKdPn46iKEyePJmwsLBSz1GURFFUB0kn05gw+F3sdicms8qWFft44/sHSzzXMAze/vgvfl28Cz9fKy8/NYTLgyNYdegYmKGm1ZfR7ToWe5y/vzcmk4qmG5gc4Gcy89yD19KmYRj33/0VaRl5BB9wop3QMXQDe7iVh4Z05/2vlqM7VLI76KhZauGkbwUFNdsge2sSvmvjaJKWR05DH+y1A3B6W7HkuxaUZDRWMWe78p3TyY/md+aGooEjxMA3zsDkVMitrWCc3rZYN1CdBpZsg4c//5nx1/Tgqg7NSM/Lx6nreCdrBJxwzd1zWkC3GugFX+UdukZSvmu+ocOpMfa170nPz0f3VkABzWpC0Zz4ZILdobE7Oo5H7x/AxJw+vP3HSmxODYtJJdDXmzzNAQ47RkHbmlNj6br9mFLsnIxN5fbbu2Cp70ejsFCu71Y8KevSpC7bNh/FFmDGMLuGcFDB5tA4fiKFBeujIV8r7NX456DO6emhBb98klNySE/L5ekX5jHr83tISc1my7YzPZaKRSUoPJDrb+hE1KCSd3U5m23bj/PTz1sIDfXjzjF9CAryzDD1np2xqKqCYbh2AToQHY8t34GXd+lWYAtRoWSOYqUrVaJ49OhRgMLi2qdvC3Ep2LXhMCigazq6prNz/WHsNidWr+J/Pms3HWbRsj0YhkF2jo3n3lxATKSOl+FaYJFtzmd7TDyXNym6Zd+NAzuwaNVejp5IwWI28daTQ+nStgFb1h8m51QmeJlRFAVznoGhgOlQNrPf/wtd0wneBv7RFlLbqmjWggLcuoE51yBnYyzeyfmoBngn2shr4E92AzNoBVtPmxRw6jhqOTHMYMo0oTjAMLtWLBsq2PxN6PUNHH4qDj+DkD35BB5zoJsVNG8zthAzBxKSmfT1L9x/zeV42xXQjMIkEcDkgKA9ZrJbODH5mrD7a9zRtDMAH36/grTsPHRfCiq7KmA2yK2r4pOpY7WY6NHVVVpmxGXtiUlJZ8meQ7QIr8VrwwYS5OPNtZM+JyUjF90wXPMqsx2Aq6ZhzvFMpjxwdYm/2y8/XsqurcfQnTqa1+ns2PX/JhP07dmCP7YexJ5fMHWgIDM8/TmjKBR00LoWEikFBc9PxqcDrtXJZpOKs6C0kaqqvP7hGBqfZR7j2Rw7nszkp+fgdOqYzSr79sXz6cdjy9TG2TRsXKuwZqSqKoTW9C/x37YQ4tJUqneDhg0bnvO2uHQ5HRqppzIIrR2E2eLZbYMqy69r9vDb+mia1K3Bgzf1pl7j2jgLhiYVBUJqBWKxlvxcMzLzikwkzs61o/9jgqEChbu4/JO/rxcz3hpNYnIWwYE++Hq7div5+qMl6DYNLKZ/lMdXwGQmIddxek0KWBUseeCVaqBZdHSrQX4tE+Zs15w4h7+JY3fWxZpmwpznGroG0K2Q3cSBFmCASUH31TEnmlABpzdY0hXM+SqGYuAIBN84jeCDdlQdDJuBqjnJifDCO0XDK93g249Wk1tTxer7rwIUCgSnW/Fd7eo1HXXH5aTtyGDiHys5lpgGFuNMOZ/Tr4mXlTY9wmjRqDZ33uZawGBSVZ6+Poqnr48qPM+p6Tx205V8t2QLDsWgmU8AGw/sxoGGxWKiR5+z74N8cF88Dnvx34eiwL2396F7p0a89MC1PPP+QmyGDiqYc3XM9oKODqWggO/pB+Ea4u7RvQkAvj5Wnn96MK+/+wd2u5NbbulW5iQRIDo6DrPZhNOp43TqHDiYgKbpHtkSsEmzOjz1/FC+n7GawCBfHnnyWil/JqqMiiiQXZ0KbgPk5OTw8ccfs2jRIuLi4rDZbMXOURSFw4cPu9W+W18bGzduzDXXXMNHH33k1kVF9RB/PJlJN71HamImIbUDeXv+BOq68SFYlazYfphXZy3B4dTYcTCO5IwcXr/veh586WbmfLyEwBA/Jr454qwfpD27N+GzWSsLVwRfP7A9jvpWZq3dhqoqtKhTi/a1a7F55X7C6oVgd2h8+ubv2G1Oxj5yFZ0ua1KkPYvFjAKYc+xoXmZXD6BZxVBdPViubkGw+5rxOQUYBmmtdfLqgDUZMlsHErI5lawWvqhOFXOOgklTzqwytruGj08v3FWcBv6JOv5HVUDB6QM5YaffVQ2sWf8oRA2Y7DrmfPDKLOg9NMA3SSezgQlbAFizXCEGhPqSmZOPUbCKevbsTZgzHDidOoqi4OcFmb4WMJ95Bw+rE8ya1ERWHUwg/y+VyddcWez1djo1Jkz5geiDCRiGwdBBHXj4rn782qgu0btO0KVHE/qfY4i315UtObDflSxa0h04gi2guOZg1m9eiwlT55NyIgvfWr7kZucCoHkpKKla4e4wim6cGckyKXTt1ojnnzxT47BPr+asPRnH7JU7+GTjVpKtDp65tf9ZYypJ82Z1cBZ8wTCZVOpHhHps32iAK69qw5VXtfFYe0KICyM9PZ3evXuzd+9eAgMDyczMJCgoCLvdTl6eq5RU3bp1sVjcn0riVqKYlJREUFDQ+U8U1dr0N34lPdk1zywjJYvpr//CM5+WbqFTVbXz0MnCHVDsTo3tB11lUwaN6MGgET3O+/jgQF9mTL2TdZuPEBrsR/dOrl2MbujYimybjfpWfx647j3ycmw4nRomHys2pwYGTHlwFl/9NpFaYWf+tu6fNIjJ988kL9eGBch3aljSCurIqQqGtwXDpGCYXQtNdBPkNoTQ9bnUWp2LblFI6xqKrabrT/3f6a1iQL2/AMMgsbeK00fFnEnhqmhzniuZ1K0KepCDvJpmQg2bKzFSwB5gQdFPTyJSCq+hGJAfrKJboWODuuw8dBKTfmYo2u7QMJx64S405nzwSdLRvMEwwVP3DeCVP1cUrhafvnYrd17ehdrB/uw4fJK5y3fgZTXTKDSYfYcSCodOf/xtG7ff2J09menscWYTnJtFv+KdldjtTqxWM8Nuu4yAQG8WLd7N9hOJOL1c48rWfJ3nJs8lP1jBHqSiOBUU5Uxi5vRRMdnA6esavlc011aKZh8Tk+4fiNVy5q01NimdOSt3FO7+8uOaXdwe1YnIsNDz/ns6rUmTMF6YciM//LiRGqH+3D++X6kfW1b5dgdZuTZqBvlJz6KoGqpZD6AnvfLKK+zdu5dp06YxduxYTCYTEydO5LnnnmPDhg089NBD+Pn5sWjRIrev4Vai2KZNG7e7MEX1Yc+3oxckVbpmkJ9rL9Pjc7Pz+XXWGvJzbVw9vAdh9Uv/wVlROjSty3eLFXTNwGo20bFZvTK3ERzoyzX92ha5r2W4q6f1+0+W8n/2zjpOrupu499zbXzds3GHkJCEhECI4FLcoXgpUIoVaKFQXIrUKVKsSChaSoo7EYiREHffTXY36+MzV877x53MZkmAZAnQ9p3n8wns3Dn33DMzd+489yfPEwsnsl22ccXGrPSiRyw8pmDT+uZORLH/4CpO/cXBTJu9mmWxFqxlTWhRl4hJKZGKxAzprnyO7fo3e2tNjBaNusPK0eIWRXPbaNsrD609je3xIOLuVVdI0CM2asJ9XDJb0rKnTqLYTa+qabeZRQobz5Y0nkaVVInClhEBQjUmqAqpfA1fbYzWYQGsgIIelfjrHJS0xF+X5sCjh/HujOVIzdVIzDRcYxmw9f5WClf2xkhKZBJQYNXGpk5OLki464n3+MWPJ3Lx714m7ThIFdS0xJfxWAaXED70yqd8MHsFadNmQ30LBSEfpx3m1kO2Nke5/mdPs37NFqp7lXDvw+dyxNF7c9DhQ7jgxudYvbkZT6uFknKQChhxBT1TF5oqcBBSoMcct8knINwIr3DJreUT7NW7grJM9/dWrNjS2Mn3WUDn17aT2H+//uy/X/9d3m9XMGvpBq5+YDIp02KvPpU8fO3JeL/GEvGbMHfWGmZ/upqefUo54tjhKEqOeOawi8g1s3wt/v3vfzN+/HjOP//8TtuFEIwZM4a33nqLvfbai7vuuos77rijS8foElG84ooruPDCC1m4cCFDh+6cr20O/3s4/fLDmTd1hSv26TicceWOGwZ2BCkl15/xIOtX1uPYDq8/M53HP76B/KLgd7jib8b4vfty47mH8fbMpfSpKubSE3ZN3NcybaSU6MaOv1pen47YKppd6qF9jw5SqNek6DOwgk2bWnj7rYUEAh7UkM4jz02jqS8kuwPVIXwNFt3ej6CqCtX7VLOkoRlHsd2UtA6eZkGspw9UganptIwowN9golkWhdNacfJ0HF0l1s9PoNbJRvmEvTWVLUkWCldY23GomNLu1vQICPf2ohV7+fczl5ES8NpLM3li1jzXM1pAYJOJr9nB3yDJG1fJ5GUrIB+UVOYojsTR3NRuXGjoURszD+JlCnnrAAXSIYVX319I7wFFrGprASSeFpixYT0N8bdcuZuM96FtgOMTKHGJEPDz8yby71lLs9qJadNmyZr67Hv8+F/eZ/3aLQBs2tDMI394h9/ccypPPTmVulm1BARIRQEhsDLONgI3va9HJaqVIdmZf1lnMeGmoNeubuSNjxZx9EFuurspGuPqN97G8YGacPc5dHh/+lT88DdFO8Ltf3+XlOnKD62saeT1T5dwyoF7d2muz2eu4earn8eyHAxDo25TKz/5+a6l3HPIIYevR01NDccc01HqoihKpxrFsrIyjjzySF544YXvlyhWV1dzyCGHMHbsWC6++GJGjRpFRUXFDtMU48eP79LCcvjPx8DhPXly+s2sX7GZXgOrKK7Y+XKE9uYoqxbVZh+baYvlX2xg34N/+Dqpo/ffg6P33+ObB34Jb74wk4fveh3pSH582cGc+bPtfxSPPHVfPn5jAasW1ZKqDmSdVgC6TeiF5ThcfNHfafM6pIOK6wWtSZKlHTqHiQqN9j3zCIYF6xZvwZ8hcckiSbREYgU1lK0uZ4rACml425JIDOL9goRWx5HCpk31gCJwMs0Y0eqOy4GjCIQBoNI8uoiiL9pQUw6+liRt/SwOu/MPPHjBWVzys8N439nC0oZGQutdkigkmD6FteE2d81C4HgkJDJRRSmxdYh2Fyi2TrzM9aYWpoqe2Jq6lpw3cjj3P/chlklWUHzN2noUR0AgQ9WEwC7V+clhoznpgKHk5/loTSfZWN9K2rTRNYWxw3oDsKKlkSl1G3BUUCz3ZmXJcre04J//nOOSYenqS6Jtfy1TMoHLrc8YpsD0CFRVIZ22UU1IWCb3PvYBfXuX8drMJayqb4QkpAtAZO6Bfn782P/YlG7K7KhBlUhSaavLc82cthIrE+1Npy2mfrA0RxRz2GXkmlm+Hn6/P+NO5SI/P5/6+vpOY8rLy9m0aVOXj9Elojhx4sSsZcwf/vCHr73o2fb2HYU5/O+guCJ/lwjiVgTyfPiDXuJR1+LCMm0qehTv7uV9b2hrifLgHf/ONmv848GPOOCwvejxJRcJr9/gzy//nJYtER56dyZvzF6GaTnomkLf7qUsXlRLzAeJAtUlkVLCDr5CUgjiXgfdEjg66DGJ0erg8TukeghEvUu2ANKFEsvvcx0OLIVUO8QqVAqWx2gbGMQTUxG2wAqorutIm0O8wnV2QREoJiiJAEZrmi0naDhBCQ6cO/NF/mmeSps/gUSippyOC7D48npBS9qoUUmqWKFtsEBmuoSVlIKWFK5+I6DHXSL37OuzUZMSTAdbE3ibkvi2uOUNTv8QLcWqy53jFp/9Yx4H9OlOfp6Pn564PwUhH0vXNrD/sN4cvv9g/rZgNvfPnoYzwkHt76fHq3HUNPi6u+euKWQ2Sogj6dajkLXhMDiZF6LALVf+iN8+8HamAQcCms6dvziOqXPX8Mrr83AZt0BRBDc8+RabWsJYtoMKiEoQhqDA56U8r3Nq+j8JPz9xLPdM+ghNVcgLeDhqv12/YdqKXn1K0Q0NM22h6Sq9co4qOeSw29G9e3dqamqyj/fYYw+mTp2K4zhZAjl9+nQqKrruId8lonjzzTf/x94R5/DfAd3QuOvZS/jz9S+SiKU455oj6dm/6yfyD41ELN2p7kUoglg4scOxQgiKy/O48qTx1DaHWbyujiG9K7nihAP490ufkxI2KPrWwW5Kd6NDrIf72F8nkQrYmqB9mA5Oxx2yp8lEDUOqRwqR1JC6RG3OdEsDkR4q6ZCP0LIo4X5+UiUeFAGKDYFNDlpaEi/NOK9kdF8cHaK9DfRSA88KSJc5iLSKrTmc9bvHie7hxy7xkmhX8DZLhC1RUhI1JbG8AALbBy17apR8bpLOF+5bldFMdHygtJP1kvZE3Aji5qYwUgEz3001Fyzv8IRWV0eo1ItI1kZQEg4biHDlxU9x94Nn8em/F4CUXHLOWKq6uzcff/j8U6yMvI0MKrTu7SfUrHHCiaMAGH3QQGZ/uBzSDvg0brv1ROpiMe59+WNk2uG60w/kgCF92GfPHjw/eTYp0+bUH43k089W8sY/5mA4mShkvkFpUZA1jW3Zz9urq/TML6CquoBfHjgOQ+0srbSspoHJM5ZSkh/gxwcOx/ctagK/LU4YP5S9+3WjoTXCkD6VBH1f70D0dTjy+BFsrm1l+kfL6N2/jGt+c8w375RDDjnsEiZMmMBLL72U9XM+7bTTuOKKKzjqqKM45phj+OSTT5g5cyY/+9nPunwMIaX8HwrC/udi3rx5jBw5krlz5zJixIgfejk57GZIKbn54qdYOHstAL36V/D7f1yyS9qSC+dt4PornyMWEESr3bSwRGKVWQghsT0OgY02gbUqyQKFcG+349mNOHYIbfsbTJp+lAlDpgX6Wg8CtzPX25SpsXMgWQy+RvdvV9pGYnkkyVIFRxPb6DaCSIMRBdMncXwA7tq0uMQRkvyNZFO3Vp5NotJBazRIFgv3dWiAgLylJkKB5uEdEVMtCqVzbbSUJFWoZGsE3VcFph8sv0PllEiWKEogUe7F22oiJNi6INzbR8GSdhTTQRGCQNDLU29fQzDPx15//zMR041G6kLhMKM3p+05lPH79ANcmZ3JHyyksSXKoQcMom+Pb5Z5Mk2bw4/7PU4miqyqCkf+aBgXnzuec+97gZrGdmzHQVMVJv36TAZUbz/nhoZWTv7ts1iWja6pjOxXzcOXnbjT50wOOXyf+D5/x7Yeq8clV+Otqt6tcyc317LxkT/8T/wez5s3j8cee4wbbriB7t27Y1kWp556Kq+99lp2zNixY3n99dcpKCjo0jFy8vs55LCLiEUSzJ+6nLyiIEPG9EMI19P51ofO4fNMXdaoCQN3WYB81Yo6FFXgaXfNhM18jaLyIBtCjbBFpWAReJtBODahlEOsXMUKucfIKiNKtylFmBKpC1fIWpVgus0UyMxYIanuV09rQzlb88RSiGyaW9hupy8Orsh00j3KtillgUCqULBWbrsClJSKElFIBwXS2OYF2hCv0Chc6xBaC8lSiR4WFKw00ZLu1N5Gh8JeIepTCWzpAALTD9JQMEMqekbHMR1SMfM0PG0mSEiUGQhHoqQ7JHdSKZPZn69h3ITBTExW8bpYDwqEIir3XXo0AW/H4jRN5aQjhu/S5/VlqKrC/iP6EAp4eejKk/j9K1NoCcc457B9dkgSAeasqkFVBCauHNOsFRuzkYEccsiBXNfzN2DEiBE8/PDD2ceapvHqq68yd+5cVq9eTa9evRg1alSnOsZdxbcmitOmTeOLL76gvb2d/Px8hg8fzrhx477ttDnk8B+JWDjBzw+6i7amMI4tOfr8CVx0+8kAqJrKvgdu7yW8s9hreM+s3FAwJgkOKWBjeztVL1o4igWGno202Uh8zTaRYObLv/XCp0Csmwf/Aom3NoawbMwSA9twsL0qW5leqHeY4kFtJNeFSNT5XQIpoWBZlGjSj+1VcDSQGngbbZKlWkbiRuJ4REY2UeJtkjgZiRjFdtch0gLbUFCToDULHF1ieQVK2vVQThQItAQENmes8szOJY121KQi5KOuNYIZVJCKIG91CtVSkIZAClBSFlIRtPfz42k3Mf0qju5aDpKJkKZNi1++8C6ln8wkPreZHrhpdJ9jsnh8LftmbAG7Cl1XueiCiTz65CcIIdhjUCWj93EbZyqKQtx/0dGdxjdFY9z59sfUtLZzxj7DOHnEEPpWFnfY+wlBdUl+jiTmkEMO3xojR45k5MiRu2WuLhPFTz/9lAsuuIDVq1cDdLoL7t+/P08++ST777//bllkDjn8p2DWe4toawqTSrhewpMf+4if3HwCqvbt7QsHDKrkrj+cyTuvf0F7HrzRuAHFL1CqPYQ2prB1kEJm5VqkpuBpE26/hZBYXrdOzpWyEaSLPVS8tp72Q73EKxXSSkYUOi3Qgy4763ZEDa2LirAiGvZbHhQhkLqCIt0mFtISR5X4GtK0HOpQXBUmNScfq9VAi7lzbe3cdlSJsMGRNpZHQwZBjUv0OOi2RElYWF4N1XLAcTDzdYQjSAcVPGEnQ1YlkfooslngEQJP2MHbDFoy0yijuJFLxRL422x69CwhUuqwSo+it0rCQ/IJrotj6CpN3Q1sj0JTewy1SMXXaLtkVhd4vkK+KBpO8Oxf3qepvp2jzxzD8P37M3fqcma9v5geAyo46sf7d7ozP/3k0Rw4fhCxWIpePUu+Vifw8pdeZ9GmBizH4ba3PqSqIMT+fXvy61MP4pkP51KaH+CWMw/91udRDjn8LyHX9fzDo0tEce7cuRx66KEkk0kmTJjAxIkTqaiooL6+no8//pipU6dy6KGHMm3atP/6/H8O/1kIRxLMnL+ewnw/++zV43uPvgTyfNmaNADDa6DshJVaOmXxl9+8wqfvLCQVSZDnU7nh8Z8ydOzATuOGj+rN8FG9GXfbI67moC5oH+BDizsIC5fEWZDKV7H8KiKTWUaCrThIOgir1BTifX2IE9tRt/hQa4Mki0GLS1paQpTSCIqkcFgLrbUBSOmue0i2EFCiRR0UU5LKV/DlxVE0SX44irZIxcxTieUHO4YLUCNJwsO82D5AcSN4igNaBEIbLCLdVcygwPbooLiC3qlC10vaaE2hxSXSpyNFRyrbjTgqSCw33S0lVr4HaUs2rGtCAv4iDUcXxHsZHHP2KJYsqmPzxgYAHCnZe69q1nzspnX1pMVTd7/Br+49jaqenTvtb73kaVYsrMEybWZ/vJyLf/0jHrn5n9iWjeHRqN/QzIW/Oa7TPuVled/4+QMsr2/Ecjqih8vqGtm/T09OGrsXJ439apvBHHL4f4//IGJ3zz338MUXXzBv3jzWrFmDoihY1q7LSMXjcW6//XZeeOEF6urqqKys5IwzzuCmm27C7/d/5X633347Qgh+/vOfU1RUxO23375TxxNCcNNNN+3yOqGLRPHGG2/EsiwmT57cSegR4JZbbmHy5MmcfPLJ3Hjjjbz99ttdWlgOOXwZbeE451z9NLFECtuWnHTE3lx+3oHf6xpGHbIn444ZwUevzMbw6lz3yAVZshqLJpn05/eoq2nlyNNGZ9PQ0fY4j9z+Lz55YwG2LZGqSlvU5LYfP8gr6/7ciexuaY3ywCtTiW2KUbLBAgmpkCBd4kMKl4zZhiC4MQmGRSrf/QobzSam18Hxq65Diw2hRc20HluEX4sSC4FdncazVgOhkox6WPleb/wVcZojIcyUinqgpPuHEfwbE8SrfRgRG0+bjRACb9gm+qGG1sNC/1RFWAI94iBCDjJDlIUlsfO8mIHOjTC2Dv6YxM73YCTchhUyXdhSA5G08a5rxlufcOsN+5YgdU/nu36vhgynEUkbIW0IhTq9b6olQRGorQ4RO83lx4zlir9NRhECQ1M595h9+bS8kI8en4FsTrOqLsKtP3+GR9/4RafPd9kXGzqaU3SFaW98gZ2xB0ynLKa/tWA7oriz2Ld3dz5bs5G0bWM7klG9dm+B/reBbTs8+qf3mPbhUnr1LeOXtx5PYfEPK36fQw7/ifj1r39NQUEBw4cPJxqN0tjYuMtz2LbNUUcdxZQpUzj77LMZP348CxYs4P7772f27Nm8//77X1lTeOutt2a7m4uKirj11lt36pjfO1H87LPPOPHEE7cjiVtx3HHHccIJJ3wrb8Eccvgyps9ZQzSeyooAv/zWPC47d+JujyqmUyavP/EJLfXtHHjyaPoN7ZF9TlEUfvng+Vx+35noHq1TyvnuK55j0ew1mGmbz6cu5/7nLqGgKMCVR9xLLJLAsSV4PAhNxVEV2r0al13+LHvtVc0F549H01QuuOcFWufVkCd82fYQT0SSzgN0gbAlasQm1sND4dI4gYBGPB/qDtSRmoJvk4WWlPg3mPhaJE0JhabVxYiUwGgXCCnAdptEkhEv7YbXJXU6WHmSLUM9lH/SjG9dK2Z1IWz1LBaC4BJJMubBkxFRVhzwNcTYsn8AJS3JX5nGX+dgtKk07Od1axmRKGnQEg4oSqaRZps325Y4mqRtdDn585rQG+Ns2dcgXaahJaDkcwtpKEwc3p/pM1ch2mKIVAqRtpCKgsw0DDkZgWwFOG3vvRjerYo3bj6fjY1txCyTy57/N8KB9AF5lMwO469Ps3FDE9ec+yi/vOtkKqqL+OTjpYiqfKxYCrU9iW3aDBrRk2Vz12GmLFAERqG/y80mfzjpR9z15kcs3tTAIf37sldV+S7P8V3hncnzeOvVuaTTFm2tMX5/+2Tu/POPdzh27cp6wm1x9hjWHcPzw0n55PD/BP9hzSyrV6+mb9++gKsp3RWi+PTTTzNlyhQuv/xy/vKXv2S39+rVi2uvvZZJkyZxzjnn7HDfjz/+GIAePXp0evxdoktEUVEU+vXr97Vj+vfvz3vvvdelReWQw46QF/KyrZqT32d8J6nne376OHM/WoJp2rz+xCc8+Mlv6P4ljUdvYHt9uSVz12Gm3eiTqiosmbue5ppGYpGkSxIB0mlQvciQF8ryWbZsM2vWNGDbDmeevT9bNjRTuKSJ9JAeneYWUiIzJMvTZpPOU1AUQWlJiJmjkkgVun1ko8Vw6xeFhllZQNEiQcMYgR515XHcxQmwMnztS6WVdlBHSVkICUoshZOXkbFxJErCRG0PgEgipeuU0jTCQ7xaUjrLxL/Zccljs03JvBTNwzzkLY3i6CpS8bm1hWmJkpY4hus649li4nh0bAnRwYUYPYvI36xAjSSVJ2nZUyNvI6RDAkuYhDaHkcX5ELeRwiZZJDGDHkyf+7quOOkAhnerAqC8MERZQZAfP/oiZqZhBEUQ6e/Hv8WtMV22YCO3Xfkcl91+Ar+9698kNUnbqAC2N8QgI8TR5x7AtFmr2bSoFtursdIH701bxuHjv16Iuj2aYNrCdeQHvBwwtDdCCFZvauKdqcsRwDNr56JLlUuOGPO183zXaG+N8dYLs5g1cw3pzA2YbTlsXLfjH7/nH5vCpL99jKooVFQX8udJF+Hzd11rMYcc/tuwlSR+GzzzzDMAXHPNNZ22X3rppdx0000888wzX0kUJ0yY8LWPvwt0iSjus88+LFiw4GvHLFiwgNGjR3dpUTnksCMcsE8/Dhk7iLc+WYLfZ3DHNcd+J8eZ/f7ibLpRUQVfTFnWiShKKXFsZ7sGlv5Dqlk+fyOWaeM4kgFDuzO3odX1ds6QtIKSEKMPHcKqcJLla90f43TaZtGiWvICXoIOpCp8pI00uqWhWKBoKo4GSImacFBSDsHNKfoOqGBdgY3tSeFrdNBiGas70SFWY0Tdv12txA5SLSSoSQdhKUg14wGIQOoqtl9Di1moWyJu1M6ro0RTOH4dRWg0DQ3gaTEx83XX41k66O2yw+JOghGWeFoEeStjNI0pBdPtmLa9AkcDPex2SVtBHcebeV9Fxg0GQAFfi+uvLEyYMW0lasxCbhWAztQwakmHRBnYPoEUkj++Np3uZYUMLijCtmyeXLSQhTV12detCkGR34uqRbAtB8eW1KxrZMWyzaiqSusgBTPoNugsIcKPbn2c6sIA0aEVSMDRYNbSDV9LFMOxJKff+gyReArHkRy532BuOvcw3p+/Ettx2Hqv89qMxT8oUTTTFled+hDNW9qxEWBoCCHQdZWJhw3ZbrzjOEx65GNs28HGoWFzGzM+Xs5BPxr2A6w+h/8v+C6bWZYtW7bD5ysrK6msrNy9B81ASsmcOXOoqqqiZ8+enZ7z+XzsvffezJkzZ6fnO+iggxg7dmyXfZx3Bl0iinfeeScTJ07k4Ycf3qHa94MPPsiHH37IJ5988m3Xl0MOWSiK4MbLjuRXFx+Gpim7NZoYCSe47doXWb6kFtWr48QdpCOxbUn3AR0XjIVz1nH7FZOIRZIcdPTeXHP3Sdlakpv+ejaP3fMm9TXN/OjM/Rg6ug89+pQy7fUvqN/YhNfv4ejfHs3LsfWIlRKtRsUybQxDZeTIXkgJ+x89lH/PXZqVqyn6rBm7JIAaVzAiEmFJfAUGTlOSmngjZtokKPykS0RW8HrbZhRXLkZi+UCPdFwgfY0OnnaJt8WhbaCKVEBNSBRTIlJ2xjlFkCoyUNMOiV4BbJ+GbQhSBS7BEw746iVaXBDupxKsdbaq5pAo0wiuakdvSFD2UR3N46tIFSlYAYkWdSOjUuCSRCGwdTADQJPESLjbpOK6u3haUnjWt6CYNk7I5xIt4XoRSxTMoHsuiMzLv+7JNyl9fwtCQKRCp8QStO7hxyzQKPD7uO2EA7njo6fdORSIFkhmv70Qy7KxfJkIqgAQREoUylMBWmJJ2vMdzKDg5bXL0V7zcsPxO66P/XTROiLxFMlMhO7f0xfz6x8fTFVxPoaqkrJsVEXQvaRgt52/XUHt+iYa69qwM9FWDZhw3HD2HtWHQ3ZA/oQQaJqSHS+lxPDkpHhz+O/FWWedtcPtt9xyy07X/u0qWlpaiMfjDBmy/c0YQHV1NTNmzCAcDpOX982NcjNnzmTMmO/2hrNL3/L33nuPgw46iMsuu4w//elPjBs3jvLychoaGpg+fTqrVq3iiCOO4N133+1Up/htiilzyGEr9F0Ust4ZPPnXD1i2qAbLcnCKC8jPS+HVVY676ECGjx+UHXf3NS8QDbv+1NPeW8yYAwcz7nD3C59XGOCae0/tNG9BSYhDHzyR3/7zPUyvwq3LZ2EZEiUPyofpTNB6UV6Zzz/nLuWJT+aRLFcg0xwibUmydx6KBc1DdfSY6xfcfXrCjerYrmBgwQqTVLNGKgTedly/acdBOBJNCio+TRPuo6PFXIZl+gV6UqIAnjgUrLKJVrtk0fQ5tO8VwtMmSVUFSYc0rKCSJaBSgFBAOBmZHgR6GCJ9VGoPUvDX2WjtJkVTanEMhfpjKkmVelBSDlpSYLRJNCMC/UzMcg1WBLAdjVQRICGdL8hbKzFioMUcbK/AU9OGMDMh2UgCPBrSo2MFFBr39iI1t5NbyTDklG0jHYllCBRLwWizqfgsiqPAhJN7EysW1J4awr8yheVTaR1s4PxrI3ZhCD1sky7u0JsEOOHoEfRaW8+kJYvcz0XC858t4NzxI+hWtL3PeWHIh71NZ7zPY6CqCqeMHcry2i18uGA1vcsLufOsw7t+wu4GlJTloagCO/PWKlJy4eWHUlS6Yy9qIQS/uO0E7rvxnzi2w7BRvdlv4qAdjs0hh92G77BGcdKkSQwevL327XcVTQS32xnA49lxyYbX682O2xmi2L9//05ez98FukQUt2Xaq1atYtWqVduNefvtt7freM4RxRz+U9FQ146VadKwhaDnAYMZf/herFu7hc9nrWGffd26lFikw79ZAOG22NfO2xyLc+v7HxNaG6dqZitSQMPBhbQPC1JXbXPthT/iZze9SFvEJZ/Skh11gwIU200b61Ew8xRKDC/egE0kaWVoGqiWwNvu1h3qqxu2WjS7Nnf9SzGDOkbEJZ+OIpE6JAsFgXp3oBG28ddbWD6FaC+dljGFBGtsSuYnaB6yVapGIiArrr0thCMpnWGiOToSBf/qJE1nBomO8KE2WWgbVWxdw0lLSmY14d3i2rAkB2k0/1hirsrPeFpniF6+JFhjYfrdKKlVmoeQErUlhoinoCXCxnN7ZscjJTLtvndSgK8hBUC8yoPRLrPLFQ7kS42AYZAs14j7NYTt6kVuPiyf4iXgbQWpuml1gMD6OJHGNvYa0R1WLEZa7nzCkTz01gyKQ37OPXAkxXmB7Pux7x49OWH8Xrzy8QL8Xp17LjnajcapgtvOPIzbzjxsJ87I7x6hAj+3PHQOD93xb6SEi6//0VeSxK2YeMRejB43gEQsRVFpKCcOnsN/NQYPHvy9S/htlb5JpVI7fD6ZTHYa90248MILueWWW9i4cWO2wWV3o0tE8fvossnh/yfmfryUFV+sZ8i+/Rg6dsD3dtyjT96HBZ+vQ1EVHNvBn+/jwT++Qzpt88a/5nL7vacxakxfjvvxfkx+bgaKouD16QT8Bg/d/TolFfkcfMxwijM/tFJKttS20GSl0NpNSma0ZglcxfutJPv7UaTCBYf/ibY+HSTDHxXIEo2kZVEkDSzTJYRFK23UZJK77jiaX65+HV87YIEZUHG8GRu/pIlIphGOA6oKuobpF6ixFJ56k2SJF6vEta1LFarYhoOn3aZgWRxfnUAC3iaDppE+ghtS2TpGggItDlYQbD+ZZhSBmnJvy0Or4whjqze1SnxQAdF9koQ+s/AsM0hUKlghgRa18NYns+lv71ILo1ZiJSWOB5f4SYkUknSBghaz8bRaSEMFoWBV6mg1TThfLliS4Gm1MaKQLBB4G0w3YGBDtLtBwcpkpm4TDj12bwZWdmNieS8+advYMYUqMQPgCUPFu42uNaIEvc3kd+Z7RAYXu4KVlqv9qKPw1ufLURTBRwtX89oN56FtlQkSgl+deRDXnD4RJWPv+H1CSsnm2ha8PoPikq8nfiPHDuCJd67dpfn9AQ/+HTRz5ZDDd4LvoEbxh9RlLCoqwu/3U1tbu8Pna2trycvL26loIsAxxxzD+++/z9ixY7nuuusYNWoUFRUVO7zudJVIdokofh9dNjn876GhLcof35hGWyzBeQfuw5gBnU/aD16ayZ+vnrSVL3D9oxcy9qi9v5e17T9hEL979HyWLaph0JBq7r3r36QzHcyW5TBj+kpGjenLT645ghFj+9OyJcwnr8zi3l+/ktUR/Puf3+fAsX244ndnctdPHmXux8uQAnqeM9h1T8lcnISA4tU23mVxkkmJ2qCglhgYcQe13ebqkyZyxBHDeO3tL/jrYx931IQFvdzz/MeYKYnZO4CjQKxaIDUwIlD2XhtkBJ2lbSN1BW1LFBnyYPt08pe0Et4jH6fSh2NIrIAgaLtpEOGAowuUNARqJJ4Wd5781QkSxX7i1RLbC2pMcR1iFCj5rAmjxcQqDmBmdKvdzmYFbPDPVwkP8iNV98VLRXS+QDvgnebH44H23pJUMSgpN1rnbUhhhM1sytsOekgHFNrGVWK0pQmtiBEZ6BJsb4vE3+BGSr2tkOweJF3mw0ES76ljhVS8ccm1FxzOoCHVbjPSwxsQ40FmZHUQuMTXATtkoLcnUWyQKiTzPNiWg5pw5XccBVI4KDZuM0xTO1vao1QVdb6wq9/CW7Whvo3Xpy/CW+Hj2H2GkJdJR30TbNvhtmueZ85nq5HARVcdxoln7tfldeSQw38E/oMEt78thBDss88+TJ06lQ0bNnRqaEkkEsyfP3+XXO369OmDEK4RwZVXXvm1x+2KMDjsBq/nHHLYGUgpufDhV6htbsN2JHNW1/DKL8+md1lRdsw7k6Zjba1FA95/Ycb3RhQBBu9VzeC9XBHk3n3L2NIQzjSbaPTsXQq4X7YR+/Vj09ot/OGKZ5CFHeRAOpKpby/EsR0WfrbKlfKRIJ5fSVm/ClprWlCEwoBhPVi8oCUr7ByM2OzZp4hVNXXYlsMD971NftBHXtCHprrNAxJIFCqEkzHwC9QkpAshXaiAADMocRwz+4UWQLSHj3SPfNIZUe5ENx9GfQRhG/g3W+hR0FQVKSFVIGgaFURYIBxB62Avgc0WatwmOtD1aDaaXS3GrTlv23C1FNVICrPE1RdEEaQDQFxxaxshe5G3/SqR/nnkrQoDkKoMgkdHAHkbwWwCR3VoHyAw2s1syjjtU4h217ADGlJA0uvDaElSNrUVxVKQQb/b/CJBi9vu+kIanjydbv3zSeTZVOQFGT3a9WFOJU3q1zXTLalTPy6I1AQls8KEVsRxDBUrX6W9jwctKgkP85AO+BBuNgjLixv9BIQFnnYIeg2KQzuXJtoZLFtcy1WX/B1bSoSEvx0xkzd/deFOkcUvZq9l3ux12XPrsT+9x9En7ZPTO8whhx8A8XicjRs3kp+f36nu8eyzz2bq1Kn8/ve/76Sj+PDDD5NIJDj77LN3+hjnnHPOd561yBHFHL4XJE2LDY2t2ceaqrK0ZksnotitbzkrvtiAlbbQDY1uGXL2Q+Dq64/m9799nbWrGjhgwiCOPr5zHYvHZ2SIoOyolRNgJdNsqWnuPJnl8Mi/r2H2h0sQQhCLJGl9eQ519WEURaAogmhLAjtTI2lZDp9NW8kvrjuK9z5ewqy565AhFbyKK5YtBLYn0yW89fqgCMJDQhTNaEXYLrGL9QygCxV/o8TRIF4K7UNCICBdZFD2WQQtrSF9CpoNaDaxbir+TWCFNBLlKo4OaO66jCYFNe1G2RwVWvbJx/9GE8K08NS0ER5ciOVXSIdAW+VBemOAq59otNhIFczyIAlLd20IK3wd9YM2KClJssT9v1TdbWZAoX58CD0CWlpsbUYmVeol2ttL8dwwRsTE9qk4uooWMQm0pbngtqPZY0Q3jp38LOoqwfpkC0fNf4rpV15MyOuhe59SNtW00P2DlNvl7PNjji/GViTKslb8tWk2nRbEKlA5pLwncz+vI5E0MynyzKJ16F5dwP2nH4VH37lLaTyaRAiB72tSt4/+9QMcS2bNbcS8dj5av47jB21fdP9lOLbDtr8ZUkocuXvCMauWbWbqB0soqyzgqONH7BZ/8xxy+Eb8hwluP/vss2zYsAGADRs2IKXkzjvvzD7/m9/8Jvv37NmzOfDAAzn33HN56qmnstvPP/98nnnmGR544AHa29uzziwPPfQQEydO/Mpu7B1h23m/K+SIYg7fC7y6Rq+yQmqb2rEcB8u22bN7Z2eKC285kabNbayYt4699uvPWb86+gdaLeTl+bjtt6dutz3SFue5P7xF65YwR5w+hndenoMM+lyyGImhIjnynHG88sgH1KysRzoOe58wEn/Qy8TjRjLpz+/y0iMfk05ZKF6Diafsw1mXHMTfH/uEhvp2zIxcTp9+ZWiayqhuxWz+eAXJ/CBf7mvTY5J0Pi7RQRIeESLQ5kVJS2LlCuR50Roz6WDL1SW0PQKpgOMDO6BjJJyszmLJFxYbj1JJF0gCy0FIgTAlIg3ClvhayF5gzQDEumtsPLGY/JUOiUIDO0/B9jmgSdSIStrrx78pjRVSUdISX5OF2Kptk0iB9Lq1g9JNfetJ8LWD3p6keQ+d4iUmsSrdlcORIqv8I8FNZysQ6eenZFEaNWGjxtKoaQcHGNajgpvuep2yekk6AIkygay3uOyOFznv0FH89smfcN2Vk1i/uQ0JtFUbyAwhZnA+FYvaGfBYnEtvPo4jj9wX+3CHpbUNnPL0C9nfGENV+eXxExnc/asdVmbNWM2zT04jEDCozvfx1tPTEALO+9XRnPqzg3e4T21da/Z9kQIsFQo8O5d6HjGmLwP2qGL5ok04UnLmBePweg2aGiNM+XApoTwvBx+2F6q2a2nxNSvrueqCJ3BsB01XWblkE9fccvwuzZFDDv8LeOKJJ5gyZUqnbds26W5LFL8Kqqry1ltvcfvtt/Piiy/y/PPPU1lZyTXXXMPNN9+Mqv5n3YTliGIO3wuEEDxx6cn86Y3ptMWSnDtxJL3KCjuNCRUEuOvFy3+gFe4cbj77YVYvqsEybTRd5U//uoqSqkIuO/huwmkTRVN5/amppMf2IpanYiqCqbEIny1Yx/7DejP1zQWYKbdBRSbTKEmL8soCLr/6CFYvr2PD+mZI21RX5PP5lOU8+8d3MdM2sjmCParUdVUR4NsYw8rzgNBIBx1sw6Jqmo2ackViQvWQNB0cQ2Gr1Lay1Y3FASyJ5c90Gm9lPpk7d1fcW2B53LrFvOVuHSRyqySOS1KLFjgYMQXbULHzBdGBJgRtNzOdBs8nOnoshSds4Xg0HNOtOxSWAykLn5UmPLQUI5bpTJZghMHfaJOuDNA2wIPtFZnOZVdQG+lGMy1fxi3G7PhsLL+KpipUlORx4fXPISXogJaQKKZNoN6hRtRz74K3OPnEUew5vBcba+ZhKwKpd4ThdE2FkE4+KsVlbmmBqijs1aOSu445lN+88QGOlIzv15sD+rr1RY7j8OmHS2lvjbP/QYMpKgmxqbaFW3/9MpblRvnmWY7b0C7hqfvf5KATRlJSUbDdOdZnz27MbV4BlitQnr93CRN69dqp81NRFIafsTexXj6G9e/GWaeMo601xsXnPkoy4b5Zn05dwW33bH8T9HWY8+kqhADHka7n9UfLckQxh+8F36XgdlewK/rQEydO7OQmti2CwSD33Xcf9913X9cX8z0hRxRz+N5QmhfkrjOP+KGX0WU4jsPyL9ZniZWmq6xbthkzZWW8nB0cG1Yv2EiyUCOV50aBNAGrNzay75496DO4iroNzVimje7R6D3IrVvZsGYL9SvqUU0bG7j7ly9yzsUTEYoC2EgbAptNbJ+CYoEqdYim8bZqeFokTXsraMltFitAMR2koWQ6iQXpbAOsBN2hra+Bvz6Farrt2E0jNIymNLahYQZV7IwYNlLB0+x0ksURCHfuqI0Wl8SrJPjtbGpY6iC0KN5aV04oWeYlXagRr9LQ4jahlVG3gcYQEJVbV4WQEqfIj5p2m0tEm4PtEcQrAFVBSuk6yQhXIDxvrdvhbAZVrKCGbIlTN28VfhuskhAy5MfxqRiqniXCacfmrTe+wKgLo7bGUQUofb3uWgDTtLBqIzQnbe645Cme/ewmCoqDAJy09xAOHdSPRNqiLBTI1gb98ZbX+PidhZi2zV9+9wYHXDOW5k+3ZPUUpXTXv9UOUQDJeHqH59lVVxzOFRub2LIlTGW3fP566Znb1SDVb2pl2nuLKSwOcuCPhqFmGqqe/XguD77xGWnLZl5TI8GSANWOl1TKylr0fTZtJemUtUti2dU9i7N/K6qgqnvR14zOIYccvm/MmTOHd999l02bNu1QekcIwRNPPNGluXNEMYccdhKKotBzQAW1a7ZgWw5m2qbvkGoCeT6crV7CgKIqjBzem1nLakibNo7p8Pk/Puf5616juCyPvcb0ZfO6JsYcuifHnO12t7U2RVFVJdvMk0qa7DW6D9JxEIpA82ooDijxjrtTs1AHHDxNMYywB0c4CLlVXRG8VTHslV5sr0oqT5DKc7/uwgGRUnC80LCPFyPuYHkEjhD4tqhYftd9RUttrb0UJIoVPO2gdvQaAW73czogCNQqiA1eUCDRP42V76DG7Oydu5q0aBtSkM0dhwf5MIMm0mODDZ6Ieyxh4+o2pm189QmXVElJaA2kC3Va9/CTKgXbJ/HXgRnSSAsBulu/6VuxJXtMbUsYKRVkQsP0gKJqSFuiKAI9kiLantHElBBa3k77sEJE2qZgbhNq0n2hUkJzQzsFxUHCySSPzfyctniSM0YMpTzPJY+O4/DB6/ORUmZenuTjR+egKlqWFKqqgi4AXUVIGDFu4FfW4FZW5PPiMz8jFksRDHq2I4mN9e387OS/Ypk2QsDnn63i+kyEcPrS9aQz9pNpy2b60vVcPm5U1pISIBD0oBu7ltoae+BgTj9vHG+/No+KqgJ+efsJu7R/Djl0Gf9hNYr/aZBSct555zFp0iT3GpTpgN6KrY+/DVHsun5DDjn8gFgxbx0PX/88L//lHdJJ85t32E2487mfM+awvRg8sjfXP3Qe/Yf2oKpXKZfffybBAj/5JSFufPxC7rzqWH5ywn4cd+BenLxHX9YvqwegpTFCIm3z1NQbuOSm47INAXuP7kMoz4fh1dENlf0mDsLo7SX/Zz1JVftJlPkI5fsymWJJOgjxcSZHXDONg+6aR6+3I6jtKUTKQqQt0gEFZbGFYjroUYvgZpPyuTGUuIPiCNSUW/+GCumQgtSFG8VLQqhW4m3KNOoASIlj4HoqG+7xkdJtQLFANbemtQXCEfhWGWhtkLewI2KWKHP1GxECFIHt0UlVeVBMQXtf1y3G0iTxEkF7bwWjLZ3RT3PXIACj1SRvTZJUkcQKQrgvRKtVLL/iRiNth0x2GiugY/tUsJ2MKLlD3z6lBDw6vXqVEABMTeJk+JKwM5E/VUHJRFg1XaWkIo/ufd0axPOff5UnZ83lpfmLOO2ZF6hta8+8JEEwb5saQgmK6Wb4HY+CMBSGjuzJueeNo6JPBXvuP4Cr7jv9azsVFUUQCnl3OObz6StxbAczbZFOWUx9Z1H2h2F4nyqMzDllaCrD+1YxZFgPzr5gPP6AQWlZHnfed9oud0kKITjrook899bV/P7xC6ioKvzmnXLIIYfvHH/961959tlnOfvss/n888+RUnLVVVfx2WefcffddxMKhTj99NNZu3Ztl4+Riyjm8F+HDcs3c+1R97l1gobKklmrufW5y76XY5dUFvCbxy7cbvvhZ+zP4Wd01r4699jRADx+/1vZiI6UkvaWzm4u0fYEj975GoU+lW7VVSyfv5GZ7y9h+pYVhI18RJVbJ5cSDucfuz8f163jM6WBimiKpbN60a1bIySFe9eXspACtAiQEAjNQhqa68AyKImvhyBRH8Db4lC40iJWqWB7FPR2G8drgAZSkRjtLvGwPaCHLcxumhtZLJHoUUGw1nZTw+DWL24D4QjK37BxPDqKZbmEU9M6UteOREtLjDaJmQ/B1QpG2EZLAWFJpNrttlYzAb9tKY0ek+gxMPNw6xV1XF1HASoqZr6XyOACUlWuxmJgY5JAXQo9KtmwcDOOI1mViNPWH+KHlSNsSeUHbWgxd12ognivICVrIqQTKWQqTbg1ihH0sqiuIbsORSjMq91MdUE+QgguuutYfvHmO5hegSfsULDewZMQbie7pjDhgAE8fPu/sUyburp27vnVS9zzxAXffMLtAGVVBThORwS7oDiYJX4/PWJfTNthzsoa9h3QnQsP2xeAM889gDPPPaBLx8shhx8UuYji1+Lpp59m4MCBnbqfCwoKGDNmDGPGjOHwww9nzJgxHHrooZx//vldOsZOEcULLujaBe3bhDq/DV599VXuu+8+Fi1ahGEYjBs3jrvvvvsrTbi/jHg8zu23384LL7xAXV0dlZWVnHHGGdx00007bauTw3eHeZ8sRSgu6TJTFp9/uHi3H2P14lrmTV9Jj/4VjDl4j28116HHj+T152ehCFf65pQLx3d6/nfXPMfcqcux0jZ4PVm5HXWJhdE9jVnkdRs3DIUBe1axMRRjyQdbiMsQy40Qy1b0oCLQjpawkY7b7OIYKg4CJW2hDo+jH5VEFkmUZTpOxEGGJXpUUrjKBlxv5Pa+Dr5mx42oAXocbJ/ASSfoPifGlv2LcAIa6YDA8rlrT4cUhC1xhOsVjARPs4m/LoVI2W7aQxF4W2x8WySpAtfZJW+9hdwADfsJ1LRAS5FtaAnV2rT391L8RcwNy22FANujZaOAbvjQdX0B3Cjp3pWkipTsexjr4cWfBidu09ZXx/IrKKZDotqdRKqC+gl59P1HE2XTG1E9GuUBg7pYAiQ01LZw1oF3ky7Lx3dIkJTmys2Ytk3/0pLs0h5cOR8rX0NKiVWmcebxY0h+0UZLa4wTjh/Jspkdd/OWabNqyaYun08j9uvHKeePY/JzM8kr9HPD/adln9NVlSuPzRHCHP53IPgOmll273Q/KJYvX865557badu2wtrDhw/n6KOP5qGHHvpuieJX6fR8ORf+5e0/BFF84oknuPDCCxkyZAj33nsvyWSSBx54gP33359PP/2Uvfba62v3t22bo446iilTpnD22Wdn9Y3uv/9+Zs+ezfvvv4/yLRwXcvh2MNMWH7w4w3VNEe651q3PV8uTdAVL5q7j+rP+lo3SnHP14Zx84cQuz9ezfzmPvn4VC2evpbpPKYOHdXakWTF/o0sSvwwB+E18a+N4NscQisA8oQ25NAJCRaqZaJ4QNIzOJ7Q+jtFqkajwE+mjIxUf/pokpXsm8VbYbJxdRbzFh0QhUS7xNdl42l0mJlIm/s02lt9Dex/VdTnZIvE2mYRWRIn3DOKNCIxNJlKFhhE6emqbOjcb9BaJvyGFr9F008BbX4YEJW7ibZd42iVqykY1wZLgbVCwDYmjgOp0jDeDKk17hwjUp/E0JMGnYxsqjnAIbJJYfom3SeDoIksKbY9ETYrOvwJCkPS6HtapQtVNe+uK20GdgdQE3ooglldnxJDubJy5ulPEQVoOiiMpmZNE7+5DNRQu/PEEBpd31BhuDkeyeoVCgK1Irrry8Ozzui35x8MfuX8bKsNG9+bVWYuZNO0LKgtC3HTywVQUfL3dXsdLEpzz80M45+eH7NT4HHLI4X8b+fn52b8DgQAtLS2dnu/fvz/vvfdel+ffKaK4bt26To8dx+EXv/gF06ZN44orrmDixIlUVFRQX1/Pxx9/zAMPPMD48eP5wx/+0OWFdQWtra1cffXVVFdX8+mnn2a9Ek899VT22GMPrrzySj766KOvnePpp59mypQpXH755Z0U03v16sW1117LpEmTOOecc77T15HDV2P6v+dSs8qt90MIhKpw2/O7N+085fX5nRxi3n5+1jcSxUQ8zSN/fZ9Vy+sZO2EgZ5w9FkXpYCzl3Qo59ISRO9x3+AEDmP7WAsy0hXAcFENH01UMv07PiSVs+MsapKGDafGXX72A7FOK6KVlKoxdfUGzQKF5RABsmbGic6h6qwG9zYTpED/NIO7xIZ0Ot5R0ECQ2aloiAzqOVyfaS8UMAoog2kuSLJXYIkSsj9u4Ea+EgpUpQrUOydKOyB2qxIhJlLRb3ydVBSyXLDoKJMp0LC+k8sBoFwQ2pWnf2yCdLyAP0gUapV9YCMd1P/G0uK4kZoGHlmFeTK8kb51NsM6h+ONmFASpyhDRPr5OxFCxtr48l7Q5OiSKNSyfgmIJHB2UjGi4lA5SEeyRCNBSLlBVhU9q6tlzYAVyXWO28UaGfG66vD6B0pBEURX+ve4jJjzVh7sefIeFyzdROMBHfJsGkUMH9Ov0GQ8Z2Yub/vxj3p88j249ihlwWH8uf/p1TNthbUMLlz0xmVeu2XmR3Rxy+H+DXOr5a9GtWzc2berIUPTp04e5c+d2GrNq1SoCgUCXj7FTRHFbL0KAP/7xj0ybNo158+Z1em7gwIFMmDCBc889l5EjRzJ58mSuuuqqLi9uVzF58mTC4TBXX311J0PtHj16cPLJJ/P0009TU1ND9+7dv3KOZ555BoBrrrmm0/ZLL72Um266iWeeeSZHFH9ApFNmp4CRqilU9HQjOws/W8W7L86krFshp112KF7/V7tffB3Kq4swPBrplIWqKlTshBTIA394h08+XIpp2qxf30hhYYCjjh2+U8e76p7TqOhexMevz6epOUZecYjjfrwfR54yimcf/Zi1xU3uQEeSamwjYdnkL0/R3s+Pk/FdRsElbZrAkVCwqB0t7L5XiVKDOm8pehyknnGSEeDblMDbbBEeZKA4huss4ycj4O3C8unEuxsd2xxJqkBFNUXWhxkpEZZL0mLdvDhaCi0hcFBRLIdkiU77HkFXA9JxKPoiipJySJV1XLhsjyRWoaCHAeEQ2pRG2BCrVHEcFVQFb9jtiE708BFaHsZTH8XWbBI9g25dZlzSugdYPomSdt8PvQVS+a4sjbAlihQ4GpR/0Eq6REUP28TyHSwBVqZz/XM7gm+PUjwNKTB00FV0r46TtLCR2JZDY0M7f3rwXeYu2ohp2WhLLPYZWIy6spXSQAC91YSyzp/zvhMHse/EQQA8N+0LVEXBtB1sx2Ftw5fcfHLIIYccdgKjR4/uRAyPPPJI7r//fu644w5OPPFEPvnkEyZPnszRR3fdwKJLOdRHH32UU089dTsCuRW9e/fmlFNO4dFHH+3ywrqCWbNmAezQUHvrtjlz5nzl/lJK5syZQ1VV1Xavzefzsffee3/t/jnsHjiOw3MPfsglx/6J313/ErFoh0DgAceOpLiqEMOro2oK595wPACrF9dw448f4qN/zuGfj3zEXRc/2eXjH3vOWPY/bAi+gIe+e3bjFzshTrxs6WbMTBTSTNssX7Z5p49neHV6D+lBU3sK04Hmpghv//NzQgV+pk5flSF2brdw33370aN7MaqhU7g0SuXrtYSWtXWq5ZNIhNWR+m3av5DKGRYl89P4Gmz0NpuiuRF8za7wd2BtRolbCPQoblMHgA3d/rUFLWZ1bAMUG4Qt8LQ67nYbjHZJ2ge2IYhXeQn3D9I0Op+WEYU4eQGCm1wiF9iQRg/bKJbsNCcKxCsE8UpBvFKlZbCB5RcE6m087ZKS+RbCgob9VBoOC7LhvCpiA4pQDB9KwkGY4BjSJbqqwPEJHMO1MkTJpKMVgbAcime30jg+wJYJIWqPLaCp0s5GfyVga5LIqAImHjuCQ08aTv6FvQgfm49QOwi0Y0tao0nMTJOSlbJofGkZdXM3s3DqKq497UFikcRXfub79K3GzjSkGJrKvv17fOXYHHL4/4ytgtu7+9//Ck466SRs285mfn/1q1/Rs2dPbrnlFoYOHcrll19OQUEB99xzT5eP0aWu5/Xr11NQUPC1YwoLC1m/fn1Xpu8yamtrAaiurt7uua3bto7ZEVpaWojH41/Z9FJdXc2MGTMIh8OdIpbboq6ujrq6uu22L1u27BvXn4OL9/45lxcf/QQzbbF5QxOWaXP9788AIBDy8fCUm1k2Zy0FZXn0GlQFwKIZq1FUBUwbM22x4LNVXT6+bmhc98cff+O49tYYK5dsoluPYvbdry9b6ttJpy00TWXkqD7fuH8yZYIAr6HT1NDe4dErXRkdAMOjZ8erukpYETRtbkd1BDLkQW3UKFydRrHaaNmvECVu0e31BtRMRM3RBFoi46XsQMFaNzerNndICqkpG5G2kYZKcBO0q+B4Bd7NKfSISdGsJpr3L8UK6WgJiaOrbvnkFgvb60brbD/YXpeP2YCwwNMGeiIjmyPBt0USWO8eV7Gh7NMIjfuFkCp4GyHQAKYX0iGB5RM0DfXgS8fxtDik/IJkX0G6wCV9ZkgS7icoWg5GVOLoDlo4RbhfZ6s7xXQ7mQFXhNyS2H6FVImO1NztbYM0+ip51NW1Y3khWaigOA7X3XkCJ730PEsbm7FwiI8P0HOOiZDwkysOIdS9kIV/eB2hCEjZ4Ehkhvym0xa165oYOHTH2YuBVaU8fsnJvDZnCRUFIc6buA+mZXP9028xZfFaqksK+OVB+zH5iU+xLJvzLjuYofv0/sZzaleRSpr8/tcvM3/mGgbuVc11vzudYJ5vtx8nhxxy2H2YPHkyxxxzDIqicPzxx3P88cdnnysqKuKLL77gscceY82aNfTq1YtzzjmHysrKLh+vS0SxpKSEd999l9/+9rc7fF5KybvvvktxcfEOn/+uEI/HAfB4tk85er3eTmN2df8vz/FVRPFvf/sbt912284vOoftsHrpJsyMi4SZtlm5uDO59/gM9h4/qNO2vntWZ0WvVU2l18Cufyl2Bps3NnP5mY9gmTa2ZXPdb0+l8CdBVq2oY/9xA5lw0OCv3f/xf83g8ddmAILLThvHIQcN5ukHPsi6ZRx2wggee3UGa2UCr3DvgL0FXurq27MNZEp7mnSpF8UW5NVJ5KIU/jXtaHE3mpguDWKVhfC1SYR035usW58isAVITUGNpvAvbyY6tBTLABSBmpSgqSBBi1uUf1BHrF8h6Uq3VlFJOtjaNhMK4UbvpEu+HE2C6hLFbRHv5sXp5cPTkERvtQittEDV0NLuRFoSHI/rM20GIDIchJImMN/AzFc7ciCKwPZKl1jmu+s083zkLUmS7ObB9kqKP23FyQsRrzaydYxaxCbRze+m6zNQFcHj9/yYM/76Ao3hGLrjcO64kaiKwqrmZqxM5C/Zy+BHZxzIT0fuk9339zeeyL9enI1XUfhiY4RkIg1Sousa3Xp1dEV/GS3xBCvDLYwZ1ovDB/RDVRQmfTyPaUvWYdoOG+pbuPOKf4DlICXceOmzPPXmLygu3bmGl53F8w9/xMyPlmGmLebPXMOj97zB1XefsluPkUMO3wq5GsXtcMIJJ9CtWzfOP/98fvKTn2yXAc3Pz+faa6/dbcfrElE85ZRT+NOf/sSpp57KvffeS+/eHXe669at47rrrmPhwoX84he/2G0L3Rlsla7ZkX1NMpnsNGZX99/ZOS6++GKOPfbY7bYvW7aMs87KFavvDPYZN4B3//m5a3NnaOw7cTANtS3Ub2ii317dCewg4jF0//5cfs9pTH5yCuXdi/n5nd/tj90bL80mEUvhZCJIzz78IY/+64rs81JKFn62itamCCMnDCZU4M9un7lyI4+9MTNzsZI8+OI09h/ai1NvOpLalVsYPaQHVYMrOO+Wf2D7FMxePrAlzZWCwoUddncNY3XCA9x5S2al8DU6qMmMj7QisMpCIARGXGD6JI4GsSoNIcHfEHIbTgCRsvFsCmP7VFoy/DZveRw9YhMemEfeyjAgUEzQ4i5pslWJHt/G1k9uLVjMQMmIc6u4IUYp8dUl8LSmcTRBuLefeO8AMkOCLVWgJ7YKfLv/EaoEr0RKSBc5OF7bLch03EMFaySmX83WXEokMuhFTYEWB28z6DURPM0GZp6GFnVQhY6jQqISkqXumo/s0Z9Cv59/XnkWs9fUUBjwsXdPN1I9rmcvPlm/jrRt40jJfl+qb35j0iwWzFiDbTmofg97D++Jx6Nx9lWHZyNzq1bUcdsNr9DaGuOIHw3j7EsncvTfnyUSTmDUJ/j3Hr155OLTaAxHMTM3OyJpI82OegIh3JuT4tIQS2sa2NjYxsi+3SjND+7Seftl1KxtzN6UWaZNzdrGbzVfDjnk8N3jkEMO4cMPP+TOO+/k7rvv5tBDD+Wiiy7i2GOPRVV3zXVpZ9Alonj77bczffp0XnnlFf71r3/RrVs3ysvLaWhoYNOmTdi2zahRo7j11lt383K/HtumlwcP7hzR+bq09FYUFRXh9/u/Mj1dW1tLXl7eV0YTASorK79ViDcHGHPQHlz/u9OZ8dFS+g6qoqwsyE/G3o6qKfgCHv7y9i8p67Z9g8lhp43h4JNH49gOurH7teRfn/QZLz7yEaECP4NG9UFRFRzHlenx+oxOY5+4czL//vtUFFUQzPPz0AfXEyrwc/mkyXy4Zh2yGjyt4G2VOMD5Nz9HKlPvVmMmOa9nIaoisG1AcbUITUUS6aVTvEkSy3eI9OvoOm7a10P5NAdR5kOtibqBvW3cNxyPQvOemU5p6XYeq1s7hD0qqeoQ3k0JRD8vZdNbCa6NAxKpKDQc3o1gvduFrIfTSClxCg0SpQJfg0msm4btFQhHosWz8oaoKUm8WKAnwNNs4WlNu1I5piRvXZzm4fkIMiRPdfuUbU8mGikE5sBEhgCC0mQR0CzC/XUCK2yK56WQupdElYItt75W4UYKM4KMySofxuoE/vo01KdxVEG6SscxBKWzLGwftO6p817bao5Z/hTXH3sgB+7RF9txaGyPUhD08ecjjuLxeXOpDYc5YfBghpR1SDFJKZk5dWX2ZkHz6ow9bgQ/+lJ3+203vkJDvevi8s4bC7DLDaKtccqfr0VN2qx/vYF/eSo54uBBPDdlPoYQ2ELBl+8lHU3jSImmq/TqV8Y/Zyzi7lc+QldVFAEvXHsWPUoLunxOH3zccGZ/stytaxWCw07c55t3yiGH7xO5iOJ2eO+999iwYQOPP/44Tz31FO+++y7vvfceZWVlnH/++Vx44YX06fPN5U87iy79mgaDQaZPn87vfvc7/v73v7NmzRo2btwIQL9+/Tj//PO55pprMAzjG2bavRg9ejSPPPIIM2bM4NBDD+303IwZMwAYNWrUV+4vhGCfffZh6tSpbNiwoVM4N5FIMH/+/B02yuSw+zH2sCGMPcytFb1w3B3Ylp399+Yz0zn/19tHbae8MZ/fX/sClmlx4k8mcOENx+y29Sz7YgOP3v06lmnTvCVMS2OE0OBCFlYlUAyVS44ckx0rpeS1Jz5xXTkAiDPjnYV8NHspHwTbQFVASvLnbcG/Pk6qKkh8QHG2s3j2so2seuIz9G6FUBkgpbsEStEUqoeU8o8HT+Nn97zARjqcQhCCZJFGOlSAFdDRImkcbBRUQJIOSIQj3SjilxRspRCkinV0j0LVTAuh5WGVquj1YZASb10SqXjw1kZQ4y67NFqSrDshHyOqkuhGVkpGi0mUKKCA45NIBUwTChZ35KAFbq1g9vi4kjqpPLfr2l+ToH2YijQAG5yIhkg6VEyPk6hSkXkS7xabeD8dIyJJqgKpucdydPcIUhUQ0BFKMts0k87XaRlkuCRaQuHyFFWfpqgf5WEtrVz298m8dMUZXP3EG2xsbKMw6OOJy0/h56P3za61rr6NJcs306dXKX16lVJanseW+nakBNt2qKre/gamdVsnHgHEbLwrIqhJGyWjwvTcH97hlfPG8/J1ZzFj+QZ6lRXRv7CAF56Yipm2OOW8Awjl+3n03VlYtoNlO2iKwr9nL+GyH4395hP4K7D/IXty+6PnsfjzdfQfUs2YA7++ZCKHHL5vCHa/QPb/guB2z549ueOOO7jtttt46623eOyxx3j77be55557uO+++zjooIO46KKLOP7449G0bxc46bJytGEY3HDDDaxatYpwOExNTQ3hcJiVK1fy61//+nsniQDHH388oVCIxx57jHA4nN2+ceNGXn75ZSZOnJiVxonH4yxfvny7xpOzzz4bgN///vedtj/88MMkEons8zl8f9hatwcgFNHp8Vakkib3X/0PzLSFlDD56eks+2LDbltD3cZmVK1Dg7AtHGPxWIVEtU60TOH6+Z/QGO8gBL5AR52rdCRtTRHmTlma3RZaGcFXk3BJUyJTjxmASBXEysDUwFjfRHu5Q7d9Sui5ZynjB/fmwfOO4x/Pfcam2Q14mwHb7R4OrrbQww7CdrA9Cul8nWQJ1B0kaRgPbXu4moEAOJJ4WceNulRdguaJuI0nAHaBH+nVXa9lVcX0ghq3shdtJWVT+rmJ5QMlCcIEHHAUSeHCdqx8gRkCKwTpQknjaPf9kML9l87TMf0SR7gEzzYEjuFqHYYWt1M8I4ZV78Xe5EVGdQqWpZAK6K02vk129kKvOOBvcQjU26hx0+32TtsUfN5EYF4D0TJoHp9Pw1FFtI4IZqSE3HrKWDcdHAjWWFne/Lf3ZrG5xb12tMeS3PvPjwHYEoty/jMvcfpFj3LPn9/mp1c8zbQZq7jjD2fQZ0AFxSVBzv/ZgQwftX3DyZFH741haBgeDSkhGPIztKqSbX+utp7TvcuLOHPCcPYf3JPSinwuv/EYrr7tBLr3diWg8vye7F6qIgj5vXxbDN+vH2dffmiOJOaQw38hFEXh6KOPZvLkyWzcuJE777yTnj178sEHH3DaaafRrVs3rrvuOlat6nqD527JzwWDQYLBb1crsztQWFjI/fffzyWXXMLYsWO5+OKLSaVSPPDAAwgh+NOf/pQdO3v2bA488EDOPffcTs4z559/Ps888wwPPPAA7e3tWWeWhx56iIkTJ+bqDH8A/Py3p/GbMx8kmUhT0b2EY8+fsN2YeCSxTQTPJZSRtq9uXNpVDN23L4oiUDUFRVXQ969CrkujhcDMBxCsb2ul1B9ACMH1D53HnT99kmQ8xbijh9N/aHd8W1L4auIkugdQ4nb2Lk1vTSLaY8T7Bt1OZUfScGQF3V+uJR2ElbFWDujTk1uPOJjbL32WFYtqEQIqP/KTLNcQpkOwJg2WjRKOQyoNgONVaB1ejlmgglQpfmULoSURrKBO236VxMt1hCNxDIGwv3SXLd06x1RlELPAQFhsh3A/Pdt4ojfbBBpcGR87L0BoVQppqMQqVByvgu1RiXcPoMZtpCqwAhp6zI2UooiMzI67lvqjSqiY1k7pLAtHl/jXx/G0OzheAaZC4XwLs9iPSFlIr3sJU1IWwY0uUfStbckSP21VmMYx+UifAhL0iMxG8YSUrv6iCaHNJlqFikfVsrI1jiOpa47w+NuzeGHTYtrmtOC3wbTdCSa9OIO//ekcHn72oux70tIS5alnpxONpjjlpFEMHlTFz39xOMOG9+Tx5z9lQ3uYJ/89C0eAr8yLty6Bbmhcff8ZO3Ue3n7m4Vzy8Ku0xRIM6VnJqWOH7tR+OeTwX43/8lTx94WKigpuuOEGbrjhBj788EMef/xxXnvtNX73u9/x+9//vpO1365g9xdy/cC4+OKLKS4u5v777+dXv/pV1uv5rrvuYujQb76oqqrKW2+9xe23386LL77I888/T2VlJddccw0333zzd1IomsPXY89RfXh+4W9pawxT2q0IVd0+EP7xW4sQuopjutEmRVEYOqbvbltDSUU+f518FR++No/Zbc183tCIp1VgtEFcgFGiMqCoo8t15ITB/HP5vVimjeHRsUybgXv3gg/WkyzUGTVuMEuXxUimLLcRRBduk4YKKAIrXydRbuB4FRzbYeqKdRzx+l8oXuqSXyHBaEuAHkRJuMRFSVmIDEkEUNIO+QvitBwQIrAiTv68NhQb1LhN8cebaDymN06GUUkFLB1Uc+u+Niga8T75CKEgdYh38+Pf5B7fyvNkupBdehmok5CJuDo+DX+jiafNJH+NxeZxHjzNDlJTsfI7vj/Z6B7u/42WNMEVLcR6eYn0LwRNQQFS3XXsvBQtexo4uo0d8iIQaCY4toVe20547yLS+R60thRqxE+6LIAaM/FubEOP2aR9GooQSFWCJRE2BDZZWCHFbX5JgAwnGHJUCR/q7mUx7EmzJL+FJcun46sHTyZFTkazPP9LTVVSSq689nnq69uwLIfpn63iqcd+wicvz2bupytZReazyezfNKaY6rI8Xrrq3O1qXL+MSCLFnFU1lOYH+eTOi0mkLfzbSCflkEMOOWyLCRMm0NLSwrp165g9e/a3mqvLRHHKlClZ/+PW1lYcx9lujBCiywz22+Dkk0/m5JNP/toxEydO3KFPNbgR0vvuu4/77rvvu1heDl2A12dQ0eOr5Ua21LUhNbcDVgL5VYXf+OO7q6jqWcLZVx7Gazc/RTrTeCKkoJ+Sz59OOY78jHySlJJXpy5izvIaRgzoxikTh6HpKve+9guWzl6Lx2+gVQb5x6g5vP/K55ACYXizIT0VCJoKW46uRKTdNKkjQLGl66EOOLqgdXAAK6Ti35AitCXuytkIkelAJuOc4pI3b20akSnOE4AWNcF2o2v+Got0nkq8XEGLSoQUhOoTCAlazMLUdIQiSFT7SZZ7EZbbLexpdUiUKq5O4bZfpUwjjeIASYm3xUFxBFrYxArpOJrA1gVa1CKt6y5ZtCW+LSk8rRYt+6kYUSWbBpcCVEejfHaCtj09UGGiladhk4bV5CHW20e6QANF4AQNYoNLQRGYRQ5WQCed5xIqRUAwIkjobgd443APJUtMhNOhs/j54rW8cfMFfLJyLb/87L3sZxLvBqgKnnYHIwKFRQGu/NkhtDZG2LK5lZ4DKjAth9raDo9VVVV46oH3mfXKbFIpC0Z1c+tTM5+Nowtqw1Ha2uNUfM252hZLcMq9kwjHk1iOw8WH78tFh4/5yvHb4v35K3nw7RkEvQY3nXoIA7uVdno+0h5n46oGuvUupaD4h88K5ZDDdvguBLL/hyOUK1as4PHHH+eZZ56hqakJKSW9evXiwgsv7PKcXSKKb775Jscffzy2bdOjRw8GDhz4rYslc8jh22DiUUN544VZKB6BlJJjzty5H9KuYHDPcjY1hTEtG0NXOXe/kRiKyinPPM+m9gh75JWweGYNpuUwZf4akmmLcw7fB1VT2Wv//izcUMd5f5iEQJAeFCDUAr44jAxWE+gfotjv55Lxo/ndB9N5fuHCrFWe6Vew/CpSV2nv6yVd6JKs8KAQWsLBV5dC+jyYhiS2ZymOpuBtdug1KY2dcgmkWyMoSHYP4hgCX71NukDFDAhQFGyPxFufIlnuxVefwL8uRqy3F0dT8WyOIKQg3T0fYUHBSgs1rWIZDrbXRjXd9K5wJJ529wZRSLf+MBgWOB6NtF9g5qsoMQdPVMGJSxxdosUl3o0x2kb6iA72UPQlAyRhS7S4g8drsSUvgMCPf+8kRRujKHNUUhUWWsTC8RlIJUMxVQWr2E+oJg2GwpDqKuZ5mlyPcNyGmnSJxGgC4QiEBQtfWsEzER/jzh+OghvkVZKghwUhr5dBp1dw7l7DmdCnN3OnruCWnz1F4/AQdqmHUw8cSUlJkJaWGI4jsSybLasbSKcsHJ+G3hhFVuRhKpAocgXK89Za3Pni+5xz4n6M7r5jRYb356+iPZ4kZbrv6ePvz8kSxbZ2N8JbkL+9ZNe6hhauf/ZtLNvV1fzpQ6/w0e0Xo2XI6oZV9Vx98l+x0hZCCH773CUMHr5jt60ccsjhPxfJZJKXXnqJxx9/nE8//RQpJbquc+KJJ/LTn/6Uww477FvN3yV2d+utt6LrOm+++ea3XkAOOewODBranb+88DPmzVhN9z6l7Dth0Dfv1EX8+scHowjBsg0NHDi8HyeO24uJf36M+lQcBEyLxfB4QLcgbdlMX7iOcw53ZUcs2+GOFz7AtJxsO59VovLbM49h1LBeWSs5gJVNGY/njLNIvELDEwshNBUz5MrVSNw5bK+KVBUcXSUytCib0jXzBMRNQmti4DHAcYgMzCM8tBhUcAyB7RHZ8YoFdp6BHYJUmYeCJe3kz9zcIZeIG2XEcnBKQoTWOEg9Re0pHry1capeDWO02ji6glWaR7zKIG+dgxZ3u5rTBYJIL4kek+jLBVpaooYz9YKqJJ2vYvtwrWRsN01ttNnYHthySAjFcbthJIJExIs6qAVnioey9ze7EkLFPmIDi902PUeixkzyF8ZQHEm9N4axd9Al2GRkfAb4IT+FWGyhJm2EKXn/zQUcddIIqvLyqGsJYzQJBIKYabJxaSvjj+2NEIK/3TGZLXsHifXwgSqYNGcBPz9vX2o+3Uw0muKsM/Zj7czVLF+9mbYhJYBE0QQ9vEE2NbQSqJM0jjT4ILWJD196lZ+NGcUVY/fb7nwLeDpHG30Z6afHnp7KpJdmgpSM7F1B76oiDjxqKEMyZG/9llY0VcGyHSRuc04kkaIw6KbMX3zoIxKxVNZN5unfv809ky7Z9S9EDjl8l8jJ43wl5s+fz2OPPcbzzz9Pe7trxtC3b18uvPBCzj//fMrKyr55kp1Al4ji4sWLOf3003MkMYfvFMlEmt9f/RwLP1vNwOE9ue4vZ+9QbHsr+gyqpM+g717DMuA1uP2CI7KPp89YRUMiliV00gHhERCTGLrKXn071vToa5+xZmMTeDNhQilJJS169yzpRBI/WbqW+evqwAAcScmCNP4tDlJAolTgb3LTyGZQYjSl8bVIZMCDFLKj7g/3EJ5m000DCwWpKgSbBclWC9WSCAdAx9EAxRXV7hCwhlSBjv9LttVaSiLiaUwlQmSfclBcxhpankQLZ1LyloO0EmiWHw8mj9/xKkX5cW76dAKvN/bF8guah7rHUROQv9Khfc8QWru7f7SfQ8XHjqvvh6B1oIoVEBhRshd5KUFaCsI0QbqpeX1LHJ+uki4PoMYtPE1JxFZP6aRN4ZIE4X6CWDcVv6JxTmgQwTIPz302peMtE6AKhTfPOJv73p/GG83LMC1XcLu+PUJrLEFxyI8QglSxkf3cbSSbohHuuu2k7FwjhvfknXW1tDS3AgJHgszTya/VaCpz3I5zJNg2j82eu0OieNjwAbzzxQqmLF6LV9e4++wjqWto5x+vuN72emuKJZvXsJQ1vPuvufzxmYvov0cVQ3tVoAqBIgSqotC7vJCCQEeXtKYpbqVC5jVrmkvME2mTqSvW4dE1xg3ohap0WRwjhxxy+A7wyCOP8Pjjj/PFF18gpcQwDE455RQuuugiDjrooN1+vC7rKBYVba8XlkMOuxP/+NO7zHp/CWba4ovpK3jszslcdd/pP/SytsP6DU0EmiTREjI1bYLjhu7BmrWNjBxYzSXHdvz4fzpvDVq7ja0oOIYEB+wii3/VLuG8/H3wqO5X8pEPZqImQdgORljibcpY8KkC1I4OZT0qUZOSVLGB0WoiHHBwEJnaRCkEWqSz05BUBEVLEyi2S/DShTbRHl4sjxul3CrULRWQjonUFLAdl1HoGiKeQgCJXnkuoRRe1ISJFnEQ2Y5iUGMOLdWCeLHCkyuHccPY6dx/0IdMea070ZQnS2htryTcX0HIEEhJcLHEKpDEKlMYzdA+0EOyPNME47cg5v4dKExgfhJAEZ01Gr11UbzNKSQSJ+BFbBs+cCS+ZoeWISopaTHpk7l4wwLFo6Ck3Pd4j5E96DewAiEEl47dlzdnuD7tqiJQHMEhv/wbw/pU8tNf/4jFD71Ke1BDqgJNURg3sLM8jqoqtOaDbO74zMpKQtz3wplMfPwxnFQ6u93YQZMWgKYq/OWnxxGOJ/F5dHRVZUNNc8cxMm48AEJRmDdzNf33qKI4FOAfV5/Jy58tJOA1OGvCCMQ2IuxnXH4oc6YsJ9waw+f38JPrfkTasjjjkRfY2NyGlJKx/XvywFnHdtovhxy+V+Qiitvh0ksvBWDAgAH89Kc/5dxzz6Wk5Ktr+L8tukQUDz744KyAdQ45fFeoWd3QYS+WtqlZ3fANe/ww2GdEL4omTUdrA+lXGNe9B7f/ePto+6SXZ1K7uBGPlBhRm2QRNI+zEZrgD4unM6uphicPcq0Hgz5PhmwJCpYmUOwOF5YvI1Hhkq5EqU7+ihi24WDlKQgbTD/YY4so/7DJrVH0e8DQUSwnWyCut6cx83yYQYGZlnjbJUoaNEuS6BciWeqncHE7otRBuzSFKLSRn4L43M4Umgvy5unYHh8oKRwBwoFI/xDJIgHC4LWVAwkZKa4aPZsCLUGUbfzUhcDRtnZcC/SEwBOF/GVJpCbYUuRaGALIuIrRJEn0sTEXSsR6C2noiGTaldgR0LJvOY7PvbQF1iXwNiWzLM0JGq4odyZq2rKXQdWnJo5Pw/G4NZybe6pZYlRVmMdTF53C36d+zuK19bRuiSKBZRsamNe/mrce/QV/n/I5dek4B+3Zj8P27N/pswknkyy3WvEboKVBanDg+IEEAh7CfhNpS4TlruVHQwd+7XmWt41mYo/qIsbt159PZ61B6irCtLPWh736dbjH9Cov4pcnTNzhfJU9inl62o3U17RQVlWA1+9h1poa1je1Zpu1Plq2lsZIjLK8XKNLDj8MxHfQzLLbm2O+Z5x55pn89Kc/ZcKE7aXivgt0iSjee++9jB49mjvvvJMbb7wxd7eZw3eCg08axeefLHM7fRXBoaeM/qGXBLgp8ftu+ReL5q5n8F7due7OE/njPWfw0ZRlVFXkc8KxI7fbR0rJE/+Ynu1aVhD03aeUmKeRhG2Rsi0+3rQGR0qstM3pQwYze/EGEArtg/wUrEi5aWJb4qgyU6sncTThpj6FK1hteRXUuEmyTHMbVxRJopuPLQdWkr8xhWKB5VHwNGekWlImySIwM6lwaQgShZLCtW50UIsLQANdRbs4gSh3ECowHkIbW0mbPqRHQ0iBr1HBKs1HpC2koRHv0RE1TNsai7eUsWxNKcmpAXxlDslSt/lFsUBJuZoxakpAxrXFEe471e39MLFqHdujocYVkhXgq7Ep+SKJkgl0OvkBHJ9OrFjBCejZ7u90mYEet5EeFdurga6QKHG7rLemjMGNvMYr3PrI5miCeYs20qdnCQV5fob1rORPZx/DmXdNosWOAmDaDs2RGAVFQX5xwsSvPFe8moZuaMS72ahxh7wa+OufP2TjwVs4aeCe/HPlEqQERQh+Mnz78+arIITg1uuPY+mKzbQ3x3jrHzOp39TKkSftw77jv55wbgvDo9NjG2K5fEsjaWEjFZfsK0LgN3IyPDnk8J+ESZMmfa/H6xJRvO2229hzzz255ZZbePLJJ9l7770pKCjYbpwQgieeeOLbrjGHbZBKpvndNc8zf/pK+g6p5oa/nkNeYeCHXtZ3ggOOGoY/eBGL56xh4LCe7HvInl2aR0rJu/+ax5oVdeyzf3/2nbDzP6Q7wjOPfMzs6Ssx0zbzZq3h8T+/x5U3HsvQIV/tI/7uwpVYUmL5BbYOnrRgYv++zNviRkkFUOTx86M/P8WmTS34a0xEqQEqSF2hfj8v3jYb2yNIFQhCaywKFoZp27uoI9Lo8ipKZrVROrsdAEcVNO5XBB6N9oGZqJDjoMZt10IuFkcU+bbKAwKgpjNdwB1vIFJVEIXSJYm4x7H6eWGRJF4NnmaJ1AToKtLQXDs9NSPVIwQKDnFT4drbD8XQQYtLgnUOju7a/pkGmCHFJSeOJLg6SrJ7MGs5KEQKvGk87YJ0Sse/2QJVQTpuR68joH6cHzUm0bYGECXggKIqSEviODZaCkIbXZeaRKmKf5OFo0FbT4VUoUAaCjEZ5up7/olhCx6650z69XILws89bBQ3PfUOuqpgOZKTxw37xnPF0DT+cNJR/Opfb+OpSaOYYGLz+oeLuHnPo9h3YnfqoxGO6D2AnvkFO3H2dUBRBEMGdwNg7AEDdmnfHeG1hUu5/6Npbg+RApoNdx5/KEGv5xv3/SqEW2JMf/MLfEEv444ejqbndGhz6AL+yyOA/+3oElHc1slk/fr1rF+/fofjckRx9+PFhz5k1gdu3d6SOWt5+NZXue7P/7u2giPGD2TELkRIdoR//O2TrGfu26/M4Yb7T2P/g/bo8nwb1zdhpt3UnGnarF/byJ//MYXG1ijHH7gX++zRY7t9Ply6hnC14kbYJKSEYHiPHlzXzeCxpbMp9PjYvCLK2lgrhBRSgww8bVsJj3uVjJerWc1Bb0MSPWKSt6ydyIB8t2ml3UZtjYOuguVgBg2cwgD5GyWW33It64TA02IR6ecDBwKbdLwNUdSYjRV0U6CugLeSvTYLCdJxsGfoqAduFfQWxBoLUFSN0i9MbGlh+t30seJAuIeKFVSykT2ZEizZUEGh33RTzEKgpl1SigRfi4OWBkeXSGmR6OZBsRSEIjALHFomgHAU2oRD96fT6FHAqyN1iUymifbWiVepaFEHf4NDcL2Jp812NR8lCCR6Swrp02kf6sfyuULbqRKd3tV+fC+uRDgQ7uenab9CIj6HQLNk0iuzuPXaY3hrxlKmL1jH6eOG0ru6lBH9u9GzvHCnzpdDB/dj3qDLOPisv5AioysrBE0tUU4ZM2KXzr3VCzcSjyQZPKoPurF7JcneXLQC087o4QoY0bea40d07eYMIBZJ8PPD7iHc6lpbfvLa59z2dK6rOocc/tvQpSvNunXrdvc6cthJbFrX2FG3Z9psWtf4A6/oPx9T31vc8Z5ZDjM+Xt5loiil5LBj9uaLWWvcDUJQk04w5425mELy0eyVPHLjaaypaWLlhi3sN6w340f2ZVBlKe/pK1xhvkyo7unJn/HXa07lwj1Gs6GljcO/+HtHdFCCtyGFlnTQo5JUvkqyWGAHVAIb0/g32yiairc5hfFpA3ZpyNUH1AxsM0H+HhU0R1KIjGaglpBoMYd0QCFeoWcdRpSUiqcOqj5qIVlsoKYdot0DGJujOAEPUhGkg9ByeDGkIX9aGCPgkNrox27TXRFwAfEeHsJ9wSx2UCxJ3nyrI7UrBIplk1crcDwqasrOlNPJbd9YHB3a+2mA5trtRSXBekj0skBxPam1doEekZmeIYHUINbHS8MBfgK1NkVLHZS0jRbZ2uCROYbtoDgSJ57GCoTcZWWebZyxCV+GHwXXxon28aOmDRQh0HWVt2Ys5c6/v5/VzfzxYSPpecCQXTpvhBD86MAhvPHRIoQQqKrCuFH9dvqcq2lpZ/Jf3uPdx6eiqIJeg6r43evXYuxGd5YB5cXMXF+DujFGaFOKvGQhtu3s0AlpZ7BoxmoirTHSSdfuZ/YHS4i0xQkVbK/5mEMOX4VcjeIPjy4RxZ49c6KsPxQOPnEfPntnUSYdB4ef9t0JS/+voM+gSjZvbMY0bXRDo/eAim/cp7m+nelvzidU6GfCcSOJtMW5+cInWLNkE/2GdOP6O05i3dotrNzczCcL12NrIAyBY0suv+cVHMfBStq88e4CfnbWeMaN7M3LhQuoa464B7Alyz5cwd2r/85Nj/4EO2qiJCV2RjJPsUFNOfgbbBQH9JiDrxH0sI1IpBCpNKqhcs4vjuTFV2bTHrfcE8KjYwc8NKbSKNvUDlteCPcUOF5QUmCEBUJAusglGqZPxcxTceIQWhtFi9uI1jQSSAwPZQlsezQP31obRSoIW+JoDpEqhdD6JJ4wtAzTSJYrBJe2kSr3sZWoBdbGwMh4WesKUpGuFE8G6aCCmZchJFs1IENAnYOSyNQUam7TS2cIwn19oAgKV7gNOor5JZsYKVHMrU467vtqe1wRSwFoLeltRgvyWgFTUlAQ4ILTx/LQa59iZpo70qari3npSQd84zn0ZVz9k4MYMaQ7TS1Rxo3qR0Vp3jfuY1o2P338Veauq0XakqLufgLrImxYUcf8qcsZfeheu7yOr8LlE/Zn7dwa1n1cg3CgZt0Kngy9yU9/fUyX5isqz8feGqEEDK+O17973ZJyyCGH7x45O5X/Mow+cA9++9zPWDBzFf2HdGf0t0ih/n/BZb8+Gsu0WLVkM2MmDuK4M/b92vGtjWF+dshvSSVMEDD7wyUYQR/rltfhOJK1y+qY+9FSrvrtKRx86h/dyJQhsmQqlXYFqY02C6M+wtPXvszfyr2k9i2lezBIbWsYb30C74pWPlvWSltLlAf++B5F6yxilSpIibfZwhNxXP1D3HSutzSAGW5DZCRVrLTNk3f9C6c4HzIiygiBkBIUBanYiKQNiqB1kAfHk2l68Ugsn0SPgaMp1I8rwA51/IB3e6exoz4R0KJ2p/fH0cC20ljlXpSYoGRJHNWUeKKCQK3J+lMMUGwqJteQ7ObH05jEaIfo3n60hAOmRGRq1QQgTAct7aA4Doki3X0vpUSL2gRXhgmsdtjs95DspSIcQbSbSnCTGyFOFmkULIwQr8pzvaMBR1dQku6apXCdYrZSR49f57Wbz+c3L79HOJ5kr1Aps6e1IIXLWoVH483HriIST1FWkoeuq+zZp4KP5q0ibdoYmsqQPt98o7EjCCE4cMyu1RK+v3g1i2rq3eCrImjdvxz/ugjSkei72evZq2sMM4Osz5xzZsri03cXdZkoDhjWgx9ffSTP//ldvD6Da/9y9m5Pl+fw/wA5eZwfHN/qWztz5sys6GNbWxv5+fmMHDmS888/n/333393rTGHL2HI6D4MGd3nh17GfwUirTHWLd/MxVcfQUllwU7tM3fKctIpk3TKJQ9TJs+j+8AqrEQKVBXLtGmqd5tFQkEvzZkarK1QFIEwwWiIokVSCAm+TXGsJS0E9qggf3kLpse149NiNqec9BdAoPpU8moyBMd0EGknq4YskTR4LZQ+HgrmxzJC2YBpI9qiEPBmG0ccTQHLwbOxFWG6A/X+RaQLO8TKFdPBaHXwNqaxQhqRENlUcbS7l9C6Dm1Cx6O60jOASINwVBRFxUlJUEG1yNriSQW89TYNPyqhz1/r8NW3gqYhPTr+tRH0aBohIV4dwA55EZaDHrURgJqWFC82aRpmoCYlpTPCKJn1Vz+bIlnuJ1nhwQoJtozUsfyuPWDlR3EKFsVoHeCjeImD1N30uuN18LQo2F4FvT2NFJLCPA+Xjrmdov4lPPTMpSxf2cDMHstJ53lRpKTn4Cry8v3kbWOJd+rBw2mPJZk6fw179ankqtO+H0kKAMu2O5F2mXmw35HDGLYbGli+jF79KzA8GumUhaar9B5U9a3mO/2Kwzn9isN30+pyyCGHHwJdJoq/+c1v+O1vf4uUnan5/PnzefLJJ7nuuuu4++67v/UCc8ihq6hd08BVx/4RM20hHcltT1/E8AO+uTGmpLKgU8pMUQV1axvAssFxUHwejj13LAB3/uo4brj3NVqjCayMzN3g3uW01bYTSTVla2GEBL3dZAlRrAOKAUnLPgWUzkqiWQLhSLSYhdTdZhe1NYUwLbcxRREI23Ft8QI+pKHipG2XLCqKm4auaUT6DZSAj5SmoLfbCNPJkoySGW3Eenjd6JoiKJkTQXU0lLQkobsWb1JxFxru7yNvbRwJ2IrEqI3iKTBAUd1krSJd9xkbLB9ZyR+EQFiS/IUJStokimYgpYVtQLpYxdueYmuBprElQSLoQdgd1w8BGFEHbzN4WyTSY2B6MsLhjo3jVXE8gkSxIN5NZN/YzQflYbRamEHYNF6jtFklmXDAgVQBFH7RitGexlEFayt1CpBsjEQ55Zd/48Hbz+H4o4bzzkdLKC/N47ZfHbvd+aAogouP35+Lj//+b34P2as/T37yORub2rClw+WHjOXEX11IUXn+d3K8w04ZRV1NC9PeWkCvgZVccedJ37xTDjl8h8jVKP7w6BJRfPnll7n77rvp2bMnN910EwcddBCVlZXU1dXx0Ucfcccdd3Dvvfey9957c+qpp+7uNeeQw07h1cc+IRFN4mz1sr33zZ0iisP278/JlxzMa49/gi/gobUxgmO7kT5VEfz8lhMYPXEwAEMGVfHvv1+KlJJYIk04msSKprnm/Mew/QZKyspEBSFV6sUMbvVVduvukpU6gXoHbNAcwIaCgJd4zCShOVghFaPdRLGk29ChKzSOK8dXF8dfm8IqLMLY2IxIWWCamGN6EDMt/Gva0dvIpliEBZUftpEu1PG2WKimijQUhLTwbbEI93awvG6Xsh3SiHYz8K5pRqRsfC1ghXRSvQo67EUUtxZQk9Ay2KBoaRKpqEhNxdMmifT1Y9SGEYkkShI80SR2WT562p1ATTsYzQms/A4RaSnA9AuEbbvuMuo2lydVwdEzqf0i9/iZV4YdUEiEPC7BTjhY9SkI6VlSm6zwYLSnEbYkuDZK2+gyUqVeEIKf/OUVnrryVC77SYftVTpp8vak6cTCCQ4+ZV/Kuxczb9EiZkdexAgJilsPYI/KYfTv//Up6Dkz1/DipM8oKAxw8eWHUFr2zTWJX4bf0HnpyjNZXNtAUcBPr9Kd67TeFo2bWrj9rAfZuKKOkQcP4frHforh3XHaWlEUzr/2SM76xWH8+qm3OPC2xyjNC/LAJcczsLp0l4+dQw45/PejS0TxgQceoLy8nDlz5nSyjenVqxcXXHABxx57LEOGDOHBBx/MEcUcfjDohoZQRNaxY2fro4QQnPurozn3V0cTiyQ4fdgNWBk5HCQMHdN3h/sE/R6Cfg+33TGJaHMc3XGQmobjUUhV+sHnRbFcCZitziAiDbZHQaqC444czklHDKesLI9Hnp/C40sXudZ5QhBalcBRFFdqRldQDQ9mpQcQpAZUgpRYmCRNt3Yv3iOAb3PcTd1KsPI8+LeY+LeYSEXg6DYi7q4BXXMjmdvoMSZKNfxLrGyKO+uX7L5YcBzyFzahR21SxR6skD8jQyOQuop3UwIRT3boGdqSRIFEa+yYw87zgKZg+yRSSmwvqClBsNZtStkq+rwVZkjBMgRqSmL7hEsWHYm/JoWQAsWWFM2NEhmQn7EizHxkmdclcMltusgDmU5erSHOnec+TnVZIT+75Xj6D6nm5h8/yLLP1+LYDi/85R1K9+1N1SVTMYpMBFCbt4DHbhzFlT89gUMP3XH384Z1jdz8qxexLLdrePXKep568dKdOv++DEPTGNGrW5f2BfjzVc+wdnENtuUw5/2FvPrQ+5x+9VFfu8/kmUuYtmQdUkJje5RfP/0Wr954bpfXkEMOXUauRvEHR5d0DxYsWMDJJ5/8ld6CJSUlnHLKKcyfP//brC2HHL4VTr30EIrL8xEC/EEvF9924k7vG2mNsWjmatJJk5seu5DCsjxCBX4uu+dUuvUp+9p9kwkTR0qkoSIDHmL9CzCLfSAE/nqJsABHoodBNQW2V8ExFF76YAEraxvxeHVmxBuQJWlkqYVUIF7tpXBZjLLZYUpnh/FuSmJ7YWubhukTWHlqNuBn+zQaJ5bTPKaULQeWE+0X7Lg2SoniSLemUUoiVYrr8LK1jES6EcRtL6beda3uH44ERxJa0oqnKY2atF1C2p5EIGjvpbB5vEasWnZybBJAssKgeVQ+qcog8T75SF11/ZgNhXBPFdtwU9uKy+txdOG6ywCODma+INLXwgaUhETYEqNd4I158bZq+NYmaR5h0Lbn1v1c6R5fTQxHdSOWyVIDPWyCI1ESNkVzWohsCrNs/gauP+sRWpvCLJi+gnTSxDJtUqbFsrxmvGUmigZCAemAryLCs5M++8pzYNWK+qy4tG07bKppIZ2yduLM2/1o2NiMbbmM20xZbKlt/oY9oDWSyEbiJdASiX+XS8whh6+H3M3/ctgldCmiaFkWfv/Xa2H5/X4s64e5MObwv494PI2qKXi+JkpYXJHPE9NuYsumVorL8/D4dk6aY8PKOq4+9o9Ylg1ScvcLl/GPeXfu9NrOuvQg5i3YiKO792H++jSJSg+2oQCCQB1ZIWrHEKh2B6GaNmcN4/btx/qq9ShKEgDZrKNP8SFUFSEdLF3iVMXxr2wDR6dpTAnR3hqareOro8MXWRGYhQbYErUhge3XUUyHQEWQaDSNiKVJlOpEBgaQgN6cxvFqaDFJotJL08GVFE9pACSJ3iEK5zTh+DWUuIUWSSPoIJZ6U4RwhUF7fx1UQaynF7wGJNOZKKhKbEA+pQvA8aruLaqQriC2ZeNrEph+FSOaqR+SEluDRJUCUhDtI4n3s9BbFfwbFSy/O8bT7kYdpa6SqlRoH+ZH6gpmyMZXbxOIezjyxFG8//Rn/8fefYdHUa0PHP/OzPb0QgqEQOi9g/QiIBa6YAUVRVAvNqzoT0W96rVerx0ExYYFQbGBggIqvdfQIZBCSO/ZMnN+f2xYiCEQQmICns/z8DxkZ+bs2SHsvnvK+yJUCDiQjyOpkMwuYWhO3RvMCm9S7sICJ9OemuetBqN713cqhqDQ7KCw0ILN6kJRQFUFhSkOoqJObg76qxat6uIp2YhjMqnUqx+GxXrub7fFbg+frN9MWn4BI9u2olX0mb+knM7Q2/oz64l5KKqCoRtcOvbsKbWGdG7OB0vWo2kquiEYN6Di5QWri64brPpxM/k5RfS8sgNBYbL+tCT9HSoVKDZu3JgffviBF154AVUtOyhpGAY//fQTjRuXnaKTpPMhhOC195aycNEWNFXh4buHcMXA8nPJmcwadRuefuS7PF+9vZSiQifCt7bxB176+p4KXZubmc+CN38Gs+qbylUVfPWGOWWUDRQ01btD+cRUdIdWMWzOSsBjcZ/cCBPhxp5jRmgqRaEmnIGCkA0uFAMMXOTHmUBV8KhQECkI2lWMf4aH/AY2dH8zpnw3/rsyMSJC8PiZcQZouII0zFkW7Glu6v6S5U2sHWKB4gLsCTkkD48mv3kQ+a2CQReErsvGVFAEhR7vNLdNxVRUEkxRkobG5QS8aw71QDMpV0ZQ98c0hKKQ2TMCe6qGbjPQgcJoaHPNbo5+GsOxut6NGZpTYEsrRhMaarEHW4GTgtggPHYVU34hDWfmYCgWMnqFldxHBWeIQHN6g0V3oOYtIwgIm4IzXKGHoz7tGzbi149Wgcc7/qoWG9RZfWJU7WTqHIvNwsHVCRAWhJqZi6FAVrdQnOF2lizpSM+oeMwhGgcWx2AnjAceuKLc34OY2DBe/N8NzP9iLcEhftwyqX+Ffn/+6p6vv2f1oaO4dZ3PN2xj4aRxNAoPPac2RkwaSL3GkRzelUSHfi1p0q5s5aC/iq0TzILHb2L17gTqhQVxSfOzX1PdXrrrA9Ys3gbAJy99z4w/niQguGrKl+7fdoTkA6m07tGUsKjgKmlTqhpyM0vNq1SgeMMNN/DYY48xYsQIXnvtNZo2beo7duDAAR566CF27drFc889V2UdlSSA7fFJ/LRkOwC6IXjpzZ8Z0LsFtirMKWcya6iKgo5AURVMlrPXpxVCkJ1XxH/v+5jNy+IxIkLA6i2ZZzabGH5ZB777ZhMixoLLVlK/2GPQ0amRHhlMRm4hMdEh2Cwmfl+2D7dFhxNPa0DJ4CKFLfyw7sk+uUkFUHTvTmbwTtGa8l3YD+Rg2+tB0byJsQXg9NfwBFs41gOE2YpAEPEHBO/3eKuQZBaR3VjleO9oguOdKKh4/DX8Ez0EbEkHt8ebn9EwKGoWiJ9QUYtLdlYroDtOVHwRoJf0SwFDA8NuUBSlUFTP+5ajGAJVg8wmDij29l23gDvAwH+XN91QTlM7hVHeL6KK244nUMeU4/FOf2snA25DA00Aitlb+QaBYniruOzecJiXFx/BVD8YsooAgeYWaJqKSxXkNArAeqwQVIVCixl7jhssZoyoMNzBFvJa20FAp9wYnr5zKkEhfhRf4cZqNZWaWj+ddh0b0K7j+RUn+ONAAkbJkgBVVVhz+OhpA8XM4kIWHojHZjIxqnFrbKbSb+1dBrahy8Dyq8kcO5rJ3u2JNGoRTUwj76aV6NBARvesuoTe58NZ5OL3bzf6flYUhU3L4+k3sst5t734kz9484FPvf/vVZW3lj9BvcaR592uJF0sKhUoTp06lcWLF/Pjjz+yaNEi6tatS3R0NMeOHSMpKQnDMOjduzdTp06t6v5K/3CFRS7vBpUSuiFwu/UKB4oul4eFX67leHI2/S9vS+v2ZUdKbrjvcjYs20VWWh5+ATZu/7+RuFwevvhyLUlJmQwe1IYuXeJ85ztdHu77z9ds2Z2EYggcfmZMqVnoUaGYHFYGDmlDzvF8KPLgOKxjCjZhzvOg5To5nJ1H12u6sSwjj/0Hj/P8Oz9jeAwsHS242rvAAMevFoRQESFmrHYLxVF2AnbneGNFFUI35JPR3VuWzpqh478vH0XXvd+aPd7UN7q/BeFvo6BeyWYaDUAho5uN0B1ZCASm7DzC0iBsfQ5GWBCBSd4UOcKkophNCLcHxTBAARNWiuICsB3ORHXpFEc7cEb5YU8SeAIVFA9oTgtpl9bDklGEy9/mjSFLRmktGQZp60P/OsDq3WjjjaPJbm4v2TgjCD4gEHYHHiv4H9XJj8W7IcZq4A724MSEIsxYU3QwCYSiYZg1lCIPnqxilKwi72YWTSG6cTj/mjaMj5ZuZnX8EYriSlLNeAxvoHjid8VfRXMrhPn78e4zt/gCQ1s5O4arQ2xIMEeysjGEQDcMmtQJK3NOvsvJVd9+RGaxN/flgn07+eqq688ayJ4QvzmBR256H82k4nHrTH/3Zjr3qfocjefDZDFh87NSXOAEQNd1Qiqxi/x05r78A7pbR3fraCaVJXNXcssTFV/PLFUzuZmlxlUqULRYLCxZsoRXXnmFDz74gAMHDpCYmAh4p6VvvfVWHnzwQczmv+8NVfpn6Ng2lvp1Q0hMzsIwBIP7tyLA33b2C0u8/OQ3rP59D26Xh5++2cj/5txOkxbRpc6JjAnlw1VPcTwpi/DoYGx2CxNHv0HizmRQYNmPW3ntvVto0zoGgB9/30n8gVTAG+gUtYokcFUC1tRMnvn0Ljr1a8k7ry5GM6noFhV7msu7Q9hsxh0ewtKcFLIaqFhywJ7uzUlo22jHusmK6jQICvWnOEynfcsYLh/Wjkc+/Yn0vpHYjxaiuVXM2InYDh5VYD+YV2qn8AnC7v2/qBgnaxxDSbk7j4FSUOCd4tFB6DpqQTH4O0AIFKcb7FaUYhcYBoa/DaNOMKgKRc0jKApRvFVfBNjTdFwek3eEMdCCbhIU1g/0vdlbc0BzgVakcHxrJFa3jrNJyZpKBbJb2CmKsuD2UxGKVlLz2XuNN90NmF0K1gxBbksDT6hOsQAMD/W+ykctdFMcbSWrU1BJ1ReBObMkebgChi44eiid4IYheALUk+l+hPDutFa801Juf5WcplaEgPS8AgpdbvysVV9+LqegmA37jhIR5E/buJO/h2nHsln23Rau92/ALw47aQUFTOjeiW4NYsq0sel4MpnFRRTr3jXh61ITOV6YT2RJTeuz+WbOn7hdHtwllQy/nLGs1gWKmqby5IeT+c8dsynML2b0nYNo17Nq+ugf7PBu8BGgahp+QbIWtSSdqtIJt81mM9OmTWPatGnk5+eTk5NDUFAQ/v5ygbFUfawWE++9Mo5NWxOw2y20Z64WzgAAicBJREFUb132g7M8RUUu1v7pDRIBFFVh09oDZQJFAIvVTEzJ7uZ1K3aTtDPZl+pFPZ7P0t92sHbjIQxDIBzqKSvdwBpgZegtfek+pB2d+nnzLY6b2I8N6w+ScCyr9PoYVaFYGHj8NDx20HSBLdMbyimGQoDFyswXxxFdN9h3ybdRN3H95Jlkdw7C0BR0iyAu1Yaz0A11/FDSi1CtFoxiJ6qmoguBJ8QfhMDvKAS09OeoKEBxC6KW5CFMSsno08n5bFFSB/lEYhnFY6BYrQgFXPVDEOrJ47YsgWHy7nJWDBU1zUDgRnXqFDSweKeET0xJKwJHsgdhgoJoE+4AE3V/9K4XLGjgwJat4ww1Q10TQhHoBqiFbtQiA2E1+TYBObIUMoMNX13ooE0F+O/NRdXBkViEOU/HZFhwhVjJaeYgaJ93164AVIeJce9+RUGRE7NNQS0WWFDQnR7yGgcgEOTVV0FTMGsqTaPCqyxIFEKwNy0DgSDcaufaFz6jsNiFxzAY3rIx+csO4Qi0sX1LIq5iD4oCrTs3ZO6c28ttM8ovAI9x8tuBVdMItFb8y5N/kB2TScPj0VE1Ff/g8jfp1KSO/VryZfwrVd7u1Lcm8Njo18jNyKdZxwYMu21AlT+HVHmKEN6ypFXcplRxVVJ409/fXwaI0t/GajHRo2vFN0rpHoN//9/XrFyxxxvMaCpCNxCGwFXs5vD+VBo2KbsmKS+viKTELFb8tK3U4wqw4KctaJp3LWNAoB2/ACuK4kLXDf51Y3+uvqxDqWsCg+y8/eFEJtwyk6yETN/OZBQoDi7ZEKYqhMUGEBfq4EhSJp3bxvL43Vdis5cema8fFcIlVzTnx+SDvrV66XGC5/tehtlsIsJiYdWibSQdOk5wmB+bjmRyPLMAo0hw2eA23D/5cl568Vt+nbsOoamk9grFkuNP6MoUbyAcbscvJoz8YwUncyMGONCLCiiOslPY2B9FKNhyhDe/oqqg4p0i1op0MAv89+WhunWKI0JwB5XkjRRQFCHIbqtiyhNErnST09SC7m/CnqZj3u+tYW3L0BGaSnGkmYD9RYSs8yZfdIfZcTYIQREKHps3TU/Y8nxCNhSiuARqSapLVQf/A0W46zvwO1LM8R6BoELQ7gJQFFLa+aG53ThNBu5QUAyFT6fcyLNPfcUu1YnVrRGYodCldyMa1w3j1v7ntw7ueH4+d333PXvT0wkx2zme612D2dYRTn6RE5fH2/FvNu8hclUCqtmEsJh92Yo2r9pPUYETu5/1tO03Cwnnye6X8srGP7BqJl7ucwV2U8Vnc8bfM5gd6w9x9GAa4ZGBTH506Hm93gtNk3axfLH3NZyFLuznMDshSf8UlQoUN27cyI8//sjkyZOJjCz7AXvs2DFmzpzJ8OHD6dChw/n2UZLOy4pfd7J+zQHAO6KjWTTqhASSl5bHl++vYO57y7jjkSsZft3JtCHxu5KYevsHCJde6tvniXWBoGAYAgNBfl4xLz08hkLdQ1R4IE1iT1/Bwm638N6MW/lm/no2rdxHoL+douZ2juUmgkfHrKlEHTNIXbWPdm1ieHjyZWgWlc3JyQTb7MSFnqzKcUnXxixdfARnSZChagp14oKJTz1OcJCNpV+vpTDfiaJA47b1mfTECBwOKx06xDJ35RZ+KE7FeVU9PHkeNAOuGduNqx5tyNIFG9Dr+7Eu/gj5KQWnjH4qJIyvh5avYMv2Bo+FYQaaG2yZBoaqYs71eKu1AJ46/piP56EVuMGweNdEqgJnHQNQ8PjDsX4q9gSDzA4BRK/IQz2R3FuAJcdDcaQZxeXxzQ6bM4twRgegaGacQRC02UP4inxUvWRmW/WWQhQKGH5WdJsJtx8IDQrq2Qjemo3LoSDCLGRGuRGa9x80NMPCIXce69oZ6IaJMKud94YOo33jytc53rP1KLnZBbTt1ojHlyxle2oqHt2gqOBkyrCdx4/jz8mNUmrJlwdD18Ew+XbI+wXYyq2kcsLNrTpxc6tOleprSHgAM36aSmGBE4eftcJrGy8mqqrKILG2kmsUa1ylAsVXX32VP//8kyeeeOK0xyMjI5k9ezb79+/n448/Pq8OStL5ys93lvpZ01SGj+nK7P/+jFFS0/m9lxdx5dhumEoqdrww7WuMAm8lDkMI/EL9KMouRGgKGZ0CcWQovjcbgaBeVDCRFai/GxzsYMJt/ZhwWz8AXLrOzJXr2ZWSimlfPod/343bpbNzcwLvvfIjK5s72Z2WhiEEU3v14o5LugEwtG0LPvtzE1nf7MGa6iR0SBw3fPIVJlXFrevU9xdomd6gJH7DIT56agHXTRnMjjArL32/Ar0k2bZihaevGsBeVzaTnv8US6qLxEuDUf0M6lkVFKEiFAVd9RD7yRHvTuA2EWA2gaaiqwItz4VqVVHd4uSSP1XB4zDjrGMhfHMRmq6S3L+kbjWAomDYBH6pLlxBFm8lmFS3d/RSAVeABgb4Hcgrdf8Ko1RMTgVzEWhFJ4Mub4oeBUMVKEVORLaLpAlBeALNKC43DT/JBgGWYsElPRqyNPGgb7lARLNAnv11Oe6S34Vct5P16cmVDhQ/ePknvpnzJ6qqEFEvhIRRob6pYeGb1AfdAW3Co9i0Nwmb2YT/Gu86V5OmEhjqwIOCw9/GQy9fi6ZVqjZChSmKgp8MlKTaqBrS48hA8dxUKlBcvXo1AwYMKPebp6IoXHrppfz+++/n1TlJqgp9L23J3A//oEApRvcIrr2pF7phoBvGyUomhsHO+CTat6kPQH5Wge+Yoig4QvyYu/xRbnv3azKS0yjy0wnPUHBmF2M6XsAD177Lfz+/gzrRwefUN4umMaWvdyTzyTvm4C4pFehx62zOOc6+DA/ukiDjtZUrmdi1CyZVxWExMyDZyq9HnXjcOrvUAjyGxReQZDS2E3HkZDWNo/tTee2hLxj16kjvzmMFb7BmhsfWr8BQBKKTA3Oet2ay6gJDU1FL6i1raGi6CS2xENWdRk63aDAMAoUGjR3kWDwEHXR7cxqWPGd2Kzt1V+R5N4gYELbZQfLgkyNlCMhppKNbion8PhVsdjCb8NgUNI+DgAQPWC2I/JKyhDEO3MEWdBfeJ/Gzo4hsbxUWFTx+JkyJmWAIMi6PwOMoyalogtTBfjT8LBd0gSnXjW9JpgJ2i5l84fLdKwHeQPo0MtLyWLl0JwFBdvoOaVsmgPO4db6e9Tui5Pq05Gx6u5twVPMGvB7DQNG99/7ajm15eshACopdWM0mdq09wDezlhMc7s/NDw8lOLz8zSiGYbDoi7XEb06gc5/mDBjesdxzJUmSzkelAsVjx44RE3PmTQR169YlJSWlUp2SpKoUHOLH+3PvYPOGQ4SFB9C6XX3SM/J4/+2laE4doYAe4YfllCovvS5tyZJvN/t+HjKiIzarmTl3X8OWQ8k4rGY+nLaQnYnHAchy6syb9Tt3PTG80v28fEw3Nq3aj4E3jUxMm2i2FB7xHVcUhVO/mh2OT8Hj9gaWWr4HJcyCULzBZ7fOTcja5iQnI//ExRBo5oNVmxFugS3Hg6EpuAPAiXeXMiYFV4gJtUAQsSYXFUupBOHuCAfWQ8XY0oooTs7DioY1SyethQNzoUpRmAVbphsTCoWhKgGHCkoly/U76sRx2ERRw5IuOQ2KY73PcfCuaIK3FhDhH0SyWUUzCYoiFKyNgrEn+OMKVvEElWwoMUDVFYRqIeXyGEz5ToThwe9wke8NTZjVkwVKVQXDXBI0AvqPR/HrbcGZ4QYDWsWG02dgV+777icURaGOvx9j25XNOZidkc+dV79JcZE3qFyzYg/TXixdy17VvHk33SXl+oQQDGndnD4N2rE7LZ1eDWIJtXk3i8QEe0eg/Wze19WuZ1Pa9WxKRXz53jI+f2spbpeHFT9uQdd1Bo06/5yCklQryRHAGlWp+QyHw0FaWtoZz0lLS8NqPf3ia0n6O3h0g6c//Jm+/3qTSa/No1HburRu5x0xDA8L4NZpV1EcE0Bx/UAuu6oDLZpG+a699/HhXHtbH1q2r89t913GuJLKGmZNo2uT+rSuH4Wun5KHpiTP3dlkZRewdWciuXlFZY71GNgSz7B6ZLZxkNw/kB/Tj9A6MhJVUVAVhacHXuqt5FKi/8hOmC0mFAWi1uQQbXOgKgod6kXz8u2j+GLjs7TqEoepJADOiHNQWOSmztYigg64Cd3jIuSIcTKSEwK12KDuXhemAgOlpIQhgFAEmb3tFDS20HRYK1bMm4Y12U1upBnNrXoDWLOCM8rCdRN7E2CzlVpaJAAt341fohvbEZXA7WBN01B0b0UaVx0zxy8NhkujKIxVyG6h4gxXyG2skNfKguEoSe/jFmgeQAWPP+gBKs5oB6JxCMUNgxCqglAVQv7MwmQo3g0uuqDO796ckBgGQcKEmi18qYK+2xxPlMOf5Xfcxuc3jOXLUVezffle4recDNIBNqzah7PYjcvpweX0sGLRNl+gfoKqqjzwn2vQTN5/p+6XtqJrv+YMaNSIOy/pRruoKGKCg3xBYmWtXrLDt3vf49JZ++uu82rvQrBjzX7envYl899b6nvtkiRVv0qNKHbo0IGFCxfy2muvnXa3c25uLgsXLpQbWaQa9d2fO/hl3W6cbp0DSRn83/s/MeexG3zHrx/djasGt8VZ7OaXz9fw2E0z6dS3OVff1heTWWPC3YPP2P6tD1zO/93+IUKAzW7m6gl9znj+rj3J3Pf4lwjhXYf29ss30KjByY0vBS43h2zF0NI74uRQNW5p24HWlw8hwGol7C/11UdM6EtweAB7txyhfc+mXDKoNUKIUktC2lzShF2bElBVFYvDgpHlQfGAWhLBWY57EErJ24AC9V1+dGkYwsaDu1EKXd70M5pKfjOFnDZgaCF06+ENUCOigsiyuUolZhTAxg0JFOQW4J93yhpCIchubqMwxo5/Mii6hjVP4EiDjC66t+6zU2F3QTpoAkuOQLcp6HaFwihQQ7xpcQL3FAN2jBPvXCWv1ePUKexkRXM2xn9vDprVTP1vPBzrZUG3KBRH2Qg4WIzNpHLjw1fx3Xff+fqmqSrH8/LpUD8arUDnrmGv43Z5cKmCXrdfwvXX9KJRWCjhEYGlvhz4B9rRTCqLtu9h3vrtxIQE0bheGPlBLl5Zch91Hf4EhlRNibm/atauPof3HMPt8mC2mmhW8gXoYrVn82GmXfMGHreO2Wri4M4kHnrz5rNed2hXEt9//AcBwX6MuWMgAcEyR+KFRpbwq3mVChQnTZrE9ddfz+DBg5kxYwbt2rXzHdu6dSuTJ08mPT2dSZMmVVlHJelcHcvMw1PywW4IwbGMvDLnBAbY+ej9FSyYvQKX08POjYcxmVRGTeh71vbbdonjo6UPk3I0k9gmEWfcDCCE4O0PllPs9O7idSvwyZdreOrhYb5z/CxmYkOCSMrJQzcM3LpOq+hIGoZ4dztnHMthwfvLMHSDkRP7ExkTSv/hneg//ORu11ODxISENL766E8MFISqYt+bh7NV8Mn1eXhL/vnK4Qm4a2RvQnJVNq49gLCZEQgyukJORxV0UD0Wft95gNjOETz6v2v472uL2FKQjeY0MOe6UR1mVMPAnliEIpSSwiqConpmcjrY0XK9Sb29OSkVtEKDoN06tmM6mW2sGBZB/V+KseR6O5jS10J+rMm30zy3lZ3I3wopinEgFIEz3Fv6z1QAw0Ibs96zB090CKouUJ0QvEMnrYuZwg6BXHV9Pyb07IpfoJ2Bexrx54EjKECAzUr3OG+gtfz7LTiL3BSaDQ5fHcouYzfvz9vNnW0v4eGefRhzS2+++WQV/oE2pr14LesPJfLIvMXetYdKImKLQLGrzFi1nh9uH0/V1A4pa+KjQ9E9BvGbDtO1fwtG33r239e/W3GBkw+fX8jh3clcenVXhtzQq9JtbVoe7/u72+lh7S/bz3pNWnIW9494DZfTg2ZS2bg8njcXPfSP3NUtSeejUoHitddey6JFi/j444/p2LEjkZGR1KtXj6SkJFJTUxFCcNNNN3H99ddXdX8lqcIGdm7KJz9v4MR+g5F9T1+3duvq/bhK1pS5XR62rN5foUARIDjMn+CwM+cQFULw77cWseVAMli8gZJZKJhMpVd+KIrCJzeN5aWlf5BdVMztPbsQF+YNEl1ON/cPf5XM43kgBMu+2cAHK5/EUU5w+vXX65j53m/o4d5E27gNVKCLKRhrNzvb1hzCbregXxqMzVSEEILowACGdmjBprWHMCkqHgwUFMI2QW5rgT1FITBeYUW/o/z+WwomVaWZ3Y+gnU5MmYW+qiZ7UgsxFwlw6whFYATYsOYohK51kdumdDJnR6qboEPedaKO4y6ym6iY84TvG3/kKhcFdc2+HTKKLlB0BVOBQUE9BY8dUMEdCEt3HiDErSA00DUF1WV4A+GSextVLxS/QO/z/+/aYSzauZf8Yifdo+uiF3rADn6BNhQFclrYcdc5sekH3tm1ll7+0axfd4igqGBuuK0PbTo35P0V61BVBQzvv7PQvRtWNFVlxYHDjO/SodTrXbZhHy+sXobLIbinZy9Gtyy//vKZ2OwW7n1uTKWu/bv89/5PWb14K26Xh/j1BwkI8aPnFR0q1VZs82hfgKeZNBo0L5sk/6/iNx5CURSEIfC4dA7sSKSowFnu/xmplpLpcWpcpRNuz5kzh549e/Lmm2+yc+dOjh07BkCbNm245557mDhxYpV1UpIqo3lsBJ88cSMrtx0iNjKY/h2bnPa8dt0bs29nIh6XjtliokOPJiz6dQdffLuesFB/HrrrMqIrkPqmPPsT0lj6527vD4o3kPG3WZlwmhGWqMAAXht9ZZnHUxLSyUjN9aXzKcgr5n8fLKFei2jG9G2Hw2ZBCMG61ftJOJzOB3P+QNeFb2pWUVUwBPt2HeO9j26n3vOhuJ0eVv22k80Zx4hqX5dRbVphNZkoLHShaSoej/e5VANCt1gh3+B4TwNnHUD34Diik5iRT1DJruQTeRDNWW4Uj4Fwe9CjAn19sOcItPgiYno04OjBTAyXjrnIgJJNOpoTrFmCU3fsKAIC9xaT18wGBkT8WYQnzI6KgmERp2xYAbfjRBJz7zS1QMcZAA3nZ2HVNKLbnwzMTZrKsHYtmPPmEu6c9TUAo8f3ZMI9g1m9dBdJRUdLreBWFHjm1W9R9hSCgDf/8yONm0XRMbYuhnHKp07JNYYQ1P/LOsTdB1O5a8m3FNXx9vuB1T8REeRP77oNy/x7n/Dd9nh+jt9Hy6gIJvXqikXTyj23ttmxdv/JdZQenfgNhyodKPa8oj3jHxnKz5+tIrphOPe/Nu6s18Q2jfJlEVBUhZA6AeUmLZckqXznVZll0qRJTJo0icLCQrKzswkODsbhkGtApNqjSb1wmtQLL/d4caGLrWsP4vEINLOJK67vTqNucdz/5Fd4PAZHEjN46Jmv+fTt28pcu+H3PbzzzLcIQzD58eF0H9jqtM8hROkvsIoKb710I3Wjgiv8OsKjgzFbTDhLdty6PToLt+6FfYf4ZeNePnn0eh59fj4bF+/2luBT1VI7lk8wStYwGrrBvaP+R/qxHAwh6Dm4DQGve1OsdO/ZhNAwfzIz8tF1wcirO/NnnSzWHD2KHuD9eh+y0UnEcqcv9c2JAMmX+NrtAbMGKKX6Yc6Bq+OacvWjl+Dx6Fw5+CVf8IsAe6rAMHkTZwPk1tcwFSpY07xtuGxgcukIi4Y1EwptJc9tgCPZ246igKaodIkMYeefKegeA4HO8/fM5aNfHyYo2EFGWh7CMPhy9h++vn372WquHNOVZ9+fQN9Ne7jv+x9xWQ1coQKr2YR+KBfTiVjUpvHh0g00aBzBU8MuZdGOvRzNzuFoUS5mVeGWrh3p17hhqXu/c38KzlDBiRzbQsDaY0fLDRR/jt/HY9//gls3+OPAYdLzC5h+5cCz/arUGu16NmXlT1twOz1omkrrbhWvpvRXiqIw9q7BjL3rzOuGT9WwRV0eeesmPn/jZwKCHEx54Vo57XwBkmsUa16VlPBzOBwyQJQuSD/MXc2B+GQAdN1g29qD1O3aAFPJiJpuCBKTsspsEsnNKuDpO+b4dr0+N+UTPvr9MULrlM1917RhHQZ0b8ayNXtBCIYPbk+DeqHn1E+/ADtdBrRk5U9bEaqCEWBFO15EUT2VXQmpLIs/yPrf9qCdiLmEQDErCAG6VUFze7f4hrUPp0FcOOuX7yYtJQeX0w3Aih+28K+nRxEQ5MDPz8rM2RP5aeFGvnrjF358bRG9rmjHs0/dQqorn0nLFxC2Js+3axgFhElFuA0Mi0JRuBX/Q27wGCdHB4VAKN6gcdmyXVx97SUIoLiuBVNSMYoAZ4iG5oLCRg7uuaonDZrUITUzh//7ZZnv3hfF2Yn+LpnClhH4J6g4jjnJi7WiO1TyG5rwQyEgF1r2qs/Yvp3YftNs3z3UDYMX3/qJ7T/sAqeOYjeV2oijC8GctRtY+PUB3AkuzChYVRP1bMG8evNQZq7+nt07k/EYOqmNrCzdewj2HiI00I8r+rdkzf4joIOiClLT83x9Tj6aycK5q8ktdGLTBIV1FdC8T9027ORO+79ac/ioLwm406Oz8mDCOf3O1LR7Xx1HaGQQCXtSGDC6K92HtDv7RVWsz9CO9Bkqc0xe0OTUc407r0AxLS2N+fPnEx8fT0FBAbNmzfI9fujQIdq2bYvdXjsLzEvSseM57NyVhO45uZO1IL+YDm3qe6dtAbNJo22remVGIjKO53oTV5+gQFpK9mkDRUVRmH7fVdyc2B1NVWhQL+yc+5qdkcfKn7aC1QqaguZWCNibh243YYr2J62gAMOmohbrnMgYeOuEPnTo1ZiH/1zCvsPHaRwSylsTrkFRFAKCHRinpPMxmTWsNjNCCL7auJ0NB46yfvZa7Em5APz541badG3M0Jt6s/7aKdw59w2SD2V4n0lVyGlqx+QxeXdUuwVGoB0tvxhLgZMimxlh0rybZgQkuQq46t8f0KFBXYqsCjQqeY8wBF0b1uNfN/WjdSPvGrSFm3eVHhlVVaxRwUy4pA0el4dGlzVn0q+LUYTAMMOxOAPr+4fYvnI/648mojaxcay1huoS1FlVzMYlOzE7vYnWjWIPItSCkuudHi2qY+aTPbtQnWDBW6bQMATFaS6ahYTz7zfG8d1X6zh8PIuvDu/3bZTKzCtk8eY9GCWbdAwD/tx9GIC83CLuuXEGhfnFqKpC22A7ySP8KHYYTOrUjcsalJ83sX3dKL7WduDSdSyaRseYk5Vitvy5h9QjGXTq35I6dUPKbaMm2RwWbp9+dU13Q5Kk81TpQHH27Nncc889FBcX+0ZbTgSKqamp9OjRg5kzZ3LbbWWn7CSppu05kMpd0+aieQxUIbBYTAjDYPw9g2kQE8abz1/Hj79uJzzEn+tGdS1zfUxcHSLqhZB+LBshIKROAA2beUeHnE438+at4/jxXC67rC1t2sSgKAqN6pc/BX422om1aariKwGHAnUw8+zdo6gT5s9L7RwEbMrHVCgIiAvkmut7YDJp/NDoJgwhUE8JuFp2bMDIW3ozf9bvmCwaE58ZidAU3v9jPW+tWIPLo0P3YMJ1nYADBegeg/SUbACsmolpL17Lg7fNxpnnpDDKRHo7K7YcCNlrICzeXIbCrHHViI5s2XqU/cdyEKoJzHAkWMedkUNqdh7BAXYKCp3ouoEAdm9N4vn//MDM12/Cz2GlVd0I74aEE5VSBPzntZto164BACsOHEJTVXTdO7IrTKo3pY9hUHwwg+NXBmEIAwQUR2o0mp0FilayjhHS2/lheARCFbhCTCjukrWPJUyqSqNob2Bvs5m55qZeZOcX8fVjB9GNkhyKQhDsZ+dIZs6JfxasJu9b68E9Kbicbm9dcEOQm1HAV6NuJzrm7CPKI9q1JLOwkMXx+2gVFcHDg7wbrD7/7yI+/+8iVE1F1VTe+fUxohpU/nfrnywvp5Cfv1qHYQiGjO1GUGj1pDOSKk+hGqaeq7a5i16lAsUlS5YwadIk2rVrx9NPP83PP//Me++95zvepk0bWrduzbfffisDRalWWvDTZtxuHRegNA0lLMDBv5+8mrgW3pGsVs3r0qp5+bV+zRYTr389hR8/XwMCrrjuEqw27xbbZ59dyPoNh3C7dRb/vJ1337mZxo0jz6u/AcEOJjw6jA9fW4zQTgY6Vw3tRIcm9QD48v5xfL81nhA/B9d3bYfJdHLjg3qatVm3PTKUoZP7cePn83hg7yqee/QPwrJA+OkQYgFNoTDWTsCBAgD6Djs5hde0dT3aTu/BF5u3+9LruP281ZMNk0Bk5uCMCmLu2n2YXDoRJo0pT47i3a1bSDtyDHOOB1O+jn9jB6P7tmXugnUoeTq6Dmlpefz2+26GXd6eppHh3NqtIx+s2ggCAo/DO1+u5L2SQLFTvbro7pK1iYaBLakIrUhHaArOSAtWTaNI926Q8QRqGIoHE5ovkXijBnXYkZd58pNDAcVfwfCApVClUVQYI/q3KbX0INjfzv/uGMF/vvwNQwgeGtsfjya479Pv0Q2BSVW5uXcnNh9NZv7+PXg8J5Ny2xwWQs6yS/4ERVG4tUcXbu1RuuLKghm/+jaJmC0mVizcwLX3XF6hNqWTPG6dqWPfJjUpC4CfPl/DjMUP+v4fS5LkValA8cUXXyQ6OpoVK1YQGBjI5s2by5zTrl07Vq9efd4dlKTqEOBvRTN51yEqFo3I5lG+ILGidCEYfE03wv9Sk3fDRm+QCKBpKps2J5x3oAhwzZTBfLh7L4U701B1cEY7cPmd/C/cJCKM+wf3Pms7HrfOvp2JBIX48fH+XSTl5uG/O4+QpakYqkI9A1KG1cMdYcOaraM5rNz5xEjqN4lE9+hoJo2jGdnkpxdjcaq4bN7V5pZcgSsIspuq1E32wwi2g6rgURXSDDd6oZPLOzbjwMajBO7xptMpPJREQZNYgtwa+frJBN1mk8bhvcdY9csOivMLiExQcZYER/EFx3zn2cwmLKkCjx20IoM6v6WBCoUNHIwd0Ys5SVu8/w4oqFluTLluUHVQVSLrBfPMhOFc/tack+2ZTAxq0phm0XX4fNM2dhVk8eDin/nz6BGev+LkRooerRqw8OkJpe7ru7eMYs2BI7SsG0FcRAhjZ3+OxzDw7xlAvb0eGkaEctcjV2GzW87p3/2vgsL8yc/21vFWVOWMNaGl8iUeSiPlSIYviXrG8VwO70mhefvYGu6ZVIoQvi92VdqmVGGVChQ3bNjAddddR2Bg+elkY2JifClzJKm2GX91dzZsO8KBw2mEBftx/+3ntpt0zuwVfPrxSgCGj+jE3fcP8Y04xcaGc+hQGrpuoOuCRnERVdbvkZd1Yo6x3rsW26UT7tbYF59M05blj36eqrjIxQPXvcOR/ccxDEG94U0xQgQhm7K8u5dL1l3WPVxM/1E9mTy1C34OK1+98j3DAm9G0VQmvDaO/yUeoMDpwoJCsLBQEG5QHOvB3cCEf75AUzUMtWSYTlXQzSp+ATbG9W3O3Od/wThlJ+Mfi3bw0H1Deeal7zEMg6ZNImlSL4R7Rr2BEAKPzYQzzptmR1MVWjbxTvEnHUrjw5d/oum+QpJjLBQEaKRd0YCCegZascIH2zdj8ih0bxXD8e3HUD9PKkn0LdAUwWNv3UT90CCCbFZyip2ANwfibd26kJCbQ1pBIcUeb3D61bYdTO3dk5e//5345OMMatOEKZf19OZQLLmuV7MG9GrmHemctWoDqqogDMiro5FQ18rCaedegKDY6ebXdXtRFIVLuzXFZjHz6Lu38tT4d8hKy6PboDYMuqb7ObcrQWidABRVgRMDvgLCo86vtKIkXYwqFSi6XC78/M68liM7O/vkuipJqmWCAu18+NpNFBW7sdvM55Q2Iz0tj88+Wen7+ccftjB0RCcaNfYGhM/9+2pefXUxqcdzGDWqC507N6yyfk8a1p3G9cKI35PCsllr+OLt5Xzm0Zl03xBGXNut3OsMQ/Djsh2s+nk7Rw8c9+3WTv5+H45b62H4mxEZLhThnc68ekAXbh7SD4CEXYl8+u/53nyBhs7br36Lc3QrdMO7HTGvwMmXd9zIsqOHsKga17Vty96rjvHAU/MwSjYKtYoJp3Pf5iiKQmR0EMlZx1EECAUiooLo37s5nTs0IC+vmKjIIObNXAYIXMJAFzq2Izm4IgJQDcEDEy7lu/hdfHjjXJy5ToQhCDui0eG+LqwkBUuKy5tTUVHxqILEnRkM2GNjQ15JTj2g1xXtaNHR++8y+6areXzhL+QVO/lXv+60jI4g21WMccqog0XTeGHhcn7beQC3rjPn941EBQfQuWkMt8yfT3JuHj1j6zNz1EjsZjNN64T5Bi00DeqF+3E8NYvwOkGoaulE6+XxeHQmPvsFhxIzEELw0bdrmPvSLTRpF8tnW/+DYRgVbksqKzDEjyfeuYm3p3+LMAwmPz6csPPIlypVD5kep+ZVKlBs2LAhGzduPOM5a9eupXnz5pXqlCT9HRRFwVGJaUDvmrOTeVUUBd86tD3bE/n0rSUkHsqgoNDFH99toW+vZgRX0SJ5RVEY1LkZGduP43K6fQmFP5u14oyB4ruf/s7XizYh0guwuXXfkjxVU1l6562s7rmf+Q8tIPVwOi06xzH2X4MxDIMdq/dzcPsRFE31prsBTDlOPMbJdXf+VgtN6oTSKvrkyGnn9g1484XrWb/5EA1iwri0TwtfMP7iSzdwx4T3KcgsxD/Kn5eevQ6AAH8bASVVMyJjQnEGWUhvEQQKqC6DoANFWFWVF7f8yeqDh6ifXex7HZqqcql/XV4aNYx+z7yJ278kgNIUcjILuPmRG9ix7gC6x8BiM3Pj/Vf4+tqmbiQL7xxf6n51j63P2Hat+WzzNqwmE/8ddgX/+/YP3CWbZlwenfik48w7uJNjefkAbEhK5qNNm7njkm70axrH1Et78fG2DeTpibhfPsTN0zdjjfAj9sbOjB/ana4tzlyf+UBiBgeOpHFib/rhY1ks/WUbQy7v4P23k0HieevWvyXdlres6W5IUq1WqUBxxIgRvPTSS8ybN4+xY8eWOf7hhx+ybds2nnvuufPuoCTVNpFRQQwa3Jplv+0CFDp3jaNJ0ygy0/J4+Kb3KfbooHkTXu/ccoS3XviB/3v52tO25XK6+eL1xRyKT6L/yC70G9nltOf9lcPPWmoU1HGWihNLV+7G5dYhwIrZUYyp0I2qKEyZPpIwPwdDe7Zj6Mp2vk0bQgj+PWEm65dsBwVsIUE4c/JQhKD9JS3od+OVvLl4FTaziSfHDMJiKvtW0rZlPdq2rFfm8dRjuRR7BFqgHd2jUJDvJDSk9AaPfle1Z/riP6CktKJhUXFFWAl3m/gtPQHDAbpDRSsyvDkYXW5mfb6Sj75eQ2hmJrlXhaPoBkJTCN1TxONr/mTCJzfTwhZEvUZ18As4c9ouRVF4+rKBPHZpP0yqiqaqbG+dzGcrt+Dy6Jg1lb4t4lix+ohv5NFjGGQWFvnamNCjM6vZyf5H8kGH3B42hNDJ/HEHG7Yd5ePnx9Mkpk65fQgOsHvbPvHvrMD+jQm+QBFg/Z/72LrxEM1b1aP3oFYyobR08ZF5FGtcpQLFhx9+mC+++ILrr7+er7/+mpwcb1qIt956iz/++IMFCxbQtGlT7r777irtrCTVBoqi8PBjwxg1piu6btC8RV1UVSFhf6r3M105WY1E9xgkHckst623HvmC5d+sx+30sOHXndgcVi657PQ1qU81ZHhHfvlhC3t3JaMo0G/ImWsGx9UPIzO7AA8GnuahjB/WjeFXdCA4tHSAdiLQSDmUxppFW3zl6YRZ45anryGmSSTdruiIpqlc1r5ZmecRQrDox63s3ZNC565x9Onbosw5s2Yuw3VKabd5X65l6oOlyxa+s/s3chQXaknJF0VTaNU+hn//axhXvPUe/t8mgVPBHWLBZrNRpCuoydkIlwdznpPYuckU17VhSXPhrhfIvvVHeSwpla8m33DWIPFU1lMC4Puu6E1UcAC7k9Po37IRA1o3JtVTwPRff8OkaQghuLpN6eo8bsMDHkHSAyF4QrxZts3pCnW+KebF539g5tu3lBvcRYYF0MxjYq/q9u74PpxD8xEnN1z9vmQnLz4+H0M30DSVrIx8hl93SYVfmyRdEERJ9acqblOquEoFiiEhIaxYsYKbbrqJefPm+R6/5557AOjTpw9z58496zpGSbpQKYpCs+bR5GUXMO+9XzEMQY/LvMGaYhgI1Rssms0al48qvzLE5hXxuEtGzXSPzvbV+yoUKGomleSULITqfc+b99kq+g1qTaOmp99d/X9TruDZNxdxODGDS3s2Y9z1vVBVBcMw2L72AB6XTrseTTBbvG8JFru51HupYQi6X9WJ+k3LryQCMPfTVXz28Z+4XDqLf9rGo48b9L+0dPCkmU5OmRqG4Lf563AfOs69r9zg2xE8c+Na3P42bMUAAjSF6wZ24s4n52JOdmMtMIEQmDI82Oub0BPSfG/+ArBmurFmuhGqgskK9gwnxfkQfyyt1BT5udBUlRt7lf63vK59O5rVCedgRiaX1K9fpr7z3S0GMnnMITyhGsJcUoYwCowAOLTnGMdTc4k8wwaK/71+C6/c/xmJB48zYOQlDLz6ZE7PZYu2+daaGobOb4u2yUBRkqQqV+mE27GxsSxfvpxt27axevVqMjIyCAoKonv37nTu3Lkq+yhJtZLHrXP/6Dc4npQFCBZ9vpp/z7yF+R/+SVGRi4Yt69KhWyO69yt/rW6LLo1Y+/M23C4PJrOJZh0aVOi5iwpd5OUW+0YuTSaN5MTMcgPF0GA//vvEmFKPCSH4z92fsGbpThQFGreO4eUv/4Vm0giPDuHmaSOY8/y3IGDMvwafNUgE+H35blwl6yY9Hp2Vf+4tEyjeedcgHrj/MwoLXSgeHU9yFitTc6hTN4RbHx8BgNljxmmDwihQdYWAw05efPgrcuppZLYzk9MinIjlOdjS3RgZBSVJyEtGP0+8PgX0OkGoJVNX1kQXHWPKpkDKPJ7Lbws3YXNYGHx11wrn0TuSns3T85eSllfAbf27lAkSATqFNWDmzZO4fvlHiFMiWdUJoGCzn/m5QiODeH7uXac91qBxBOtX7sft8mC2aDRodDIAPhSfzLezl+Pws3Lt3ZdVOIVOQnY2n23fgs1kYkKHzoTIylpSTZNTzzXuvGs9t2vXjnbt/v4anpJU05JK8rAZJXnYstLyMGkqT709/ixXnnT/f8cx6+kFHNqVxIDRXegzvFOFrvPzt9KyTQz796Zg6AJNU2nd7sybI/4qPSWbPxZt9b1p7t+RyO4tR2jdJQ6Aa++7nKG39kMIgX/Q2Wu5p2fmo1k1NE1F1w0sFo0mpwkumzWP5qv59/DwtW+xb9MhFAFuj0HC3pPptP6v12U8euRX0ASYIHhfMcWqk+Ndw0FT8AhB0rAwGs05RnRsOAm7k9BLRtcwa7ijQ1BNmnezS0md66BQB6t3Hia6ZwCaUFi7ZDtFhS4+eHUxhflOFAWW/7CFl+feWaG1fpNmLSA5KxdDCJ6av5S4iFDaxZYNRDuG1eeJDpfz0valGB6DgCUCk1tlyj2XEVSB+1qeGyb2JS01h01rDtKybQyTHhgCQGZqDvcPexWX042mqWz4bRczVjx+1s0vWUVFjPjyUwpcLlRFYdH+fSy+8Wa0Ktw049ENNFWRaykl6QJy3oHiqTIyMvj9999xOBwMGjRIpseRaiUhBMuX7uTwgeN06d6Eth0ql2A3NCIATVN9gSIC6tQN9h3ftHo/7738EwoKdz5yFR0uaVSmDYe/jXtevuG07bucHgpyiwgO9y/zwaooCv95Yxzfz19PQb6TIcM6VLjixwlWuwUFxTfSZRhGmU0xfoEVG1HKzStiwv0fUVjgRDErWCxmhl7VgTFju2EYBhv/3EdxoYuufZtjc1iw2y1cee0lvLP9CIbuTfMyYPTJjTwjm7an9R31+GnnHuoGBvLRN19Q4HCj6AKheaf1DZuCYVXxbxhCmn8eAdtyMfw01KBgDFQs/laaxUWQsDuFPHQS66r87/s/mb95OwXfxsPRIlQU79CjZvJuPtpwmJzMAoLD/NmVnMq+1Aw6xtYlNiy41OvVDYPEkpJ9AGZVZd+xjFKBohCCFxYtZ8GmnUQE+vP1dRNpGhGOc5gbRVGwWM7v7ddiNfPQM6PLPL536xFv4R5D4DF0Eg8eJzez4KyjituPp+LSdXQh0IXgQFYmxwsKiA44/4TeQgheWvQ7H6/ajNWk8dI1VzCoVZPzble6+Mn0ODWvUu9U7777LnPmzGHRokWEhnprlm7cuJHLL7+czEzvwv0uXbrw22+/yXWKUq3z+Ud/8tmHf6DrBl99tprnXr2eTt3KBnFnExDsx1Mzb+XtJ705Bic9McKXhy07I5/7/vMVmU1tIAR7nv2c7z+7n4AKjiBtX3eAJ2+dTXGhi2bt6/PiZ3dgc5QO4uwOC9eM73XO/T4hMMSPSU+M4P1/L8QwBCNv7UtcBRN3/9Wm7UcpLHbj0g1waDiBm27ti2ZS+c8DX7Bq6U4UVSEiOpg350/BZrdwxY29sAXa+HLxFnS7GRFZOiBpGhHOvRHeGsY7O65i5fLtKEIgdG+lBmuWjqKrbFu2j0B/E0duqIvHTyPgsIFfhoKr2GDn4eMMvroD8/fuwen2gFtnT34C9Q8XlSyQFwhFoKje3cVmqwm/ABs/bt3NtPk/Y9Y0dGHw2e3X0rreyWl9TVXp2iiGrQkpuEuCq66NYkr1f/HOvXy1YTtOj87h9Czu+fwHFt17C1Zr9ZaIi20a5Vu7qKgKgSF+BASf/feuYXAwHuPkrgF/i4XQKpp63piQxNw1WxBCUOz28OCXP7H+yX9hloMJklTrVSpQ/PLLL1EUxRckAjz00ENkZWUxYcIEUlNT+fHHH3nvvfd44IEHqqyzklQVli7a7ss/CII/lsVXKlAE6NyvBR+seLzM49v3JZHRzAaqAiiktbSz//BxOrZvWG5bW4+k8M2mnUQG+rP2uWUUF7oAOLw7hUWfr2XUbX0r1cczGTmhL5df1x3dY+AXYKtUGy6nh8/eW4bL6fatmbTbzNhsZvKyC1nx01bfuceTs9i27iDd+nl3Q/+yO5HdWXm4j+tMf/1HAh+30blt2RHeK2/oycYl26n/yVFy2geiehSC93q8U8uKglZkELyjiPxWAWjFGsV+Avw0RJbO4jU7yW5qoBSDVqTgCVDLrFESqoowqRRHBvDrr7t44tdf8di8KW8U4Kv123m6Xun1n29PGMGc3zeSkVfI6G5tiA0PBiArPZ+Xp81jfXEGnjjvW6wAjpfkW6xudePq8OQHt/Ppqz/h8Ldxx7Nj0ExnD8hig4J564qhvLJ6JXaTiWcGDCq16/t8ZBcWo6kq7pLRd5dHL0kzJANF6SxkCb8aV6l3gX379nHVVVf5fk5PT2fFihVMnDiRGTNmAHDJJZcwd+5cGShKtU79BmEcS87C4zGwWEzExIZVSbvHUnNYunQnfn5WopqHnbK9AlDAL7z8UZ19qencNOsr3LqBxaRha2Ii5JD3mCEExcWuMz731mMpHMrOpntMDFH+5zZVeL61h5f9vJ1jB9Mxm8EdYEFV4KX/G41JU7HYzGgmFb0kWbdhiFKjqpt3JvrqYqPA1t2Jpw0Uuw1uy8Pv3sofCzdyRHOxzu5EHM1E0XVQFFRFITLAnwC3gyyl0NsY4HaoFPq5cQVo4A8guKxxKzaO3Ez4d7kAuBoFoVv9ESqYDHj1lR8xWpjBooKqYNJUQv3Kjqw5rBbuGtzD93NmfiFu3eB/0+axdd1BDBsYsSGYTCqapjKyg3dTz7odCSz+cxf1IoIZN7Qr1vOcgj6drpe2puulrc/5ussaN+Wyxk2rvD89GscS7u9Hen4BhhAMad0UP+v5/d5JkvT3qNQ7VEZGBhERJ3fYrVzpLWc2atQo32N9+vRhzpw559c7SaoG908bygtPfcOh/cfp0acZI8Z2PftFZ3A8KYvP3viZJUt2ogc7UKxmWrauS8PIUI6mZwPQvF4ETaLLT6687mCib8TF5dHxhJsJN6mYTJpvN2555m7fyvTlyzCrKqqisPD6cTQKCTmv13QuTuRENOd7MOd7cPhZ6dDau7HGajPz4H+u4bXHvsbj9jBiXE9anrImtHWzKDZuP4q7pLJNqyZlN4Oc0GdYJ/oM64QQglX7j7C920F+emkZhhBk9gzgeGNwHC/EpinoJdPTHpsgu+nJhNUARR6Dtx+fyL5/pdMpuB6PPDafPY2K0W0K9gKFiI2CwANustpY0G0KjcNCua3PmROhv79iHa//vBIBhAodP4+BOR/qLs2m8fDmDB/ehStaN2PHvmSmvrQAj25gMWvsP5rGC/cOr+Sdv3D4WS0smHIjy/ccIsBqoU+zuJruknSBkGsUa16lAsXQ0FDS09N9P69YsQJVVenZs6fvMUVRKC4uPv8eSlIVCw7x48U3xlVJW85iF/cN/y/ZGXkIQ6Bk5eNqWIetm4/w1fwp/LEvAVVVuLxdM1S1/J2ezaLC0UvWh2mqQqPwUN786XqOHc2kZacGZ1zb+Pa6dXgMA49hYFJVvonfxQM9K7928VwNGNKW+Z+tJv14HoZucNuUQaWO97+qPX0ub4uhG748jSc8fe9Q3vpkBUdTshh6aRu6dzx7AKEoCr2aNqBX0wZcf0U3ft2+j2nrlqEWCe+UczGEqVaC6jiID89CeHRfwl6zqlIvIJBLIhtwSaQ3FVHAoDoYyYkAFPkJDg3W0IAGv3qoHxjM7Ok3lsr9+FfZhcX89+eTtb+zIzSs4WYsGW6sxYK7L+9Fm7YNAdiw66hvY5LLrbNuewIHktN56tNfyMor4pbLujC2T/uz3oMLkb/NytD2ZROwS9JZycCuRlUqUGzZsiXff/89zz33HJqm8cUXX9C1a1cCAwN95xw+fJioqLPnXZOkC1nyoXRys/IRJRVMMASKS8cv3E5ooB+julZs+q9rXAyPDx3AJ6s3ExUYwPSRg6gXEkhsk9PnRTxViN3Gsfw8BKApCkG2s681LCpwMvOF7zkYn0LfK9sx+ta+ZXZWu5xufl+0Hd2j0+eKduWWCfQPsDHj8zvZuyuZ0HB/6p1mKl/TvNOvZa71s/LoHZedtb/lCQrxI7heIJTMzCuqQnEdwSXtG/PvoYN5b8s61iQd4UhmLqkF+bSPjOKRnn1KtZHvcZ3yOSRAgO6vYBsZxltXlw0ShRD8tusAe1LS6N4ktsyOaENAXhMHlmA3D04aQrM29Xhl2jw2r9pPnQahUPKFwKSpNI2tw11vfUNabj5CwEvzltOsXh3aN6rcpiJJkqSqVqlA8d5772XkyJHExMRgMpkoLCzkpZdeKnXOmjVr6NatW5V0UpJqq4h6IZjMJnSPN1JRUIiODePxJ0eecQTxdK7p1o5rup17TtKXB1/Ozd/OJ72wkE7RdRlXgbymb/zffFb+sgO3y8Oh3SmEhAdw6YiTORwNw2DahNnsj09GAb7+4A/e/vaeclO6WG1m2naqWLLwqnZJTAwWt4LHDYYJVE3BommYVJUpnbozpVP3M15/1yXduPfHnxAIPIZA2LyBXECEA3//skH3Jys389/FfyKEYMaydbw3YSTXdmvH/A070A0DAeSHm1HCzWwpzibnvWX8vmg7bpeHvJxCOnWKJTPSSr3IYB646VIue+J9X9tmTSXheJYMFCWphJx6rnmVChSHDx/Oe++9x8yZMwG48cYbGTfu5FTe8uXLyc/PZ8iQIVXTS0mqpfwC7bzw+V28/8y3CCG47bHhtLmk8d/ah5Z16rB24mRcul7hXarxWxJwl6wtdLs87Nl6pFSgeCwxi/gtRxAluwNTk7LYtyOR1p0aVnn/z9cbi1diKlIQukB1gl+Yldt7nn3daUFeEYu+XIehG3w6dBSrM5N4c+dqbGYzbkNnSvsep71u/voduHTd9/NPW/fwzOjBjO3WlqcXLGVXYioGYNE0IgL9SNh/4JR7raMWefjkhdt911/SPJbNB5LwlASZXZqeW+L06pSfW8TSBRtRVIVBozpXeme8JEkXrkpvt5s0aRKTJk067bH+/fuTlZVV6U5J0oWkZaeGvPbtfdXWflGxiz9X78ds1ujdoymm00zhKopyTqlMuvRpzpIFG3A5PZjMGh16lt7pGhBoR1G9wReAoRvnnND77/LDpt2+tCsmVWVch/bUDym/fnJyeg5JaTnMeOArjh/JBAHBc/2ZufhBRrduzY70VFqE1qFh4Ok3BDWsE8Lh9Cw8hneHemxYMIqi0KpuBK/dcBV3fPgth9Oy6BxXj5v7dmaT7s/63/dg6AaaSWXAsA6l2nv9jhF89fsWsvKLGHpJK+qGBZY6XuR08/jHi1m/7yjt4qJ54eYrCHRUf8Dmcnq47+o3SUvJBuCnz9fw9nf3YTLLlDbS30imx6lxVZ+XoRZISEhg2rRpLFmyhPz8fJo3b86UKVOYOHFihdv4z3/+w+bNm9m0aRMHDhxAVVU8Hk819lqSynK5Pdx5/6ckp2QjgPZtYnj52bHnXQJt8v8NJzQykIPxKfS+vC09BpVeSxkQ7ODhl67ljacWoOsGtz14BXUbhJ+13eIiF999sZbc7EIuG9GJ2Ebl7/SuKjGhQeQXOdGFwKQqxNUJLffcX9bv4f9mLUZVQA+HkAQDzWWQnZ7HwfhkWnVqSIx/+UEmwJMjB5JTVMyelDT6No/j5t4nR2LrhQbx3dSbeH7+Mr5avY1BT7/PqzcP5ck3x7Ft/SGat42h92VtSrVns5i4aVD5u6rf/WkVf+46hMujs27PEV775nem31j5dZ0VdWhPCqlJWb7k3UmH0kg8lEbDZnLtuST9k1x0gWJiYiLdu3cnJyeH++67j7i4OBYuXMjtt99OUlISTz31VIXamTZtGsHBwXTs2JH8/HzS0tKquefSxaCgwMmSxdsQwOAhbU+7xu1c7NqdTFJyFq6SD+sNmw5zPC2PyIjAs1x5ZmaLiRv+NeiM5/S7sh39rjy3NZNP3v0p8dsS0T0633+5jve/uZuI6ODz6OnZvTr+Kh789EcSM3IY1rkVV3Usf2ft/77+A90w0AHMKsVRDvyO5GMYgjqn6WfC/lT+XLydsMhABo/qjGbSCPN3MOf2sb5ztq3ex671B2nRqSEdejdn5e4Evlm3AyEEBcUuHvjoB1Y9dxeBjUL5YMk6fvkkiclXdqde2JkDUl8fjmfjKkkf5NYNEo5XfLZmX3I6C9ZsJ8Tfwbh+HXGcQ+7CsIhA39IDABQIrqWjytLFS65RrHkXXaD42GOPcezYMebPn8/o0d46qLfffjvDhw/n3//+N+PHj6dRo7NX4di/fz+NG3vXmvXv318GitJZeTw699w5h5TkbAC+/3YjMz64HXMFp+qEEMz9YwuLtuyhed06PDCsD8FBDnTj5Luaoio4HLUzUbHL5WHbhsO+nxUFtm9KYOBVwefXrsfDzzv2oRsGl7VphsNSugReTGgQX9xz+nrZf3XqtL3JpBEQaCM0SmPSY8PKBIqJh9K4Z/SbGIZAVRV2bDjMgy9eU+qclT9t4T93zUFRFIQQTP3vOArq+6GeMuJbWOwiPbeAW177kmKXG1VVWL07gZ+evg1zBSqmDL+kFSvjD59IA8nIHt4RSSEEq+MTyMwvpHerOIL9SycFT87M5cb/fo7Lo2PSVFbtPsyce66t0H0CCI8K4sGXr2PGv78DBaZMHyUDRUn6B7qoAsXCwkK+/vpr4uLifEHiCVOnTuX7779n7ty5/N///d9Z2zoRJEpSRSUcTicxMdNXhSQ5KYvDh9JoWsGpukWb9/DaD3/g8ujEJx4nv8jJi+Ov5Lbxvfngkz/RNJWH7h1CwHmOUlYXs1kjtE4AWel5CAEet05MBaarz8QwBLd+OJ+dScdRFPjgz418fdeNWCoQYJ3OY+MGct9bC3F7dGKjQvjgv9cS4Dh92p/1K/YA+KZe/1i0rUyg+PPnq33HARZ9tpLHP5pMgN3bpiEEw7u24tCxTIQQCEA3BOk5BaRm5xFTUvbvdJxuN/N+3syWTUcY3qQp4Q2Dad+oLr1aNQTgxXnLWLBqB6qi4G+38vVj40sFixsPJKIq3oDS7dHZfDAZl8eD5RzWsvYf2oH+QztU+HxJqnKCqs+jKEcUz8lFFShu376doqIievQou1uxR48eKIrCunXraqBn0j9BSIhfqTcgISA01K/C128/csw3xejy6Gw+nAzAjdd05/oxl6AonPfaxOqkKArPv3sT/53+LbnZhVx7ax9iG9Xh1ee+Y+/uFHr2bc742/qdU9qgI5nZbDmSglEyBZqQkc2u5FQ6xFYufcwlrRqw9LU7yMwtpG54IJpafiLt6NhQ35p3RVVOOzVdN64OZosJt8uDyaJRt2EdgvxsLHjoJlbsOkiIn53eLRuSnluAKPnlUBWFAIeViKDyR+e2JKZw80fzKNZ1tEJB5C6Fkbb29BraEPAG0F/9uQ3jlNHmFTsOckWXFsxZvZHDGdm0iazj2+SjKgp1Av1kbWXpgiSnimvWRRUoJiZ6qyvExMSUOWa1WgkPD/edU11SUlJISUkp83h8fHy1Pq9U80LD/HnsyZG8+d/FCAFT7htCWHjF6y53aRzDlyu3+uo992h2Mi/hueZkrCkNm0Tyv08n+35++dmFLF+yE7dbJ+lIJqFh/gwbfeZyeKcKsttQTimabRgGIX7lV6mpCD+bBT/b2afvLxnQkrET+/Lj52sJiwrk0VevL3POTQ8PJflQGjvXHaR5p4ZMfGKkt99+NoZ3beU7r06QP+9NuZp3f1yN1WzivpF9sJjLf/v9v++X4HTpoIBug5xgg43bEnzHFcVbFi+vyAl4Ry5D/Ow88d0SFu3ai8ujs1BVmTSoM79u3k+on50nrx1Uq79oSJJUO1VboGgYBt9//z0jRow452unT59e4XP79+9P//79Ae/UM3iDwtOx2Wy+c6rLjBkzePrpp6v1OaTaq9+AlvQb0LJS1w5s24RnrxvCzyVrFG8ffOEnrN+zKxl3ydSsy+Vh765kGH2Wi04R4mfn+dFDmP7drxiGwYND+tLgL5VQqouiKIy/9zLG31v+DmOHv41nPrmzQu11bFyPmfeMOet5bo9O8pFsTN4YEN0KqkmlfauTX4AVReHl267iwVk/UFDsYmi3lvRpE8cji372jUrrHp1fVuzkm2duKzdRuiTVegbeckdV3aZUYVX+7pGQkMCsWbP48MMPSUlJQT8lMW1FnWugdSJQdDi8Iw1Op/O05xUXFxMefn5rps5m8uTJDB8+vMzj8fHxpZKSS9LpXNW5BVd1vnjq4fbo3Yxjydm4XN58jV17NjnnNoZ1aOmrEfxPGBH7fdchhEf4Nq9oToWR7Vsy5eYBpc7r3qIBf7x8F7ohfJt0mkfWYc2BI1AyAp13NI/lK3Zz2eDSKXkkSZIqqkoCRV3XWbhwITNnzmTp0qUYhoGiKAwadOb0G+URlUyGeWLK+XTTy06nk/T0dLp3P3M5r/MVHR1NdHR0tT6HJNV26zcd4o0ZvwIwaFh7ElNzaNYqmh59m1eqvYstQNQNg18O7ifHWcxljZoQandQ7PZg0TQEAk1V8fiSiCs8eutlpXZsf/rDer5ZupWosAD+744riK7jTZf02pgrGTTtXVxWgf2YgSNLQfec+5d1Sao1auFmlgULFvDSSy+xfft2LBYLffr04fnnn6dNm7N/IZszZw4TJkw47bHOnTuzYcOG8+tcNTivQPHgwYO8//77zJkzh+PHjwMQHh7O5MmTue2222jQ4O+t/dq2bVtsNhurV68uc2zNmjUIIWT9aUmqZlnZBUx7ZoFvyvlwRg6qVWNDSipr9yUx45nrMFVi1/K2tQfYtHIfjVpE0+eKdhd08Dh1ySJ+PrgPRVF4bc1K2muRrNyXQKDNyps3DqNlvQh2HDmGIQQPDu9bKkhcufkgM79aidujk5qeyyOvfcvHL9wEQKifgycG9Oedd39FVRWiooPo1+/iGaGWpJo2e/ZsJk6cSJs2bXjxxRcpLi7mzTffpGfPnqxcuZK2bdtWqJ3HHnuMli1LL1MKCwurji6ft3MOFD0eD9988w0zZ85k2bJlGIaBxWJh9OjRzJ8/nxEjRvDMM89UR1/PyuFwcPXVV/PZZ5+xYMGCUilyXn31VUwmE9dfX3pB+oEDB3C73bRoId9MJakqHE/L880KCAV0VfhGtQ4cSWP73mQ6tjq3esYbft/D05PnYAgDTdM4npzNmIn9qrzvfwenx8N3+3b7flbyBWtzjwKQW+zksQW/sHjqBPanZBDosBIdUjq5+uGkDE7EyLohOJpSOgH3qFGd6do1jqysApo3j5brE6ULWm1KuJ2VlcXUqVOJiYlh5cqVBAZ6/29ec801tGrVinvvvZfffvutQm0NHjzYt2yutqvwO8i+fft4//33+eijj0hPT0cIQefOnbnlllu44YYbCAkJQT1Dqom/y/PPP8/SpUsZP348Gzdu9FVm+eGHH3jiiSfK5EccOHAgCQkJZaa7P/nkExISvLsMTxz/97//7TtekVyMkvRP1DA2jJBgP7KyCxCA55SRP8MQOOznnjD895+24ikJNg3dw9IFGy7YQNGsaTjMZgrdbgAMXaBw8h7lFjnRVJXm9U5f/vCSdg1576s/URQwmzR6dy6b8zUmJpSYmPJLGUqSdO4WLlxIbm4uU6dO9QWJALGxsYwZM4aPPvqIo0ePUr9+xb4I5+fnYzaby92AW1tUOFBs3rw5iqIQGRnJ1KlTueWWW2jduvXZL/ybxcbGsnr1ah577DFmzJhBfn4+zZo1Y8aMGUyaNKnC7cyePZsVK1aUeuyJJ57w/V0GipJ0elarmRn/Hc+3P272/hxg5b0v/sQQgrFXdKR5XOQ5txkTVwez1YTb6d0UU7/xubdRW6iKwntXDOeen38k3+3imi5tWbJ6H06PB90wmNi36xmvbxJbh/eevI6lq/cQERbAmMs6lDknK6eAQ0cziKsfTkhQ2XRChiEocrkrlCZIkmqWgEruWzhjm5Wwdu1aAHr27FnmWM+ePfnoo49Yv359hQLFESNGkJubC0CTJk24/fbbmTp1KqZzSIj/dzmnHimKwhVXXMHVV19dK4PEE+Li4vj8888rdO7hw4dP+/jy5currkOS9A8TFurPbeP7+H4ee2VHPLrArxKjiQCjJvQh8VAa61fspnHLutz9zKiq6uoZ7clMIzk/j06RdQmyVl1FnD6xDdl8+78QQqAoCvde0pM1B45QNziQjg1OJhPPyilkW3wSdSODaBoX4Xu8dZNoWjc5/aa5+P0pTHniS8D7nv32v6+jeaOTgXV8Qir/+u8CcgqK6di0Lm/eOxq71XzatiSpplXn1HN5+Y3L25R6plzNZ9pMeyqHw8E111zDoEGDiI6OJikpiU8++YRHHnmEP/74g4ULF9aK2dlTVThQfPbZZ5k9ezYffvghc+bMoXnz5txyyy2MHz9e7vKVJOmMrBYz5zO5YraYmPqfa85+YhX6PH4rT6xaiklR8bdY+Gn0zUQ4qrbW8YkNOWH+Dq5qX3qd9LG0XCY88DFutwePx+D+iQMZMaQ9AFn5Rbz/wxqy84u4fmBH2sadfA/+4KvVuFweBKAAH81bzfOPjPQdn/7hL+QUFAOw81AqX6/YxvjLOlfp65KkC0F5Keueeuqp0+ZzPlOuZpvNVuqc8lxzzTVcc03p97JJkyZxww038MUXX/DVV19x3XXXVaT7f5sKh62PP/44Bw8eZNGiRYwaNYoDBw7w6KOPEhsby1VXXcVXX31Vnf2UJEn6W72y4U88hkGx7iHX5WT+3p1V/hyb9yTyxS+b2H04tcyxxct2UlzsotjpwaMbfPDVKt+xO177mq9/38bi9XuY+Mo8EtOyfcfMJs0XgCqqgtlceof5iWouAB7d4PM/NnPV63OY8NHXrD9cvZWrJOmciWr6A3z66ads3LixzJ/Jk09WlzrVmXI1FxcXlzrnXCiKwlNPPQXADz/8cM7XV7dzngwfMmQIQ4YM4fjx43zwwQfMmjWLRYsWsXjxYhRFYcuWLWzcuJHOneU3VEmSLlx2sxm87/0oKDjMVTs9u2jVLp6d/QuapqLrBq8/MJpurWJ9xx0OS6kUQCem7YtcbvYlpfseN2kqOw4dIyoskN9SdtN0SB227D1CXraToAA7t1/fu9Tz3j70Ev7z2W8oioLLo3OQPMiCA9lZbDySzOK7b6FucOmd1pJ0MWrZsiWdOnWq8PmnTi//NbXNmaalKyIuLg7Al2qwNqn0RHhERASPPvoo+/fvZ8mSJYwZMwaz2cyGDRvo1q0bHTt25O23367KvkqSJFUrl0f3ZUB4ue/l2E3e4LB1WATXNq9YfrSK+nLJZjy6gdPlHTFcuGJ7qeMjBrejZVPvlLKfw8pjd18BgM1som5YIFpJ9RW3R6dJvTCmrPmChzd8wxsJyzCugTn/u5lPXr+FTXsS+emPnbjcHgBG9WnLR49dT+cW9RBmMBcI7GkGpgKBpirsPZ6OJNUWihDV8qcyTuRhPl2u5hOPde165s1o5dm7dy8AUVFRlbq+OlXJ9pqBAwcycOBA0tPTmTNnDrNmzWLr1q3cc889/Otf/6qKp5AkSao2TreHf33xHX/uTyDUz87740bRo24sW26aQq7TSbjdUeUJvqPCAtl7JA2PbmA2aUSFBpQ6brWaeevZa8kvdOKwWdBKkm4risKMqWN4+cvlZOcXMbZ/ewoUNyuO7eNElp1jRbkkKlk8/uwPpKR7d1Z++9s23nviOlRVoUVsBFdc0pKNWxOwZQgQYEsXOBWdllERSJJU1siRI7n33nt5//33ue+++3wpco4cOcK8efPo37+/b8dzYWEhR44cISgoqNQ+joyMjDKJtT0eD9OmTfM9R21Tpfuww8PDefDBB3nwwQdZvnw5s2bNqsrmJUmSqsW8TTt86/MyC4p4ZMHP/DDlJqyaiTqO6klX8eC4S0nJyGX/0XQ6Nq/HrcPLlhdVFIUAv5O7rZfuP8ALK1ZgUlSeHjaQ1NRcHvvyZwQCU6ADT+tCUEEXBrnHikk6noO7JP/k9n3JJKflEBMZDMBVl7Tk/Y//IC0/39d+7+AYIgOrdsOOJJ0XARjV0GYlhISE8PLLL3PHHXfQq1cvJk+ejNPp5M0330RRFF5//XXfuevWrWPAgAHcfPPNzJkzx/d427Zt6d27N23btiU6Oprk5GS++OIL4uPjue666xg16u/J6HAuqi1hT//+/S+YrOOSJP2zZRcWoRsnPz2yi4qq/TnDg/346KkbK3x+Sl4e//ruezyG91Pz1vnzsR9TMUqm0Uz5FtRsHSPMzV0t+tEhuD6GcfITVlUUAv1PBp2KotCxRX2WrdmL26NjMWu0a1oXSZLKN3nyZMLCwnj55Zd5+OGHfbWen3vuOdq1a3fW62+44QZWrFjBb7/9Rk5ODn5+frRr144PP/yQm2++uVaWJq1woOhyuejduzcBAQEsXrwYczkLu10uF1dccQUFBQX88ccf5Z4nSZJUWwxv35IPV23CLAw8hsGk3rWvJnxSTi6aouAp+dmtCyynBLeaqtLZ1pTt6Wms2nWcMUMs3Dd+AG9//juapvLobYMJ9LOxeuNB3vhwGaqiMHlcH3Lzi9h9MJVu7RoyfkTte93SP9v5rCk8U5vnY8yYMYwZM+aM5/Tv379MxTeAV1555byeuyZUOFA8sY38+++/P2PwZ7FYeOihh7jyyiv57LPPuOWWW6qin5IkSdUmNjSYn+6+mbWHjhITEkSn2No3stYiog6BNhvZRUUoCtQNCOT6jm14a/EqNFUlyN/GyoyjOIVBVlEiD/6ymI9GXc3Yyzr62kjPzGfai9/i8XhHGqe/9gPfzr6z1EhjdXK6PWw+lEywn40W9eRaSKkCTklnU6VtShVW4UBxwYIFNGrUiCuvvPKs515++eU0bdqUefPmyUBRqlJul4ev31/O4T3H6HtVe3oNqdqdqNI/V2SgP8Pbtzz7iTXE32Lh23E38PnWbZhUlXEdO3D8cBa/HjOTV+wi7LIADhfmAeAxDA5kZZZpIzU9r1RdaV03SM/MP22gmHw8h8Wr4sn3uAitF0CXuBhaRJ2+/nRFFDrdXP/6XBIzcjAMwaTB3bhzSI9KtydJ0t+jwoHi5s2bKxQkntC3b19++umnSnVKksrzztPf8uu3G3E7PaxasoMn3r2Zbv1r74e7JFWlqIAA7u/dCwAhBBMf+JzcHO96ysOLDqH2t6HlCQIOC3DmcvXiN5ly5yAGDPD+H2kUG0ZwoJ2s3EIUoE5YAPWjQ8o8T3p2PuP+7xOKXW48hkDYFYqjVd4bN5JeTRpUqu8rdh0kOTMXV8nmmvd+Wcvtgy7BpNWucmVSLSOqodZzldeOvrhV+H9oeno6kZGRZz+xRGRkJBkZGZXqlCSVZ+Pvu3E7vau0dI/O1tX7a7hHklT9Nmw8xP/eXsJ3P2zGKFmX6HJ5fEEiQECOypSI9kRtAWu6QMk1OO4s5rkXvic1NQcAu83C+y+NY/zoSxh/dXdmvnhjmcotABt2HkXXDXRdoAhQCwUeXeeztVsq/Rp03cAo8KAVg6J7E4WrtXDhviRJpVV4RNFut5N/ShqFs8nPz/fVPpSkqtKsXSzZGbtwu3RMZhNNWlcuC74kXSg2bDzEtCe/xuMxsFg0kpKzuHPSpVitZjp1jWPH1qMYhjdZdriwo3oM7+SyogACRVM4fjyXyMggAMJD/bntul5lnscwBJ98spLf/9hDWL1APLp3HaMAhApmTa106hwhBF8s3oTiAlWA6oYHr+6DqpYOFA9lZDH5y29JzM5lQNM4/jvqSiymakvOIV0IBChyjWKNqvCIYv369dmwYUOFG96wYQOxsbFnP1GSzsH9/7mG/sM60qRNPW5+4HL6D+tQ012SpGq1Zv0B3+YTl0vn9z/3+o49++K13P6vgVw7rge2CD/e+uZPiswC3B7f9FpooJ0mTc4+G/Tjj1v4/IvVHDqUxta1h2kRHkpwgB2zXaM4WqFV3UjuHVg2wCyPEIKc/CI8ukGh0018wnGE8OYEt1tMhNnL1sR9+LvFHMnKwWMY/H7gMHM3bqvw80mSVD0q/FWtf//+vPPOO2zYsIEuXbqc8dyNGzeyatUq7r777vPuoCSdyi/AxtQXr63pbki10Pdb45m7biv1ggN57Mr+hPqVDUQuRA1jw7FYNFwuHZNJpVHcyQ0lFquJkWO68v13mzjqLMTs9D6uWzVUtyCybhCNWkRzPCufBvbQMz7P3n3HcLm86wfdbh13WjE/f3Qn4A36TuR3E0KwZXcSOXlFdG0Ti5/DWqatgiIX/3rpa3YdOkaAw8obD44mPMhBRm4hQoBHN4iLDitzXVpegS8vpFs3SCsoOPcbJl185JrCGlXhEcUpU6agKApjx44lPj6+3PN2797N2LFj0TSNu+66q0o6KUmSdCbrDiXy+Le/sOVoCj/v2seUud/VdJeqTI7HTZFiIFSIiQ3l4QfKbirMyC3A5PSO1imA5gJFFyTn5LNiw34mTp9LQZGrzHVzF65n7F3vc/f0L2naPAqTyfuRYLFo9OzRxHfeqUmA3/xsBfe+8DXT3/mJ8dM+Jr/QWabdr3/dwv6jaQDkFTp5/sOlvDt1DO2b1KVx3TCeve1ymsaEl7nupm4dMWsaNpMJk6oyrHWLc71dkiRVsQqPKDZv3pwnn3yS6dOn07FjR8aMGcOll15KTIx3jVhSUhK//vor8+fPx+l08swzz9C8efNq67gkSdIJO5NTURUVMPDoBrtS0mq6S1Ui+XgO7879A8OmgQ32ZeXgdHvKnNevTws+/HJNqccMs4KhAkJQ7HRz9FgWLeJOTkGv2niAmZ//idujk5qeS16Bk8cfG87KVfto2iSS0aNPzhwdTsrg1zV7CA508MVPG31LvDJzClm56SBDepfOPFBQ7EI/pSpMQZGTRnXDmP3wmWcDbu3emRaRdTicmUXPuFgahpbdkS39syiG909VtylV3DmtEn7yyScxmUw8/fTTzJ07l88//7zUcSEEZrOZ5557zlfgWpIkqbp1blDPF5hYNI0uDerVcI+qRn6hE1VRMEpCM6XksYiwgFLnNYwNp0Pb+mzefhQAQwO3Q/VlTFRQCC6pGe1yeXj1lZ9Yvn4/Hs17z3RDcDQ5i379WtCvX+lRvKTUbCY8/ike3UBVFRRVQZTsvBZC4OewlOn3iL5t+PrXLXh0b+A+aVTPCr/mnnGx9IyT69slqbY45+1kjz32GDfeeCMffPABK1euJCUlBYDo6Gh69+7NhAkTaNCgcnm2JEmSKqNdTBTv3jiCeRu3Uzc4iCkDutd0l6pE49hwWjWNZs/BVABaN42mYb2ya/sURWHirX2Z/PQXeBB47AqKAZpLYCo2sKW7uXPiBzz7/Bi2bT3K7yt249J1RJAJFAWLWaNX50an7cPabYcB77pCdFBVBavZhNPt4dJLmtOzQ9nr6kUE8/WLt7JtXzL1I4NpfJppZkmqEJlHscZVKu9AgwYNePrpp6u6L5IkSZXWu2lDejdtWNPdqFKaqvLmk2NZvfkQigI9OsSVSSlzQlzdMCz+Zop1DyggNPBYwZ7qweOGHI+T++6fS4d29XG5dFTAkqvjF+5g3A09ufryjqdtt25EMHrJCKKiQFRYIF++ditut47dVn4519BAB/07Nyn3eHX7OXknr+9agk0z82S7YXQMk6OUFyRZwq/GnXNK/CNHjjB//nwWLFjA0aNHq6NPkiRJUgmzSaNv1yb06dIEk6lscuwT/B1WZv/f9TSJ9u5uVlUFS7FAc4mSnIreXInJKdm+a1SP4OrB7bluWJfTJt4G6N6+IbeO7k5IoIPG9evw8kMjMWnqGYPEmna0IJNHN35NYmEW+/OOc8eaTyjW3TXdLUm6IJ3TiOKDDz7I66+/jhAnvl0q3H///bz88svV0jlJkiSp4hrXC+erp28mOSOXIqeLlAMZPD39Gzx41zeqmkJ2fjFCAwxQNZUiV9nNMX91y8ju3DLywpnOP1qQhUlR8QjvGsxC3UW2q5Aoe1AN90w6VwoCpYqnihU5pHhOKjyi+Pnnn/Paa68hhKBFixY0b94cIQSvvfZamU0tkiRJUs2pGxZI47rh9OrdjFYDGoPZ+9HoUQSpEYLCCBNoCqpJwWK5+CqftAmpi81kwaSoWFSNpgERRNgCzn6hJEllVDhQnDVrFiaTiaVLl7Jz50527drFzz//jKqqzJ49uzr7KEmSJFVCWlY+63YdoTjURHGEieIwMygKrkANwwwRdQIZM7prTXezygWa7XzVdzK3Nu3N5Gb9mNP71pL0SdIF58Rmlqr+I1VYhb9Kbtu2jREjRjBgwADfY4MGDWLEiBEsX768OvomSZIknQc/mwVNVbybUU4kzVZAURVeffkGOrSIQdMuzgAq2hHM3S0G1nQ3JOmCV+F3iKysLFq0KJslv0WLFmRnZ1dlnyRJkqQq4Oew8uRdV2Axm1AUMGwKilllbJ/2dG4de9EGidJFxKimP1KFVXhE0TAMzOayu9zMZrNvc4skSZJUu1zWsyWDurfAEAaJaTmoqkJshKx4IklSxZzTKuZT631KkiRJFwZVVVDRaBgVWtNdkaRzoohq2PUsB7fOyTkFitOnT2f69OmnPaZpZXNwKYqCx3P21AuSJElS7VZY6GTpkh0oKAwa3Ab7aUr3SVK1kIFdjTqnQPFcp5jllLQkSdKFz+3WmXLXR6SkZIOA7xZu5L2Zt6GZ5BpHSbrYndMaRUmSJOmf59ChNJISM/F4vJ8DCQkZHE5Ip3HjiBruWc05kprFpr1JNK4XRttG0TXdnYuXrPVc4y6+TKuSJElSuVxuD4vX7KbY5eGyS5oT7G8/6zUhIX5lPltDQhzV1MPab9fhY9z24ldoqopb13nipsEM7dmqprslSdVCzhtIkiT9QwghuPe1b3jpk99448vfGffUpxQUuc56XZ06ATz86FACAmwEBNp49LFhhIb6/w09rp2+/WMHbo9OkcuNRzf4+OcNNd2li5dMj1Pj5IiiJEnSP0RmbiEbdh/1/ZydV8TW/Un0bBt31msHDW7DoMFtqrN7leLRDVZuOoDHY9CrUyNs1rJp3KpaaKADk0nD7dFRVYXQwH/u6Kp08ZOBoiRJ0j+En92CxazhcusAeAyDOsEX7sigEIKHX/qGTTuPoigK9aNDmPXcDVjM1fvRNn5IFzbuTWTT3iTqhgXy+PhB1fp8/2QyPU7Nk4GiJEnSP4TNYualKcN5etZinG6dyaN60LR+nSp9Dt1jsDs+GbvDTKPGkac95/CRDJ749zccT8tl8IBWTJ0yBFU99zy9x9LzWLvlMCc+9o8kZ7Jr/zE6tIw5j1dwdn42C+8/dA26YaCpcgWXdHGTgaIkSdI/SK92cfzyxp3ndE368VwyM/Jp2DgCi6X8jw2PR+eBez9l7+4UDEMwemxXJt9VdrRt+gsLOZqUiRDw8287adM6hssHnvu0tp/dgqIqCMMbKuq6QVDA2TfnVBUZJP4N5K7nGid/yyVJkqRyLftlB+NHv8l9k+Zwx/iZ5OcVl3vu5k2H2bfnGG63jq4bzPtiLQUFzjLnpWfk+z6rhQFp6XmV6lugv43H7hiC2ayhqQq3je1JXExYpdqSaitxMlisqj/IQPFcyBFFSZIkqVzvvP4zuu7dJnr8WA5LF29j5Nhupz3XbDaVKrSgKMppp5SvGtKOBd9tBAUUFPr2bFbquBCCY8dysFpNZ91dfWW/1lzepxWGEJg0OfYhSVVNBoqSJElSuRSUU38o/fNftGsfS8/ezfh9eTygcOeUQdjtZUv93XFrP1q3qEtKag49uzWmfszJGtSGIXjmuYX8/udeQDDptv5cd80lZ+yjt5b1ua9xlC4AgmqYeq7a5i52MlCUJKnKHEnP5ruNuwhy2BjbvR22at59KlW/ux+6guefWABA3XohDL6yXbnnqqrC/00fRdrxQVitJoKCT582RlEU+vZqdtpj23YcZdWa/b6RyZmzlzN8aAccDut5vhJJkipDvotLklQlUnPyGfP6p7jcOpqqsCL+ELMmXV3T3ZLOU58BLfn8+/vIyiygfoMwTCbtjOcrikJEZGCln0/XjVJjg0J4Rxmlf6jqSJAtE26fE7mgQ5KkKrH+wFGEEHgMA6dHZ82+IzjdnprullQFgkP8iGsccdYgsSp0aBdL61b1MJlUNE3lurHd8Pe3VfvzSpJ0enJEUZKkKhEbHoy7ZNODAoT427H8DYGFdHHRNJWX/3Mte/cdw2630LBBeE13SapJ1ZBwW6bHOTdyRFGSpCrRLjaaR4b1IzLIn6bR4cycOBpFkRsMpHOnaSotW9SlYYNwCgudrFq5l507E2u6W5L0jyRHFCVJqjLX9+rA9b061HQ3pAtQSko2zz61gOSkbAYMbMWUey+jqNDFpNtnk51VgK4bXHtdd26d2L+muyr9raoh4bbc9nxOZKAoSZIk1bjnn/mW/ftSMQzBz4u20ax5NKqmkJ1VgNPpXev6xedruOXWfpUq9yddoAzh/VPVbUoVJqeeJUmSpBqXkpLt292s6wapx7JxOCylBpOsVhNyNYMk/b1koChJkiTVuCGXt8NiMWE2ayiKQq8+zenZqxmXdG8MgNmsMe3x4XLd6z9NVZfvq47a0Rc5OfUsSZIk1biJkwfQpGkkSUlZ9OjZlMZNIgGY/szV5OcXY7WaMZvlLnpJ+rvJQFGSJEmqcYqiMGBg69Mek3kU/8FkCb8aJ6eeJUmSJEmSpNOSI4qSJEmSJNVSMj1OTZMjipIkSZIkSdJpyRFFSZIkSZJqJ5lHscZdlCOKCQkJ3HDDDdSpUwe73U6HDh2YNWtWha/ft28f06dPp1evXkRFReHn50erVq245557SElJqcaeS5IkSZLkI4zq+SNV2EU3opiYmEj37t3JycnhvvvuIy4ujoULF3L77beTlJTEU089ddY2Zs+ezVtvvcWwYcO45pprsNvtrFmzhnfeeYdPP/2UVatW0aJFi7/h1UiSJEmSJNWciy5QfOyxxzh27Bjz589n9OjRANx+++0MHz6cf//734wfP55GjRqdsY0xY8bw6KOPEhwc7Hts0qRJdO/encmTJ/Pkk0/y1VdfVefLkCRJkiRJpsepcRfV1HNhYSFff/01cXFxviDxhKlTp+LxeJg7d+5Z2+nSpUupIPGE6667DoBt27ZVSX8lSZIkSZJqs4tqRHH79u0UFRXRo0ePMsd69OiBoiisW7eu0u0nJSUBEBkZWek2JEmSJEmqIFENm1lkCb9zclEFiomJiQDExMSUOWa1WgkPD/edUxlPPPEEABMmTCj3nJSUlNNueImPj6/080qSJEmSJNWEWhkoTp8+vcLn9u/fn/79+wPeqWfwBoWnY7PZfOecq+eff5758+czcuRIbr755nLPmzFjBk8//XSlnkOSJEmSpFOIaki4LUcUz0mtDBTPNdA6ESg6HA4AnE7nac8rLi4mPDz8nPvzv//9j8cff5z+/fvz2WefoShKuedOnjyZ4cOHl3k8Pj6ecePGnfNzS5IkSZIk1ZRaGSiKSkb7J6acTze97HQ6SU9Pp3v37ufU5muvvcYDDzzAwIED+e6773zBaHmio6OJjo4+p+eQJEmSJOk05IhijauVgWJltW3bFpvNxurVq8scW7NmDUIIunXrVuH2XnzxRR599FEuv/xyvvnmG2w2W1V2V5IkSZKkM5GBYo27qNLjOBwOrr76ag4dOsSCBQtKHXv11VcxmUxcf/31pR4/cOAAu3fvLtPW888/z6OPPsrQoUP59ttvZZAoSZIkSdI/zkU1ogjeAG/p0qWMHz+ejRs3+iqz/PDDDzzxxBM0bty41PkDBw4kISGh1HT322+/zeOPP05kZCSjR49m3rx5pa7x9/dn5MiRf8fLkSRJkqR/LiHAqOKSe3JE8ZxcdIFibGwsq1ev5rHHHmPGjBnk5+fTrFkzZsyYwaRJkyrUxvr16wFITU3l1ltvLXO8QYMGMlCUJEmSJOmid9EFigBxcXF8/vnnFTr38OHDZR6bM2cOc+bMqdpOSZIkSZJ0buQaxRp3Ua1RlCRJkiRJkqrORTmiKEmSJEnSRUCOKNY4OaIoSZIkSZIknZYcUZQkSZIkqXYSAgw5oliTZKAoSZIkSRcZIQQ7j6ZS6HTTsVFdzJpW012qHCEQQqbHqUkyUJQkSZKki8wL85exYPV2FEWheb06fHj3NZhNF2iwKNUouUZRkiRJki4iuYXFfPnnVty6gcujsycpjfX7E2u6W5VjiOr5I1WYDBQlSZIk6SJi0lRURfH9LATYLHICUaocGShKkiRJ0kXEYbXw6NX9ORErXt6pOR3j6tZspyrrRHqcqv4jVZj8iiFJkiRJF5lre3fgys4tcXl0wgIcNd0d6QImA0VJkiRJuggF2K013YXzJwwwqnrXcxW3d5GTU8+SJEmSJEnSackRRUmSJEmSaidBNZTwq9rmLnYyUJQkSZIkqVYShoFQqnaqWFT1VPZFTk49S5IkSZIkSaclRxQlSZIkSaqlqiOdjZx7PhdyRFGSJEmSJEk6LTmiKEmSJElS7WQIqnwEUJbwOydyRFGSJEmSJEk6LTmiKEmSJElS7SRE1SfIliX8zokcUZQkSZIkSZJOS44oSpIkSZJUKwkhEFW8plDIEcVzIkcUJUmSJEmSKmjBggV0794dPz8/QkJCGD58ODt27Kjw9YWFhTz66KM0bNgQq9VKw4YNmTZtGoWFhdXY68qTI4qSJEmSJNVOwgCqeo1i5dubPXs2EydOpE2bNrz44osUFxfz5ptv0rNnT1auXEnbtm3PeL2u61x55ZWsWLGC8ePH07dvX7Zu3crLL7/MunXrWLJkCapau8bwZKAoSZIkSVKtJAwQSlVPPVfuuqysLKZOnUpMTAwrV64kMDAQgGuuuYZWrVpx77338ttvv52xjY8++ogVK1Zw991388Ybb/geb9iwIQ8++CCffvopN910U+U6WE1qV9gqSZIkSZJUCy1cuJDc3FwmTpzoCxIBYmNjGTNmDMuWLePo0aNnbOPjjz8G4IEHHij1+F133YXdbvcdr01koChJkiRJUu0kjOr5Uwlr164FoGfPnmWOnXhs/fr15b8UIVi/fj1169alQYMGpY7Z7XY6dOhwxutripx6/psUFRUBEB8fX8M9kSRJkqRzd+Lz68Tn2d+hgLwqL8xSQB5Q/udxdHQ00dHRZR5PTEwEICYmpsyxE4+dOOd0MjMzKSwspE2bNqc9HhMTw+rVq8nNzS01YlnTZKD4Nzl8+DAA48aNq9mOSJIkSdJ5OHz4ML169arW5wgPD8fhcLCzcF21tG82m8v9PH7qqaeYPn16mcdP7Eq2Wq1ljtlstlLnnM6Zrv9rGzJQ/AcaMmQIn376KQ0bNsRut9d0d6pNfHw848aN49NPP6Vly5Y13Z0aIe+BvAcg7wHIewAX1z0oKiri8OHDDBkypNqfKzY2lvj4eNLT06ulfV3X0TTttMdON5oI4HA4AHA6nWWOFRcXlzrnXK+vaBs1QQaKf5Pw8HBuvPHGmu7G36Zly5Z06tSpprtRo+Q9kPcA5D0AeQ/g4rkH1T2SeKrY2FhiY2P/tuc7m1Onl/8a9J9pWvqE0NBQHA5HudPTiYmJBAYG1qrRRJCbWSRJkiRJks6qW7duAKxevbrMsROPde3atdzrFUWhS5cuJCcnk5CQUOpYUVERW7ZsOeP1NUUGipIkSZIkSWcxcuRIAgICeP/998nNzfU9fuTIEebNm0f//v2pX78+4F1nuHv3blJSUkq1MX78eABeffXVUo+/++67FBUV+Y7XJnLqWZIkSZIk6SxCQkJ4+eWXueOOO+jVqxeTJ0/G6XTy5ptvoigKr7/+uu/cdevWMWDAAG6++WbmzJnje3zChAl8/PHHvPnmm+Tk5Pgqs7zzzjv079+/Vm54lSOKkiRJkiRJFTB58mTmzZuHw+Hg4Ycf5tlnn6Vt27asXLmS9u3bn/V6TdP46aefeOihh1i+fDl33nknCxcu5IEHHuCHH34od4NNTVKEqGwxG0kqKyUlhRkzZjB58uRyd45d7OQ9kPcA5D0AeQ9A3gPpwicDRUmSJEmSJOm05NSzJEmSJEmSdFoyUJQkSZIkSZJOSwaKkiRJkiRJ0mnJQFGSJEmSJEk6LRkoSuctISGBG264gTp16mC32+nQoQOzZs2q8PX79u1j+vTp9OrVi6ioKPz8/GjVqhX33HNPmWSltdX53gOA//znP1x77bU0bdoUVVUxmWpfmtMFCxbQvXt3/Pz8CAkJYfjw4ezYsaPC1xcWFvLoo4/SsGFDrFYrDRs2ZNq0aRQWFlZjr6vW+dyDPXv28NBDDzFo0CDCwsJQFIWJEydWc4+r1vm8/u+//56JEyfSunVrAgICqFOnDj169OCDDz7A4/FUc8+rzvncg0WLFjFixAji4uLw9/cnMDCQtm3b8vTTT5OdnV29HZekyhCSdB6OHj0qoqKihN1uF9OmTRMzZ84UV111lQDE9OnTK9TGI488Ivz8/MR1110nXn/9dTFjxgwxYcIEoWmaCAkJEfHx8dX8Ks5PVdwDIYQARHBwsBgwYICIiooSmqZVY6/P3axZswQg2rRpI958803x8ssvi9jYWBEQECC2bdt21us9Ho/o16+fAMT48ePF+++/L6ZMmSI0TROXXnqp0HX9b3gV5+d878GHH34oABEXFyeGDBkiAHHbbbf9DT2vGuf7+iMjI0WjRo3E1KlTxfvvvy9eeeUV0aVLFwGIK6+8UhiG8Te8ivNzvvfgpZdeEsOHDxdPP/20mDlzpnj77bfFzTffLEwmk2jRooXIz8//G16FJFWcDBSl8zJ+/HgBiPnz55d6fNiwYcJkMokDBw6ctY3169eLrKysMo/PmDFDAGLs2LFV1d1qURX3QAgh9u/f7/t7v379alWgmJmZKQIDA0VMTIzIycnxPZ6QkCD8/PzEgAEDztrG7NmzBSDuvvvuUo+/8sorAhAfffRRlfe7KlXFPUhPTxeZmZlCCCEOHTp0QQWKVfH6ly5dWiYY9Hg8onfv3gIQP/74Y5X3uypVxT0oz4svvnhB/D+Q/nnk1LNUaYWFhXz99dfExcUxevToUsemTp2Kx+Nh7ty5Z22nS5cuBAcHl3n8uuuuA2Dbtm1V0t/qUFX3AKBx48bV0cUqsXDhQnJzc5k4cSKBgYG+x2NjYxkzZgzLli3j6NGjZ2zj448/BuCBBx4o9fhdd92F3W73Ha+tquIehIWFERISUt1drRZV8foHDhyIoiilHtM0jbFjxwK1+/86VM09KE/Dhg0B5PSzVOvIQFGqtO3bt1NUVESPHj3KHOvRoweKorBu3bpKt5+UlARAZGRkpduobtV9D2qLtWvXAtCzZ88yx048tn79+nKvF0Kwfv166tatS4MGDUodO7Gm80zX1wbnew8udNX5+i+E/+tQtfcgPz+f9PR0Dh8+zIIFC3jkkUcwm81cdtllVddhSaoCMlCUKi0xMRGAmJiYMsesVivh4eG+cyrjiSeeALxF1Gur6r4HtcWZXueJx870OjMzMyksLDzt9SfayM3NJTc3twp6Wz3O9x5c6Krr9ScmJjJjxgxCQkIYMWLE+XWymlXlPZgyZQp16tQhLi6Oq6++Gj8/P7777jtatGhRdR2WpCpQ+7ZVSn+76dOnV/jc/v37079/fwDfTlWr1Xrac202W6V3sz7//PPMnz+fkSNHcvPNN1eqjXNRG+9BbXKm12mz2Uqdc67X/7WNU6f0apPzvQcXuup4/fn5+YwYMYLc3Fzmz59PaGjo+Xe0GlXlPXj44YcZN24cGRkZrFy5kj/++IOMjIyq66wkVREZKEo8/fTT53T+iSDJ4XAA4HQ6T3tecXEx4eHh59yf//3vfzz++OP079+fzz77rMyapupQ2+5BbXOm11lcXFzqnHO9vqJt1LTzvQcXuqp+/fn5+Vx55ZVs3ryZt956i1GjRlVNR6tRVd6DVq1a0apVKwCuvfZa5s+fz5gxY9A0zbc+W5JqAzn1LCG8u98r9OfUkbczTbU4nU7S09PLnWosz2uvvcZ9993HwIED+fHHH/+2D97adA9qozO9zjNNx50QGhqKw+Eod1ouMTGRwMDAWjuaCOd/Dy50Vfn68/LyuPzyy/nzzz959913ueuuu6quo9WoOn8HRo8eTUBAAO+9917lOyhJ1UAGilKltW3bFpvNxurVq8scW7NmDUIIunXrVuH2XnzxRR544AEuv/xyfvjhhwtidKaq70FtdeI1nO51nnisa9eu5V6vKApdunQhOTmZhISEUseKiorYsmXLGa+vDc73Hlzoqur15+TkcNlll7F69WpmzZrF5MmTq7aj1ag6fwd0XcflcpGVlVX5DkpSdfjbEvFIF6Ubb7zxjDkET80NKIQ3V+DpEmg/99xzAhBDhw4VxcXF1drnqlZV9+BUtTGPYkBAQLn54/r37+97rKCgQMTHx4vk5ORSbbz//vunzaP46quvCkDMmTOnel/EeaqKe3CqCzGP4vm+/uzsbNGtWzehaZr4+OOP/7a+V5WquAcpKSmnbfuNN94QgJg8eXL1dF6SKkkRQogajFOlC9yRI0fo1q0beXl53HfffcTFxbFw4UJ++OEHnnjiCZ555plS5zds2JCEhARO/bV7++23mTJlCpGRkbzwwguYzeZS1/j/f3v3H9Xkdf8B/B1CEig/AgIqKBCrVkWoIGodiigUhQJFmQNBK6hTcXZVd4ZtVx2JVhyrOqo7WMUuWHs83ZhWqTpRayKgVmG11LawtkBQp0MLFUWL/Pp8//CbZ6R5+K2o6+d1To7mPve5v3I5uXmee+9ja4uZM2f2RXV65EG0AQDs2bNHuNr27rvv4tKlSyZzJ9esWfPwK9OBHTt2IDk5Gd7e3li6dCnu3buHbdu2oaamBoWFhRgzZgwAQK/XY9q0aUhMTER2drZwfktLC6ZNm4aCggLMnz8fU6ZMQUlJCTIzMxEYGIgTJ05AKpU+otp1TW/boK6uDtu2bQNwf7+8zZs3w9/fX+jfY8aMQVRUVF9Xq8t6W//x48ejuLgY0dHRmD17tln6zz77LJ599tm+qk6P9LYNnJ2dERAQAH9/fwwePBi1tbXQ6/U4cuQIVCoVzpw5A1dX10dUO8ZEPNpxKvtfUFFRQXPmzCEnJydSKBTk4+NDO3bsEI3r6elJP+52iYmJBKDdl6enZx/Uond62wZEJDzerr3X4yAnJ4cmTJhA1tbWpFQqKTIykkpKSkzi6HQ6AkCJiYlm59++fZtSUlLIw8ODZDIZeXh40OrVq5+ox5b1pg2MVxHbe4m12eOmN/XvqO4AKDU1te8q0gu9aYN169ZRYGAgDRgwgCwtLcnGxoZ8fX1p7dq1wlN7GHuc8BVFxhhjjDEmihezMMYYY4wxUTxQZIwxxhhjonigyBhjjDHGRPFAkTHGGGOMieKBImOMMcYYE8UDRcYYY4wxJooHiowxxhhjTBQPFBljjDHGmCgeKDLWC1u3boWXlxesra0hkUiQkZEBAJBIJJg6deojLVtfyc7OhkQiMXlM2cNmMBggkUiQlJTUZ3kaqdVqSCQS6PX6Ps+bMcb6Gg8U2SMnkUhMXlKpFM7OzggODsbevXvbPa+srAy//vWv4e3tDaVSCblcDjc3N0RERODdd9/FvXv32j13w4YNQn7/+te/elTuDz74ACtWrICVlRVWrlyJ1NRUTJw4sUdpddfUqVMhkUj6JC/GfgpUKhVUKtWjLgZjjx3LR10AxoxSU1MBAE1NTSgrK8PBgweh0+lQXFyMLVu2mMRdt24dNBoNWltb8bOf/QyJiYmwtbVFdXU19Ho9fvnLX2L79u0oLi42y4eIsGvXLkgkEhARsrKysGnTpm6X99ChQ8K/bm5uJsdKS0vx1FNPdTvNJ9GsWbMwceJEuLq69lmegwYNQmlpKZRKZZ/lyRhjP0U8UGSPDbVabfL+448/RmhoKDIyMvDKK68Iv/bT0tKQmpoKd3d35OTk4LnnnjNL69ChQ9i8ebNoPseOHYPBYEBSUhKOHj2K3bt3Iy0tDXK5vFvlvXr1KgCYDRIBYOTIkd1K60mmVCr7fMAmk8l+Um3MGGOPCt96Zo+tkJAQjBw5EkSEoqIiAPfnpqnVashkMhw5ckR0kAgAkZGROHr0qOixrKwsAMDixYsxd+5cfPfdd/jwww+7XC7jHDWdTgfA9Na5kdgcxbZz2/bu3YvnnnsOtra2Jre7cnNzERISAldXVygUCri5uSEoKAiZmZlC/SUSCU6dOmWWd1fmRLYtw+7du+Hn5wdra2v0798fCxcuxH/+8x+zc4y3uRsbG7Fu3TqMGDECCoVCmB/Y3hxF4628O3fuICUlBR4eHlAoFBg2bBjS09NBRKJlPH/+POLi4jBo0CAoFAq4urpi+vTp+Nvf/ibEaW+OYlJSEiQSCSoqKrBlyxaMHDkSVlZWGDx4MFatWoVbt26Z5afT6bBkyRJ4eXnB3t4e1tbW8Pb2hkajQUNDQ6dt2hV3795Feno6xo0bBzs7O9ja2mLUqFF45ZVXUF1dbRL32rVrWL58OVQqFeRyOVxcXBATE4N//vOfZum2bfvjx48jMDAQtra2cHFxwYIFC3Dz5k0AwIULFxAZGQlHR0fY2trixRdfhMFgMEvP+Fnfu3cPa9aswZAhQ6BQKDB06FBoNBo0NjaK1u/jjz9GWFgY+vXrB4VCgWeeeQavvfYa6urq2s2jubkZaWlpGD58OBQKBdzd3fHqq6+2m0dZWRmSkpLg7u4OuVyOAQMGICEhQXTqiLEfGAwG7NixAz4+PrCyssKAAQOwZMkSk3Lp9XpIJBJUVVWhqqrK5G/qUcyBZexxw1cU2WPNOJgwDsK0Wi2ampowZ84ceHt7d3iuQqEwC6uurkZubi6eeeYZBAQEwN7eHps3b8bOnTsRFxfXpTIZB2TZ2dmoqqoSbpl31ebNm3H8+HFERUVh2rRpwpfWzp07sXTpUgwcOBBRUVFwdnbG9evX8fnnn0Or1eJXv/oVHBwckJqaKpp3d+ZX/elPf8KxY8cQFxeHsLAwFBYWQqvVQq/X49y5c3BxcTE75+c//zmKiooQHh6OmTNnon///p3m09TUhBkzZuDq1asIDw+HpaUlDhw4gNdeew0NDQ1mbZeVlYVly5ZBKpXixRdfxPDhw3H9+nUUFxcjMzMTsbGxXarfqlWrkJ+fj9jYWERHRyMvLw8ZGRkoKChAYWEhrKyshLjp6ekoKytDQEAAIiIi0NDQgNOnT0OtVkOv1+PEiROQSqVdylfM999/j2nTpqGkpAQjRozAwoULIZfLUV5eDq1Wi5iYGAwYMAAAUFlZicmTJ+Pq1asIDg5GfHw8Ll++jJycHBw+fBj79u1DZGSkWR65ubk4dOgQIiMjkZycjDNnziA7OxsGgwEbN25ESEgIAgMDsWjRIly8eBEfffQRKioq8Pnnn8PCwvx6QWxsLIqKijB79mzIZDIcPHgQarUaxcXFyM3NNflRtGPHDixbtgw2Njb4xS9+gf79+0Ov1yM9PR0fffQRTp8+DQcHB7M8EhISUFBQgPDwcNjb2+PIkSP44x//iOvXr0Or1ZrEPXr0KGJiYtDU1ISoqCgMGzYMV65cwf79+3H48GHodDqMHTvWLI/Vq1cjLy8PUVFRmD59OnQ6HbKysvDtt9/i5MmTAO7/3aSmpgoL0VauXCmc7+vr29nHy9j/PmLsEQNAYl3x+PHjJJFISCKRkMFgICKi4OBgAkBZWVk9ymvjxo0EgNLS0oQwf39/kkgk9M0333QrraCgINFyE92vU1BQkElYamoqAaCnnnqKPv30U7Nzxo4dS3K5nKqrq82O3bhxo8t5d8RYBplMZlaGlStXEgBauHChaF4+Pj5m5SAi0mq1BIC0Wq1JuKenJwGg8PBwunv3rhBeXV1NSqWSlEolNTY2CuFffvklWVpakqOjI33xxRdm+Vy+fFn4f2VlJQGgxMREkziJiYkEgJycnIQ+Q0TU0tJCMTExBIDWrVtnck55eTm1traa5bdmzRoCQB988IFJuLENdTqd2Tli4uPjCQAlJydTS0uLybHbt2/TzZs3hffTp08nAPTmm2+axDt9+jRJpVLq168f3b59Wwg3tr1UKiW9Xm9S3+eff54AkKOjI73//vsm6S1cuJAA0IEDB0zCjZ/18OHDqba2Vgj/4YcfaOLEiQSA3nvvPSHcYDCQXC4nOzs7Ki0tNUlr2bJlBIAWL14smsfYsWOppqZGCK+vr6ehQ4eShYUFXbt2TQivra0lBwcHcnJyoi+//NIkrYsXL5KNjQ35+fmZhBv7gbu7O1VVVQnhTU1NFBgYSADo3LlzJud4enqSp6cnMcZM8a1n9thQq9VQq9V44403MHv2bISFhYGIsHLlSnh6egK4f1sOAAYPHtzt9On/F7FYWFhg/vz5QnhSUpKwqKUvLFmyBH5+fqLHLC0tIZPJzMKdnZ0faBleeuklszKo1WoolUrs3btXdMX4+vXre1SOrVu3wtraWnjfv39/REdHo66uzuS24fbt29Hc3Iy1a9di9OjRZul05zNfsWKF0GcAwMLCAm+99RYsLCzwl7/8xSTu008/LbqCfNWqVQCAvLy8Luf7Y9evX8df//pXuLq6YtOmTWZX72xtbYX5nVeuXMGxY8fg4eGB1atXm8QLCAhAfHw8amtrsX//frN84uPjERQUJLy3sLDASy+9BADw9vbG3LlzTeIb+/9nn30mWu61a9fC0dFReG9lZYWNGzcCgEn7vf/++2hsbMTLL79sNmd0w4YNsLOzw549e0T7U3p6Ovr16ye8t7Gxwdy5c9Ha2mqyCO29997DzZs3odFo4OXlZZKGt7c3Fi9ejAsXLuCrr74yy+P3v/89PDw8hPeWlpZYsGABgPtTHBhjneOBIntsaDQaaDQabNy4ESdPnkRgYCD27NljtuK5p06ePIny8nKEhoZi0KBBQnhCQgLkcjmys7PR1NT0QPLqyIQJE0TD586di7t378LLywurVq3CgQMHcOPGjYdShraDCiOlUglfX180NDSgtLTU7Hh75e6IUqnEsGHDzMLd3d0B3L8ta/TJJ58AAMLDw7udz4+J1e/pp5+Gu7s7DAaDMHcPAO7cuYO0tDSMHz8eSqUSFhYWkEgkcHJyAgD8+9//7nE5ioqK0NraiilTpsDGxqbDuBcuXAAABAYGiv5YCA4ONonX1rhx48zCjIus/P39zY4Z+/+VK1dEyyLWfpMnT4ZUKjXJ/9NPPzUpW1uOjo7w8/NDQ0MDysrKulRmsX5x9uxZAEBJSYnwY7Lt6+uvvwYA0T7b1TwYY+3jOYrssUHtLG5oy9XVFaWlpT368t65cycAmE1Q79evH6KiorBv3z4cPHgQs2fP7nba3TFw4EDR8N/85jdwdnZGZmYmtm7dioyMDEgkEgQFBeGtt94S/dLrKeOcuPbKJrYIob1yd0Rsbhpw/8oOALS0tAhhxsFb20F8T3VUv6qqKtTV1cHBwQFNTU0IDg7G+fPn4e3tjbi4OLi4uAgDNY1G0+F+nJ3pTp2Mbd7eNkPG8LaDXCOxVefGNu7oWHs/jMTaz9LSUpg3+yDKLNY3xPpFTU0NAHR6xb++vr7HeTDG2sdXFNkTZfLkyQDur7Lsjhs3buDAgQMA7t+m+/Em3/v27QPw38Hkw9TRRtnz58/HJ598gpqaGhw+fBiLFi1Cfn4+ZsyY8UCvLv54pa2RcdWz2ODiYW/wbfxS780VPKOu1u/gwYM4f/48kpKScPHiRezcuRMbNmyAWq3G0qVLe12O7tTJWCaxlefAf6dd9MVWRGLt19zcjO+++w729vZCWF+U2XhuSUkJiKjdV2JiYo/zYIy1jweK7ImyYMECyGQy7Nu3T3ROUlttrwTt3r0bjY2N8Pf3x6JFi0RfLi4uOHHiBCorKx92NTrl4OCAF154AVlZWUhKSkJtbS3y8/OF48ZVuD29KmLcXqeturo6fPbZZ7CyssKoUaN6VvBeMD7V5h//+Eev0xKrX0VFBS5fvgyVSiUM4L799lsAQExMTJfS6K4JEybAwsIC+fn5uHPnTodxjXNGCwsL0dzcbHbcuB2T2OreB02s7oWFhWhpaTGZ22r8v9jjDG/evPlA+pOxXxQUFPQ4ja6QSqV8lZExETxQZE8UlUoFtVqNxsZGREREiD55Bbi/nUbbuW7G21aZmZnYtWuX6Gvp0qXCgpdHQafTid5+N97qa/ukF+P8uUuXLvUorz179pjNdVOr1airq0N8fLzo1kIP27Jly2BpaYn169eL/ghobz6dmLfffhtVVVXC+9bWVqSkpKC1tVVYzAD8d0uhHw90Kioq8Oqrr3avAiJcXFwwZ84cXLt2Db/97W/R2tpqcry+vl64fTt48GCEhobCYDAIW7UYnTt3Dnv37oWjoyNmzZrV63J1Zv369SZz+BoaGvD6668DgEn7zZs3DzKZDNu2bRMG3UZr167FrVu3MG/evF71pwULFsDBwQEajUZ0AUpra+sDee62k5MTbty4gR9++KHXaTH2v4TnKLInzu9+9zs0NzdDo9Fg/PjxCAgIwLhx44RH+OXn5+Obb74R5vTp9Xp8/fXX8PHx6XBBxqJFi7BhwwZotVpoNBphLlNfmTVrFmxtbTFx4kSoVCoQEQoKClBUVAR/f388//zzQtyQkBDk5OQgJiYGL7zwAqytreHp6SmsdO1MeHg4Jk2ahNjYWLi6uqKwsBCFhYVQqVT4wx/+8LCq2CEvLy9kZmYiOTkZfn5+iI6OxvDhw1FTU4OioiLY29sLV9U6M2nSJPj6+iIuLg5KpRJ5eXkoKSmBv7+/yYpi4558W7ZswcWLF+Hn54dLly7h0KFDiIiI6PFAvK0///nP+OKLL/DOO+9Ar9djxowZkMvlqKysRF5eHnJzc4W9Od955x1MmjQJKSkpOHbsGMaNGyfso2hhYQGtVgs7O7tel6kzo0aNwujRo032USwvL0dERIRJH1OpVMjIyMDy5csxduxYxMbGwsXFBadOncLZs2cxcuRIpKen96osTk5O+Pvf/y48KjIkJASjR4+GRCLB5cuXcfbsWdTU1PR6c/SQkBAUFRUhLCwMU6ZMgUKhwJgxYxAVFdWrdBl74j2KPXkYawvt7KPYma+++opefvllGj16NNnZ2ZFMJqOBAwdSWFgY7dq1ixoaGoiIKCEhgQDQ22+/3WmaoaGhBID279/fadye7qPY3v5727dvp5kzZ9KQIUPI2tqaHB0dydfXl9LT0+nWrVsmcZubm+n111+nIUOGkKWlpWh+YtqWQavV0pgxY8jKyoqcnZ0pKSmJrl692q16EnW8j2J7+9J11BZnzpyhmJgYcnFxIZlMRq6urjRjxgzKyckR4nS2j2J5eTlt2rSJRowYQQqFgtzc3GjFihVUV1dnlt+lS5coISGB3NzcyMrKiry8vCg9PZ2ampp69DmKqa+vpzfffJN8fHzI2tqabG1tadSoUbRixQqzfTOvXLlCycnJ5OHhQTKZjJycnCg6OprOnz9vlm57bU9EpNPpCAClpqaaHWuv/YyfdUNDA73xxhukUqlILpfTkCFDSK1WC39TP5aXl0ehoaHk4OBAcrmchg4dSikpKfT999+bxe2oP3VUn8rKSlq+fDkNGzaMFAoF2dnZ0YgRI2jevHn04YcfmsQ19oPKysout0t9fT0lJyfToEGDSCqVirYPYz9FEqIuLDVljP1PUKvV0Gg00Ol0XXrk35MmKSkJu3fvRmVlZbeeVMPumzp1Kk6dOtWlHQgYYz8NPEeRMcYYY4yJ4oEiY4wxxhgTxQNFxhhjjDEmiucoMsYYY4wxUXxFkTHGGGOMieKBImOMMcYYE8UDRcYYY4wxJooHiowxxhhjTBQPFBljjDHGmCgeKDLGGGOMMVE8UGSMMcYYY6J4oMgYY4wxxkTxQJExxhhjjIn6PyKsDlMozfsQAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"### UMAP"
],
"metadata": {
"id": "988-gjIhI7eZ"
}
},
{
"cell_type": "markdown",
"source": [
"Uniform Manifold Approximation and Projection (UMAP) is a powerful dimensionality reduction technique and manifold learning algorithm. Similar to t-SNE but computationally more efficient, UMAP maps high-dimensional data to a lower-dimensional space while preserving the inherent structure and relationships within the data.\n",
"\n",
"PCA focuses on capturing the maximum variance in the data by finding the principal components, which are linear combinations of the original features. On the other hand, UMAP specializes in preserving local and global structures within the data, making it adept at capturing non-linear relationships."
],
"metadata": {
"id": "44ulEKNArfuc"
}
},
{
"cell_type": "markdown",
"source": [
"We use UMAP algorithm to project the vectors down to 2D."
],
"metadata": {
"id": "E9uXnpdijFGx"
}
},
{
"cell_type": "code",
"source": [
"from umap import UMAP\n",
"from sklearn.preprocessing import MinMaxScaler\n",
"\n",
"def get_umap_embedding(features, umap_params):\n",
"\n",
" # Initialize UMAP\n",
" reducer = UMAP(random_state=7, **umap_params)\n",
" # Fit UMAP\n",
" mapper = reducer.fit(features)\n",
" embedding = mapper.transform(features)\n",
" return embedding\n",
"\n",
"umap_params = {\"n_neighbors\": 15, \"min_dist\": 0.1, \"metric\": \"euclidean\"}"
],
"metadata": {
"id": "OpJpZwedjF0E"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"import matplotlib.colors as colors\n",
"\n",
"fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(6, 6))\n",
"\n",
"# Scale features to [0,1] range\n",
"X_scaled = MinMaxScaler().fit_transform(X_train)\n",
"\n",
"embedding = get_umap_embedding(X_scaled, umap_params=umap_params)\n",
"divnorm = colors.TwoSlopeNorm(vmin=y_train.min(), vcenter=1, vmax=y_train.max())\n",
"\n",
"ax.scatter(embedding[:, 0], embedding[:, 1], c=y_train, cmap=\"coolwarm\", norm=divnorm,\n",
" s=10.0, alpha=1.0, marker=\"o\", linewidth=0)\n",
"ax.set(xlabel=\"UMAP Dim 0\", ylabel=\"UMAP Dim 1\")\n",
"\n",
"plt.tight_layout()\n",
"plt.show();"
],
"metadata": {
"id": "totJHnKgjQgP",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 648
},
"outputId": "19703ea1-6254-465d-c1da-a7e140ed7a80"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.10/dist-packages/umap/umap_.py:1943: UserWarning: n_jobs value -1 overridden to 1 by setting random_state. Use no seed for parallelism.\n",
" warn(f\"n_jobs value {self.n_jobs} overridden to 1 by setting random_state. Use no seed for parallelism.\")\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAJACAYAAABlmtk2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADtdUlEQVR4nOzdd5icZ3n3/e91t+mzs72orLosybItWe69gGkuYD8Ggo0NBAghLyFAiB3KAwQI5SGEkhDAxhhMnNCNTXNvuHfZlmTVlVba3qbP3OV6/5jVrtaS7ZW0q11pz89x6JBm5p57zpldzfzmqkprrRFCCCGEmEGMqS5ACCGEEOJQkwAkhBBCiBlHApAQQgghZhwJQEIIIYSYcSQACSGEEGLGkQAkhBBCiBlHApAQQgghZhxrqguY7np7e/nzn//MvHnziEQiU12OEEIIIV5FoVBg27ZtXHDBBdTV1b3icRKAXsOf//xnrrjiiqkuQwghhBD74aabbuJd73rXK94uAeg1zJs3D6i8kMuWLZvaYoQQQgjxqtatW8cVV1wx8vn9SiQAvYbd3V7Lli1j9erVU1yNEEIIIcbjtYatyCBoIYQQQsw4EoCEEEIIMeNIABJCCCHEjCMBSAghhBAzjgQgIYQQQsw4EoCEEEIIMeNIABJCCCHEjCMBSAghhBAzjgQgIYQQQsw4EoCEEEIIMeNIABJCCCHEjCMBSAghhBAzjgQgIYQQQsw4EoCEEEIIMeNIABJCCCHEjCMBSAghhBAzjgQgIYQQQsw4EoCEEDOKH2jyJU2g9VSXIoSYQtZUFyCEEIfKQFbzwIt5aiMF/MAgGouwZlFkqssSQkwBaQESQswYD7xQZHF1P0oH9KZtdnR6bN5VmuqyhBBTQFqAhBAzRshySRcdHt9Wh0YB0JUNWNgyxYUJIQ45aQESQswcyqI3GxoJPwAlV94GhZiJ5H++EGLGuGB1lILvjLnONGQwtBAzkQQgIcSMctnpUVIxD9PQOJbmglVTXZEQYirIGCAhxIxz9Xn2VJcghJhi0gIkhBBCiBlHApAQQgghZhwJQEIIIYSYcSQACSGEEGLGkQAkhBBCiBlHApAQQgghZhwJQEIIIYSYcSQACSGEEGLGkQAkhBBCiBlHApAQQgghZhwJQEIIIYSYcSQACSGEEGLGkQAkhBBCiBlHApAQQgghZhwJQEIIIYSYcSQACSGEEGLGkQAkhBBCiBlHApAQQgghZhwJQEIIIYSYcSQACSGEEGLGkQAkhBBCiBlHApAQQgghZhwJQEIIIYSYcSQACSGEEGLGkQAkhBBCiBlHApAQQgghZhwJQEIIIYSYcSQACSGEEGLGkQAkhBBCiBlHApAQQgghZhwJQEIIIYSYcSQACSGEEGLGkQAkhBBCiBlHApAQQgghZhwJQEIIIYSYcaypLkAIMbNcf3uJnsHKd6+qpOJvLjBRSk1xVUKImUZagIQQh8y9z5TYtgsy2YBMNqCjy+dHd5SnuiwhxAwkAUgIccg8scUkCEYv+z4UXXPqChJCzFgSgIQQh4wyYM/eLqUgFfWnriAhxIwlY4CEEIdMa73C90xy+UozUFVC8a5z7CmuSggxE037FqCNGzfyuc99jtNOO42mpiZisRjLly/nIx/5CB0dHXsd73keX/3qV1m6dCmhUIiWlhY+9KEP0dfXNwXVCyH2dNlpJicdZTC70eTsYy0+9lYJP0KIqTHtW4Cuv/56vvvd73LhhRdy+eWXE4lEeOSRR/jP//xPbrrpJh566CGOOuqokePf8573cNNNN/GWt7yFT3ziE2zdupV///d/58EHH+SRRx4hFotN4bMRQpx1tMFZR091FUKImW7aB6DLLruMa665hlQqNXLdBz7wAU4++WQ++MEP8tnPfpaf//znANx9993cdNNNXHTRRdxyyy0jxx9//PFcdtllfOMb3+Czn/3soX4KQgghhJhmpn0X2Jo1a8aEn93e8Y53APDcc8+NXPeTn/wEgI997GNjjr300kuZN2/eyO1CCCGEmNmmfQvQK9m5cycAjY2NI9c9+uijGIbBySefvNfxp5xyCjfffDP9/f3U1NTsdXtHR8c+xxStW7duAqsWQgghxHRw2Aagz3zmM0BlzM9u7e3t1NXVEQqF9jp+9uzZI8fsKwB9//vf5/Of//wkVSuEEEKI6eSwDEBf/vKX+dWvfsUll1zCVVddNXJ9Pp+nurp6n/cJh8Mjx+zLBz/4QS666KK9rl+3bh1XXHHFBFQthBBCiOnisAtA3/rWt/jUpz7F2Wefzc9+9rMxewhFo1FKpdI+71csFkeO2Zfm5maam5snvmAhhBCvqW3d8ygFphNl1oIFU12OmAGm/SDoPf3bv/0bH/3oRznvvPP4/e9/v1eYmT17Nr29vfsMQe3t7SPHCCGEmD62r3+eMCVCuoRRGmLHpo1TXZKYAQ6bAPTVr36Vj3/847zhDW/gtttu22dLzoknnkgQBDz66KN73fbwww+zcOHCfY7/EUIIMXVs7Y782yBAe8UprEbMFIdFAPryl7/MNddcw1ve8hZ++9vfjoznebkrr7wSgG984xtjrv/1r3/Ntm3bRm4XQggxfeg9N4gD4OWXhZh4034M0H/8x3/wqU99isbGRt72trfxi1/8Yszt8XicSy65BIDzzz+fd77zndx8881ceOGFXHzxxWzdupVvfvObLF++nI9//ONT8AyEEEK8mrJ2cChhEOApm6rmuVNdkpgBpn0AevzxxwHo6urive997163t7a2jgQggBtvvJGVK1dyww038OEPf5iamhquvPJKvvSlLxGPxw9V2UIIIcZp3rLlAASBxjCk9UccGkprrae6iOnsqaee4vjjj+fJJ59k9erVU12OEEIIIV7FeD+3D4sxQEIIIYQQE0kCkBBCCCFmHAlAQgghhJhxJAAJIYQQYsaRACSEEEKIGUcCkBBCCCFmHAlAQgghhJhxJAAJIYQQYsaRACSEEEKIGUcCkBBCCCFmHAlAQgghhJhxJAAJIYQQYsaRACSEEEKIGUcCkBBCCCFmHAlAQgghhJhxJAAJIYQQYsaRACSEEEKIGUcCkBBCCCFmHAlAQgghhJhxJAAJIYQQYsaRACSEEEKIGUcCkBBCCCFmHAlAQgghhJhxJAAJIYQQYsaxproAIY5Ud6916RrQNFcpzj7WnupyhBBC7EFagISYBP/7YIltPRZF32FLn8VP7ylPdUlCCCH2IAFIiEmQL1sopQBQSlEObAaz7hRXJYQQYjfpAhNiMmgFao+LGobyPqn4vrvCBoc8fvmYQhkKgoD3vU7+awohxGSSFiAhJkF1zEdrDYDWmpBZJhXbd6jxfc2vnjCIRgwiIUU4bHD9nf6hLFcIIWYcCUBCTIJLTrY5cWGARYmGWJELVimqXiEA5Us+9h43KaXQezYfCSGEmHDSzi7EJDm61eToVvM1j3NsgyAA9jh0d+uREEKIySEtQEJMsZBtMK/OpVTWuJ4mXwz46/NfOzgJIYQ4cNICJMQ0cPbKEGdPdRFCCDGDSAuQEEIIIWYcCUBCCCGEmHEkAAkhhBBixpExQEIcQcqe5qG1/YQMn7xrc96a6qkuSQghpiUJQEIcQZ58sYd5iUEAAg13P6E5d03N1BYlhBDTkHSBCXEESYVyI/82FEQcbwqrEUKI6UsCkBBHkJI/dq8x15f1hIQQYl+kC0yII0g5iDJYhrDpMlCKccKyqqkuSQghpiUJQEIcQU48ugaQMT9CCPFapAtMCCGEEDOOBCAhhBBCzDgSgIQQQggx40gAEkIIIcSMIwFICCGEEDOOBCAhhBBCzDgSgIQQQggx40gAEkIIIcSMIwFICCEm0GMv5Lj+NwMMpN2pLkUI8SpkJWghhJggH/16F+3tlQ1p//zAEP/0/nqOXxab4qqEEPsiLUBCCDEBPvu9bnbuyqMMBQoCP+C7Nw9NdVlCiFcgLUBCCHGQ7n4sx/qNeQyz8p1Sa03gBfiBnuLKhBCvRFqAhBDiIP3hwTSo0ctKKUxTcdpx0akrSgjxqiQACSHEQVq5KDzmstaaSDLEBy+rnqKKhBCvRQKQEEIcpHe+MYXjKHQQoHVAKGQSCtlTXZYQ4lVIABJCiIPk2IoffWEOjS0JUnVx4lVh/u7tqakuSwjxKmQQtBBCTADHNvjOJ+rQWqOUeu07CCGmlAQgIYSYIJ2D8NjzQ1RFPGxKnHh0LVYo/Jr3E0IcetIFJoQQE8D1NJs27iCWCFG2EuSsOh5fn57qsoQQr0ACkBBCTICXNu4iEnMI9nhbzROnXCxOYVVCiFciAUgIIQ7Svc9l2ZSuwTL8MdebKgBTZoMJMR1JABJCiIMwmPXpzEYpawcrKBO38hgqwDZcwsEghbKsBi3EdCQBSAghDkLHQDD8L8X69Gw816PG7CWXLdGRjpEvSAASYjqSACSEEAehvsrE90FrCDDYla9lVzbFnx70ueXuMp/9r36e21ia6jKFEC8jAUgIIQ5CXdJg9byAIAjw/YAVs8oUc4pMTlNXYzG7xeG2B3NTXaYQ4mWmfQD6yle+wtvf/nYWL16MYRhY1isvXXTvvfeilNrnn7q6ukNYtRBiJlk2x+Idp1X+HN0aJmQrFs4LcdRCh8xQmaGsx60PZqa6TCHEHqb9QojXXnstqVSKVatWkc1m6enpec37fOADH+CMM84Yc104LIuRCSEOjfNOjNAxFHDPAwMEw0OEftlZYs0Sm+YGeS8SYjqY9gFo06ZNLFy4EICzzz57XAHolFNO4Yorrpjs0oQQYp8iIYOhtD8SfgBK5YB/vXGAb/9j89QV9ip+fFeZoZyJZWreskbT2ijT98WRbdp3ge0OP/srn89TKBQmuBohhBif1YsdXr4lmO/v+9ip9qM/F+geNCm5ilzR4DePTPuPBiEO2rRvAToQf//3f8973vMeAGbPns0VV1zBZz7zGaLR6Cvep6Ojg46Ojr2uX7du3aTVKYQ4cp17QpTf3G3T3VMGQGuNaU7PYJF3LWA0rZU9CAKNYcimruLIdUQFINu2efOb38yb3vQm5syZQ09PD7/5zW/4yle+wp133sl99933iiHo+9//Pp///OcPccVCiCPZtz/ZxMf+rRvPCzBNxTc/3jDVJe2T73mAOXLZMpHwI454R1QAOu2007jtttvGXPfe976Xa665hq9+9at8+9vf5pprrtnnfT/4wQ9y0UUX7XX9unXrZDyREOKAKKX45scbp7qM17So1mXrkEnJNTENzTFzXCAy1WUJMamOqAD0Sj7zmc/w9a9/ndtuu+0VA1BzczPNzdNzcKIQQkymN5+RZEt7mYF0mWULQkTDEn7EkW9GBKBYLEZDQwPd3d1TXYoQQkxLC2Y7U12CEIfU9ByRN8HS6TRdXV00NTVNdSlCCCGEmAaOqADU19e313Vaaz75yU+iteaSSy459EUJIYQQYtqZ9l1gP/3pT2lrawOgra0NrTVf/OIXR27/9Kc/PfLvN7zhDTQ2NrJmzRpmz55NT08Pt9xyC48++ihnnnkmH/7whw95/UIIIYSYfqZ9ALr++uu57777xlz3mc98ZuTfewagyy67jFtvvZXvfe97DAwMEAqFWLZsGd/85jf58Ic/jG3LyqZCCCGEOAwC0L333jvuY//pn/6Jf/qnf5q8YoQQQghxRDiixgAJIYQQQoyHBCAhhBBCzDgSgIQQQggx40gAEkIIIcSMIwFICCGEEDOOBCAhhBBCzDgSgIQQQggx40gAEkIIIcSMIwFICCGEEDOOBCAhhBBCzDgSgIQQQggx40gAEkIIIcSMIwFICCGEEDOOBCAhhBBCzDgSgIQQQggx40gAEkIIIcSMIwFICCGEEDOOBCAhhBBCzDgSgIQQQggx40gAEkIIIcSMIwFICCGEEDOOBCAhhBBCzDgSgIQQQggx40gAEkIIIcSMIwFICCGEEDOOBCAhhBBCzDgSgIQQQggx40gAEkIIIcSMY011AUIIAeCXi+SeewA/8AmvPINIJDbVJQkhjmDSAiSEmHKB55J77A9Y+QFCxTTuE38im05PdVlCiCPYpAWgr371q5x77rmTdXohxBGksGszVuCNXLa0T8fGTVNYkRDiSDdpAWj9+vXcd999k3V6IcQRRIVjaK1Hr9Aa1wxPXUFCiCOedIEJIaZctGEOQ6FG0Bq0JmOlyBqpqS5LCHEEG/cg6M9+9rP7deKnn356v4sRQsxcqaPXsG7rIKAIlMGyWc5UlyQOQqns0tM7RHVVnFhMWvPE9DPuAPTFL34RpdTYZurXoJQ6oKKEEDNPNB7nmCUWxXwW2wkRjiWmuiRxgNq2bMcpdBPCJ9uv6Ag1s2jxnKkuS4gxxh2AIpEIs2bN4lOf+tS4jr/uuut46KGHDrgwIcTMY4fC2CFpLTjsFQax8AEwlMYp9QESgMT0Mu4AtHLlSjZt2sRVV101ruPvvfdeCUBCCDEDGehXvSzEdDDuQdDHHXccAwMD7NixYzLrEUIIcZgrYaGpDIHQQE7JopZi+hl3ADrhhBNIJpOsW7duXMeffvrpvPvd7z7gwoQQQhyeFq1YQdZKMaQTZK06lq5YMtUlCbEXpfdnVPMM9NRTT3H88cfz5JNPsnr16qkuRwghhBCvYryf27IOkBBCCCFmHNkMVQghDoDna37zUEDHkCJkw/85FWoS8p1SiMOF/G8VQogD8G+/celMKwxD4fqKn8nOP0IcViQACSHEftBa8/VfueRyesxir8pQeL4MqRTicCFdYEKII1qg4cd3+YRClW6rqojikpPMAz7fD28PyGQCXDcgCDSGUQlBvq+xTPlOKcThQgKQENPIbQ8XWL/ToD7pc9Xro1NdzhHhlw/5xKMBtfEylgFDeZP2bpjdcGAhKF+srG3j+9DVVSaRMDEMRW1CI43qQhw+5H+rENPEj28v8NQWm3zJpK3H4Wu/dKe6pCPCUA5SURfbBFP51MZLPLi+dMDn00AkbGJZCtfVDKV9ym7Ae14n3yeFOJzI/1ghpon2PnvM5VJZNhOeCEubwQ00MTNPwsqjFJjVITKFMInI/n8HXNAAmzoNlFH5eZnK5+8vsUe6woQQhwdpARJimnj5x6eSz9MJceZKk0xWj4QfgNpoiQ3biwd0votPMTlxiaahSnPcvIB/vMwmZMsPS4jDzQG3AOXzea6//nqeeeYZ2tvbcd29m+uVUtx1110HVaAQM8V5x3jc8ayF1pXwk4wGU13SEcP1LTRjQ+bzbZo1Sw/sfGesMDljxURUJoSYKgcUgJ577jle//rX09PTw6vtpKHkK6wQ43byijBHtbrc/YxPa6PB8YudqS7piPGWkxxue7iKY2YPYSjY0hNlIC+vrxAz2QEFoI9+9KP09PTw+c9/nne/+93MmjUL0zzwaaVCiIpU3OZtp9uvfaDYL5GQQX8hxi1PRzANTcG1mNekKXsBjiUjAYSYiQ4oAD3yyCNceumlfPrTn57oeoQQYlI0JkuYVpSqqEtVtIShYFunwZLZkakuTQgxBQ4oAMXjcVpbWye6FiGEmDSRSIhqw6MlNToFPp3zAQlAQsxEB9T2e+655/Loo49OdC1CCDFpmlKKsO2Pua4kSy0JMWMdUAD68pe/zLp16/jKV77yqoOghRBiumhIGeRKY8cqDuSn/3irG28v8X9/UuazN5a5/s8zN7E9uNbl33/rcvuTM/c1EBPrgLrAFixYwIMPPsipp57KD3/4Q4477jiqqqr2Ok4pxfXXX3/QRQohpp/dX34Ol9meiYhiqGDDgCIe8ii6Bt2D03st2AefL7Fx5+hrvXWX5qmNHqsXT++6J9pP7iyzvq3yGnT3wbpdHn9/4cx6DcTEO6DfoPb2di655BIGBgYYGBhg69at+zxOApAQR6aH1+fY1BnCCxRRJ+DSUy2sab4Scjyi8F2PdMEmXbDxPI3na17apVnSMj1rf3qbgdaj60FpDU9vCVi9eAqLmgJbO8deLhal50EcvAOeBr9hwwbe+973ctVVV9HS0oJlSRoXYibIFjxebA9TKFd60HNFxa8f8bj81OnfnbSmaRf3tc1GKdABpJKQG8pCS2KqS9unaBgMA4LhDKQUnLZseoa1yWRZUCrteXnmvQZi4h1Qarn77ru54IILuO666ya6HiHENOd6AUV3z7cORdk9PD6Qjl6UZKjUw5ZsA6ahCZkBc1LlqS7rFbXWQxBYdPcFaDR1Sc1Rc6d/0JxoK1sVa7cpyq4mGlHEoofH75uY3g4oAAVBwMqVKye6FiHEYaAqZhOyAoojoUcTBIdHl0Q4keL0ORtp2dpG1o8wt9qntunYqS7rFZ261CQIfFIxWNKiOHb+zFy9+qJTbBY2ezz8kqImAW87RRbeFQfvgALQySefzPPPPz/RtQghDgOGoZhd69ExaOIHCoWmZ9AkCPSE7oh+z9N5dvW6hB1NX9bmA2+OTch5Q7MWc1R9Ee17GJH4hJxzMmQLmh/dHjCUV5gGHNM6s1esXjHPYsW8qa5CHEkO6H/Ul770Je69917+53/+Z6LrEUIcBla2OvQNGgymFQNpA9uc+N3r09kikXiY9qE46YLJ927NT9i5lROe1uEH4IFnhljeWuTUZUUaq8rct1Y2xxViIh1QC9Dvf/97zj33XN71rnfxX//1Xxx//PGvOA3+M5/5zEEXKYSYXmbVKtYs1jyxEWwL3rRGTfh0+FDY4rltil2dRaASsL74syKffld4Qh9nugqcKOly5S26qd6jrzcH7P0+K4Q4MAcUgD73uc+N/Pv+++/n/vvv3+dxEoCEOHKdvdLgjBUaQ03OWkBF12Rg0Bu5rDWUPcVXf+HxT/9n6madFkoB3/zvAbr6At56TpSzj5+Yrrk9bdiepuSPtlCVfIv59aVXuYcQYn8d0LvIPffcM9F1CCEOQ+Ykrv2zZLbFM5t8CsXR62xbYTsmP7rd5YpzLZxDPB3a8zX/8M1+ookwoYTBLQ/7bOsa4uo3TWzLjGMGgAZGB5qn4jLwV4iJdEAB6KyzzproOoQQYozlc0NcfpbPj/9UIgg00ahFNGqRHiqhXfj3XxTIZuGMVWFet+bQzI7qHQwIRx0s0yAzWCDwAx57weTqN03s48xpTNDWl6O/WGldSoXyrFxSO7EPIsQMN+2nFXzlK1/h7W9/O4sXL8YwjNdccNHzPL761a+ydOlSQqEQLS0tfOhDH6Kvr+8QVSyEmCjLW00WtdrU1oapqrJp25pm25Yh1j4/RG+/y9ErQnRk4NlNh2Z/qGRMoQyD3q40g3050oMFBvty3PNYdkIfx7JMTlse46T5WU5dWODcYw/tQo0btg7y8AsDPPT8AM+82HVIH1uIQ2XaB6Brr72W22+/nTlz5tDY2Piax7/nPe/hmmuuYcmSJXz3u9/l6quv5sYbb+Tss88ml8sdgoqFEBOpJmGys22A9FCR9NDoOJjuHo9MVhEOW2zoOTRvZdGwgVcuU8iNLp6oA826Nu9V7nVgbMtkVn0VTbWHbrZa/1CeO58aojNrDX/hNCipENva04esBiEOlXG9a+xueXnppZdGLpum+Zp/JmJ7jE2bNjEwMMDdd9/N0qVLX/XYu+++m5tuuomLLrqIW2+9lfe///18+ctf5qc//SnPP/883/jGNw66HiHEoTOUDdi0OYvrw+CQP+Y2pcCyd4+RUXQNHppp4p97XxW2M3Y8zjlrIofksSfTjp19PLZZkfNjZN0Q6XIIrSsD3AezsgO7OPKMK6GceeaZKKWIRqNjLh8KCxcuHPexP/nJTwD42Mc+Nub6Sy+9lHnz5vGTn/yEz372sxNanxBi8nz7lzkKvkNdvYPn+bhxh1K+jFJw1NI4kfBoEPnFfR4feJONY0/ue1NtlcmH3l7Ddb8eJAg0F5+TZNn80KQ+5qHwUpdJx1AYUJiGpjYOga0wCGhpiE51eUJMuHEFoHvvvfdVL08Xjz76KIZhcPLJJ+912ymnnMLNN99Mf38/NTU1e93e0dFBR0fHXtevW7duUmoVQry6sqspaQfbrjRUm5ZBoMEtV1p65jT4WMrHMgI816Wjz2ZXn2Ze0+R/OTtlZYRTVh7+rT67DeUCunNxds868wNFoaxQkQDf0zTUHjnPVYjdjqgt3Nvb26mrqyMU2vvb2OzZs0eO2VcA+v73v8/nP//5Sa9RCDE+7d0epjnaS69UZbFF2zZIxTyOmZMBMkBlt/RnN9ZSFZu+m2Rm8ppntwQ0pBRLZk+v4ZfPbHZRjH3tLOWyuCVCberwb90SYl8OKgC1tbXR09ODUor6+nrmzp07UXUdkHw+T3V19T5vC4fDI8fsywc/+EEuuuiiva5ft24dV1xxxcQVKYQYl1n1JkHgjewvpnVlw1XLVoScseN9DANWLoLUNN3dYm2bxy/vC/CDytilaBg+fqmJY+29ts+fn/Fo71HUJDWXnGhN+BYj+9Jk7KC2Cp7qX4CvDcKWR9i2qU0dUd+RhRhjv3+7e3t7+fKXv8zNN99Md3f3mNsaGxt517vexbXXXrvPVpbJFo1GKZX2vVpqsVgcOWZfmpubaW5unrTahBD7J+QYnHuMz53PVFpLXNcnEjGZPSuJYUDnYC9Nqcrg3LXbwvTk4fYnS1ywZmq2yhjKefzf67IE2iAZU3zm6jghW9Gb1vzpCUVQyW9oDbkCfPlnJT7yVoea5Ojb8G8f8djSVQlFQ3m46T6PK8+e3BCyY+M2+v0kBRVnUXUfjVYvdjTB3PmzJ/VxhZhq+9UOu3HjRtasWcO3vvUturq6ME2ThoYG6uvrMU2Tzs5O/u3f/o01a9awZcuWyar5Fc2ePZve3t59hqD29vaRY4QQr63sBWxs9+gemLpNOM9ZHeGcYzSu62FZinjMQGtwSwEv7Ejy+ycS3PJokic3RymVoXNAH/Rj/sv1/Xzk//Xw2PP7t2zGP/9XllIZXDegb9Dn0z+srA302IZKTfplpWkN3/rl2PeqjsGxb8mDucntKhvIlOjLBuSNJFoZFIwEQ0GC5pa6SX1cIaaDcf/vCoKAd73rXWzfvp2zzjqLO++8k2w2S0dHB52dnWQyGW6//XbOPPNMtm3bNiXdRieeeCJBEPDoo4/uddvDDz/MwoULp6RlSojDidaam+8v8adnAtZ1wv3rfb7/++Jr33GSnL8mzAffEubsYwzesErx/tcr/uGtFqcfbdEzZDOQrXQTNdUpMtmDC2vv+0IX6zcV6Osr852bh7jlgcy47pcrBHsFnEIxIAg0Zb8yfmnP2WmWCYMDZQqlsfXa1tiT7KOHbMLs7MnTvqsPrcf2sZV8Gzs0MzacFTPbuAPQ7bffzhNPPMHll1/OXXfdxbnnnovjjC4/HwqFOP/887n77ru57LLLePTRR7njjjsmpehXcuWVVwLstd7Pr3/9a7Zt2zZyuxBi37Z0wfdvD4hFTSozghSObWA5Bp0D/mvdfdIsnGXy+hNCrFxgEQ1VPrCPW2RxziqTZAya62DHLo9Lzzi4AbvFwuiChkGgufX+8QW/wUxAEOwdvgolTVONwjAgEjaIhg0c02dwoIAXwFEvmz6fjEI8orFMTSSkWdRc3uucEyUz0I02LJIMonTlZ6u0T5W173GSQhxpxt25/Ktf/YpQKMR3vvOdV10DSCnFd7/7XX73u9/xy1/+kte97nUHVeBPf/pT2tragMqga601X/ziF0du//SnPz3y7/PPP593vvOd3HzzzVx44YVcfPHFbN26lW9+85ssX76cj3/84wdVixBHqofWeWzuBqWM4VaHl80IMg1e2OESDRkko9NnptUbTnB4wwmVHdojoYnvLnr5zKhX0lBjYihdGaitFEpBIhwQixi01EBtCoKgEoQyQwEKm0WzbS4/c/Qt2PM1KEjtsetFfZU9wc9olKV8ykAu3sTcwhbcwCIUjbBgyfxJe0whppNxB6CnnnqK0047jfr6+tc8tqGhgdNPP52nnnrqoIoDuP7667nvvvvGXPeZz3xm5N97BiCAG2+8kZUrV3LDDTfw4Q9/mJqaGq688kq+9KUvEY9P0ykiQkyhF7YV2TVkER4OECFH4fkBljk6+8oPAhSannRAMjr9diWfqPCTSNhkMpWB1aZl8DeXxcZ1P9tSfO3D1fz6nhwbtvusmG9x2XmV+86tgxMWKbZ1QyICJ57mELL33ry1P+MSsTRF30ZrsAyfxU2T91on4xH8bIGSipCPNhAzfRYsaJm0xxNiuhl3ANqxYwenn376uE+8YsUKbr755gMqak/7u+iibdtce+21XHvttQf92ELMBB19RQKdHDPdeihnELYr3SJB4DOvQeMFBrHw9Gn9mQz/9c8N3PNkjrWbfN7x+ggN1eNvgYlHDd795n1vWrp8duXPq3l4Q4CLM/xz0FSFy0Scfc9aHUh7fP2GLtK5gL9+Ww3HHTW+oLan+sYmHLuXYqFIJB6jqvq191oU4kgy7gCUTqdJpVLjPnEqlSKTGd8AQiHE1Fi3w6MzlwQUtqUxhhtSahNQEzdJRHwyBUWgFa01Fk2p6bWA32Q45/gY5xx/6B93IGcRH84xWsOjLyhuu7uft54V5szVowHn1nsG+MmtAzjhEEqZfP3GQS45p8z/ef2+10B7JcowSNU1TORTEOKwMu4AVC6XMc3xN8cahkG5PHkD+IQQB6dY8nlsszkypq/kQtgOsJTPRSfs7qI5MgPPj/5cZmtHgAKOXWhy6RmTN9bm1XQOaP77Xp9iWZOMMRKA2nYGFF2LRE2C258NSESLVCcMfnXnEI+tzWOa1sjPTRmK39yT3e8ANJlKZU3IObJbC8Xhb79W2DpUG6AKISbfM1tdlNpzurNCa83bTt17fMqR5PENHi9t94d3OofH13ucttygqXbixtvc/mSebb02hZJBLKR57+tNjH28f/73vT6lckBfT5HuTk1Pr83C+SEyudHp8IZh8JM/Zcj058nkAzRjp8prrfG9gHf/cxsEAZecm+Rtr6+dsOeyP+54eIgbbkmjtcYwDb720XpmNchWGmJ62q+vd5/73OcwTXNcf77whS9MVs1CiAlQFVNj1q7RGhKRg19IcLp7cmNlzR7bNnAcE9s2+NZvSuRLB//ctdas37CFWckBTp7XTVjl2dUL3/2dN7KVx55Krqa7q4hb9jHw6e0ts3NHniDQY86ZL2qyRY1hKpyQjWGokWn3btkl8AIKhYB8UXPjb3r5+L+2HfRz2V+dvS43/DaNDjRoCLyAa77Vc8jrEGK89isAaa33648QYvpa0GRjGR6BZrg1xOfkJUf+3k/HzleYphrZY0wphWma/PL+g++yb9vRRZ4khSBKmSjHL6qsI5QtQl967+MtQ9Nam+cjb+rm79/cwxtXDRGPG5ywLCDwPAb68uTSeRbOi3DMsTWkamNEYmFiySjKAN/30f7oe61SCmUoNrYVDvq57K8f/XZwr+t8Xz4HxPQ17ne7fS3yJYQ4fIVsg6NbNVs6PTTQXK2o3v/JRBOqp7/Mtd/poezChWfG+D+vT03YuZ/Y4HLvWo2PgeMY7PmWpjUMZA7+PS5bKBOwR5ePYWEaGt8D52XDjHb0aLzA5KLVGezhd+KVrUXimTIZN0xfdw4NnHh8DbZd+a5aVxvi8afSKKWwbRsPH1/5Y79wTlHmCIK9H9qyjswxZOLIcOR/3RNCvKJjW01m12h8ralLqEkb59c36PFPX9tKd79HddLku/93AYnY3m8/f/+10Q2Wf31XhkzO471vPfh9qR5+0eX+Fw1s20BpTRD4BAEYRmXcUyHvYlRb+IHGNA78NdBagdLsXkjS8yBsu5x0lLPXApJ3PafRgcY0xsYGx9b0dPqUypraWnsk/AAkkxamCb4POggwDEUsESKXKREEAb7nowzF0nmRA34OB+pdb67i098potk9OBt+8sVZh7wOIcZLApAQM1xtorLlxWS6+pMbUIaJUgaDGc2Vn9zMz/7fImKR0YHH2XylJWNkdpNS3P5QjvdcUnvQwewv6xgJEkopqqpsurtL+H5APueiNWzaoXlig8VJyywyeZ9CSdNQvX9vkYtnp9i8c5ASEUCTtPJ89G1zMI29W0KCAOqSPpsyLTTGsuhimu09YYiHRmaDZbM+nqexLDV82cNzNb7v01IT8PGrGolHDe55psyzGwoUcyXOPj7C2SdWHdTrdSDmz3L49jXNrN9aorXFYXbj1MysE2K8JAAJISbMl37YzdqXioDm5JVhLrugGh1otGbMLCit4akXcpyxJjlyXTxqVvpQ1O5jNIVckV/fMcSlB9kV5ljg7XFZKUU4ZNDTUxoZCF4u+bR1evz092mymRJKKSIRk6/+XQ2J2GvPEPNdl56uTmwrhE0eMyjTUpfcZ/i55xkP8Jg/S6GUzYu74tz5gMb3QRkZzj4pxOJFEbZuK/LMs0PMnRuhXPZZ+2wfg/0FLrugmisvHm1deeNJYd540tRvYFqbsjhtlXysiMOD/KYKISbET27r5+nnsyOXH3qmwBMvFLjyLam9dkoHqNtH60osajCULqOUwi25BH5AV9/BD04+f5XB7c8yMu7HtsAw2KuudZtL9PVkRwazeK7JNf8xwNf+vxpikb2DzKb2Et+4KY3nwzkr8qw52hkJcL7hMNjRTihRjWGNtobkS5q7nvI5daWHUpXr120s4g/vNasDzdPrAjKZymywnh6fgf4iuWzldYjGI1jOkb1UgRCHgoxQE0JMiAeeHDvzKPADfEzKw+NVAn90kHFri8WyhXtv83Dd52ahtE8hW8BzPVBw50OD3Hjbwa0qv7jFIGRD2Kn8CfyAXM4dc0x9yiCT98eM5PXcSvj4yNe79jpnJhfwxesGKJU1QQB3rY3yzKaxLUVK+2jf2+u+GmjvtUcCmG2P7eLTyqC2Pk4yVRnLE/iVqftag2Wb9GUMnt7kUizLLCshDpQEICHEhFg6b2yrhDIUhmnQXGfz8+8up7nBIhbWfP7/a+bbn174iue56WsLqKkJY4ds4lUxookYv7u9k2//bO8QMl62pXjHaZqIHTDQV+SFFwbp7yvilj0uOMnhvW+Jcs2VcU5aGcEwR8OIE6qsuFws+LywuTTmnH94OFeZdr5H195zmwzQAWhN2M0QjYQJzBClPYJKNKSY32LSm7bY2qEgcJkzJ0Y4XAlP4YhFJOYQAOGITThskc+PhqhyySPth7jlYc2X/7vEl35WYHvX3iFLCPHqpAtMCDEhPnFVPe9aX8Qt+SilsJxKeFi9PIphKH7wxcXjOo9jG/iBIpaI4EQclFI4EYfntsKm7UUWzT2wsS7VCYP3nA+eH+a2BwJ29visXORw5qrR861eFmH9znp2tKXxPE2x4A4HHEVbZ5lZzQ6p4dlcc5vMvbrQCn6I1qYYfjFPuljPT55KUnzKxQ/ANDSfuKzyWGp49tnOroD2LodIxGT+4trKIoIKymVNPu/ieRpvd9/YHnL5YCRU5Qvwi78EnLeyzHGLpWtMiPGSFiAhDqF7H8/y91/bxb9ef+CtGdPZz/51DnX1YeywjTIUV745ObLg4P6Y3Whjh+yR1hXDUKAUj6zNH3SNlqm45OwYH/4/yTHhB6C11mfZXFh+dA2lojcyY2zlyioCx+Sltj7WbhkA4OQVESJhNdw9pQHN315WjR1N8tPHa/nWn5J42iRVHaK2NkQo4nDD7UWe2xowmA0olwM8X+H7emTBQGVUwpZtGySTDsVCif7OoTHrsCWrQgQvC16ep/nD49IKJMT+2K8WoMcee4xrr72Wxx57DKUUJ598Ml/60pc44YQTJqs+IY4Ydzyc5Qe/6MEwDDq6ylz2D1v45TcXTHVZE+4/r21iKOvj2IpI6MC+Y114borrfpfd6/rZzZM702lg0/OclUzzYmgRNWcnWL+xxNHH1mCYBlkX/IxJs8rS0ZumuS7Jf3yynifWlUjnFWuWOYRszRduzFHyLbTWxOOjg58jYYNiAW59xKNUrgzE9oYzS6HgU5/yyZVHF1FUSuGXPYJA47se7317E6mEyV/W+aRLBq472jIUjRgMDEgAEmJ/jDsArVu3jnPOOYdCYXSg45133slDDz3EE088wVFHHTUpBQpxpPjpbQMYxuhaNKZpcvW1m/nxv77yeJjDVVX8wDcW9XzNdb8epOxqQpHK1g5e2cNxNMcunbxNPgPPxXTTdOgGBowGkjVw8SlDbC2NhriiZ+EFJn1pj+a6yqDkVUtD2JbC9TSfvS7H0FAZxy5y9GITrcNjxgjVJ2Eg7QMmlhFgGuAHCsvQ1KZM3AEoD4/NLhVduncOArCkNcQbT08AcMqx8NymAr98AEzLIJU0cd2ABU2T9tIIcUQadwD62te+RqFQ4KqrruJv//Zv0VrzH//xH/z0pz/lq1/9KjfccMNk1inEYU/tY48CzxjbovHouhJ3PVmmvtri/W8+9Kv5Tgd3PJSh7IHn+bhDo11eq5bGqY6NvzstMzRIqVikqroGexzTxpVpUfBtinr0Z5Iw8igC9PBoARsX19PYts1//b5Eb9qstNR4Hm9cY9DdXcAw4K3nOlQlFEP5HG0Dscrmq8rjnAWdJLXBg9samdfo0VLrMZQzSMUDUAZlHHr6ArKZMuue3UkQVBZBfNdFY1fDPmZRhLaOPH94JE9/v0l1TPN3Fx76xQ+FOJyNOwDdd999rFq1akzQOfHEE1m7di333nvvZNQmxBHlP/65jvf93252LxRj2SamZfLC5iILZjt8/X/z5HIB/f0Ftm6D9dtKfPaqJFXxmTVUL53z8VwPQyn8PULjGceNPxBu37IZPwhAKTKZNOFwmGSqlnAkgmlWXs+yq3lwrcv9T+WoT2iuvijFjqCVpBoYCT0DuorFzjZ6dS228lkQ3UV7tgrPa6Y3PToDzLQsfvtgAa0hGVdUJSrXV0V9jommufU+n8+9v4a+7WWObirSnCiwqTCbWFgTC1e6soYKBgpNuRzghGyOWjmLXLbEZeeGWblk766/C8+IcvRCm1xBs2SujWNP7GreN/0xw6adHn/1+ihL5oZe+w5CHGbGHYB27drFW9/61r2uP/vss/nP//zPCS1KiCNRPBblwnNj/PmhyswiwzQIgoBHny/y3/f4zJ4dpcU28Lw4zz7Vw0Bvka/epPjndyeIR2dOCDpjdZw/PZghV6gM/G2ut7jsdSmOXzG+nVqLuexI+AFAGZRyWbZkDAqUUAT4nsNdz1ps3ZZDa9ixS/PEV7v41w/H2LDZpT7UjYPPHHZgmD6z7V4Cq9KKVBPK8/gmjVJjfyamZeCETHJ5n2JJEw5VHr9Q0lx4ehTTgEgiRabUSU20RDodpux72EZAoBUag5qYR6dp4PkQitiEIjbN9a/8s5/fMjnbTfz9vw8SiYVQyua/fufytjN9Tj9m73WbhDicjTsAlctlqqr2bmKtqqrCdd193EMI8XJXvKmeP9zfhjIsgiDAMAz6hnwSyejIXlWWZTBvQZLnn+tnIKNZv91jzVEzZ3pzS4PN1z/ewvqtRZrrbRbO2b/Wh9xgPxo1ZnezEmGyVLbd8AN4+KUwXT350WnsSmGYFtf/IeCNJ4awdYFZpW0YVEKYdj1KpgXKIOc6zG/06BxSuJ6B7wcUiz5aK+bPj5PNejzyouaYRZUxQpt2WVRFPBbOKVNdXY9pO3T39NEUz7FzKEZTsoRSEAnBWUfbLG7S/PahAD+AlfMUC5omd5+2l3t2i08kFhppKYtEbX5+V0ECkDjiyDpAQhxC1/+yk1y6OLLnlRN2CBkm2WDscUFQ6SKDyvo1M01dtcXp1fEDum8kGqUv72NRmcauNZT1HltRFBXFsrGPEVmgHJuHN4Y4bo5mDqM/FAVkSxZlHGaH+7BCWTqqZ/HizijZXDASpAbSmmOPipDOK55r83E9zcLGIguaAzbvKhCPlGmujTGARW0yoMEoEA6FaagySMUNTEOxolWxeJbC9SAWPrThB+D3j+u9li442M1ohZiO9isA/fa3v2Xbtm1jrnvmmWcAeO9737vX8Uoprr/++gMu7kj2m7uGuO0vBaoTiv/3D41TXY44RG67Jz261YIGt+SydruipqZAPG4SjZiUSz49XTmaGsOctybMwlnyPWV/RKvrqM2mGchXhp07liKmc8MtQIqwo7EMTU1dhMLwTvCgWTLfob7WIDDDrOsP05LaSbUxBECOOFV2EVRlNWjtFokmE8R7i+TzBscvyJCMeGzsjNI76JBKGry0uYRjaxYcNxqksgWfDe15Am0ACiOAo+eZ2NbYkOtYCmeKfuyBBtf1cYYL8P2A971ZxgCJI89+/Rd75plnRgLPy/34xz/e6zoJQPv2zZ/18thzedCQz8J7PtfJDZ+TOawzwctbHUJRB9OySGc0Qy+maag1WNhq85n3pahOSPA5ULVzFrDnhPnB3h7o2UWOOHkVYlZDiB1diuXLE8Rsl1TCIOOG8DCJGSWOTWylGKulXTXhewFZnWCR2sjudqO0G6E359DcZLC8qZPlsyqz1ZY2FfjLNgfDjFNXazMwUMbzwdq9KoDWBHusPxtoeGmnpuz6/PGxEj19LpapOP24MBefuv/dnlprHlqXwdcGgYZFjSFm1+/fOKGlcxTrgxCFQhnf15xwlMUxiyc2APVlSvznbzyUofjopSHikQNfNkGIAzXud1iZ5j5xnt1QHvNJWCoc/G7X4vBw5poY9z02usBfPBkb6V5QStHZ7XHSEkV14sgfb7Gh3WNnTxbH8qhy8syZ1UwqPjmDelN19SSSSbxSASscReHxyF/66e13qa4JsWRFI56vqErCqYnnKSfqKJuVWWfKAMqKrF2NX3QZKkXYlG/BVD4Jp0hrcnSPMMMAW5WY1xDD8yxSSYutPS4L6gs4uDQOvkBfrJVcqDKtva3LYWsXlEo+3V273wc09z5ROKAA9PiGITxduZ9SsLmrtN8B6NJTTJ5oCGjrcli90GBh88R2wfYMlvmf+xULF1R+x3/4pzJ/8yaIhCQEiUNr3AHoqquumsw6ZhTZv3nm+th7ZrFqeT8/uWWImmqHweLY230/4Oe3Z3nzGcmpKfAQ2dDusbHLxwsS4IEbhKB9J6mj5u33uXL5Ih09AwRBQF11kppUYq9jtNaYTgjTqbRk3PlQPz19lckbrguePzxjKx+Qqs+y02gZua9SEDXy9O8Yoq3L4OGOWubN9zh/+S5iOkuB4R3bUXSXqnGqqtk1CHNSRRrmh7GsEK3dD+H37WSoZiHV9FIdCWMla3ng+cqHvu+PHQRWKmu01vs99kbrsecpe3DdH8vMbVS8fvX4gpBhwImLDU5cPDljz/7zVp/F80en9TfWO3zvljwfu3x8s/yEmCiT1sYeBAG33norF1988WQ9xGHrHa+P8NPbspWND4FIbObM8BFwzkk1nHNSDQD/+fMBntnsYxiV2URuyauMgD7Crd9ZRhuj3SpD5Qh1jkkQ7D0A9+WCQJMvebjZIXT3RnpCs9DDU9K7eofozRo0VUfIlhQ7e3weXK8IAphd53H56ZXNVTft9Mecb7eyp9hVqCISzpK3K7NetdbMTj9PNJxheSssSfbxnaeO5ryFRdqCFmrCaQaKVWAouvKVcUYAg+UwVvcAxy1y2G41UZ6zmHJgErU9rMCnOTG8czwGoZCJaaqRPcFqUtYBDTyOqDwlHDQGgxnNA0+B55dZtxU27oQPXzg5LWz7Z+zz0lqPvBcKcShNeABqa2vjuuuu44YbbqCjowN/HzsZz3RvPL2aM1ZF+Leb05yzOsQZq2UF15noO//Tx/NtCtMyCfyAYr6EDgLe97bUVJc26RzDp7THZVNpDOW/YvjRWjOYKdM/mEcVunF9i2rdj8YaCT8w3O3T6fPHpwJcz0CjRvbb2tJhcd9al7OPcahriJPJ9IOGQsHF93zM4YE69/UfzXHBDlKpLDmidHaUWRjLjDzGwuo0EdOjlC5SX9NPW3H2yErRlqnx99iSa31vgu5MmhVz4sQoEjM0eT+MoTR9XR3MqwqxeaAGw1DUN4RRgY9pKa55x/j3PPM8n+3bOyi5HhqLOquPsg7xwMYE3vDbr+9Dz4BHoC2M1whWG9sKfPY7HQTawLYV3/3nWaSSE/dR0Vxr0N5RZlZTJYxt21HinWdP7h5vQuzLhPxW+77PLbfcwg9+8APuvPNOgiBAKcX5558/Eac/IsVjYT771/KffiZ7bgtYw2v/GKaBE7J5w6kRzllzYNO/DyenLta82NZHd7kaQ2nmRHtIqiwd3f001VePaf0IgoB12wYpl8uETA+lQ9TSC6qy1o/j5ymblfEkng9og0XNJdIFi7bOsW9xmzoUZx8DsxstElXNFPIuyaRDSOUJxRKAQimbl0pz8DoM0tkAo5TljLCBbVZa5tIlm5aUS1Otpte3R8IPgGX4VNmDGEC/V8XKliHqI0PY+CNrCiUNj2wQZdegSUNLjObZJVwPnt2ouPysMLNfZeHDl+vrT9PZPcCQX4WHRUzlKOoQzVY3fpBkzw734Q3rX94As5dPf3sXyrAwDIUfwIe+uJObv9Y67ppey3svsPnZ3S4vbiiC9nnvmyIsaJEB/+LQO6jfui1btvDDH/6QH//4x3R3dwNQV1fHBz/4Qd73vvfR2jpx/2mEONKol6+1Yihqq2bGQFClAuaGu2gNd475TC4NdNNnh6irrowH6evtZUuHT4kQEcvANnwsXWaPJXqIuUNoFBgGIcNncXUZX9kMFUPs6Kllz0bo1sZKuHjXmWWeW9+HqQxaYmlSTp4OtZBN2UYcS5MvGvTnTGIxE2LV3Nq9muNjG9DK4NHeuVx98k60ihMxioymCs0CewcJMwdAc9BLl1ePqT0MNRpEFJrN7TZzGjQL1RYsXHZaszl5RWy/wo9XLrGjJ0/eTTDoRnB9k0EVIm5mKVphWuohk1d4nsYyFakqC1/Daz2C1ubLWokUHT1lmusnpqveMhVXvc4BpOtfTK39DkCe5/Gb3/yGH/zgB9xzzz0EQYDjOLztbW/jV7/6FRdffDFf+MIXJqNWIY4o2g/QhhperE9TLrlUVx3534SDIKC/rw/MEJZfHmkZATAI6Ogt0L9zBxiKQT9FWqcAKLoRLOUTtQI8LCwqfU2+sjANDfjD5/DxsakKlzi2qZe1XXUEGmqT8Lrjhgcde0UWN+SJeKMz8hr1NpavqcU0Le5ea9CfG625Uzfz70/FOOm4GG84Zh1WoHGBmFFgrr2TXW4jthGMhB+AiFECBTk/SkLlR0KQHyiamhxcw6JLR6nTnTQFu9iuF/NCW4GGlEV91WuP1cllMpQCB085KKXRKLRWpL0E5WIfc1IFSm6UgmejlMLzX7PxBwDTUnsNwL7tgRzvf5sEFnFkGffXjY0bN/LJT36SWbNm8Y53vIO77rqLVatW8Z3vfIeOjg5+8YtfTGadQhxx/uGvkniuh1v2KBXKLFmcZOmcmRGAtNZoZeCaTqX1hko7StZ1qM5sIlnuxfADUuE8BqNNOF5goDHoN+swU00UjQh6r3FDCgMfrQPqwgWWtmrOXtTDxYs309/Xx86OLtq6oS879rXWhiKXHgRgYZNiz+6joaESs2ZHaUzmMJWLMk0sN4+nDWzKLFCbmGdvG91aAwi0Yl1Hgmd7WxgoRektRNnWF+Xpjlowhh9bKbKqil6aAM1gzuelnSUy+dceO9meCeFjY5maZMjFMnbfR7Gz3MBJkbVc0foob2h+gVLJw1Elegdfe4D9x95dPzIeCkAZBvc+nueKT+2kZ6DwmvcX4nAx7nfbpUuXopSisbGRj33sY1x99dWsWLFiMmsTU2zjzjzrdypMQxEEPm85UaapTqTl8x1+cG0tz232Kbpw9HyL6BRsfdA95PObRystBPGw5qpzJrcbzrIsorEY+VwOlIGKpnBCIcq+onbXeiJUFhWMlHN0mQuIWUUyXgzQRIwc5SCCMmFrNk7C9DG1i+OX0ErhGxZaKQwVYAYeO4JGGoxOmu0+3KLmtw+a/GV9ZDjbVPG2E+DMRYNoZVCyYoSHw1hrPbxxteK5LT4btpZIhX2OmpPjmMY+As9C+x5KQSaIUzajNBs7geHTakXWC7G2v4WcFyKXhc5oDS1VBdyyYtM2l9nNo60ppvbIqtSYVpdsMSARffWfQ748GtKUAtsM8AITrSuXdzfg/H5tNVu60wBs2FKqrDIdsisz7vD42odTY867YlEYwzQwLRPfGw1MOoBP/vsgN3w+st8/cyGmo/36uqmU4o1vfCOXXnqphJ8ZYMMug3hk98hJgz88luFNJ+69xoo4cIZhcNwkrbcyHp6v+cVDiiBQGIYiU9DccJdHPKw5br5i8SQNTm1obKKQz6O1JhqrLAbp+x6ZXaMLIylABR5RO49SmqhZIGQElAgqW0noEjnigCZsFLD9Asq0Rj74tWlxIg/hWjHKKsmmDouHX4oNTz2vPMKtT1exerlCGQbpos1L25KcX125dW4dNMXL5HbtYsgzmB/NUchB0nIpG2HMwKMzE6PfTVBb24WjPBTgaoM7dy7DC/YcyF35u65Kk84r8gVNJKww8MAKk85a5F0bU0EyXCYZfe3fiaqYSW+60g2oNZQ9Y6QFqt7sBaBtIMrG7tHAUip41MxK4IQqP9dS0eO39+e45MzRLzfRsMHcZpsdnXtMZxvmy3R1cQQZ97vbv/zLv3D99ddzww038OMf/5ilS5dy9dVXc+WVV9Lc3DyZNYopYr3sC6gve+cecdp6wPcVpln5sDZNiEcVtgXPtEGu6HHcgon/uSuliMbGtigahknOrCLhDwDgYYGCqFUiqsqgNYYOCOs8ZWzq1SAAJRxMrfHMEK62CVNEKTACl7ITw3MSKAXPtI0+nm0bLF9eRSxm80hHLXGGWNdTg2UanL+qcoxfzNH9zOP05BZx6fE9I+NnyipO3qoCHdCiB3HLUXboVmrpAzQ9xTiOo/GKlXvYZkB9fHgPMQ1rViXZ3GuTKdiYhmbJrAJaWYRtjecrhgoOsfCrt/74gaauKoRlaAbTWUKqRDxukXVDRCyXkGGyvTdF3tu7y2vPCBMKW2zdtfdK9F/82zp++och7nykMKYVqGUfg7TLrua6WzO8uNmlpd7gn6+uftXahZguxv3V81Of+hRbtmzhj3/8I29961vZvHkz11xzDXPnzuXNb34zP//5zyezTjEFXG/sFFobdwqrEZPBMCqhZ7eaeEDY0ZgGhB14qWP83/g7BwJ+8GeX7//Jpa1r79aD16KUonHFcWTirQyFZ5GvWUJTbhvVg1tRgYehfRSVgdJRKoOKDXxiOkdE54npDJGgMi7HDUyU5+OFkmil8MwIs+ZESaUcYiHNmuPi1DdEiMYsijrMznIDvjZIDu9AooOA4gsPkiXKaUflxwwetvTwc1MG2gljGeDi0Kmb6dQtJEI+kZBiUWOeOTV55lRl0FoTaMVQOYITdnB2L3+gIMAefv6VdYQ0UCyVeHHtFl545iUGX7ZceLag+e/7Nf99v+L2Z0Mor8RAWhO1yzREMyScIl35BE+7x7LBWlWZyTbMNBXWHhuvlksebzl1732+lFK8+80p/ubttcSSIZywxbw5Nl/+u7EbN2ut+fQPBnluo48XGGzvgr/9ev9+/+yFmAr7/dXuggsu4IILLqC7u5sf/ehHXHfddfzxj3/kT3/6E0opnnnmGZ588kmOP/74yahXHEJnHKV4cL2PxsBSLm888cjenmEmmlsHc+o0O3oBFKY5NvCMdzHibCHgxjs9MsOToG66R/NX57nM3899qCzbYdbSo0YuB801lHo7GMr7Y5YN2P0vpStDqH1lEhgWFj6m9ikQwQxFUEaIrOdQcBX9QR2G28EnL2jnuXKSoT3GGRtK0VSjeMuaygwoL59lwK4hlKomHPjoPWZQeWr0ORWCEG7Zx3JMAg35ss2Q34ipNDt7LTa1+fhBiHAoxOrlJiFneMC33r3/29jnrxQo7XHHY0V63AWYeOjSOoKjllJT5dDd7/GftxQolwP6+wrE4g5ho4b1m0u886ws0ZAmW3bYka4ZGQe0elWK7s48VVHFqsU2/3tPGcepbJb6huMNFs995Y1OTz3a4dSj617x9qGcZiirUezZ3Xfox7EJcSAOuG27oaGBa665hmuuuYa77rqLH/zgB9xyyy088cQTnHjiiRxzzDH89V//NR/+8Icnsl5xCKWSYd5y4u5LMvDxSGQaigvXwEAWNrzYjunn6WJB5UYdcOLC8X2YbWjXI+EHoFCE+9ZCyxkQOojdF4xwjPCshRS39WF76eHZXQqtwMKvfMJrTfCy1aDj3hAtC1ZQKpVI7+qmK1+Dr01OWZCmOuoxS/UylK+MZ9O6Mkbn6IWK59pcyr7GUCHmR1JYgDZMykTwSgGe6VAkSogA1zdYtyvC4sYM5aKJZyTwAwNUpfVsCJNgeLxRsQQ7uwMWzDYh8OjptzBtA88H33XxcHAsDdonbrm05SrdSD4Wz+cXMrChnzNObOIrN/TR0Zknn610W5mWSVCM4lox/ue+BItaykSrEmPmuyul+MQ74uzOjycssyuj+g5gq42Xi4bVuKbWCzEdTcjoy/POO4///d//pb29na997WssXryYZ599lo985CMTcXohxCRSSlGTUCxdWs+SUBsreZaFbGSNeoJmZ3zdGbNqYc/Z6JalSOcMrr/DG9nf6mDqWzSnhlBVI2aimaY5reSpoqTCuHp4ptLLBuea2q+MAzJNfAxsC0CTTFVWX18U2ckJiReZbXfiehCyfDbsDNjW69A56FD2DQr+6ErtvrK45ZlaXszMZ0u6kQ39jWwZrGXV7EEcFRCP+hTcsVHAstTISt8AhlekNboL/BLzatK8Ye6LzKvO0JePMZS3yRVNgpJLtjT2bVmj8A2HtZuK7OwsjoQfAN/zyXf3EbJ8MgWDpzeH2bKz0jW1m23qMT8bpdSEhB8Ax1Jcfr4zpiUrLMsFicPEhE4/qaur4xOf+ATr16/n7rvv5p3vfOdEnl4IMYlqUiGUFaJaDTBL7SSq8uPekLOpxqS1RWHbEAopohGTYlmRLRj84M/emPFkB8K2DOY0xGhtihOLOCxf1IhjaPJBjA3eUjaXWil5JqZbxPTLmNolu2sL4ZBDWSeIOj6ttQUGnBYG3Mpg6DonTSxpsbRhiFMbNnFSzQbmx7oJNAzmTHq8OnYNRdjVb7K9x+LMo3PEzCygmR1s5bzS72jtfISa9DYG0wabtrojwSMIYDADaniRR7fs8sCjGf7r14q2vijz6wt4kSoGvNF9APNlk409cXb0WMTMyno7ioDmcD+nHJPi+Y3FsSOYhzVU+VyqfsdRdUMsnWdy2VkOc6oDCAJqYwHvPH1yZxmee3yct5/rYFoQCptow6Tkyh6QYvqbtGk9Z599NmefffZknV4IMQmirUeR3/o86AAr1YBVVT/u+77vdTYPr/d4bKNBaY+JRWXf5M4nS7zxpInb+04phUlAV7kWjYGvDdpKc1hSeJJw0kYFPqWhPry6Fo5dnOLetUVs06Ul5XNvx2J27Chx9skhDANare2EVYkBakhUWRydHGTHYAw/UMSragj5nZVB1wQ0kWewHGV+/zMYfmVSQH1xB33xFs5aVuZXj5u0zg6TL0JN3Keu2uIv93cxlKkEoZ4BKPQNEFsS4AcKRTCyl1hlV3QoBg6O24OTtGhMBJy8tBnDMHhxwxCmbVKVchgarLzAs+bEWHNmMw1VFvnnqnjz6ghLZ5ssnT1hL/W4/PI+l1hs9Od77fcLfOF9EeKRmbG1izg8ybxmIcQIO9VA8piz0IGHskLjHgS92ylHWTy9xaO0R+OyY2u29VYW9zMVhB01rpalnV0lrvn3TlAGQaDBUIRsk7OOj3DVRdWE4ynIjD3PBrWMxvIgTVYPCj0yyriUh989sGerhMlA1qG1LofjuxQJk1NJDHwcw2NhTRmzmKMlESOddjGC0ang1WYaFYxt4Yh5g+RjLSxoKLJmwehqyd25KEXXYM/Ny8raAkqYhmZRTR9bBmrwAoNsXuMPH2YozZw6k9ULRgdQWSZkBzIcv6aBpuYIoZBJPGGTMPq5d3MjfTnnoMZbHaiSqzHNl3XbBZpv3aL51DsOfT1CjNe4A5Bp7n+SV0rhefs/HVYIMXX68yZ3PGeSLcKiJjhr+fhngwFccabBTQ9oyq7CsTUxP41TneCPz2jQYJkea1pLmAbUVkUIOft+G/rnb3dRyPvs3uPLtA3cks/v7ytzx8NZLn59LQtbSvQVI4Ai0KBCEbb7CXZ4s1hWPUB9KELZ1Ty6zkMZo2sgJhIWGovjFqYY7MxQTBcw8ImbudGFFGMGmcEBfExshhcb1A5KWZTsOOFyZXVlDfTaLQQZl7qkyZ4jkB3DIxoLUS55aA2xuI1nxujL+9RGi9RECoScfvoGfDYMpQCHhF1kxXyTRQvGhoq/urCBdZu2sf75Tl6/Ok51PKArE+GPTybQGDSkYNGsQ9vi4vma6//kUS57hMKj6WvPMUhCTFfjDkBaa2zbpqGhYTLrEUJMkXQentis2dEHZa/yIb6xA2bVwOL9WOs0GTf46/MDfv+ES6ZoYDtVmEqPTP12fZNd/WWitsdQtsjiubVYL2tB8H1NobBHK0tlsteIctnnjodynPf/1dK10SVTtqiOlim4NpX91k1e7K+hpSHLj25XdPf7gMIwob7OoaU5jG0GGIZBqmk2vdntOJTGBj2lGPLiDHhVtIba6XCbKOgIWmvydivL1TM4QZFd5mwGcpogm+eE+m30sGzkFOs2lSm7inAsxMK5Du09ivadRW7qcDjnhBCJqCJX0LSmsqxaXAYvy6xknprqJHc8VmBXr89pKx0WzXFYPC/CZ/5hCb09HTRVVdYGmpvKsqzF4LntMc457pWns0+WnkHNrj5NNG6TGSpg2SY60DQ2y7Y5Yvrbry4wz/OYNWsW73//+3nnO99JNBqdrLqEEIeQ52vuecEj4miCYGw/SukA1r90bIM3rHb4wzPg+vplY3cVJc8iant4fkCx5BGPjp06VHZ374v1yi0JGs3mdo83rHbY3gtbu9SYmVhaGXRteol1bQtHr9MwPznAYmuAupomoBbDMKirjpHp76FMbM8HIKeT5MsGfXYNBV1ZCkIpRTgE6ziGedVpmkjTrLIQaFRbL/Wso+ik2NULDz1TWTgwFfdwDDj5aJtUAto6FDu7NCsXKhbUZ4goj3IA2A7ZcpG2DVnuWRsBDF7Y7nH16zXLF4TY2e+zMFVgz1amufU+Sxc4rF5y6Ec0xCMK04BINEQ44hBy1Eh32HtfJxPkxfQ27ukBW7du5dprr6W9vZ0PfOADNDc38zd/8zc8+eSTk1mfEOIQeHpriYhTCRvJqM/u4BELwYLGV7njq4iEFOcdDXNqKmNadlNoovbuVKXx/L27ySNhg4VzQximgVIK2zFwwqMf8LZtYjs285pNlFJURQJiTmUT1N2qgl6q/B5qoqXRx1bQrxp5prSczI5tBIUs2ULA7c+F+dOWxTy/swod+GitKZYc0r1pkrqXcvll0+wNTXNViYIXpsutJbCriBQG+Pxjp/KrJ2r41QMOP3q4hXktFnObLS4/O+DoRYqjF8LsBnjj8h7eOf9ZjuFZbM8lMKyRGWNoiIVGXxPLNrn7yUqLT3O4D4vR2wKtWbsRVi222NGn6csc2q6nRFRx+VkWtUloSCneebbFp95R+dNcKwOgxfQ27q8Mra2tfPGLX+QLX/gCt912Gz/84Q+5/vrr+eEPf8gxxxzDBz7wAd71rneRTMpqwUJMR14QcOtfsrhuwOqlYebEs/T29NNdjGNohUUCD4dEJMCxNIubLebVq4Na1yUVU5x2lGIwG3D3Cz6GglmJQUAxVIpgGz5bdmZZPFuRiI9dbPNf/q6Rb/60j607yyxpdThqYYQ/PFzE9TR+YFDKl6ivNmnvc9nWVZkV1ZcOs9JeR5UepNFtwyDgymM28z8vLMJTNrFUhMZahWVpXvKOZVH/Lm56LoIXxAFoz1RR62Q5boFF59adnFidJ1AGeSfF1lIET4XQWhOzy5Q8i/5CFI0i68NKtY1kxOfpviagss3Ihy5L0VRn8dATO2iq0QSAFZRoKLXxkr+ALaV5mAWPlkQGy6kshOiYHk40IGz7FN1KiNi0w2Pd1jLNNYpi2kf5Gq0U2ztM1u9y+P2TAZ39AX0DGtvU/O2FFsnYoQkgK1oNVrTK4j/i8KP0QYxW27VrF9dffz0/+tGPaGtrIxqNcvnll/Mv//IvzJo1ayLrnDJPPfUUxx9/PE8++SSrV6+e6nKEOCBaw7d+MUR7X6V7q6mqxDtWbmKHWkRgVK6z/CIZP0qASUPK4Lh5EzulqD/r09m2jaKZoLdUxe5unLBZZG6qzLzZr7zlAsCuHo/Pfq8Xd7gB5LglIf7himqe3JSnUA5Q2mewGOaU/B+xDY1ZLuA7YQZrF+Pale763kKM9nz9yGMnHY+XOm38PYYbNYcHOHNBmo0beljfEWZWdZkV83yyoVoe756PH0BTogiGiRuMfoecy1aCfJbn3OUYpkmdOcQbVpsYsSp++1CORTX9lIwYIT9HIreLh0onjj6oDji2YSeW4Y8sWvhcW5RHNyXJZ8tk0kVCtuLqtyWoCXYQs8ukCwa/f2EWA4Uwjl1pKdo9u65c9vnEZQb/fU9A0YU3HG+ydI60yIiZYbyf2wfVadzS0sJnPvMZPv3pT/PHP/6Rv/mbv+HGG2/kkksuOWICkBCHmyAIePgll2xBE48oTlnqcN9z+ZHwA9A5FKI9kyBIjV7nmWFag82UIzW01Ez8ZIeauEnacsn5UGVlUQSkvTi5ssO2fgsnqmmpeeVxIy31Fv/47hoeeLpAMm5w0ZmV8TpVQSc1jk9vIY5fMnnCOoPl0a1EyeNqYyT8ANRFcvQWq0gXLLzAwPMs8lkXJ2yhVGUfsKe2hujZUeK+5+vRw0HpnP4sx64KV7a6ADqGwhgqwPUUGg2BT9mI46RmURVW5EuKfqq549ZHOOc4i3D4WIp5TSrSS18pjh5ucRqlSRY6CQcFynaMfKSWXKZI5049EmpKrubhDTZKLSIZ9Qm0QbQK0mVvpKtwN9NUfOOXPuWyxjDg1w8bvN3yWdB8ZISg9p6Ab/+6SLlUSa7JpMkXrpYxqWL/HPSoue3bt3P99ddzww030N7eTiwWo67u1b/JCSEmz/0vlnCMMlUR8APFXc96xIwclhHDG96oUqFJmAXybpZeN0Fbl4WlyySbFKG4T9H1gYltAfL9gAFdQ1TliDuVLquUneHF/hY0Nk9v9Vi30+C8la/8Ib10nsPSeaPdLflsFtPwyXoh1g80AYoh4hSyIVZVbyZvJrF1MGZ2l85nKfiVBR7dUmXG2cCgj2Upym6AViZrd8bQjDYLPbktjltbSzwJrqspuQrPM4dHSinKZdgyWIWxQ7Fglk9jHZR9g83RY/ndr/o4/tg09Qsscq7NozsaMWigIVXGNyrPZUGwgapSDwAhN0vBM3nsxXq8so9pmxiGIhqzQJnYNjjDC/6Ew2AYip7+0XFBWmtK5QC3NDoeyh/y+N2jJh+95PAPQJ6v+d7vipSKoz+foSGfn99T4PJzZM9CMX4HFIB83+eWW27hhz/8IXfccQdBELB69Wo+/elP81d/9VfE4y//diOEOFQUHsbw9AbT0MRCHkZgct4xgzzwYhI/UJywME0x0Uy8dyt37VxFOTCBCLcXF3FmZICFqYkd06G15rlN3eggGAk/ACHDJRUpkfejKAXFckDXADRWj35Q92V8etIBL+00yBUV1bESmoChvEV1xKc1aVMqG+w5MyrjRyk5SULKR1PZfV0pKJdB+wF7ikRMMoVgZLsOrTWm4wCjCxqWcQiGB2uXPU0i5NLv2SOPmc16GMMv+padEA4rknGY3eJw9JwoTYl0pWsrBMfO6uPFrjoKbmVcVqno0dIwNLYmVeL1pyh+fmelXsO2aJ1bafGyXpZhQiEwjUrAhEpA02OfIr6vyRV8egcN6lKHdwjKl8Dz9m4p3DW+beuEGLFfAWjjxo1cd9113HjjjXR3d5NMJvnABz7A+9//flatWjVZNQox7bX3eWzpUjRUGSxtUfu9gvJEMl42ddxQgGlRX6V451kDlH2L3lI1fa5JTyhEeY9xLLmSxfrOJMsWKuIT+DmZzmRI2nm6yzFc38A2K5/QgQZvj2n3SsF3fpnhc++pwrIU27pdtnR5uJ5BJBRgmbCxw2FweLaTY8fIzw5xTGILlvLwdOW5pEIFLFVpIVAAStNVrCVMgUY66WF0apsyTSzDw/UVOtB4XsBRiyOUSgG5nIdlmTQ2hjl+kYUTgfTgILNr8jyypY7+fGXtneBlgWMoU9l7LGS4FDxrzGak9bEC85s9jOG1jbIZl0EvSsoaGDnmge2z2DBUz6KjFEMDBVIqzeXHDfDnrY2UXUU0rEe67Mq5PPVRj0LgkC5YgEa9bH6vYcD2bTnauxPUpUy01nzsqzvo6NUEgebM1RH+7ooDnO53iMUj0FwLbZ2KYHijXds2eMc5srGB2D/j/o05++yzeeCBBwA4+eST+cpXvsLll18uawGJI47WmnRO4+syNYlX378q0JqHH9tFv6olMCz6sx5dgyZnrZjcDShfjYkmCBhpBdotT5T+goM3HHgUAfWJEiE7Sml4tpFlQTRi8eLWIU5clpqwmly3Mu09GSqxfqCZecleDB2wcyhGDoUzvIbf5rYyvf2ax9bmOHVVnJ6BIqZmpKvItiBfHA14ZRe6h2zCyRInVa1jV6kOW7mU7Rha77GCtQYPC2VZzIoPsWtgFx26GdcD14M5TQZvPVlx/3Oa+59xqa1xOP0kg/YuHwPNykUh1u4KY5sepy/IA7B6bh+bepIYhSw1Kc1Lg7WV198EXznYKk085DJUCo2ppeDZI4FIqcpyAU/3zKEzlCChsuwo1LB+qGnkOVZVRzi/8Afq73mWv2qcR/nsq/nT0wHbuw0CX9PfH1AqgWWWaKgp0Rzz2ZVLYocMfE/jeT6FnIdlKa77XRbX0xTzZYLAwolUQtQDzxRZMj/N60+b/rN4DaX40EVhbvlLkac2aiwTrnydQVPNFOwDIg5r4w5A999/P7Zt85a3vIUVK1awZcsWvvKVr7zqfZRSfP7znz/oIoU4VDxf84n/yOCWK1/pDaNIVdJiTr1BbQJ29BuUfcWqRSbHzvPYtnkXphMm8MzKSscKuoamdhuANUvjPLIui69MTAV510YDUbM8pmXKMT0iTsDZywZ5qTOKqTRFFWOoGCJVLE5oTbFYjIHBIcKWRypc5JmuFgylmV+fJ2UUeGmHwTMbIJMb/UYfBAG1ZjeuUUPZH+2Sq6wpVHki0VBAIuxTdgOiZFgUzuFbYTaWYnQVU9SF0qAUaTdOje4h7mbJJOewwMmyfbs3PItLU5d0SecDLjk9wdwGxR8fLTB/jsMxSy2SERdNiGAAAq1GwoxjaZY3D9E4uI58VYhYQwrXg4aUpjNtYBmV36HaSIEXumpoiBUoeiabepLMaap0WwFEVZ6cH+O5TDVlVw9vIzH2dyivK91fRtc2Hnomw1PrIgTD+5HF4w7lchHPV2zemsO0HZLVZWzHxN/dQmL4lIzKnmqmWdmLTY2EMIVlm9z7eOawCEAAIUdx+TkRLj9nqisRh7P9ajN0XZff/OY3/Pa3vx3XXi8SgMTh5vPXDZEe3mlbKfC9gELeJF+KYlqKUKjyqfXYOpfW8DYWRAYxtMcco50nyqvQGHu1vBxqjm1y2tFJHnixTLas2B0Wcl6IaicNKoyrbUpepSskEfE5fn4G11c8uTMBgHp5H8pBioTDNDU285cX8vTkEwzmbY6dm8axKu8jR7UG7OiETE6xpCHLsQtsPNfFwKfWGaRYCOFjYig4aXGJh18KcfQ8l0hI0ey1EYQTpK1aFGC5eepCOTYPNdCdjjCQCVgS3sHS0CYAfGWSTs3l/EXbSecMjMBnSFexrj3KnAbNcYssfB0ARbozYbYPRIeDhMIPDAYKYaojRSozt7rQgaZkx1ljPM+WwSReMIs5NSWiTiWghCiyra+BbX2j4UIV+rGiIcI6z9qdDs0NNivmae54wmWoaGMYeqRbLfA8mspbRt6tt/SHK5vDDsvnPSzLwHUDMCx8TzPQU2mlMgyF5wfUNybAK2MP77sWCgcU8qNjsbTWnLFaxm6KmWXcAeiGG26YzDqEmHJPrSvQ3lEamU4caI1pGbhln0KuRFX1aHdvY7JINWkwTQJMQoHPfLWFLcFCVs+bugFAhaLHIxsKDAx5PLfZ5sRj99wfSpGwizQYg2zP1dGTi+G5KZriWcq+Ykt/ZW2ekOlimDYPrXM5cYmFZU7M80nEI8xusdm1oXJ5dwvJbucdNUC+1Wd5dS8qSGKGo5imSQiXedGdaNOhtXU2lhkiEc3RlzcJtCJq5ilbNSNjnzwrwubeOtLlSvdlCZ+5ZsfI45jaJyiUiTiKZn8HpgrwMbirbzV/eCLChScaxMImPWkYKIRIZwKyeY1palbMKWHZNhmv8tb5ZHuUUxsVKSsPFqxq7OV/nrJZsaqWgmtSdE3C/TtxVBNlvbsVS/PcrgQR5ZLzqqhNGpy3NAtbH2NV9VyGchYl3+SFoWaiEfBczQ07L+KzNdfhzF3E7JjBtl2jr51hKHL5EuVSgDLG/qyCQGPbJqZljGlUCkVsymUP3wvQWlMVCXjjmakJ+CkLcfgYdwC66qqrJrMOIabcb+8vjllLRaFQhgEE+F6A7wdYdqVlpDbujTlWGyZJI8NxTSXmNU3NRpBl1+ehl1xM06KmxuKkOGTzPrFoZXxPyCwTNfJsH0zyXGcVAEFg8kLJwFEuR6XaCdfGyfhJCp5JyQ/4xYMul55m41gHH4KKZZ+hTJFExCZXMukcCtNaV5lpZWqXlugAhVQVfeUGauwQhmHQOGsOQwP9KKCqpgbLrDyXQqEEw/t2edpmz093pSBie6SHGzjm1ruYvgN+buSYgooRyQ9hDm+dYaqA5fEd3LfDpmdWgcWzmil6LrkOTe/A7nNrQtbuqdfDywnYDmFj7GZpEbNMX79Hshmqoh5+aDYLnX56C0nS5Qj5osbzTTJUnsvxde3ozc+jgKOcbRhOQC6IMmtuGGt4h/XMogg7jb9m2bHzuEwpetM5NrVrfD9g17YBykWXSDw60sKzm9aa4OUjtKm0zjuOxXmn2Lzp9Djx6BQ3WwoxBeS3XohhJ690xnTtaq3Rwx8eibhJ1PKIh3xSMU1zqkSgx4aCLHFamqZuUsCz21z23FQ9bENbh2bT9oAdHWXuewp+/lgzD22uGTkmX/Ap+jZpL8pjvXMpZ4oUA4dc2SJbsqhOah5/yd/Ho4Hve+zasZOdO3ZSLORfs74X2orYhs/s6iLz6opk8gZOvpc6bxdNbhueFaI/77AtX8vWLTvxymUcx6G+sYm6xiZsu9KC0pfxKHiVsTsA25mH4Y9dBydbGh0QG3NcdkaWkjcTeFj02s0MOk34auw0tzIOx/TcDj/4HLlH7uSYeQ7my8bi9KZH76M12FbArkLVyHVFV7GhO86sOg/b1GgNrg5RXRNl8SyPo5v7US+bo97sbR6ZwG+pgPZgNn3tQ2zpr+LRTUle2hUlGjMpq9GxQW89M0L7ll52bOqlXPTRWlHIF/H9YKRirTVKVabEZwYLhCMWruvhlit//u/7k1z++qSEHzFjybxBIYa96dQYdz5WZHCo8oFvWooLT4+yYqHDojmjg3C11jzwXJQdtDJL78DAJxdEeTa7iGVT+Fny8qn3GnA9RX9aAwba91lqvkDeDbHVXUy8KkplKImmOg4o6A+qMYc/jjWKomfQN+Rz9DyDqj0+KIvpATo7OytTuYGd23O0zG4hEnvlcST+cJg0DWisKqNxeLpvLmfM3krJTvLEzgY29aYA2BoK8VZ7M40Ll+41Himb9/GxKZVNLFNT1g47S03UmP1owyATJDFsGzxNbRyGshqrKsKm+BoAtuzwaXU0/ZFWgkGPerOf/qCK54uLOa3vJpQO8O78JeYp57JmkcGDnoECcvmAvn5oqTOBSjieVRfgmi1sSIfo7CyzvjvOicfaI2N0Am0QMBqanJDNcXP6eXRrLVorwraPNsYGsVKoivbaUyn4NvmSyWDOxjQ1zZEiu1ue/vfuPJ47GqSUUiMhylAB9dUm8ZhixXyDoutw7GKHSEhRFQ+TjJkT1q0pxOFs3AFowYIFr3q7YRikUimOPfZYrr76as4444yDLk6IQ+3fPlr7mscopci5IbQV5iWWAZUF/JqrwDSm7oPl2Hk2977gjrQ8DGZgMFOZVRSLKN49934SzdVAkafb27j1xWZWLLRI1YaoHR6fq32DofLoLKtSISBQFps7XFYvHB1P1LOrHcPcPZ0eLMNnaCj9qgGoJuHQn67MLtMaahOK1x0XQun5PPL80Ej4AUiXwnRnLGI5l0R89HG1DoinN5AMaummCdcH0LjaojdogKBy7iCABqefhmQVtz6oWb4AIiHYtENjBB4ntw4wSC09VUt5oj9KoA2O3fgj4qW+3Q9EEMCzbQb28LtkVcLg/MytPLvrAt50VpI/3N2JU1tDKupiJutoTEDTwjL3POZxx+MG73oDVDt5SsZo/YGGnlyUd1fdgqppIBQxKRKjnC/jUKbPaKDfaqSqUVOFx6xaj7VbQ3RnwhhmPUN5SMXAMF+etDXnnBonmbSprzFoSDmsWixLlAjxasYdgLZt2zau45566il+/OMfc8011/ClL33pQOsSYlqrr7IZyHk4Nrie5rRlEeLRqV1h17ZMzlup2N7rYimwZ5tsaffpz0CzsWs4/FSsmp3mzvW1BGo0/AAo0yaq8+RVjEiQoRiKUSwYe836VNpHv+ztw7Ze/e1kUUuIdsegL+ORiJjMa7QxlALCxBJQaUsaDZA+Bjc/aPKOMzXJaOX6/EAPVqYbRydGjuvshXLZZMncANPQ5F0LQwU40SibunxS1RHufTyP1pVVlN96Ug7LLaJzvdjJWhY15NHlAn3FEDEdI6Hy9B33Vr55Y5G5c/cIdEpxt/U6XnrepabBx0zVkitb+NogYgeUPcVL2x2GSkWsEDyy0eLd8buIVc+ju+ooDO2xrTNEyAlQkRpCkcrvi2dHub+0iEwpTHWVImGMdjnaFlTFfCzLxLRtHt8c8LpjTE5cHuKll+Lsas8CcNTSOMetiKAUhGyDYxfKlhBCvJZxB6CtW7e+6u1BENDb28tDDz3E17/+db7yla9w5plncsEFFxx0kUJMN2sWO7ieRcnVxMJjN6KcSoZhMK9htMXho5ea9Gc0zz5tDI8JqdTpB+AFBhu2uCxs3XOlYs1R0c24nsl6dymuZ5AMe8xvshnMuhRKHomoTSri0FeudLtpwHehpr7+NeubXWczu27vBetOWBrm+e0e3cM7QrSm0uzyWsgWDV7cASctqYx/0Z6PQjNPbSWnY7RlUnT0Vqb6P/K8SSyqWdDsk4pXAptlGdTXWUQjcXJ5nxUN/SQSNn12E1ZKE9d9DBVsfnefgWmeTZdzLu+7wOHmJ+Jk0iUSCZvaWod8ziMINEvnhOkraAZLBhgGIQOKrkW6YIDWbN8+SCbjYZqKUt4gmcyTHHqRxqEXAegzzyUeC/FM/0JOirUD8Ni2Gl7sqQzo3tUbcMLysdtdREMe0eFwnS9pfnNvP0tmad5/aRV/eakaMDAtk/UdPrmhIh+6ODIcLIUQr2bcAai1tfU1j5k/fz4nnHACl156KStWrOB73/ueBCBxxLKt0e6R6coyFQ0pRV1LDU89tZ1VKywCrfjj+gaaW6vp7CzywiafZQsqa+wUy5rHSkcRdSxqk4r6pGZ+o8VQtswz231yZQdDaY6dt5jG0nZyg/2EInHii5cddK1Xnmvyp6d9MgVwrCjV5XZOq3Ox0yYP3KsJlwdoaAoTs2OYgccx/rP0l5cCzUAliOWLaiT8QGVD0ohR4tiGHViGR7dfjwrtHi+lyFLNzs4hPvi6IUwDetImf3g8TKkUxvcCPNejrc2ju6uA5wVs2WywYtnYbr6Y44K22Lq9SCZTGYzt+5qsa9NermO204sCioQZIsFzW1KVWWfV3SScMhv7UiPnKnkGL27xWb5QYVT2mWduvc9gwcMLLIJyiZVzhlOiznDBcc3c9ZxBsehjBh7vviAq43uEGKdJefuePXs2F198MXfeeedknF4IsZ+OXhjnw79ezrbqVOXTv9ogAQwMlGnvDCh4Dq1NlW0w5jfBca3Q2Z+vtO74EXb0emSH19XxteL5HQFvOG4h4ZaFE1ajZSouWGXywnZNuGstTbHKB33ejJFJ1EAhQrEc8JeuRQDMSw2gEzXQM3qOkKPY1K6oTmqKJYU2FSfUbCJuVsYe7QxmoVQZ0NjKAzQrmgsjs+fqkz7LZhXZ8kKZwIdE3GJHe5ZyudItlcn6bN5aoLHe4smnhti2LUcsZhBLhFHm2JatzECB2xLncLS7gYjts9ZdxlBQ6boLtMHa8tHkejLYFrjlygrXR831qYoF2AoMQ4+0zA0NlSl6mmObekfOH2hNMd3LMXMjKMNk6ezYSFehEOK1Tdr319bWVvr6+ibr9EKI/WBbisvPi/LMDp9EojKjzfc12ZxHbW2IwYE8i5ojrJxr0FoPG7YP4nqVWUaZfBnU7gG1w4sN+or1O32e2qTxfDhtmcHC5oOfAmebiqgTUBcaQmvwLQc3FKe3lKJG5/nt5mW4fqU7qD2TZF5jlnA4jOdVcl1twqOxWjNUtDlthcGmdo+YMbqtR0zlKXphquzcyBpAodDYGpbU57k3DLmSQSZXWf8p5Cgaak3SmYD+fpdnXyiweUtlXaF0JiCTLdDcGsKyDTw3wLIUrfPjWFGbrshKorZLomyQH/JBaxoTJVwjSm1Tguo6nxfbFM21Ac21AXuOgwJNoGF7B3T3F1mUMkhGAwINtnZxDJeIypMvGaxb10c0WcPKxamD/jkIMRNMWgBKp9NEIjIQT4jpYm5LiLUdUHY1SkEh7zFndqSyUKKGmrhmXr3CD4KR8AOV/dFm1cJAtkgiVEYBrg8vtMWoT1VmnD2+KWBLp+K8Yy2Mg5wJ9/wml3ueOBZTBbz56G5qZ1WxczDCCwOzR8IPQCmw2NwRxQob2DYsaCiwoLESdpo0pDuHqI3F6dIt5IeKDJXCNETTKOVj2KPPr2jGiPoZDDR+2SNoXMHFZyluvqNAvqBJJQzOOzVMJFzZS+v+R4t0dI7dK62y4KDCCZlkB/OsWtNAOGpTFXWJhSstOUdVDzA37NEYy1HlFCkNFYgP9OCbIWoXraJoJdgz/JTKCtdXrN/i0zNkYpiKctHH0B5oY2T8lTIMYhGIRTRDuX6CoOqgfwZCzASTFoDuuOMOli5dOlmnF0Lspzuf1Shl4A9PMrJsk1TSIJsucMoxoIyAhzaUOHGRg2MZlIdDkGUqIramKlxi9we0YSiSsUr48bWiKq4oB3DT/QFvWFXZOLY3A9t7Kq1MR7ea1Kdee5ZcV7/PXY9X1rsJtMmtaxt5T00f616Aulk1WCZ4w/U7tiYZCsgOr4HYUlMCKru7r90EpXIVR82HdDHK5q7h3dX7NAuaysyzBoiFKifylE1JhYgGOQzTYFtvwLxwJ1ecYfNCrpa6pE0k7I087xVLHHZ0FjAtA3/4NYrFHQxDcWxoMxc2/gqrrcym5vPQC04FoOwp/rK1Gc83oEdzbG0Hp5XuqtTkZ1gw8Bgv1J5bGZukKju0P/Gix5YdAZGITSxu4ZZcjl4QxstlKKh9T3GPhzVlTxN2JAAJ8VomPAANDAzwj//4j2zYsEGmwQsxjdimpvyyRZ3bdxVZ1qoxhndwdX3oHAxYNLuKruExQI3VESxDAaWR++3+eK2shr07FEHI1vzq4cpaOw2pMkvqB0nENE++aNNSG+OYpQlezUBm7CrJvjaImznOmzfEXwZTLJ4bkB0sUUznqde9tFQZtNFK15BDsawI25o/Pww7uir3X7cNjlqy59ucYihvcV9HNScsSFMdLpAuWigVp9H2KQUOYdOlqMNsKjSjlOLlO0mUXY1hQDwVxTI0zU1hmpqj1NsZTnvif8hHG3j2qL/CtWPEhoqEq8J0DjqV8DNcw7p0M6eE1Mj+ZTk7RV+msuBiV1+AMkyWLIqxeAFs2hEwlNH0dA5x411RrjzNwvQ9Cr5DyHQJNCMb8G7vdVi0+LXDT6XFSmPutZ6QEDPHuAPQueee+6q3B0FAX18fL730Eq7rsmLFCj7ykY8cdIH769WmI69du5ajjz76EFYjxPTx1lMMfnRnZXwKGkoln86OAotn2QxlFI5dWXfmV3cMMrvO4q3nJnHs0Q/IWNgkV6wkKKU0Ji4+zpjHCAIwcTEtmF+dxjIqH/DzG12eWJdhSbKHcPMrL6qaiGjcsjeyp9WKuUXMZALL1ex40eWouR5+OsOAamKAOnZ2DHHi/G4aUzU89rzBqiUBO7r2WMixDPmCxthjfHKhEOCELBoiGRwrIGaXKbgWHXo2ZWXhOyZb8inc4a1OBnMW0VBAPByQzgY8/lwRz/VpaIrR3BSmr6/ESy+l6auCs4IyTxz1flRlYSMGSVDj5Xl5j5ShoESYCAV6ovNpTx1LI5XXdmeXYs7ulcdNWD4fersLbFnvsXmXJhKNE921jmdLy2gPWrGMgGonSyZT5sxVVa+5JEPZ9di4vY/BocoimXWRAkuXzd+vpRzKbsBDz2b5+d0ehmVQyBXp3dmHbSl+9m9LCDnTfHqkEOxHALr33nvHdVwoFOKqq67iG9/4BtHo1KxEesYZZ/CBD3xgr+vnzJkzBdUIMT3UVRm8/wLNo+sDoiHFKcssPvdjm0efCwh0ZZ0dt1TGCdm81FbiDw/s4HufmkM0UglBy1qTvNiWIZ0PQMGx8x06Bzy29lqYhqJYhmLJ5+R5Pdy/ZRaWObbpJBYJKHVsIdQwF2Xu+62nqdamsSpg4Zwi8xpKzK33QGtqEz7xkEfPgEm3aho5PmdU4WY6MKM1rFmY5c+Px6mOlxnIDm9WqqChzqLoQtmFaBgiFHA9A8carS9iezzZZrKg2cfXJo7lEwlbZPMaw1Bs63JIZz22bRpgoDeLQrHotDrWbSnQ31vZ0DVfMLjNuohQKEbM8ghZAQQ+1dk29GARo3ohTsgiWzLJFkzud15Hk9eOF2kcsyljfbXGUt7wNHiFq03e2PgCfauPhsAgUd9EpmMDx1lrqQ6GyJAgXNXMWceODayv5MWtQ2ztq2KoGCJXAEVAd24XZ54wazy/RpTKAf/8rU6yfmVWoFfy6d01BMqi7Gku/buX+OnXF1Fd5bzGmYSYWuMOQPfcc8+r3m4YBlVVVSxdupTQy6dVHGILFizgiiuumNIahJiOquOKN6wZHYvTXO+wcdto11aqttJyEY2H6e8x+PWdA1xx4ej2IMtbE/hBZRC1oRSWZfNcu8Y2K0GhtS5PyApwTJ+t/UmW1Femspc9g2XRysJ/e21atgfTVHzq/XU8ua6PppiL0pqQl0cpzYfO2sktz9UTNRR5VVmLx9IuZrKKkjZRlsNZx/k4Jjz8okGuAJF4hHjcJDn8kEGgmRtKE7NLuL6BbQZkyw6ZskPBD9ORBtPUKCBkaUqGy/YdRYYymqH+PIVcCTTU1ih6BoOR8AOVlqXnk8tZnHapS1QecEnxKaqCXuqb6uhMekBlLNGLbRadQyG67GVUZ11mh8oj5ykWPGKJMP5wK1bUKOKoEmuOtrFNxR0PZUhGjuOYhm7mGyaxWbNR5vhWIfd8TU/OIeeFSGd3z+kzeLarmQWdaWY3JV/jDPD0ugL9OROnkn8oFUZrV0phGAb/9PVt/OCLS8ZVkxBTZdwB6KyzzprMOiac67oUi0USiVcfcyDETHbqUYqN2yr/fnksCUds7n2kb0wAeq7NZ21bZQp9Q9IlGgbbDI3MOvICC6Vg1ewe1nVW81SxFluV8TNpLmjJ4MxagjJe/cM67BjU18VxBwfQGsJW5WPasQLednwv/XmHpzbF8bVBa0MJHa9lMOtQ8sJsbStRKgckEwoj7OA4Jp29UJeC/5+9+w6T7CoP/P89N1YOnfN0Tx5plEcZSSMBlsBCSEbY2MYLXmsJXofFYBsvyw9wwAjvOsF6F2OMDWLZJdnY2JIAIQHKOU/O3dPTuSvXTef8/qie7unJkmbUM93n8zzzPDO3blWdul1T9fY573lfUIxPKro6gGSMp/fniDmKsVrjS9+0FKFURAoMQtZbL5HIVTmQ62SP18HmHSa9fV1IGdGe8ZAobFxe2npIANneRCZjAgFCSbJRo25P1c7Pe4297Qa7pxKUq5LN+ywGR6G/zWNkApoS0byfRoBNUTSDEAQS/vm+Sfbuq/FzN7Zwxy90nsRPeU5j55iBUBJ1yLyTVII9IwE9Hce588Gfjytmm70efMzDWXoXmnYWWJQLtd/61re46667iKKIbDbLzTffzB//8R/T399/zPsMDw8zPDx8xPFNmzadxpFq2sK6YJXF+q0WL+4MCYIQmJu9rVUD3EN2E01XJM/vAccW2Lag4DlUQzWbgKsUTHtx9pezpMwy3alpHtycouq5dLe08NWhDqJBg9ZsyDuvNnGsY39JruiMsaOahHrxiNsyacEbLqyzt9qBMAzKnkAqg83b60xONfJoJqfh/DUejuugEOwfM6h7oJSg5Ls8uaWZIDLJpOa+wKUShFJhm5ClSC/7ALClx5SZobevEcQ0pdVsjtK6VS7lqmTPYEBrq0tzs0s9kISRwDIN6iJBTFVxw/K811ALG0GgazfyJ8uexQNP+/ie5JLlIZnmaLaLvCXr7HZWNcYo1Wy16e//dPIVB0CmIUDY5OJ1ipUYftj44aVdn3j8yBYlR3Ph2gSXrqnw3B6JYRi48bmlrkZyteQPP3TqCmRq2umy6AKgDRs28I53vIPVq1fjeR4PPvggX/ziF7n77rt56KGHWLt27VHv94UvfIFPfepTr/NoNW1hmYbgjptjTJcVrgV/8PkxQmwsU3HZRUm6mhKzPcT2TyoOrrQkzRrrMnuxRchUkGF7tYdICoSAsVqa4SjFrr0hoZT0NvtUZRyv3PiyLZUVf//DiIEWuHHD0T+CTEOwelU39VoTU3u3glIE0sQ3XEwFCkE+XiEVj1GpemzzmyiX5+ccmSiWtwfUQ5OmtOLl3QZRJNg1lZ1XT+hQjVhI0W0MATAStfCIfykKA9No9FCzzPmNYZf1ODS3pXCcxmMGkcFI0SVmRzzB5XRMP4tBmX2TVWKZOMqOM1pq9P7KpyJ61tZ5bpfLeWtilEohMuFi1ibIpiyCQPHUjhjXbjCo1iX/es8oU9MBlm3hxGw276yxdvkrq7f2pgtsfvAs9LdWCYMIoRQTVZf1Ayc/W/4bv9yK50tKNUkqZhBzm/ns3+4lHlfc8c4e4rGFbQysaSdDqMPbPC9Cd999N29961u58cYbueeee456zvFmgN797nfz1FNPcfHFF5/uoWragvJ8xXceDVCHbJvqydZoyiao+ZIX90iSCYMVsd2MlRzsuENHPqLuG2ybbsY8OB2EolSWTBQNDAE1T6LU3IyPDAKkMPml6y3W9Bw/cXd4pMiWUZOIxjbxtF3FMSXphM2yziy7Dvg88LLJ8AGf0fHG7IgQsHGDSVseQimohxbb9hkUyhCLCYRoPKdlQTIOIPCqHpWa5LI1Hiu9F8hS5FHvEobl3LqQlJBwIzKJxkyTUjA8IVDCnF1Ssg1JV7pAyqpjGAaj9TSqXmZZRyOQnCxCIczg2IKU62MaMDotMOxGIFP3FI8/73Hwk/lNF9a4aHmIYdjc82DA935cmp0dAnjPbc28bWP2lf6oeXK74umdYJvw5guhp1kvW2mLw9NPP80ll1xywu/tRTcDdDRvectbuPzyy7nvvvuo1+vEYrEjzuns7KSz85VNJ2vaYjI8HvClf6+TStvk8xLHNghCxTO7XYSQxFzB1LTELUZsKnbgzSzjLGsPWdYW4lCnUncRhsAgYmzaorHHCBzLwAtmUm6FolQNiSdNyrUT//4lTItoJrhQQDmIcU5HnH95FKYfichZVQJl0Jp3ScRswiCiv0uQSZtAhFKNQCWMDi7RGNiWRCqDmPC4vmUbrhUyWbF4YaKDdn+Y+ObHedldh5/3Dl0VZHy8Tk871H0DlGTfqI0fQnNOUq83mpcajmBfMU/c8ulMFdm818YPm9lfDLhsVZGmDCT9ItNhFj+yiBshlqEYn46YKMB0UZHLmnh1ybl9Nda0F6hWZq6F5eLEbOr1udmu//NvU/R1Oqxb7p7ULrCDNqwUbFh50qdr2qKzJAIgaHSqf+yxx5icnKSrq2uhh6NpZ5R945Ivf6/G/pEIhkNsu84lF6WREqYLjS9bx1bEYwYTUyHRIUtI+ydslJ0gCkOefa6IaQmu2pDk0ERehSCbBpTCq4fYtkkqxglnfwDybkCaOpNBBtNU9BiD/OtjK5ksC8BgMsxyYc8Eew6EdLYkac3bSKlwzJAwEhRqFlNFWJaZZthM4kuDa9q2ko8mieUTWEbj9bUmfa5MjSP37efzhdsZj/JYY4KLlheJYmkKhYCmjCKZbMyOKWWQiCuiCgyPQhA2gjnXhZa8ore5yvM707N5NhNlm71jMZa314n5U3zlmx7ZfJz+Xpt0LobvSYplA2EIanXobrdZ2Vmady16WiLCaP5Mje+FfPKv9yEMwe/+WjtXXnjinVyapi2hAGjr1q3Ytk1zc/OJT9a010kYRjy9IyQTF6ztW5i6KZW64oEX5WwCMUAQKMbGfbJZhyiU7N87QaUckk6ZtHakwZybFjHNxvZn07S45JI8SkKlGpCKS8q1xpd/3InobBZUKz4FbPrSJteeK0jFT7zsYrhx/t+/TzNVlSgZcd3lbYzX5u8+kpi84dwqP35RMDlpcPXaCkknxBCSAatMPFkFoGam2FpbhiJNe3UTFXpgZjmp6Ls8Xx0gXo8YjxoJz2GoeH5bQHt3gJSK5ua5pUEhwLYMTFMShHNj8TxFJME1I6LDqkhHClxZYWgiIN2Uol4P2LY7JN8U4sYcEI2w0bKgVJYkTX/e/TMpRSKboFqozbThUAjDxJhJzvrzf5zga+ekcBxd4VnTTmRRBUATExNHDXC+/vWv8/TTT/O2t71twWsUadpBdT/kwU0+EovpumLTUI3brmzkgVSmy+z8xtchCJhe9yauvG4Vlnl6cjQe2SJJJcTsbq6DZKQYHQ+ZHC1RmWm4VSpHNPl1rISDUgLbETQ1NYICx2E2tyaKHKrFOvmkQbUGKggwQslkNYVSgtCDe56BHQcaNYUuXgGd+SNfn5SKD//1FPFsnrYstLZYjBQldd8nnmr8X47ZEZ25OoYBbzp/GqmsmeCo0cYiLquzc1HxqExlusyPtyWx+9tZwRC+m2FctPFUZQ310KLs9gNzkYtwbFJpm5TtN9bSZiKvRo6OojtfZ6owt6wuUBhCUa1Df7vPC3sslALHUggrjlGv8s+PpykUi4QzgZMQ0N55aAAsWNUtUMIlIkKoCIEk4Rq85aoE1SjHc5tr7Ns1ccQ1+/OvjvLRXzuJ/eyatsQtqgDoj//4j3nooYe44YYb6Ovrw/d9HnroIb797W/T2dnJX/7lXy70EDVt1k9e8pjr0SBIxg2mKyHZhMnk5/8/8iONwoG5XY/zmPuHXH1132kZR6MKtGDtKpenn6+hEERhhF+s0dOTY3jf/AZiMpKsXWljmRBJQbnWaI3RaKUgycRCTEPR0zzKvS80UahanDMg6GsJuDT4Po+UzmWIHpSCnSONPlaDk/Du6xRJd34Q9J0fFqjUBaVKnTUrXNpbbGwTXEfx+AtVLl4ZsKqjhmtLpATLUPNmhgzkvPpGAvjpUxHTtZDPjayms20dF56fxrIMEnGwQ0nVSNDZ7jEy6pNKQG9vkjCCkrRJJOfSj6UStKZ9WlMBMeHx0mASpeCm1MOsEoPUp5PsaLualnM9pqouNRnHMSPGaOHn394IdH/6eJVnX/IoTlZYvzbOWKHxfuhu8rn5igTD4zmqxRpJ6hgoHDxuvryZeMph+BKTj/9NjcJkjUNNFULORN/9aZWfPN94n5iG5M4PpBZ6SNoSt6gCoOuvv57Nmzfzta99jfHxcZRS9Pf386EPfYjf//3fp62tbaGHqGlzjpL/GwSKYGIYMRP8AAivirHjGThNAdC6HsGTO6G1xWXj1TaDQ1VEGLJ+RZrrL43z/PYAx/HxfYVlwvLl6dn6QKYJ7W5I0gkwiMjGAw7m/pgqztsummBfJU9QrpGvDJM3C9zEPXyZX0VizgYrQQjTFUgeNkF796N1LMfBcAXSirNj5rJ0twqa0oJNewza8jHyokLCmlkuUhJmZqLKgYurbGIiAGDTaJrp2txMS80TWNbc1JdtgR3B2gGTn794hJcmOtk33Qh5pBJ4gcCxZ9psoMjFG0UQM1mHDWmFjCJGvYuoyOWIdJKkI3GJSMWqVOoeTWKSMdGBMfPCr708wdadjXFfvbbEeMnCENDWksSxBMs6HF6asjBmtt4LAcWJMeKpDJ3NJr/z7jx/+DfebFd6gHe8Kfeq3genk1KKB19ktvmqVAafuavER9+tC9VqC2dRBUC33HILt9xyy0IPQ9NOymWrLZ7cMVfwrlaXtOZcpJfDiLnI+lyFYZVrPW3j6G0xEUKyd0ySjsNtF0F5/35kFBJMdnDVec08uSVLPiWJxy1yzfN3URoGxO2IuOWjDplvEYbAijsMxCsYeZ+2sd2YKIxMkmavTuQkKdcb58YdaDpsQiAIVaNqsRDEYhZBOPfYI5NgSsUFqwW2bTSeVzWClC3jTQgD8rEasbjJsFxGpeizY9Bky0gCaMyYmKagtS3BVEmQiClcuxHUDOQmabKLCMMgkAZRpEjYIY6tqNYtetNTjJRTdObr2KZCKkGkGsGcaRk4FoQqT8qqz3s9TlRGiABhH3KNhMAyBRevd5msp7FdSSgNOvJzuUZ97S6F8bnHKdQgH0ocy+CcAZcvfrKb//bXw9RqET//ljyXnX/smZVCVSEV5BLHbxx9qk0U5s8iCiEYK+ht99rCWlQBkKadTXIplytX+Ty4OcKxBD9zRWNZxHATVK+5ncRj/wphyPjA1Vx1y1Wv+nn88GAriWN/4fQ0G/Q0G0yVJP/4gEXRW09nssTGcAdvPD/Ds7scpmuKyBC0SoEhZtoqKHDMCHHIvw+yxNxSjDQdKvFWsuVBMExu6nyG5JqreXqXIIzggn6IO/PHZ1uCuOkTKgsZzZ8uE0KRywl6mj0MARKXJ4fyDE3HEECMCh1rLQLZ+IiLZ0wCy8JxbTI5RbXis2plmlTawQsa3c3b8xGuJYmES50kXuQwWbZZ0TTNqvYyQijqnkHFg72jGcam4yRikpasJBk7OHZB0vEZn1Y8tkVx1QUCIRqv8buPZxgv5LjqQsVAd+P84ZGA/m647focY2VFtW6wrN2kNTO3y85J5amOFkgYNQJlMR41Y4xFrOycqeKctPirPzhxo+cX9kq2DM+kMSlFMia47hxIuKc/YbopM78wolKKttyiL0GnneF0AKRpCyiZcLjxKHW6Vt7ydrjl7QC82qINUiqefWkIoRQFlaEpAeevOnbBPKUUX31AUfMagdhgOcuzY11s7A3xalCY9vFSFsmkSWuziaBRGLDmV+hqLlEL01hmoxYOM7V3Dk3AMaPGUo8ybQwlcc2QN6w7+s63MFLsGq7yiz8b41s/qFOtOlQrJsmUjWPBqj6JH7kMTYZ05QOm6kkyGRPDVuyfMPBVikhOH/L8gv5uAzdpU62ZqADsxNwsSybZaOjsS4PJmsUkMbzQJGb7rGovgxAoBK6rGC3YLG+TPLUlREpFpcMiGYO+9sZusGKg+PZ9kmIZdg4qWvKCrnabyVIj0Hj4WcmuIYUpa4yO+HStaOeuH5vUawFDQxVa0yHve5tJZ0cO07IwTYPhqBMRzfXvsl5hoWU/VGyZqfMqZER3roxlSB582WXjecnjBsengmEIrl2veOD5Ro6WZSh+/5f18pe2sHQApGmL1J6XXqDTClGGRbscZ6jeycieAu3Ljp5L9NJehXnYTrNJL8E/P+kwNdmoxFcuB2RTgsBX2Haj9UXNt3h5vI2JikN3tsI5bZMoQ2AISUijF1fMm8b1pqhbaYJ4GtMwMaxj957aNlhB+kWaUnDHrYLndhkEwqC3Yy7XxQ8jJqYc0sm5mZ5UXNGckUwWDVzhUScxd35kYdsGWdvAMeNMV8TsjJVtzZ+NiKSJEIL2puiIbp/NqYAfPhxQqzfus2VHwCXnuWzeHTE0buCYGYrlaQD2j8H+MQVunGXLXEZH65gGhKHHgek4wk1QrhrU6j6l6RqeFzHkGXz+u4JfffMQK1f0YBoGw5MW5bpJwlX0toT0tbyyj24xs70+iqA7W8G1GtexJemxaa/FBcuPLA57qr3tmiRvu+a0P42mnTQdAGnaIhVXVaQxEwAYJp1imErp2H2jDNGYCSlXDx5RTHpxVGUu6JASXnixxJo1KYQwycQD2psFQoR0hhH7DghywShVN0ddupTCGKYh8ZxWSh0tOLJMqzdMeuUFCNHY3TU8XqLqQcl3kZhUqrB/qEw2IVkzYLCn0ISTsUlbERAdMl5F4PlIOX86xDQg69ZoZpxxWgmVRSqaRoUGRQYAQRAZGEbj9UAjCXumv2mjWvRM2w4/smd7oTVev8CyFXVvfsBUrUm27gwIQoFhCjpaDQ6MNR48HhNYrkOtrmjLRizPT/Djl7MzW+AVxWJAqVCbXeZTSjE2KXl2uIWm3AT/9HQTobIRQlCogjVlYrzCbuu2KTinBx58SbEsP784URDppShtadIBkKYtGZK8Uzvmret6BY9vl/S2C7xAUSpJfuk6i31jsHWniec1gg9hmBTLUPcVA63B7ASJYylicZuqb6HMiL31DhwzoMOdwkASKou6kSK55gpc1yKMJHsPTKMUWAZknCp7Dhjc94jH6ETjS/ncVQZrzmvMFPmhQcyOMI3G8tqBScFVA2MEuOyrtXOw7k+hYiAjh+FSiv7YLuL1KQB67EZjjm3hSnIxHz90ZwObxrKMRCmIUKiZj8YwMjBDDyxrpqWGQT6bIpU0KM00X7XMRtBSqzc6oSslqWHRlIvIZl3imQR1XzA2WmFyvMomN419SMsKrx4ekeMEoDDZNwFVz8A9pDzAZOmw86TEn9iPDAOcpg5M9+hBbtKBYlUwXnbpzDYStL3QIGfViEo1zHTTMd8bmrYY6QBI0xarRBbhVVCWg4hC6sKhq3/VMU8XQvCe6w22DCpMQ7Cyy0IIQUsOfuEtWe570kMIaG2N0dUsGByTyMO+ty1TsVv10+aNIzFodovYM8nQpvCR0mDTnmly6QRdzc68pGmJSWe7wXtui/Pcyx7ffzhi046Q1esbMzAKwURRsHNXHTeVoD9XwLUkpqwzkBii7Dts22vgyXbA4pED/dSzkoviU7PP0cI4D4700DJg0d9cYbziYpmCpCtnAjmFrUBKiR8JeuLjxEUdKU0qIk1rS47WpjQf/5WIO/+vR7WmiLmSzdvqM9cQbKdx3SJl4UmbjG1RrgQIJOm0Q907rDz0UawccGjJSnLZBFKqebNQjiVRypj9d3XPywQz28T8if2k12zAsI8s+JpJNGb5tg4nmCjZOJYk7Y1xbuIpxot53GwTuVXnnXBsmrZY6HrpmrZIdaxcR6ZnJZEyEOl2Vp57HoZz/FwPIQRrew1WdRvztklfd57JH/xSgtuuS7DxPINbLhW87TKBKT1COZNLoyL680V64uOIeAxQmOKw7c8zxY8mCjXAIO42ZncCaeJJh0hZ+NLmgnNc2psFzVmTNV1idoamL9H4oneMgFXtZZ4f6+Ing6t4YriXRFgimXY5NPN6c6l73vNP+y6tiQr7xiUKQcJRZOLh7CyWZTTaV5Q9QcquU5IpnpxaRVHkibBIxBuBheuYfPjnY+CV2fzy1Gw+kGkZh8wqCQjrJO0KuazFsoEcq9Y20dISIwojQJGOSy7pnsSNWyAaycJ9A2nOXSG4uF+yvCtFd0tArS7xAwVKsqJtbgpIKTUb/ACoMCCsFI76s80lBW/d0Ki1NFGyCUo1rkk8zVDLxYzl1jAoWhkbnz7u+0PTFhM9A6Rpi5QMA/yRXSTCGhSK1BMGsebOE99PKkaLjd06bRkx+4Ued+HCgbnzBtoNjHoVPyigFJhC4YUWpmNiEtAVG8fzDNyZNCSloBY5VMLGEs1zuwM2rMyzb6TIyFQ079exSBm050JuvNzm3G7J+X0mQlhAN/uqPquaRihHCcZrjZo3gbR4qdjL8mgru8jPPo4vXJ6praXTGicyLTo6LTrEMKPVAmNRO4WaRdzxsGcCn5xdZjKK05up0pZqJEPVfRguxPECwf3PTGP6Ab/+7m6e3R0Qm4kny4UqhmmQzsbAmMtJWtMXYbsS35t7ca3tCVoSFa5aPk1/mwfCYMLuIYwEsZiJaQqe2Qa3zLRFuWatz/YDNYLIJBvzSCaS84JTw7KRYTD7b9OdS/w+3JpuwZrumTynmsXophYic24n3mTJp7XlmHfXtEVFzwBp2iLlFyeR/lzOT21s6IT3UUrx2A7JkzslT+yQPLXr+Ms1PT1dpOMOhowoBsl5S1ppu0ZbdTtNtsCO5SgEaSphgsYMjaAeRHgBLOvIYhjz19IcVec/XTlEc6rC+MjwvC/81flR4q4gEwvJxeden1QGa63tXOBuJmcU6bcHcWzFFn85Q6KbbEo2tuIrSVuiSlitknOqDE3FOFBwMEWAMAUpJyDuKAp+klroEnOgyxln+56I1X2CLftCvvWgT82HUBrkmhKNwEcpWptN2ltNZCTJphSdHQmSqfmzbum45OoLDHpawtmK1ctbqiSTFqYpiCJJuTI3c9bVmuHyNSnW95msWZZnXd9cgBO8/DDmge2oSglVq2Alc5jxE7eYEEJgJtI4Te3zjluvdH+9pp3F9AyQpi1SwjSP+++jKdZgojQXjByYVtR8dUSRwoNM06Sju4cntkr2DE7Q1Z4kYYyBZUMUkiqPkem+hrxhsm08xDqsu3kkFUIYnNuXYMveIqYMiMkazdEwvj0zu+PPVcQOw4hYbGZJzFSsaZnkqaEOImmwJrYbEcBl8Re5LP4ikTDZ3RSBlLiOQZFWElEJM/KRloNrC5wkxBN1BIqEHQECXzkYM8toYWRjCEmz63PNujp7xizedH2OibqN4wUoO0lvf2NZLB2PaGttLOk15TyeemqS/R0O7bkKaTdN2Y9hGdCSDelKTM777fPyrkF+uC1i13iSUsmnt2N+iQDXsWlvmn9MKUW4bzO11gFkPNO4nsUp4r6H6Zxc0+em/hWUhotMlwMSLnS1ZfiHb4/w8o4ql16Q4bY3NZ22JryattB0AKRpi5STacbJtuAXxhGmRbJrxXHPl1Lx1GafLTsl7S0GuYyJIU6u6N7qbsFDLzexY4tiWZPN+YndLGs2SFx3G2JmSeiN51tsGYo4MN2Y3cinDFKxRhiQSCS4aG2CkfEC9SmPmmwmMhtf+Ink3IxGJCWHluUxDJB+jVanTDZWp2ZkiXsFIkz2Jc8ha5Yp2znCmZmWksiTCcYY8zKUVJo8EtuIMITCjyySRg0TB8Xci5ayMdMzLZrItJl4nsSr1pnGIZGcO6/1kNo8zc0Ot93U6Jk2VYK+phrLchXaupoRXo3ChEIpA0XETON6CjWLIJB0tbn8xq3HrpF0kBACadqzwQ+AjKepPnUvyQuup1D2qE2NYseTNPf2zfYfO9RzuwL2TiYBQdwK+ZcfHOAHP50gmbI4MFbnub0G/+Fns6zu0osF2uKjAyBNW6SEEKR7V6O6V4IQnKj305//vyr7RhtLXvv2w1UXu7zhHAv7JGYAsknBr77ZYMewIpvMsKLzgqOet6bbpT0XIRXkk8YRY2pvyUJLFt+rUymVMC2LdDYHwPTYAcqFSQySVMMY+ys5QiloaYqwRIp/3bOeS5aXMFJGo2KyEByoQUfqkH3jQjAa5KnKGCYRthERs2byZ5Sk2RvEIs+4OVd/OyGqjESts0GRaQomx+tUwoh43MUxJb5sbJM/+HJsU2IIwb2PSPwADMPmbRdOsnpVK4GdojgxghHUiBf2owyDSFn8+lt6cVLHzt85aNdoxPbhiKmKSWT8HJ2FImsz+zFE4zUYocfkS08iXYcpt496LcHerZNkbJ+VAx2z17zmK/ZOChpdeRX1yOClbWVuuKGTqzckMAyo1iJe2FFiddexK4hr2tlKB0CatsgJ48S/vT+3PWDfqJzt56UUNMcUXU0n/5t/Nim4eOWJg6Vc8tDZFUkY+FiWjXHIEp3jxnDcudyZaqlIeaqx2ynwIvZVM/jM7CDDpDlRY333NIFycQ4JqoSQTJRsmtONICfYO8SBv/0Xgg//f6zPbmNcdMwNTBhUzQyt0QiGVFStLK6oUw1sCmEa04QwVNxzf5HJmVmsjev2c/P6ItuncmyqD5BopAKxfVeVeBz84ODrhKf3pOjZuZ/+7mZaU3HkC49iqEbAqaSkVlyLkzp+oFGsSrbsjyhWDYo1E0ixvZrCxmd1cj9uZQKhFGZYZSLTT43G7A5AwXfZt2MHvStWMF4S3PeCIuE28rGUglDCtdd10N/rYBiNcSXiJsKEwdEqPW0nDs407Wyi5zU1bYmLpOL7T0ty+RiZrIvtND4W2l9B8PNqhIHPgT3bGdm7k83bBtkz4qHU0asS7x+fS3ZOehP4HNpDTCClIJ2EVmcaaAQhIwWXzftTjD27i+ToDpIj2yn+2edR3/4GVrXIpNGOwfzns1SIAPJynN2FPFsLXewqd2AJnzCU7B8JZoMfgJ9uSaEUrMxP058cZ5k1SH14H8+/WMKrhfMe2zAFg5Mx9g4dwHRis8EPNILUIDxxfSB/5iGDaP7PZtBrw54exQpqBIaL72bwpMW8ZmxCEJVL1GtV9u0epdcZmb1dCDAFtLUfGeRUfYeHtzknNT5NO5voGSBNW6JqnuQf7wfPBz8ygUaxvXjcRoU11i8/cR7Ka1GamiAKQzZNdTEeZDEm4eHtiuvW+HQ22+wcEew8AB15RaXm0mGaWCIiI0q0M8IIjdkbmwDblPgqhoEiI6aYDlPsG40zPlLkbVc7mEYjYBr4o/fz3OMvsX00xp6ioLdN0pSKsM2ItCqQktMAjMlmlDBRzOQZSUHOqTJizk8udu1GuQCU5DxnK44RsW4VXLSih30VGy80GJkyyCYk+eYkOyZjdGZKFFSMSnIliWCatD9OYMVxss0nvGb5lCAdE1Tqkpo/FwRJO8Zz2bdwzUCdHcOKptJmapGDYwREMzNlVlTDwmfTYIgrykgnBnO75zGVz4UT3yfEYrTtQgI3gxcaFOsOUglGJvUskLa46ABI05aov78PpBIYJmQyBrVaRKXa6KX1yV975Z26N+/2+LvvFKh5ipuvTfKWq0+8HduLLMb8LObMd7kQgke2Kq7JPokV2QyPrGRwIklTJsmkuZyu2AQ5O+SC8Gn20UeIDa5LxWyduT+4lsSJAiamApJONPvYAGYqweAH/oTJmgM1GC/A8r5Gb62U5ZDIlkkGBcajRi2hSELNF1RFAssS5JtcVi4P2bGrhm0J3ryhMYNUrysy5kyrEKDTmsBvbeGXVzo8szOi7CepBY1ApBbG2DTqEuUuA6Cn+hJ2zKTDPnG2uWkILl9lMVqU7BuP2HZAYBmKXBKuW+8CLmv7JQf2L6djepAdlQFyVgWpBPloH7Zj0O1vRglB1U4xHubwlQtKsa7wINlgDDOskxkc44f5X6YeNWaRTCGJOycanaadXXQApGlL1Pw2FoLuVtizX3Hz5RbpxCtb/lJK8bmvT1OqNpZJvn5PiXUDLv1dx55FSudbKJYqHLYKhUIw6SU4UE3TkylTtBIoDPzIYKjWQiWWpO7GcOsF4jHFiNs18wokKasGQpBz66RiKQ6MO4wUHdozje33hTDBvpUbkX6EZRtEUhCG4DhQjWJgmhg1j85wH5MqR7FqzzZG3TOZoC0dcOG5Cd5xyTg5u4yvHEaNNpoYnH9tMfEji47mGMY+Qa3SeIyWZI1sLkd5cm45aSSxkhY5zOTQbtpXrMM4Qc6WZQq68iZdebj8KJ1NbMugt6+NsCOLGBymUJO4skLCVIiZZrLTZjMlq4k2q4oXethGiJc/h72cg10v0rX7J7TFJhn3m4gkrGieIpfWFRK1xUUHQJq2BEmpiFkR9XDuIyAZU2y82OT85a889yeKoFybnyPy0DNl+rvyx7gHWLZN97I+UiNVqioxm4CdlEX+ffdaJAZNWUlLVjUSsxGEEfTaQ0SWoJzoxhUBOTlFRSaxjbmWFkLATedP8K9P5fnGsz1c0DrKitgwL4llDO6eQimIxW26e9NYM5egyakgaLTI6PZ3ImSNB9QbZscbRgYd7hguAU1WGYCY8BH1MeoijsAkRg2JyQRN9LTGiDsGt14GOw4o/Aj2j5s8vysEBNlUo8TASDHGfbtWsTI3ya3N4ySa2l7x9T9ctTDF5IEhAitOIi5AJQg9H1v61EWMktU0e51idoQj5praBrEME63rac5IsnKCZ3aliOWrTO7fQ0tP/wl3E2ra2UIHQJq2BBmGoCnpU4sgCA3SCUkypuhvfXWJz5YlWL/CRhJR8wWVGvz4uYhcqsDPXnfsnU2W5fAzF/g8+PIU036SpOXhVyQSA9dWtOckptkIjILIIG8XKUVxhClIWD5SgqfiWERYIgAVgWgsJTmW4rYr6zywJc+AWyB93zf5aXz1bLXqei1gerLGRMrFJOK8Zft5eSjJPU+dh0Rw+UAVOxcQzOTQOEZI2qoSE8G8WasoVOww12EaqhEAKcHqLpMoGGPXbo94PM5AWyvP7ghIu1WyscbS2vN74rTlFNsGG+PdPt3E9q2bOOeCBNZJVHM+nsLofkLD5tCIsGqlSflT7A57SBxy0yylECgUgunsAClvkqrbxCV9k8SMOvVaiF+v4cZ1HpC2OOgASNOWqLbmGCIqUo9iSCVwTEFX06v77T4MFek0PLlpLo+lo9Xm8Rdrxw2AAOLJFG++dOZxAoMv3dfY/t6UaQQ/0PiydoyQpkQNaTR6ZEWqznSQIVCN5BQRSpqsSVyj0e7CtW3ae/O0tZk8/HQvT5z/X1FbD9a9aQj8kKk94/iRyT9sT1GouUjZqItz/8sx3n35FgpmG6Edx4677Kr30umM0GIWGlGZjBitpbGzESvN7cSEh1SC4kgKY6ZxaqVSYdpxqNYEsZkcatOAlnTIi7tcUJLWWI1y4Da2o9crrzkAasyXzV9bHK5kGCp205bx2DMRY1lzFSHAmBzBzscbM2g0+rBVyJOXHglK2HZ48CHhGLv0NO1spAMgTVuirl5j8tTOLPVqSHvW4IL+V/9x8JdfH6fmw7xt10T0tp/cY24fCtgz6hF3FGu7IppjRYpBimIwFwhkKvto2/YDRtsuYpNzEVIqupvntqQrDJSZYNlAC1EYgmFiGAbNacHF8S08Pr2O5vY4I/tLuK6FG3cIw4jBYoJbro44UEnj2rBtd8j+kYiL1scI2leSVJIgEvSUn8eUAaPpVbRkPJzSIMaLTxBrupRYNklMNFp2GEKRlUVKQRbsRnAW+j5pwydg7vV4gaA1G/Lm5udJuSGRBNsCK378it0nI9vWxdSBQaQwiITJdNXlqb1N1AOLjkyN6YrFSCGPEPDO8a9Q3HATB78OTCGxCdgpB1jO8NyDCoPqgV24y9e/5vFp2plAB0CatkQZBly60gBe2/aeui95dovP+astOKSFROBLfuWWpuPeVyr48Qs1ip6NIkZIQH96AsuQOGYBX9rUIxfXm2b1tm/j+EWeSb6Lst+YJWpOV4g5jVkJgSTthgzu3cuYl0ZiYpmCnniBtFEhE41TTg/QvSxHtdKY1TCtRjXqyDFY294Ye1+3yaPPBKxZMTNdI0wSssqqwmMAdFW3MBWuId3cwr7z307VbCXH1Pxrq0LcqIpnOwghSMRcxuoORmgSdyImSxbjFZc3dOylYreyx+gEpegyR2iOvfYlpkS2CTeZJgwi/urfTZSa+7lsHsmxvKWMZUgiZTKduARh2gglsaSPoSSOsvFUhuF6ns7YzGtTCjU9gpLrqIzsR47sxuleSay18zWPV9MWgi6EqGnaa3Lv4x4qghc31ehqDsmnJHE7IBU3cJ1jf8QEoeLbD/sUPRvTbCwLeZGJNVOF2BSK3uQYOWOKi1/638T8Ar6RoGzPBVW7xuKoKMAVdWKijl8rM+ElkDOBmIwCxksRkWHxnov3sG/bCIXJ6rxxmJZBNj03TtMQNOfnj1sacwFELKqQTprYy86h4jSj7DglkUVEM41elcTyKtiGQd4Mac41sWXMZjrKMumlGCxmqaokPW0QGTbjxkwAIQT7ZTtBeGqWmUzLxo3HyCfnHw+VyY6JHHmjwKSXZDy7ihCL6XqM/dUmSqGLZQuWZSbIxEM86WCEPsnKCCaKyRcex9jyIPb0IPKlH1N67ienZLya9nrTM0Capp1QPVD84FkYLUB/K1x/XiORGiCbBGEIwshiyw4PgcCJ2/za2489kyGV4juPhRimiWnOzOCIxjJW0Y+RceqN5w0teqJdyEwT5vgQrqyQ84eZdjpnHkcw7SfpsIqE2AggVBaWrNPu7cLBw4tlqSVaEAn443ce4M9/tIxA2bO7mfraIoSCg7NXkVRMjxRx+xSeaOQbdZY2z45dCYGVb8V1bFryDoMFCM0kxTBNU/UASilqsTx2WEOWagSlAqFYgSCGotHJ3hCw8VyDyrhNqXjolRF4gcK2Tt1OqxvXl3lya0RHskTG9SnUXUaKNt9/IYUnAhKr0ngiwUi10VRV+B0st8ZI2I2dYb4ZJ1naj63quCsvxn/ux7MLnQKFrBaP/eSadgbTAZCmace0fSji7mcEUjWCDaXguUoj6NmwsnHOdRfG+PrdNpVKgGEaCAP+9Dda6G47dg2g6UqjP5ZxWO0/gaJUEST9OlIYNIf7UZZDOHAulmsTeBEd9gSB04owBZl4RGdsirxVZLRgYqc9YqpCV2UTwmoU8RNKElpxUCBiFh+9vcYBP89DL4bEjTLnrQJDBBQ9h9EpGBsPWd5n8dATFdasDOnrcmjPNeP5TQgZUWsdoKmti/DATtp2P4NrtVJPdtC84lwS9loir0605+XZ12QSEhN1mhMOhbqLYQjaMxFSmpj1cTICiqqRKJ4XE/zohWY2rnfIJEy2DUU8s0dhCFjWKrh05bGLJdbqEtsSWIcET1JKRGmQDd0GYiZgnapG3P/ywVm0gANiDLF6bhlLISj5MRL2XJnoWrqdjlVXIwwTrxGpzj2HqSskamcnHQBpmjZPre6jUIwVDe570ZgtBGiIRs6OAgqHrCIJIfjff9DCEy/VKNUV112UwDpBB3nbbDxOFCki2Vj+Ukphyyo9iRLStGmqH6AYb8Wz05AAN96GoSLWeFOUihOs7SgjUNhGIxE6KzwmZRORMijHO0gYdSJhEdgza0AClDKo1aosay1z7tvy+GEMGdSplGt0m4pz+1z+6UeSf7q/sQz34g6PD78nQb5vBX57N4Hv0xyPY1k21d0vNJ43HCNbGMOpJ7GS3ViOS8V2kUEjKVoh8HGImwHL3J04YYWpSisv7ulgtRXRZQ7TrCYQKBwRMCwyPLk14Io1SV7Yp0jHG9HGSEGxZwyWtR4ZBH3xWxP8+Kkaji344M/nuXR9Y/Zt3/YdVO08KTU3S7N1ZP6a2O5KnuWmT03ONZ91zEaOlFTghSb9ne2ImWjVa10Bk3sxZEDoJCF22Bqbpp0ldACkadqs4bEppotVRkpxhkpZ5u/qAoTCQLC667DDQnDZ+pNP3k3HBRevsHhuZ0gQKpSAq1cbtOazeJN1do57jKRWYIiDUw0Kz80BUIs1sdItUa1KcqmZ4GDapGR1kqAx5CEjwTJ2IsSROUglmWJiDOTgAaJIIhI5zuvP49qNczfvLs2eq4Dd+0MuWntkh3qEAVGI8GcCnUoBmruZLEVsDZfTxhCOoWjp6Wa5SlDf8wKZyhB7nDVUVZxYWKJIjLRZwxWN/KEIk1CZuMpn+3BAzJkLdkwDntkhjwiAXtxWZ7Bg8TPX56j78NV761y6PoFSiqoRAyGQysCgEdR15Tye3TP3s2rNRrSmaoQVGz8ySZh1fOUw4VlEymDfuMOFa+Z6oLWccwnVsS78A7tw8u0kel77rjVNWwg6ANK0JapYrjKxfTtNld3Yjo05cAHTxUZAMVRIY1qQiivq/sEgSJF0FbdcJujIv/YclbVdgjWd1hGVheuBwi6M4TlpwkRqNil6jsBXDn//fZsr13qs6Lfw4hlMZRLJRu8vIQTFKEuTmCRQ7mzVv1BZPLIlzkC4iSta9wMwUe/kSX8D+6ccOvKwstdh/+hcJ/dVfUdf4jGXrUe+8GPETG2caPszWF0r2bo/oq5c9rIcpEKWaojwAE5UY7N7MUW7dfYxDMMiHu5D2i6RsiiJLO3xIo4N2aTNznETd2YlUSl4dlOdqBZy89UxXKfxmu55MuD6yyysmbgol3bYcyAgr/Zj+zUCN01NJHBVHUMG9HQILi57FCbrJDM2l64NsUxBb2YagLFaemYGz8QUkE0qaj4kDukDm2jtJKF3f2lnOR0AadoiopRicKxG1ZOk4hZCKBzLoDnT2I5d9RTPbI84MFqktzWk15/Ekj7UPaItjyHaLkEZJqYhqfkWzekIy4zwA4EfSn7tTae2Q/yhwY/065Q3PcpOsYJ6ahWgMCNJkgqHt8fKZlxKNcHQtEO3mcaXjXFFysQlABQi9LCDMo4/RjXbRWQ67BhN0d0qyJod1OoTxIVHsz/MU8PTvDCU5yVD8Ib1aXJpg5GJiMvWx1i/MsbhokgyNK3oOrQwYOhT37+bIOziYEJ13iqgakUUUE+1UqzO7/heDuP0BFVGrA7cqIITlYkmCggRUHVXs3ufQXtrY5fczj0+YxMRP5qImChI3ndrY+nJtMVs8APQ1iQoliUq8hj220jiEcOjHJgQQvdAE+Wgir3CmSkhYCGVnJ1tOzwgtUyFo78ptEVIv601bRHZtq/ARKURLUyWfZSSoASdzRG5ZJwv3h0yOlrlXW+SGIbJsHMeRW+cnunnETKkLZ9gpOCxonmaLWOtjBcNEo6kNx+x8YJTn+w6VawwNFJGKkhGJZI1ST17sHK0IFIGZhhgWIrIaDy/EQUMlZtw4nXicUko56KjlCjjRFUKfozOyiYc5RE4SXKtHUzuGyGZT/LophjFahbH7OYdXU/QZx1g+5CB5zVmmh7fLPmvv3j86tUTE9NUjDiencINGn3BpGlRmxgmkWimFMQBQcKYlyx1RCXlFjGG4Vi0eEOkogLeQz9hciLkmat+n2BvlpXLJM9uqjMxHeF7c0Uftw3OzVCVKwqpBDM5zkwVFcUKYA1gCCjV04BieXI/K1f0Y1kmHZ6gUjl0qc9AqQg/Mqn7BglXImZyvtoy5glzujTtbKQDIE1bJJRSFKsh4CAVPLsrTtUzsS1F55Qk8AL2768SlSYwjNzs/SpuC4ERoyrSdDY3k2sCUFx6jjGToHx6yoXt2TPIlGcjZraGl80M0mk+4ryknCJRrTQyWMKAeFhhr2xGKcWOQcG5q+pIM0nGKNJtHQCg3YXJ5BqkYRPWA5ZXpqg4aXYfsClWG9MlfmRyf/FC3ti/hwPVJEpJTFNQKkOhKskmjv26/VqNWhRjd/tVNJd3YaiIlFnDUj5Jo0rcrREpE9M05u2Y6rQPsDfoRiDotQZpNSZACVJRAVkqEuzdzdAb/ytWMkEQwmTFYOP6Gg9vSbJncC4AWtYxN+Vz42UxvnZ3gUo5JB43uOC8NF2tECiBHwlsQ2IaAj8QeH6AZZl0Njlsr8yNSymw/QrL8nHW5SeYLnpU3VbaWtMkY8feeaZpr8S2/RFP7YRsAt5y8cK/r3QApGmLxK79IS/vhExWUKg7VOozX/SBYHTapD0fUC5Uue06h8a38sxv9Uqx3T6XMbOHLiFm0mUat5mnqVTqrp2DjNRTKNFIzo2ZPkKA52TIeCMU3XZQijY5SEwESGum39fM3nnLFCTtgKmi4K5/DVm/qsz164rzPtEsE0LTwEm5lPa+RKzzQtRh6URKgZ2KUS3VCEKBbRt0d7ls3TWJqQJcV7Gir5XYTCKOlJJyLeS58TaqgYkhJF7KpUftBd+nYDejBBgoLOGjlCKeTFGv1ZBRRFs0TIfcg2fEsITZ2CGmHCQxLKtO7Z3/mb7mOL1qPzunmxitpImU5D9cN81YtZmHX/DIJA1uecPcsly9FjA93ZgRCkqSXTtLXDDQCILHKgmCyMQ1fdr8QfYdiLOq3yXm2rTkEoxPN2aoWvJJOls6Zh+z/bU3pNe0eZ7bFfHoNgMpBVNlxVcekPyHjQtbi1kHQJq2CPzf+z2e3lSnrclh5wFJPhsCc/k6QQiuGbG8VzDQYxKpEF9aSGUwVY9TFTk60q/fMsdU3ULN7NCSGATKxCEk09REZ8LDE4BlU9wbwCFBS8VtZjS1irwMZ1eTIil4bovkvC5oOSRdRx2ygy2yYjS7knVNIwxNdFP1DGxTclHfNFEE+axJLmszOR3S3Ryxt5ht1DSqKWr+BBvObadWqzG0f4RCxSIvTEKRx1cOJS9GSo6iEBRjHaiZ/B+DCFC0dnQhhGBq8xOYQWPaxZCSot3FaNRGmSQ40O7ux4o1PpKFgN5MgWLdpStZoFIWnLeqg/NWHJmDVSjNj+pq9caFMQSknIBSHbqSU8TKNSK/TqXmk0m6dLRkaM2nEELMFrXUtNPlmd0CKedKaFY92DEiWdG+cEGQDoA07Sw3WVIMj9V581UWji0wRYTwSyhRYftIitGSS1NGUpquctFaG6V8TCGJmz5BZOBYSZozgvV9r98HkTqsC49AEYk4vZ1phBBYtTLTmx4jijdz6Fe+L2JEGNhmHYNGAi+AaSgs28ATMUwVEGHOVVmUEXHpkezsIV3cw6+seZqRqJlY0iJmRTy1I84VG1IzSeICLzCpBiBCRdKVTNRT7BzyiJe3ImsWfpgnbta5KLGFp6trsSwDoxZQs1IoMTetLzER0VwxQfOQ6aeqm6MmEpSjBKaIMIRiWrTQrKYPbljDFBEb2nZjGgqf+DGv5WXrY/zbgxVqXiPwOXemWGIQGQSRoDs9RTIqIDEJDQfrkGk983RN8WnaYQ7Lrce2FD9+SbF9KOTGixcmFNEBkKad5XYNl+jrkDPbpUNyThnTVUBEPjnFrqk8m3aE7B5s/Hc/b6XJ1ed6gALTZeMhNV5eL8s6k2wfDlDCQKiQpOuwtj8ze3uw7SmiwEclTTwRx5QhNZGgZGRxaCz3tGYjCsWQGy7w6eqOY6Tb2B9KUlYV2whpzcaxKhO4piR+6Y0MjUzj2SkQivZwmsAzGCx3EstlZz+d/WAuIFBKUPcFkzWHtdGThAY8Xb90ts9YX+wAOaPI+u4E7DCwZNhYUxNzS4sZf3p2V5Wdb8evTiNgdvbLFBLTaAQuCoNyFCdt1VAKYtRBKDzp0NM7tzx1uPZmiz/5zy08/lKdvROCFb0e1cDCj2zGi4IXdjcTE2nO72liVUuaROzU7uTTtJNx40WS7z0hCEJBKi6JxwAEBV9wz1MhN13y+ocjOgDStLNYJBUuRZa1xxHCwySYmRlpMATYIqBYsdhwSRpDwOBQnZcOJMkkFMUynNN/antPAfzzwx6eL7n2PJPO5iN3j7Xkk2TSEi9QJFwD8/AlmDAgSDUjTRuJTQgIBTYRQjS2aleqEb95e4jlukyFOQAUJpUwQac7Sm1iClUPMbtW4ZQjpishQgh8O82ElWZ/JUfMLNPulhgJGkHg4Ru1ilVBm1kgZ1XYEfTNBj8AY36e7c/uZe1Ajuyay7FG99AsSkyqFKDIihpt6zfMnh/v6KdemkZVpnD9EoGTwjbCeY8plUkEIAwiZeIEFZYP9GDFj78Drzln8parkzy5HTqf+xablt9OPYS9oyYgCIjx+F6XKy/SMz7awujIWtx2eci9z4Ftzb0PDQHDxYV5X+oASNPOUrV6wK6hSQLc2VmGCJtQKmyzsWMoUoJaYLJyRWI2z6OvN06oQkqeQV0qduyvsqonfkp2e728N+D7zwgi1fjC/sqPIt5xVY2V3Ucu4TiWccz6MqJvHeLA0LxjBpL+rhxBKJF+lf/4s42ZoGo0/74SA6UgsuOkp7czMpbFszOgbCQC2wgxhcIUku7YJK7wCZTFdJQml4go1mwiJchaZYqVNJ5ozJikjMr85wlDXthn8ejzVW69oQUr20IXcFiR7HkyA+sZ270VszZNrrAHYVcZspfTSDpXxMxGM9mD+UsxvwC1EsRTx3nUOef3w8ND12OqgCCyOLSSdxAJghB06y5toTSnLd5xueK7T6p5S2IyUse+02mkfx3QtLNQ3QvYs2c/kZqf7AtgEuDIGgl/mvKBAi3O9BFJrpZpIAS4jqBWK7N7aAqlXtuH0DM7PR7cbBGpuRkNyzZ5eNOx7xNGit1jITtHAurB3PPLTDuWX8aMGm0mUApbCNLJGLm0S6k4PXtuzPBw1Vy9nZZoGEM1oiIlDEpTARPVOKUwQSWMU/CThJHAJMA2JQJF1qnTEqvRmqgx0FxiVUuRlqzENiUTYZanCwM0iSmWGzuIfJ+U49HfVuM9tzic0zRIaWoaL2j0SNs1ovjBM5IntinkYdfUtCw6Vp5DcsWFGG39pGWBNoZJmlWyVglH+KhKDbMwSWxqiFhQxkgevybRoRwLNl7XSyYe4VpqptBhQ2uqTszRyc7awnLtRqFOqRqzrZ4Pv3DVwrwv9QyQpp1lojBkdOcWXMMiIIYpJKESgMAPFEbgk3GqJMMC/769na0jirddP85QvQUAIdTsUo9pSGxTUfMCokhiWa++Nse24UbdoEMppXCsYwdWz+72KVQbtw9PRVy+ysUyBbYlCGJZYtXJRtNUM0Z+1XkA+J43L9fGEDDgv0zNSGGqkISqUAmbiAwbc3KEPZkbaDX9uTFhMB2kyJnTSGHiCYeKSs9Olhz8rdAUsCxf4qXBOGaLQynfR6Jm4tZK9OUbY25ucXADSW1wM/9nzwWMFUxst7HsBIpCBd504ZEf7olEAhKroHcV0TM/paX4EuMd51ImQzwuUDiU/Djt7UkM9+R7rB100do8P3yyQCqZwbYF2ZjHGzp2Aee+4sfStFPtjjdb+KGiWFE0pRduF6IOgDTtLCKlZNuuIXJ4hDJCGBJDGNiE7Dpg8+jmGK7Vzjsvn2DYSxPr6mJ9t0lgBfRmixh+hdGwBYmBISQ96SmgMSP0WncECQGGIXBshT+z+UlFIW+/8uhJ1kGoZoMfgHoApboinxQEQYSM5wgMEwHEcq3E4o1AwLRsjCggMm1AIKIAp1YgpqaI3ATKtLD9Coblcn/sZiQmkRSzycaNsQqK5EgENaR1rKRgRWva52fOKRG3AhSQjkec210m4GAHdME+2ceElySXVxyYVtiHzMjtHoH9k42/d+aP3AkD0HrRNYQT+xkdLRO3fRwxc/Figk0TDue1HP+6H40hBG84P8MzL49hIOlOFOge0E1LtTOHYwlasgs7I6kDIE07iwyPTOIYIQEWwjBJUsSXDs/vS/LYVhdo5HmIoMrTE2tmt5vvGTdZ2y3J2pIeexfSsLDdGKFyMAyLjpb0ET2gXqnLVxrc/7IEBI4FuVidX7ju6Nu3/VCxZX84L+nYEBC3BUop9g8fIJIGWBmEgJbmucp85fEDZKoHMGRIaNg4lSmssLFUZoR1Ktkuwlga07KpW1kMpZiqOuQTPqahMEQjEAkjQb0WsbWcZnlHQDS74b5RJNIVHgmrDjS2tBuAQB7RzsKXFqYBybhgWSeMTM3dVg/hH+9r1Cxqzwv+45vMowZBVnMXOTVNYWry0LQdpuoGY9M1YpYiEY+9oiA14RpcfVH7zL9041JNO5wOgDTtLBKGjdyWCdVCk1HERBIXdc5pC3hsayNRtq/FR0RqXq2dSAqkBGUaJIMipmXT0rP8lI6tr83k7cmIwYmIjqxBS/bYtWue3xMyXmoEGqahSMcEKzssYo4giiJk4JPyJjFURN1OE4Qhtm1TrVaRIzswUUjDwor82eAHQCiFNBuBTCLXzCUxwRPbFQJFsWqSdALiMYHvRUwXJNvryzEMUHKcnFnAIsTHZdpLIA9LFlY0ruFYLY1lmzi2pBo4+JGJqXwiKWjKGOzYJ8lmLBKxRl8uORMv7R9XPL9bcsHA0YOYtpYcpUodwpneYkpQ9OPs3V8g7frYtkVfdzumufAtBM50Q6M++0cDLlgdx3F0qqt2dDoA0rSzSFtrlv2D5SNma2wLmpsa/53fvGoXWbNKxq5SDBrLRqlYiG1K8kzMLCm9inUV4DsPehyYFly0QnDluiOXjnJJk1zyxF/QxdrBWRRBJAVdTSYtmZkKykKQrY1gzSRA22ENK+wB4lTK5UbwM7OVKRIm0jAxZCMwlMIkTDTR0tGFm0yzFsgmoVA1aIkFmHseoxYmiZIJREoQRvCjfSvBtKkY2dncorZgDwdEP6lDXmI5SlCXLrE4FOsmBc/GNBVVr5Gzo2gkdZsioKvFRBmCicL81/3c9oALBo5dd2lZTxsPvhDDNkKm/ST1yCZrV7BkiPIEpVKKXC5zzPtr8N+/fICHnykTBSGGafDGKzP8xi8fu46StnTpAEjTziLxWIxEpolwepJAmthGhFSwZaqNpnwjKBj0Oug0nuSNuafYU2tFYpBqTZBO2LSlOzAtGyd18juLDvpf/xZguQ5OXPD0bsl0xeMtG06+iKLv1ZjYvR2igOUixmaWw8yW9bg9F9AVpycxo7mkZQEovwrkqBeLJIQ1t0pkGFTT7Zh+HYGknO6gc9kKLGvuo60zJ+jMCab2DOLFcijDwpQhQkZgOVzZsp0DtR5yyRCEwIw8WuqDpMJJ/MEitYHz8cwEdRmbHVAmFuH40xTIgBvDmik7UPMNNqz22Ddp0NzkkIgpqo1VNCwTLALg2NfMMg3WL3N4eqeBLQJW5A/gMjfDVZ0e0wHQCTzyXJnAa+RRSRnxw0eKOgDSjkoHQJp2lulsy1MNXErTY+wesQntLBO15OztNelSyPXg1Iqk3YAhq5+ORI2+7haM11DrR1jW7MyT6xi8vNfgLRtOcCegVKkxNV1EVqZQVhysOGbks8YeZqfXx+4xg+8+KVjbDW9Y29jlFpkO9swMkEJgzW4FN1CiUSnnoMBK4MVyjS7n/WvmBT+HqteqCCGwvRLxamMmLDIdHDdF3W4i9ASZ2ggd/l6kYTGsOiiqNpxJQXtqlLIzV4vHEJJcokaTqFGLXIa9ViQmcUfykxdtiqWQc22T1iZBuSLwAsWePWV+7vLkUcd2qJZ8gmvPqVGvVZmaaASCtcilFKUwQ0mnUq85X2sxO7ymjDx8a6KmzdCLo5p2FlrRnSDX2odp23QkSzATEFhGRF92itCKU0x1Y+YzdCensBPNryn4AY6oE2SKE9cNKparDA6NUix5TMpmKlG8UaTQdLCVx54xYyYpWbF5CEYLkMxkqcfz1J0UvpXA6lmDGWsEDpnmZgpmC6iZZGSpqDkZOpavoWPVeiz72G0ehGwUTozVpmdnkMzIJ+YVqdQMxiYFPxg+h28Xr6dsZlkhdrO+aT8lMpRIk2CuEGLemOLgzt246ZG3iwBEEoqlxvGRAz6/cKVBd7JORtR4z41x1iw7uTYUsXicXFMzVZmkFjns9bqYDHOM+U08vcM78QMsYc5h1TUtW+dMaUenZ4A07SzV3yZ44AmL9R1TpByfamCTjdURhkGoTIyZAMUwFVF1Ag7ZSfVqdGRDxso2hiGoViN+6foTz0JUqnV86VBVjQDGixrLP0mjylPDrfiBIptqLA9V6yClwI3F6Vi2Aq9Ww3Zd3NhcMnU2nyWUkvExC1MGCNOis6sdy40d9fkPKk5N4JsxTBnO9LuYu+2A38RzhXY2LtvBuo4C6doYsXpjK5ctQs4zXmDa6CHDCB7uTPAkZru+Aygl8QKBjAQXrjKpB3DlOp+xyWmuvyROJnXimZ+jCZwOJsuVeQntUxVF3QuJufrj+2j+3/8Y4F2/uwu/HmJaBv/wJ70LPSTtDKX/B2naWey267I88KTP6vYKhogo+SlMU5E1a/POs0/B//TbrnTwA8lkUdLRbAIn/s3adWxCFc47FkqL7eNp9laaABifVrQ3QzKmaM/NNA51XGzn6Lkyzc15mpvzJz3uKIqYGh9t1CmqV9kTX0df5WVMIqpGij3mala0FgmMJPFwuLHV/RAmEV5kIyyIzeTj+NJqNDQVAqlgz1QOaQiWd5hM1w2WxcrYlClVGkuAhtFMKnH8IO1o2vMmYwV73tZ4IWB0vEhfd9Mrfryl4v/+2cBCD0E7C+gASNPOYtmUwds3ts87ppRi+/ZdIA4GKOoVBQzH49gGHc0nf34+m2LPUAGMuS//pCzydOnQ38oFpbIilz56ocDXamqqQISFFCa+a7J7KscOYyMi8FibHeYCcytSmJTMJlSoiKwY0qhgyBAFjFmdNDkF6sQQKGw8pis2wjGxhWR3KU9HE0SR4sEXQ/aPSJRy6W4W3HBeCcOALXtLnL/Sxn6FlbY7svBw3aYl5RNKAwE4ZshkoU5Pahwj++p282mapgMgTVt0hBCsXDnAxMQUYRSRz2VxnZPLPTkdYxnoyXJgcJRAOMSpYYZ1yoE9G+wo1cidyR27bNCrFoYRByZrOObMbJJrsbZ9mif2tTNRzdPklDGaEyghiAVlAuFiUqeeaIEoILJcTDNFQThEM01RTb/CftnM1FScsWmDeiBonSzx0vYqViLJwemaoQmHveMO/W0+RT/Oo5srXLP+le3gEkLQmw+wVZmqTMz0fROUybDn+afpWzuA2aqXeDTt1dBJ0Jq2CAkhaGlpoqO9Fddd2PbfuWya9u52hFen7FlMxtbSkW1UfJayMWPVkobrzj310z+b9haQhy/VCUF7qoJA0tqiiAwbKSyqdhah5Ow5dTPNkOqiKFNEmIAilIKdtR58kSSZMOjvUiTjivF6CiOoHrE7q+rbjFbTVMIY9ejVBaGXrUkQM/3Z4Ofgn+ecK5jas+9VPaamaXoGSNO0U0BKRbEiSScMTPPIQCafS5G/aNXsvy9ZDSPTirECdDYJmtOnNvgJwogd23cjVYzImB8AChRl36HFLTPvd0AhMFQIM+05BuklZVdJmI3KzKEyqEWpeQnJIGjKKMzQw2vLIxyLUqmR82TbAiOepBQ0Xlvc8oFXN821blUvj7w0PTsLFUko1i0etc/n5lf1iJqm6QBI07RXreop/td3iry0rY5SChEG/MlvddDZeuLZjvacoD13esa1edsQOcvDUREjURJCsI0QoSRVz2DvdJrbup/Aj3L4VmOHliEDjGqJip1mmjyBZZIw57acW0KSNKtAloPLXFIqnn6uQrUacX5fnZKdwG5yUErh1QN+/NMJujpcVvdJLj4ndZSRnrxl7XGe3AkgKNYtwsjAc155p3hN0xr0Epimaa/aP95TY+d+RTITJ5VN4GSSfP7r46fs8feOwdb9UPdPfO6hDnajt0VImzmGIQOm6zHiUYGXR9sRQvDY1GrStVFiXgEzqFHwU+yKnc9Lcj2DUS9lz5nf91QpNg2l2L7bZ2JaMjkd8dQLVUplSSQFz+yOE/dHKRXrFKZqbH15jP376zz5dIHv3F0hETv5qtlH09Xi0pk3GS/b+GHjozvuSn7wnMdDm33qvi74p2mvhJ4B0jTtVdu6O8A4pEO5bVsMjlZf8+OOj01x/+YYk7XGklHKCbltQ0AiNbeENFVW/OA5qAewvq3C+e1FjFQOw01QkimaVQVTKBwRUA8MEmYd5cRJmXUqIsVYPc0mf4AWJ6Qg80TCAhPsSOFHjQ7w416aFrdRaHJwIsHLQ0mqtYiRycYyV+DNX7pzXIMtT4we8XpO1e62S1dZDLTD0KSi7EkqdYlCUPHg6R0eV66N6SrRmnaS9AyQpmmvWmerOa9CtFKK3s7XNtPx/Ev7eXiHy1Rtbut82bfY8tI+wlqjGrNUin95AibLguZgH7nKZl4cEWzaPkZ1eorrLsjz7HgPeystbC12MlxJN4pE+nX8CCxTcW3XTlZlxskb03SLfbP1f6SaCyCEVLRs/hGbXw55cbwdC5+E5XOwkmI8BsIAN27S3w3CNPkPG8u4cQv7kIrEb7n21PXvasnABf2ChD1/xscLFX5w4urcmqY16BkgTdNetQ//QpLf+osplGGAAr/u88cfevUVpwvFGpsK7UhlYBiNZN+DAtOlNHaAfN8KvAB6wh0st3aSF9PsTF2PNCxCYuwaqXNuTnDrVWnKUyHDo2NYYR2qihdL/bjJBG7kk3fnZqpsERKniitrSJWkTIosRVbuvht3bC/lpgTL4oO8YfXL2KZioh7n/24/l86miF1mjEtW1VjV1Vh327qvidBvzBC5MZv+gRQbN7y2/J+j6Wk2GCuFzLSLxTEjwuh4rVY1TTuUDoA0TXvVTFPwPz/SqEgspcIwXtvyy76ROnEDsk6Fgp1hvGQTScgkIjKOBzM7uuzifq6yHpu9X2fhRYbyFwIQHvKxlsrn6RWS8tgBAhEnqqcaG9oNCy+ycM1GoKKArF0gVz5AX1SeG1DSJSqnuSb3EtmYD2Yjubs5VuM9q5/jkcnl5GPMBj8Aq3slrU0GHb15HMegVld89v9Ued8tcdYuO3Ufua1Zk/W9EftGA7YNW+weifOj5ySJmOTDt+mPdk07Ef2/RNO0U+K1Bj8AxfFxLmzyMYSiEJToMExCwyU0YySMKuKBf6ZYnsZobsNsaZ29X9yfnv1782EVFWO5ZmK5ZsZLCqYaU0pCCF4oDTAQHyZmhVRIsm6gjfrOKQgOCYBicUrt62hSE8gohrLmdrcp4LnhPNd27UGp5tk8HykVK9e1kck25mKUUkR4PPxicNIBULkqGR6P6Gk3ibvHzlToanJoz1n84BmJAhIxiLvwhX+v8/63vvLWG5q2lOgASNNOASkV9zxZJpSCfMzn6vNzr7n7+lLUlqhiCBOUpNXbQzrbDlSwq1PENz+FWStDEKCK06jmltmEX8sr0TnxHPEV62lqP7LthxdIpkqQcKA6s6NsrOxQD5Zx7XkmK7IGQoDoWUNt8yOImRyf0Jc4jkCUKph+jdB2wWjkPd0ztI5K6PCT/X1cHi/S32cigIeeN0jm5gIlIQSphEkqHp3UNXhxW437NruEkYUhoL/N47Yrj72w5YczM1gp6OuAqidQ0ubRLXWuWKODIE07Fh0Aadop8ODLJXJpAEWp5vDwC9O84QLdrPKVMmQEmNj1IvX0XI+zIJEn3tkDI4ONA9UKcs9OrHUXY3YO4PasJmUevfbQZFly9zMKxxYoBaaAK/tK5FZK4rn8bBCllKISGUyl+kgG05RqNtsz56EQbCz8A8gIa3wIZdmMx5dhZJpgXFIJXX60pZWL/AqXrYY7fq6F/3WPpF6t89KLU4Shorklxgfemjupa/DjrTZhNFNnSMGeseNX8o47BqYhacrAeMHACxqB9/N7BLlEwNrehWmDomlnOh0Aadpr9MNnSiRic8s/6bhksqi/dF6N/vXrGXz5+YObrOaRlouVzaGmJgFQ1SrO+jdgpHJHfazBiYhnd8DghKQ532iHIYQgkpLE6LP4QGUkh9F5Ds1Zh8mpAvvGPCaC5fTHBtkTtiNF4yOyYLeRDUaZdjrYlr+KwIqzpqlGUyrB8ISkr93gpsuaEaIRfNx4keQTfz2BlI0XcmC4yrY9MS5ae+LChQpx2L9P7LfepvjOowovmPtIDyKDh7dELG+PcJxX1oRV05YCPUevaa+ROMr/IsfQReleDcN26LtgA63nX4VTnZ49bvkVnFQeaTrQ1AKZPPFf/C/HDH5+9FzEF/9d8sRmyfAYjE/N/TzkIT8auz7N3qEJRqZ9iuU6Y/UckTIZ83PYRkDKrGAS8Xzzz1CItfNyyxupWxkibEpBgie2hKzsMXnL5e5s8ANgSTUb/Bz0P74yeVLXoDMTzguBku6Jl85SCZv1fQIh5lVuxLIM/ve9+r2oaUejZ4A07TUq1iziTsDB9ghRBG+6JL2wgzrLGYZB+3mXUziwDxUGpDpWYKfzcO6VJ3X/RzereVMno+OKljxEkcKpT8LMrnQFZNUE/vAYWAkEWRQmUpn0JUYQAgJpMlZKItxGR/i6LyhULRQw0GfywDMeb7x4/jJVc85ACDGvRpIwT+73zXdc4/KDZ3x2jQoyMcW7rju5ZrYXr7TZPOxTqtkoBam4olpTuLYujKhpR6MDIE17jd62Icb3noR0LEQCG89N6gToU0AYBrmuZa/4fvVAzTRkPaRAIzC4XxF34d2XhgT7G7cHwiYfTgAQRhUGnIg9QQ8t9tTsri7biBjwnscz02T9A+wv984tUxkm9lECjFTCAtTsYyjVqAmklDqpSs1vvujkgp7D/dI1Dn97j49lGZTKiqmior9bL39p2tHoAEjTXiPLEtx6xavr8q2deo4FMQeCQBDMVEZ+44UG15xnIqOI4khIwW2nEjl0Rftm72dFPnGrRsYqEar5QUNs3WU0xeNEjz/Ky/TNHhdCcNGaowcrGy/L8MgLdVAgTIFpGq9Lm4r/dKPN/7onwrEF/T0mF7/yGFLTlgQdAGmatqgYQvAL1xjc+wzUfMlVawXn9zdm5IqDO/ArRRJAXMzP0VGAklAM0hRJ0WcMY4uQcpSgJ5djZMcWplpXEx+rU5ON7eWOqvOWDUffav6fbssgDMFTm30cW/DZ38gCsH8sZHw6YkWPTTJ+6mcKhRD8+lv0R7umncii/F/yne98h89+9rO88MILOI7DNddcw6c//WnWr1+/0EPTNO110JEXvOcGgPkzOX61hF0axy0eACGYalpN3GwUBopMFyco46vGDr7ttWWAojVexzBMAmlgOxbndE0zUYkDiivPSWMdZ4XpjrenuePtc/9++Lkaf/fPRaSC5qzBx+9oIpfWS1SathAWXaLCl770Jd7xjndQqVS48847+djHPsZzzz3HVVddxQsvvLDQw9O0s9aByZAv/yDkGz+NGCuefU03lZS408PEpocwZIQRheTHtzDmrkIohadc9rlrMMTcrikBtCY9AHK5LCiFIaA1VaMzVSL2CreX/9uDFaSCpmYXM+bwmbvK7Bv1TuXL1DTtJC2qAGhqaorf+Z3foaenh4ceeojf+I3f4CMf+Qg//elPkVLy27/92ws9RE07K33txwHfeczEVybD04K/vzei5p/4fkoppDwztmEfeOlFRBQQOYnZ9GhDRazoTREYcUadXpRhknfKpESJFCX6rL1EXpGJqTIi005XxiCGT8qKWDnQ/YrHEHMNEkmLej2iUlWUa/Dpf6gwOq2DIE17vS2qAOi73/0uxWKRO+64g0wmM3u8r6+P22+/nfvvv599+/Yd5xE0TTtcECoKNQvHEZimIJkwME3BVPn4s0DFcpXNO4bYsmuYLdv3MDw49DqNeI5Sitrul5j4yn/HHNlGtaWfcudaqi0DKEA2dWElM5h9F6Bm6vgkKwfYP24wNG4i6z6OX2bzUMBDW0IOBM2sXNlHf3831kluaz/Ur7w1TTZtIAxzNiHatEz+4uuVU/myNU07CYsqAHrssUZ36KuuuuqI2w4ee+KJJ4563+HhYZ5++ukj/mzatOn0DVjTzgKRhMP7nFqWoCl17B1NSimGDkxycB+4FBalmkcUhqdzqEfw9r5M8NgPsEoTyJ7ls8eDZJ5Ssgtj/bUANOdixBwbKeHBsVWM1HOMell+MrqG0FfUfBOhJHvHJTX/1S//9XfZ/OY7k0cct0xdq0fTXm+LKgl6cLDRJ6inp+eI2w4eO3jO4b7whS/wqU996vQNTtPOUjFHEEUSy5rrmRV3ImLOK/v9SQiIQh/TOvbHjlSKqWKNKJLk0nEc+7UlCEeFMfBqIKPGFq9DqjWPxXtpi88FI+f2p3n+pUE8OddMNVQmkyrHsvQ4SMn+choh2l7TmLqaHWyzTBA1tsX7XsDgZAU4somrpmmnz6KaAapWqwC47pGdk2Ox2LxzDvf+97+fp5566og/d9111+kbsKadJd57gyAIIjxPErci3n/T8XudCSFQ8tBk4gipwHaPXy9p3zNP4zzxTySe+ifGH/0hYXhyHdSPxUhkoLUTggD75cdBSpRSlIMYPU1Hbl8/d103aWcuHydh+dhJl9BwCa04bYkKsVNQWfmd17mM7p9iePcYI3snmJyo82sf3/WaH1fTtJO3qGaAEolGo0HPOzKhsF6vzzvncJ2dnXR2dp6+wWnaWSwZE3zwpoOzMSf3e9OKgR527BzEMiIiJehozR23EGAYBrSOPY+hGkFPvrKPA088RM+V177qccf6z0OYFhXDYiS3Hk+0YaBon3iKzLk/e8T5piF410aXHz1TIYgUy7MTmMYhwd4pqvCdz5iE9XBegvjkZIjnB7iObqSraa+HRRUAHbrMtW7dunm3HW95TNO0U8+1Dc5Z03fiE2dUJgu4am7GRwAxf+o1jUFYNrGB8xkugx/r5GCDjOnWdXQYR19ei9mCmzbEibwa23fP38EWnaIUpnNWxODwWFDAl78zwQfe1XFqnkTTtONaVEtgl112GQCPPPLIEbcdPHbppZe+rmPSNO3kZFqbiQ6ZbVGIUzLjMrZ7B4GTmncsNI5cJp+9za8z9dQDlJ78Ea3VveB7KD9ABYr15/a/5vEctH7lIUGQAMM0aMnp2R9Ne70sqgDo1ltvJZ1O88UvfpFisTh7fO/evXzzm99k48aN9Pb2LuAINU07FiEE4+0bqDk56naGaryFpove8JofN6qXcKk3OpIefK4oOOb55cfuhSggyjRh1Iq0TW3inHX9nLP21M4e/9F/6SWbNrEcC8u2iNlw25ubTulzaJp2bItqCSyfz/Nnf/ZnfOADH+Dqq6/m/e9/P57n8bnPfQ4hBH/5l3+50EPUNO04ll1wLnAuMgwxjrNb7JVIOibSD2hiHF+5oCJ6Vq885vnSspHpxo6sKN+OOTl8SsZxNF+5cyVjkwHlWsSyThfj8HoDmqadNotqBggau7m++c1vkkgk+L3f+z3+6I/+iPPOO4+HHnqICy64YKGHp2naSThVwQ9Aatk6EiLAjuokZZFl/d3H3cKvDn9u8/T26mptshnojungR9NeZ4tqBuig22+/ndtvv32hh6FpZ7S77vcIpEEUKc5bZnL5msXZlFOYFrk1G8id5Pm2EHhKNQoXyQgnmT2dw9M0bYEsygBI07Tj+38/qZNNG9iWQinYPKRY0yPJJc/cSeHRF5/G9AsIN0lu1fkYzpF1fE6FzIY3U931AuH0OHbbMuLdy098J03Tzjpn7qedpmmnjcTAnvn1RwhIJySPbz1zO7wPPvUQw0Y7uxLnM6byTLzw6Gl9vsTAeWQuul4HP5q2iOkZIE1bgoRQHFqIRipYd4ZukFRSMh3rwTcbbSuKdivxqLzAo9I07WynZ4A0bQk6v19QqTV2hnsB1D1Jb8sZmgMkBJGYXx8nEvp3N03TXhv9KaJpS9A5vQ6rOiNe2BWxokOQTZ+efJpTQQhBJhhh3BwAwJQBVnj0nn6apmknSwdAmrZE2ZbJxavO0Fmfw/Sfdz7Wc08jhYFtmXRdfPlCD0nTtLOcDoA0TTvjCcOk9yLdxkbTtFNHB0Capp1yUaR45LkKYai44oIkMVenGy40KZUutqhph9ABkKZpp9yffXmUp15q5Onc82CRP/qtLmxLf/kuhH++v8TzgxZuzKI4XeePfi2lAyFNQ+8C0zTtFNs9VOPFnSHxVAw37rBjn8/uIX+hh7UkKaXYNOLS2honk7bp7knxqX/QJQQ0DXQApGnaKfZfPz+BaZkIITAtE9u1yab1R81CiCQkk3MT/UIIEil3AUekaWcO/amkadoJVesR2/bUiCJ5wnOFEIf9G9qa7GOcrZ1Olinw/fk/MxkGCzQaTTuz6BwgTdOO6y/+zzgv75KgFNnmJP/hjQbnr04c8/woiDBNAyEESqmTCpq00+cdV8G3HgqwHYN6NeAPfim50EPStDOCDoA0TTsmpRSPPlWiXm3k8EyOlfn7sJW/XH3s+/zhr7fw8b8ZwzAMpJS84UL9hbuQBjotfvf2g/86O+o+adrrQQdAmqYd07/+uDgb/ACEfohXPX5C8+qBBP/nM30Mjvi0N1vEXP2lq2namUcHQJqmHdP61e7sUtZBlnniJS3TFCzr0sm2mqaduXQStKZpx7S8K0ZHZwrTMjFMg0xTks99pG2hh6Vpmvaa6RkgTdOO639/vGuhh6BpmnbK6RkgTdM0TdOWHD0DpGmatgA2DUrufy4ilLBhpeCqdfrjWNNeT/p/nKZpZ5UHHx9iaDpG3I644YpmUvGzb5dZqQr3PBlRKCmiSHHPJMRtyUUrnYUemqYtGXoJTNMWuUpdUffViU88Czzx9D4eHexgXznP1qkW/v3B6YUe0quyY1hSLCtqtZBqNaRSCfnG/eFCD0vTlhQdAGnaIvb0i/t5cdc0z++Y5MkXRxZ6OK9ZqayAuVYbk7X4wg3mNVjW3igyGYZzgakfKL5yb3UBR6VpS4sOgDRtkXpq0xiemURiEmETmg61+tndlT2XDBDMBQ2t8coCjubVy6cMsskjZ3xqvjjK2ZqmnQ46ANK0RUpFIYfOlihMipWzuxHm+Rcs49ruXSxPj7G+aT/Xbjg7Z4AAPvRzSaxD0pcsS/AzG3TTWE17vegkaE1bpDrbMhyYqOLTqMgcVxXamzsXeFSvjWVZXHr5Si5d6IGcIn/6nxJ89Qd1KnXBmy6xGOjUH8ma9nrR/9s0bZHqbkviBZLCdBGAVQPNCzwi7XCGIXjPjWfvLJamnc10AKRpi9jy7jR0pxd6GJqmaWccnQOkaZqmadqSowMgTdM0TdOWHB0AaZqmaZq25OgASNM0TdO0JUcHQJqmaZqmLTk6ANI0TdM0bcnRAZCmaZqmaUuODoA0TdM0TVtydACkaZqmadqSowMgTdM0TdOWHB0AaZqmaZq25OgASNM0TdO0JUcHQJqmaZqmLTk6ANI0TdM0bcnRAZCmaZqmaUuODoA0TdM0TVtydACkaZqmadqSowMgTdM0TdOWHB0AaZqmaZq25OgASNM0TdO0JUcHQJqmaZqmLTk6ANI0TdM0bcnRAZCmaZqmaUuODoA0TdM0TVtydACkaZqmadqSowMgTdM0TdOWHB0AaZqmaZq25OgASNM0TdO0JUcHQJqmaZqmLTk6ANI0TdM0bcnRAZCmaZqmaUuODoA0TdM0TVtydACkaZqmadqSowMgTdM0TdOWHB0AaZqmaZq25OgASNM0TdO0JUcHQJqmaZqmLTk6ANI0TdM0bclZdAHQe9/7XoQQR/3zkY98ZKGHp2mapmnaGcBa6AGcLl/96lePOHbOOecswEg0TdM0TTvTLNoA6N3vfvdCD0HTNE3TtDPUolsCO0gpRbFYJIqihR6Kpr1qdU8yXtDvYU3TtFNt0c4A5XI5isUipmmyYcMGfv/3f5/bbrttoYelaSftt/5slGJZIoQgmXL4qw/lME2x0MPSNE1bFBZdANTe3s5v/uZvsmHDBnK5HFu3buVzn/scP/dzP8dnP/tZfvd3f/eo9xseHmZ4ePiI45s2bTrdQ9a0I9z55TEqnsC0DWplnyCI+OK/WHzgtvRCD03TNG1ROCMDoE9+8pMnfe7GjRvZuHHj7L/vvPPOI875wAc+wEUXXcTHPvYx3vWud9Hb23vEOV/4whf41Kc+9WqGq2mn1Oe+PsHjzxQIgwjDNGjtzlMu1Bka00thmqZpp8oZGQC90kDk0ADoaFKpFB/+8If54Ac/yL333ssdd9xxxDnvf//7ueWWW444vmnTJp1Qrb2uHn6mTBg0gh0ZSYqTZSzX4dfeFlvgkWmapi0eZ2QApJQ65Y85MDAAwOjo6FFv7+zspLOz85Q/r6a9Uoe//5VUvPutafo7dQCkaZp2qizaXWCH27p1KwAdHR0LPBJNO77/dHsThtFIdhZCkMnFuOkqnfujaZp2Kp2RM0CvVqVSwTRNYrH5vymPjY3x2c9+Ftd1uemmmxZodJp2ct54eYZ1y2N8/5ESV1+YZFWfnvnRNE071RZVALRt2zZuvPFG3v72t7Nq1arZXWB///d/z9TUFJ///Ofp6upa6GFq2gl1tTq895bmhR6GpmnaorWoAqCOjg5uvPFGHnzwQb7xjW9QqVRobm7m2muv5UMf+hDXXnvtQg9R0zRN07QzwKILgL7yla8s9DA0TdM0TTvDLZkkaE3TNE3TtIN0AKRpmqZp2pKjAyBN0zRN05YcHQBpmqZpmrbk6ABI0zRN07QlRwdAmqZpmqYtOToA0jRN0zRtydEBkKZpmqZpS44OgDRN0zRNW3J0AKRpmqZp2pKjAyBN0zRN05YcHQBpmqZpmrbk6ABI0zRN07QlRwdAmqZpmqYtOToA0jRN0zRtydEBkKZpmqZpS4610AM409VqNQA2bdq0wCPRNE3TNO1EDn5fH/z+PhYdAJ3A7t27AXj3u9+9sAPRNE3TNO2k7d69m6uvvvqYtwullHodx3PWGR8f595776W/v594PH7cczdt2sS73/1u7rrrLtatW/c6jfDMp6/LkfQ1OZK+JkfS1+To9HU5kr4mc2q1Grt37+bGG2+kpaXlmOfpGaATaGlp4Zd/+Zdf0X3WrVvHxRdffJpGdPbS1+VI+pocSV+TI+lrcnT6uhxJX5OG4838HKSToDVN0zRNW3J0AKRpmqZp2pKjAyBN0zRN05YcHQBpmqZpmrbk6ADoFOrs7OQTn/gEnZ2dCz2UM4q+LkfS1+RI+pocSV+To9PX5Uj6mrxyehu8pmmapmlLjp4B0jRN0zRtydEBkKZpmqZpS44OgDRN0zRNW3J0AKRpmqZp2pKjA6BT5Ac/+AEf/OAHueKKK0gkEgghuOuuu457n5/85CfccMMNpNNp0uk0N9xwAz/96U9fpxEvnPe+970IIY765yMf+chCD++0+s53vsMVV1xBMpkkn89zyy238OKLLy70sBbUsd4LQohFf20+85nP8Au/8AusWrUKwzCwrON3JwrDkDvvvJM1a9bgui5dXV188IMfZGJi4nUa8en3Sq7JAw88cMz3zvF6QJ1ttm3bxic/+UmuvvpqOjo6SCaTnHPOOfzWb/0Ww8PDR5y/FN4np4LuBXaKfO1rX+NrX/sa55xzDueddx6PP/74cc+/9957ufnmm+nu7uYTn/gEruvyt3/7t9xwww3cfffdvOlNb3qdRr5wvvrVrx5x7JxzzlmAkbw+vvSlL3HHHXewfv167rzzTur1Op/73Oe46qqreOihhzjvvPMWeogL5pprruF973vfEcd7e3sXYDSvnz/4gz8gl8tx0UUXUS6XGRsbO+75v/qrv8pdd93FzTffzEc+8hF27drFX/7lX/Lggw/y6KOPkkwmX6eRnz6v9JoAvO997+Oaa66ZdywWi52uIb7uvvSlL/H5z3+et73tbfz8z/888XicRx99lL/5m7/hrrvu4uGHH2bt2rWz5y+F98kpobRTYnBwUNVqNaWUUl/+8pcVoL761a8e9dwwDFV/f79KJpNqz549s8enp6dVd3e3WrlypYqi6HUZ90J4z3veo5baW29yclJlMhnV09OjCoXC7PE9e/aoZDKprr/++gUc3cIC1Hve856FHsaC2L59++zfr7vuOmWa5jHPve+++xSgbrnllnnHv/WtbylAfepTnzpt43w9vZJrcv/99ytAffnLX34dRrZwnnjiCTU1NXXE8S984QsKUO985ztnjy2V98mpoJfATpHu7u6T/o3jpz/9Kbt37+ad73wnfX19s8ez2Sx33HEH27dv5+GHHz5dQz1jKKUoFotEUbTQQzntvvvd71IsFrnjjjvIZDKzx/v6+rj99tu5//772bdv3wKOcOEFQUCpVFroYbyuVqxYcdLnfuUrXwHgd37nd+Ydf8c73kF/f//s7We7V3JNDlWtVqnVaqd4NGeGDRs2kMvljjj+rne9C4Dnn39+9thSeZ+cCjoAWgCPPfYYAFddddURtx08dqIltMUgl8uRzWZxXZcrrriCf/qnf1roIZ02J/Mzf+KJJ17XMZ1JvvWtbxGPx8lkMuRyOd797neze/fuhR7WGeWxxx7DMAyuuOKKI2678sor2bFjB5OTkwswsoX327/92ySTSRKJBL29vfzBH/wB1Wp1oYd12g0NDQHQ3t4+e0y/T06ezgFaAIODgwD09PQccdvBYwfPWYza29v5zd/8zdnfarZu3crnPvc5fu7nfo7Pfvaz/O7v/u5CD/GUW+o/8+PZsGED73jHO1i9ejWe5/Hggw/yxS9+kbvvvpuHHnpoXm7DUjY4OEhLSwuu6x5x26Hvoaamptd7aAvGtm1+9md/lre+9a309vYyNjbGP/3TP/GZz3yGH/7wh/z4xz8mkUgs9DBPm49//ONAI+fnIP0+OXk6ADrEJz/5yZM+d+PGjWzcuPFVPc/B30yO9gY9uIx2pv/28lqu1Z133nnEOR/4wAe46KKL+NjHPsa73vWuRZf8uhh+5qfL4TNfv/iLv8jNN9/MW9/6Vv7Lf/kv3HPPPQs0sjNLtVoln88f9bal+h66+uqr+d73vjfv2H/8j/+Rj370o9x555389V//NR/96EcXaHSn16c//Wm+/e1vc+utt/Ke97xn9rh+n5w8HQAd4lOf+tQrOv/VBkAHfyPxPO+I2+r1+rxzzlSn+lqlUik+/OEP88EPfpB7772XO+644zWM7syzGH7mr6e3vOUtXH755dx3333U6/VFtaPn1UokEkd9/4B+Dx3u4x//OH/2Z3/G9773vUUZAP3VX/0VH/vYx9i4cSNf+9rXEELM3qbfJydPB0CHUK9TX9jjLXkcb6nkTHI6rtXAwAAAo6Ojp/yxF9qhP/N169bNu+1s+Zm/3gYGBnjssceYnJykq6troYez4Hp6eti6dSue5x0xk6jfQ/Mlk0na2toW5WfJn//5n/PhD3+YN77xjfzLv/zLEcGMfp+cPJ0EvQAuu+wyAB555JEjbjt47OA5S8nWrVsB6OjoWOCRnHon8zO/9NJLX9cxnem2bt2Kbds0Nzcv9FDOCJdddhlSytmE+kM98sgjrFixQud1zCgWi4yMjCy6z5I777yTD3/4w9x0001873vfO+pMjn6fnDwdAC2Aa6+9lmXLlvGNb3xj3tbnYrHI3/3d37F8+fKj7hZaDCqVyuw07KHGxsb47Gc/i+u63HTTTQswstPr1ltvJZ1O88UvfpFisTh7fO/evXzzm99k48aNiy7v6WQcqzLt17/+dZ5++mluuummo+ZNLUW/8iu/AsD/+B//Y97x73znO+zevXv29qXkaO8fpRS/93u/h1KKW2+99fUf1Gny6U9/mo9+9KPcfPPN/PM///Mxl4X1++TkCfV6rfsscs8//zz/8i//AsAzzzzDd77zHW6//XYuuOACAG655RbOP//82fP//d//nVtuuYWenh5+67d+C8dx+MIXvsDmzZv5t3/7N37mZ35mQV7H6fbss89y44038va3v51Vq1bN7gL7+7//e6ampvj85z/Pr//6ry/0ME+LL3zhC3zgAx9g/fr1vP/978fzPD73uc8xMTHBgw8+OPteWUo+9KEP8dBDD3HDDTfQ19eH7/s89NBDfPvb36ajo4MHH3yQ5cuXL/QwT5uvfvWr7NmzB2hU+927d++8/Lr/9t/+27zzf+mXfomvf/3r3Hzzzbz97W9n165d/MVf/MXscmEqlXpdx386vJJrcumll9Le3s6GDRvo6elhbGyM7373uzz22GNce+21fP/7318UAfT//J//k9/4jd+gvb2dP/3TP8W27Xm3p1KpecHeUnifnBILWIRxUTlY/flYf45WqfRHP/qR2rhxo0omkyqZTKqNGzeqBx544PUf/OtoeHhY/cqv/Ipat26dymazyrIs1d7erm699Vb14x//eKGHd9p985vfVJdddpmKx+Mqm82qm2++WT333HMLPawF893vflfddNNNqqenR8ViMeW6rlqzZo36nd/5HTUyMrLQwzvtrrvuuuN+bhzO93316U9/Wq1atUo5jqM6OjrU+973PjU2NrYAoz89Xsk1+cxnPqOuvvpq1dbWpmzbVqlUSl166aXqL/7iL5Tv+wv0Ck69g9Xzj/Vn2bJl885fCu+TU0HPAGmapmmatuToHCBN0zRN05YcHQBpmqZpmrbk6ABI0zRN07QlRwdAmqZpmqYtOToA0jRN0zRtydEBkKZpmqZpS44OgDRN0zRNW3J0AKRpmqZp2pKjAyBN0zRN05YcHQBpmqadAhs3bkQIsdDD0DTtJOkASNM0AB544AGEEGzcuPGY5+zevRshBP39/fOO/8M//ANCCIQQXHvttce9v2EYs+cez5/8yZ/Mnrdly5Zjnnfocx/847ouAwMDvPe97+Xll18+7vMc6miP09raysUXX8wdd9zB3XffTRRFJ/14r7eXX36Zn//5n6etrY1YLMaaNWv4xCc+Qa1WW+ihadoZx1roAWiatnhYlsVPf/pTtmzZwpo1a464/e/+7u9QSmFZFmEYHvNxlFL83d/9HUIIlFJ88Ytf5L//9/9+3Oe+4IILZjtiFwoFHnjgAf7xH/+Rb3zjG/zoRz/iiiuuOOnX8YlPfAKAKIqYnp7mpZde4qtf/Spf+tKX2LBhA1/72tdYvXr1vPt85StfoVqtnvRznGqPPfYYN9xwA0EQcPvtt9Pb28uPfvQj/vAP/5D77ruP++67b1F0Rte0U2ZBW7FqmnbGuP/++xWgrrvuumOes2vXrqN2n/7yl7+sAHXrrbcqQH3kIx854r5hGKquri516aWXqu7u7qN2Oz/onnvuUYB673vfqzo6OlRLS4vyPO+o5x587ve85z3zjkspZ7tob9y48ZjPdSiO0YVdKaUOHDig3vnOdypA9fb2nlHd6sMwVOvWrVOA+u53vzt7PIoi9Y53vEMB6k//9E8XcISadubRS2Capp0y5557Lv9/e3cXEtXWx3H8m4om+VKZCAVaQkJRIRpKZlmiIUVBKOFLqVSGRTcSoUUvM5BdVN4ESaTTqBB1UZlGaVmmIUjphV4VU1miBjkqhUGh5ZyLnpnnmG9jz5xTPPP7XK619tpre7N/7v2ftdetW0dlZSWjo6Pj+u7du8f79+/Jy8ubcZ6ysjIA8vLyyMrKYmBggOrq6lmtZc6cORw6dAiA58+fz+rYyYSEhHDjxg02bdpET08PZ8+eHdc/WQ2Q/bWiwWCgvb2dlJQUAgMDWbBgAampqfT09ADQ1dVFeno6wcHB+Pr6snnzZjo7O51eW3NzMy9evGDjxo3s2LHD0e7h4cG5c+cAuHz5Mjab7VcvX+T/jgKQiLhUXl4eVquVmpqace1lZWX4+fmRkZEx7fEfPnygtraWiIgI4uLiyM3NBeDKlSuzXov9hu+q4mQPDw9OnDgBwPXr150OFG1tbWzYsAH48feJiYnh9u3bJCUl8fLlS2JiYujt7SU7O5tt27bR3NxMcnIynz9/dmr+xsZGAFJSUib0hYeHExERQXd3N11dXU7NJ+IOFIBExKV27dpFQECA4ykOQF9fH3V1daSnp+Pn5zft8WazmdHRUUfwWbVqFdHR0Tx58oTXr187vQ6bzUZpaSkAsbGxs7+QKcTHx+Pl5UV/fz/v3r1z6pj79+9TXl5OfX09Fy5c4MGDB+zduxeLxUJcXBwFBQW0tLRQUlLCzZs3MRqNWK1WTCaTU/Pbi8R/rkuyW758OQAWi8Wp+UTcgQKQiLjUvHnzyMzMpKGhwREQrl69yvfv32d8/WX7T/Gzh4cH2dnZjvbc3FxHMfRUOjo6MBgMGAwGCgoKiIqKoqqqCl9fX4qLi11ybQA+Pj4EBQUBYLVanTomPj6erKyscW05OTkABAYGUlRUNK7Pfu0dHR1Ozf/p0yfHXJOxt3/8+NGp+UTcgQKQiLhcXl4eNpsNk8nE2NgYJpOJNWvWEBMTM+1xjY2NvHnzhuTkZJYsWeJoz8zMxNvbm4qKigm1RXadnZ0YjUaMRiOXLl1iaGiIPXv20N7ePqtfgDljtq/W1q5dO6Ft8eLFAERGRuLp6Tmuz37tvb29/8syRWQaCkAiAvyobwEYGxubcoy9zz52KlFRUURFRWE2m6mrq6O7u9up4md7nY/99ZfdwoUL2b59O/39/RNqi+xycnKw2WzYbDZGRkbo7u6mqqqKlStXznje2fj69StDQ0MABAcHO3XMZE9mvLy8ZuybKuxNNb/9SdDP7O3z5893aj4Rd6AAJCLAf2+ig4ODU44ZGBgAnLuRHjhwgL6+PvLz8/H19WX37t3Tjrdardy5cweAjIyMCZsS3rp1C/i1YmhXamlp4du3b4SEhEzYEPJ3se+5NFWNz6tXr4Cpa4RE3JE2QhQR4MdN1MfHB4vFwuDgoKPO5e9aW1uBH5sOziQzM5MjR444ft00U2iqrKxkZGSE6OhoIiMjJx1TW1vLo0ePePv2LcuWLZtxDa42NjbmqCfKzMz8188/lcTERIqLi6mvr+fYsWPj+rq6urBYLISFhREeHv6bVijy51EAEhEA5s6dS3p6OpWVlRw9ehSTyTSuxqW3t5fz588DE19RTcbf35/6+noGBgaIjo6ecby9wLm0tHTKWqGTJ09y5swZysvLXVrY7Iz+/n4OHz5MU1MToaGhHD9+/F89/3QSEhJYsWIFT58+pba21rEX0NjYGIWFhQDk5+frW2Uif6MAJCIOJSUltLW1YTabaW1tJTk5mYCAALq7u6mpqWF4eJjCwkISEhKcmi8+Pt6pcU1NTVgsFlavXj1tofS+ffsoLi7GbDZjNBodtTKuZjAYgB8Bwv4pjJaWFkZGRoiJieHatWssWrToHzn3r/D09MRsNpOYmEhaWhppaWmEhoby+PFj2tvbWb9+PQUFBb97mSJ/FAUgEXEICgri2bNnXLx4kerqaioqKvjy5QtBQUEkJCRw8OBBtm7d6vLz2p/+7N+/f9pxS5cuJSkpiYaGBu7evcvOnTtdvhYAo9EIgLe3N/7+/oSFhZGdnU1qaipbtmyZsQj8d4iNjaWtrY3Tp0/z8OFDhoeHCQsL49SpUxQVFek7YCI/mWPT3ugiIiLiZv68f2NERERE/mEKQCIiIuJ2FIBERETE7SgAiYiIiNtRABIRERG3owAkIiIibkcBSERERNyOApCIiIi4HQUgERERcTsKQCIiIuJ2FIBERETE7SgAiYiIiNv5C7N7dM2BbTmoAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"## Training a regressor"
],
"metadata": {
"id": "jpWuzuIxJTWs"
}
},
{
"cell_type": "markdown",
"source": [
"### RidgeCV"
],
"metadata": {
"id": "-q2zQPE_KrgP"
}
},
{
"cell_type": "markdown",
"source": [
"Ridge. This is L2-penalized linear regression. We used the Python ‘sklearn. linear_model.RidgeCV’ implementation to perform tenfold cross-validation (on the input training data) to select a level of regularization (the parameter α) that minimizes held-out mean squared error. The schedule of regularization strengths was set to be logarithmically spaced from $1 × 10^{−6}$ to $1 × 10^{6}.$"
],
"metadata": {
"id": "K1y4Vtb9exGO"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.linear_model import RidgeCV\n",
"from sklearn.model_selection import KFold\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.metrics import mean_squared_error, PredictionErrorDisplay, ndcg_score\n",
"from sklearn.pipeline import make_pipeline"
],
"metadata": {
"id": "njbhS4MwjgsW"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"%%capture\n",
"# different alphas (regularization parameter) to try\n",
"alphas = np.logspace(-6, 6, 100)\n",
"kfold = KFold(n_splits=5, random_state=42, shuffle=True) # K-Folds cross-validator\n",
"\n",
"# define model\n",
"ridgecv = make_pipeline(StandardScaler(),\n",
" RidgeCV(alphas=alphas, scoring='neg_mean_squared_error', cv=kfold))\n",
"\n",
"# fit model\n",
"ridgecv.fit(X_train, y_train)\n",
"\n",
"ridge_best_alpha = ridgecv[1].alpha_\n",
"\n",
"# make predictions\n",
"preds_train = ridgecv.predict(X_train)\n",
"preds_test = ridgecv.predict(X_test);"
],
"metadata": {
"id": "Y0W_KmOLjlra",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "42cdfced-ae0d-4005-959d-b0ce3402d2d0",
"collapsed": true
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.24409e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.23889e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17692e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=8.6995e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.28037e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=4.82848e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.55469e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=8.69686e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=8.6995e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.28037e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=4.82848e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.55469e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=8.69686e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=8.6995e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.28037e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=4.82848e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.55469e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=8.69686e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=8.6995e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.28037e-12): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=4.84029e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.55469e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=8.69686e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.78737e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.89147e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.63482e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.11724e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.20573e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.78737e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.89147e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.63482e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.11724e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.20573e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.87224e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.26931e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=8.80272e-11): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.81222e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.37595e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.6015e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.88225e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.44967e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.05204e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.77092e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.252e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=4.59976e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.10242e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.82486e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=4.77182e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.63001e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.25373e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.82221e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=6.19317e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.84407e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.89402e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.68043e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=4.43253e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=7.74541e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.86742e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=7.99673e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.07499e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=9.61754e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=8.98098e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=8.58426e-10): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.19893e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.08181e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.12131e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.12079e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.20505e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.66454e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.34032e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.42253e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.61084e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.20275e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.9917e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.76876e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.83732e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.84286e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.85638e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.6652e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.67328e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.17911e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.38018e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.54891e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.25908e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.38026e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.24782e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.06508e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.263e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=4.36467e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=4.28911e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=4.40405e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=4.17258e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=4.24048e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.75119e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.76522e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.91658e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.6269e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.35484e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=7.36402e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=7.29529e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=7.83306e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=7.43244e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=7.28861e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.00807e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=9.75159e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=9.96636e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=9.8188e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=9.64404e-09): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.35762e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.31318e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.33349e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.30966e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.29098e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.76609e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.74778e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.78894e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.69844e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.71294e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.35527e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.29767e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.31275e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.24445e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.25838e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.1033e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.02827e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.0784e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.97236e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=2.96664e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=4.09957e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=4.0081e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=4.052e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.93615e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=3.9544e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.44857e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.30764e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.36875e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.24531e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=5.22932e-08): result may not be accurate.\n",
" return linalg.solve(A, Xy, assume_a=\"pos\", overwrite_a=True).T\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Regression\n",
"from scipy import stats\n",
"spearmanr = stats.spearmanr(a=preds_test, b=y_test, axis=0)\n",
"print(spearmanr)"
],
"metadata": {
"id": "nTdAbDCHjsrU",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "3161ffca-e792-4d24-a585-791d59ffb369"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"SignificanceResult(statistic=0.7254197401504189, pvalue=0.0)\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(ridge_best_alpha)"
],
"metadata": {
"id": "uG9gLYOqjvZP",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "8cc086d2-b827-49a3-e73d-c5584c1131ab"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"100.0\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"### RidgeSR"
],
"metadata": {
"id": "-XrDYgabKx0a"
}
},
{
"cell_type": "markdown",
"source": [
"The RidgeSR procedure implemented below has been described in [Low-N protein engineering with data-efficient deep learning](https://www.nature.com/articles/s41592-021-01100-y) paper from Biswas et al, 2021 published in Nature methods.\n",
">Ridge SR: This is the same as the ‘Ridge’ procedure above, except that we additionally perform a post hoc SR procedure. The ‘Ridge’ top model above chooses a level of regularization that optimizes for model generalizability if\n",
"the ultimate test distribution (that is, distant regions of the fitness landscape) resembles the training distribution. However, this is not likely the case. Therefore, we performed a post hoc procedure to choose the strongest regularization such that the cross-validation performance was still statistically equal (by t-test) to the level of regularization we would select through normal cross-validation. This procedure selects a stronger regularization than what would be obtained using the ‘Ridge’ procedure as defined above."
],
"metadata": {
"id": "r1LZn-aCU8mT"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.linear_model import Ridge\n",
"from sklearn.model_selection import cross_val_score"
],
"metadata": {
"id": "v85q7VCrkNXJ"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"kfold = KFold(n_splits=5, random_state=42, shuffle=True) # K-Folds cross-validator\n",
"def RidgeSR(best_alpha, X_train, y_train, cv=kfold):\n",
" '''\n",
" Perform a post hoc procedure to choose the strongest regularization such that the\n",
" cross-validation performance was still statistically equal (by t-test) to the level of\n",
" regularization we would select through normal cross-validation. This procedure selects a\n",
" stronger regularization than what would be obtained using the ‘RidgeCV’ procedure implemented before.\n",
"\n",
" Input:\n",
" `best_alpha`: best regularization parameter alpha from RidgeCV procedure\n",
" '''\n",
" alphas = np.linspace(best_alpha, best_alpha*20, 20)\n",
" ridge = make_pipeline(StandardScaler(),\n",
" Ridge())\n",
"\n",
" p_values = []\n",
" mse = []\n",
"\n",
" for a in alphas:\n",
" ridge[1].set_params(alpha = a)\n",
" scores_posthoc = cross_val_score(ridge, X_train, y_train, scoring='neg_mean_squared_error', cv=kfold, n_jobs=-1)\n",
" scores_posthoc = np.absolute(scores_posthoc)\n",
"\n",
" if a == best_alpha: scores = scores_posthoc\n",
"\n",
" mse.append(np.mean(scores_posthoc))\n",
" p_values.append(stats.ttest_ind(scores, scores_posthoc).pvalue)\n",
"\n",
" # choose alpha higher than best alpha\n",
" # choose a stronger alpha than would be selected by RidgeCV such that cross validation performance\n",
" # is still equal to best alpha from RidgeCV\n",
" # When p value < 0.10 MSE distribution from stronger alpha is considered the same as from best alpha\n",
" alpha_ridgsesr = alphas[np.where(1-np.asarray(p_values) <= 0.90)[0][-1]]\n",
" mse_ridgesr = mse[np.where(1-np.asarray(p_values) <= 0.90)[0][-1]]\n",
"\n",
" # Plot alpha vs MSE and alpha vs p-value\n",
" fig, (ax0, ax1) = plt.subplots(figsize=(12, 6), nrows=1, ncols=2)\n",
"\n",
" ax0.plot(alphas, mse, 'ro-')\n",
" ax0.set(xlabel='alphas', ylabel='mean squared error')\n",
"\n",
" ax1.plot(alphas, p_values, 'bo-')\n",
" ax1.set(xlabel='alphas', ylabel='p value')\n",
"\n",
" fig.suptitle(f'RidgeSR alpha: {alpha_ridgsesr}')\n",
"\n",
" plt.tight_layout()\n",
" plt.show();\n",
"\n",
" return alpha_ridgsesr"
],
"metadata": {
"id": "Gd0OrylpkOdQ"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# best alpha from RidgeCV procedure\n",
"best_alpha = ridge_best_alpha\n",
"\n",
"# selects a stronger regularization than what would be obtained using the ‘RidgeCV’ procedure previously defined\n",
"ridgsesr_alpha = RidgeSR(best_alpha, X_train, y_train, cv=kfold)\n",
"\n",
"# define model\n",
"ridge = make_pipeline(StandardScaler(),\n",
" Ridge(alpha=ridgsesr_alpha))\n",
"\n",
"# fit model\n",
"ridge.fit(X_train, y_train)\n",
"\n",
"# make predictions\n",
"preds_train = ridge.predict(X_train)\n",
"preds_test = ridge.predict(X_test)"
],
"metadata": {
"id": "wklo6WXxkbcd",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 557
},
"outputId": "c98960ab-61b9-4f6b-bd07-81c4beedcf97"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJUAAAJKCAYAAACVjHQeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1gklEQVR4nOzdd1yV5f/H8fcBEVEEVyqKSg5cmFpq5sRRZrnDUS4sCxtquc3UXOXIMjVN/ZqzTDG/mVmau8LZtzQ198SZpjJkyDi/P+7fOYEM4Qgcxuv5ePA4cF/3ffM5QIHvc12fy2Q2m80CAAAAAAAA0sHB3gUAAAAAAAAg5yFUAgAAAAAAQLoRKgEAAAAAACDdCJUAAAAAAACQboRKAAAAAAAASDdCJQAAAAAAAKQboRIAAAAAAADSjVAJAAAAAAAA6UaoBAAAAAAAgHQjVAIAIIucP39eJpNJJpPJput9fX1lMpm0dOnSjC0MSXh5eclkMmnnzp0Zds+H/f4DAABkN4RKAACkkb+/vzUUSPhWuHBh1axZU2+88YaOHTtm7zKz3IkTJzRo0CDVqlVLhQsXlrOzs8qVK6cGDRpowIAB+vrrr3Xr1q0k11lCsoRvDg4Ocnd3V926dTV8+HAFBwfb4RkhLTp16mT9vvn7+z/w/MDAQLVs2VLFixdXwYIFVb16db333nsKCwt74LWnTp3SK6+8ovLly8vZ2VllypRRjx499L///e+hn8e1a9c0ePBgVapUSQUKFFCpUqXUvn17bdu27aHvDQBAbkeoBABAOjk5OalUqVIqVaqUSpYsqYiICP3111+aP3++6tSpo8DAwBSvq1q1qqpWrZrFFWeehQsX6rHHHtOcOXN05MgR3b17V4UKFdKNGzd04MABLViwQC+++KKWL1+e4j0s/5AvVaqUihcvrrCwMB08eFAfffSRfHx89Ouvv2bhM0JafPvtt1q/fn2az3/ttdfUrVs37dixQ6GhoXJ0dNTx48c1ZcoU1alTR1euXEnx2i1btqhOnTr64osvFBwcLBcXF127dk2rV69Ww4YNtXLlSpufx59//ikfHx/Nnj1bZ8+elbOzs27evKnvv/9eTz/9tKZOnWrzvQEAyAsIlQAASKdGjRrp2rVrunbtmq5fv66oqCj9+OOP8vLy0r1799SvXz/duHEjyXVly5bV8ePHdfz4cTtUnfGCgoI0YMAA3bt3T61bt9auXbsUFRWlW7duKTIyUidPntTcuXP11FNPpbrkq3v37tav540bNxQREaFVq1apePHiCg0N1UsvvaTo6OgsfGZITXh4uAYNGiQ3NzdVq1btgefPnz9fixYtkoODg2bMmKHw8HCFhYUpKChIFSpU0NmzZ9WtW7dkr7127Zr8/PwUERGhp59+WufPn9edO3d07do19ezZU7GxsXrllVd09OjRdD+PyMhIdejQQf/884/q1q2rI0eOKCQkRLdv39bQoUNlNpv17rvv6qeffkr3vQEAyCsIlQAAeEhOTk569tln9eWXX0qS7t69q2+++cbOVWW+OXPmyGw267HHHtOmTZvUrFkz5c+fX5JkMplUpUoVvfnmm9q9e7cCAgLSfN8CBQqoR48emj17tiQpODhYO3bsyJTngPQbO3asgoODNWnSJJUqVSrVc6Ojo/X+++9LkgYPHqxhw4bJ2dlZkhHO/ve//5XJZFJQUJA2bNiQ5PqpU6cqNDRU5cqV07p161ShQgVJUsmSJbVs2TI98cQTunfvnsaNG5fu57FgwQJduHBBrq6u2rBhg2rWrClJcnNz00cffaROnTrJbDZr9OjR6b43AAB5BaESAAAZ5KmnnpKrq6sk6a+//koynpZGzZs2bVLLli3l7u4uNzc3NWzYUCtWrEjT5//rr7/UvXt3lSxZUi4uLqpWrZrGjx+vqKgovf/++w/sfbNhwwZ17NhRpUuXVv78+VWyZEm1b99emzdvTvb8w4cPS5Latm0rR0fHVGsrUKBAmp5DQs8880yi55ZeYWFhWrp0qbp16yYfHx8VKVJELi4uqly5sl577TWdOnUq3fdcunSpTCaTfH19JUnLli1Tw4YN5ebmJnd3d7Vq1UqbNm1K072OHDmiHj16qHTp0ipQoICqVaumSZMm6d69e8mef+nSJX300Ud69tlnVaVKFRUsWFBubm6qW7euxo8frzt37qT7+aTX77//rjlz5qhOnTp68803H3j+1q1b9ffff8tkMmno0KFJxuvWravWrVtLkjWUtYiPj9fXX38tSXr99det/21ZODo6asiQIZKk77//XqGhoel6LpbP99JLL6ls2bJJxocPHy7JeM4nTpxI170BAMgrCJUAAMhAZrNZkhQXF5fua2fMmKG2bdtqx44dCgsLk6Ojow4cOKA+ffok+w/yhLZu3aonnnhCa9as0Y0bN5Q/f36dO3dOEydOVIsWLVJdPhYTE6NevXqpQ4cO+u6773T9+nW5uLjoxo0b+v777/Xss89q5MiRKV5/+fLldD/XtLB8LSXbvp7Lli1Tv379FBgYqOPHj8vR0VHx8fE6c+aMFi1apLp162rr1q021/fOO+/I399fBw4ckKOjo8LCwrR9+3a1bdtWH330UarX/vTTT2rQoIFWr16tqKgoxcTE6MSJExo3blyKS8HefvttDR8+XJs3b9bFixfl4uKiu3fv6uDBg5o4caLq1aunS5cuJXutpcm8l5eXzc83Pj5eAQEBio+P17x58x4YJEqyzjDz8fFJNriRpDZt2kiStm/fnuj4X3/9pevXryc6536W4PHevXvp6r0VFhZmbfKd0r0bNmwod3d3SaJpNwAAKSBUAgAgg+zevVt3796VJFWsWDFd1/7666/W4KZXr166cuWKbt++rX/++UcjRozQxx9/rIMHDyZ77c2bN9WjRw9FRUWpQYMGOnz4sEJCQhQeHq4vv/xSR44c0eeff57i5x4xYoS+/PJLVa5cWWvWrFF4eLhCQkIUGhqqefPmqXDhwpo+fbpWrVqV6Lp69epJklavXq1169al6/mmRcJeNun9ekpSiRIlNGbMGO3fv18RERH6559/FBUVpWPHjqlnz566e/euXnrpJev3LD3++OMPzZo1SyNHjtStW7d0+/ZtXb58WT179pRkfE1TCzm6d++u9u3b69y5c7pz545CQ0P14YcfymQyaf369frhhx+SXFO9enXNnj1bJ0+eVGRkpPX57Ny5U/Xr19eZM2fStcwwvebOnavffvtNL7/8sp566qk0XWOZYWZZWpacGjVqSJJu3LihmzdvJrnWZDJZz7lfiRIlVLJkyUTnp8WxY8esoWVKtTk4OFib6tsyUw4AgDzBDAAA0qRv375mSebmzZsnOn7v3j3zpk2bzF5eXmZJZicnJ3NwcHCS68+dO2eWZE7u12/Lli3NkswtWrQwx8fHJxl/5ZVXrNcuWbIk0di4cePMkswlS5Y03759O8m1q1evtl7bt2/fRGMnT540m0wm8yOPPGK+ePFiss971apVZknmmjVrJjp+5MgRc8GCBa33rlChgtnf3988b94882+//WaOjY1N9n4WzZs3T7amyMhI86pVq8zFixc3SzIXL17cfPfu3VTvlV7x8fHm1q1bmyWZly5dmmS8QoUKZknmHTt2JDq+ZMkS6/Pt379/svdt0aKFWZK5VatWicYSfv+ffvrpZL/P7dq1M0sy9+vXL13P559//jE/8sgjZpPJZD537lySccvPboUKFdJ1X4tLly6ZCxcubC5evLj55s2b1uMpfQ8t6tSpY5ZkHjJkSIr3PnjwoPXr8ueff1qPz5o1yyzJXKxYsVRrS8vnuN+3335r/ZyhoaEpntepUyezJHOXLl3SfG8AAPISZioBAJBOu3fvVunSpVW6dGmVKlVKBQoU0LPPPqvz58/LwcFBCxYskKenZ5rvd+vWLesyoZEjRybbc+ndd99N8XrLLKHXXntNRYoUSTLerVu3FGf6LF++XGazWd27d1e5cuWSPcfPz0/Ozs46evSorl69aj1es2ZNbd261TrT48KFC1q6dKneeOMN1atXT8WLF9eAAQMUHBycYu2SMdPJ8vUsWbKkChYsqBdffFH//POPChQooC+//FIFCxZM9R7pZTKZ9Pzzz0sydrGzRXLfE5PJZG3svH37dt26dSvZa0eNGpXs97lTp06SjH5L6VGsWDE1atRIZrNZu3fvTjK+dOlSmc1mnT9/Pl33tRg0aJDCwsI0depUFS9ePM3XWWaBubi4pHhOwu9teHh4uq5NeH3Ca9NaV1prS8+9AQDIS/LZuwAAAHKamJgYa6+XhIoVK6bNmzdbl4Wl1R9//CGz2SwHBwc1adIk2XMqVqyocuXKJQlooqOjrUtzUrrWMnb27Nkkxy0BxLJlyxQYGJji9TExMZKMndg8PDysx5966ikdPnxYP//8s3788Uft2bNHBw8eVGhoqEJCQrRgwQJ9/fXX2rBhg5o2bZrsvaOiohQVFZXkuJeXl7Zu3apKlSqlWNeDXLp0SXPmzNHWrVt15swZhYWFKT4+PtE5V65cSfd9y5cvr0cffTTZsSZNmsjR0VFxcXE6ePCgWrZsmeSc+vXrJ3utpe/Q7du3kx3fv3+/Pv/8c+3evVuXLl1KdumeLc8nNd9//73WrVunhg0b6pVXXsnQewMAgJyNmUoAAKRT8+bNZTabZTabFRUVpYMHD8rPz0+3bt3SK6+8kmIgkJIbN25Iktzd3VWoUKEUz0uu0fHt27etIUnCsOd+ZcqUSfa4ZeZRWFiYrl+/nuKb5XNEREQkuYfJZFLz5s01depU7dq1S7du3dKvv/6qvn37ymQyKSQkRN27d1dkZGSyNfTt29f69bx79652796tFi1a6Pz583rttddS3A3tQXbt2qXq1atr+vTp+v333xUSEqLChQurVKlSKlWqlNzc3CTJpp5KKTWdloyZL0WLFpX07/f2foULF072uGWXPEuIl9BHH32khg0basmSJTpx4oSioqJUtGhR6/OxXGvL80nJ3bt39eabb8rR0VHz5s1LdefC5Fh+nlP63kuJf6YS7vCWlmsTXn//7nBpqSuttaXn3gAA5CWESgAAPARnZ2fVrl1ba9asUZs2bfTnn39marPkjGYJiz755BNrsJPam6+v7wPv6ejoqMaNG2vp0qWaOHGiJCO82rRp0wOvLViwoJ566in98MMPqlWrlrZv36733nsv3c/LsqNdeHi4WrdurZ9//lmRkZG6c+eOrl27pmvXrunjjz+WlHiXuezq6NGjGjlypMxms9566y0dPXpU0dHRunXrlvX5+Pn5ScrY5zN9+nRdvHhRL7/8sqpUqaLw8PBEb5Zd+WJjY63HEn5+S5iZ2uyphGMJg1HLtbdv3052Jtv916cWqt4vYcialtrSc28AAPISQiUAADKAyWTS7Nmz5ejoqMDAQO3atSvN1z7yyCOSpJCQkGRnAlkk94/fokWLysHB+HWesN/R/VIaK1WqlCTp4sWLaa43PRIulzp58mSarytQoIBmzZolSZo1a5ZOnz6drs+7Z88eXbp0ScWKFdP69evVtGlT60wei+SWMKZVakFEVFSUdbaa5Xv7sL755hvFx8erTZs2mjNnjmrUqCFHR8dE5zzM80nJhQsXJEmLFi1S4cKFk7xZdrj78ssvrccs10j/7ux29OjRFD+HZfnmI488ohIlSiS51mw2p7j72s2bN/X3338nOj8tqlWrZp11lVJt8fHxOnHiRLrvDQBAXkKoBABABvH29lb37t0lSWPGjEnzdXXr1pXJZFJ8fHyK29CfO3cu2eDH2dnZ+g/e1Law/+WXX5I9btkaPi2ziGyRcJlR/vz503Vty5Yt1ahRI8XExOj9999P17WXLl2SZHxPUmryvXXr1nTdM6ELFy6k2PT6119/VVxcnEwmk+rUqWPz50jI8nzq1q2b7Pjdu3e1d+/eDPlcGalFixaSlKTJe0I//fSTJKlVq1aJjlevXt0aem7ZsiXZay3H8+fPn2pPsfsVLlzY2vsspXvv27dPISEhydYGAAAMhEoAAGSgYcOGSTJ2FNu5c2earilWrJi1mfP06dOTXb40derUFK/v3LmzJGM2ieUfwQl98803yTbplqQ+ffrIZDLp2LFjWrBgQap13t8raufOndblTyn56quvrO/bErAMHz5ckvT111/rzJkzab7O3d1dknTq1Klkl0799NNP1h33bPXhhx8mOWY2m63fq1atWqlYsWIP9TksLM/n8OHDyY5PmTJFYWFhGfK5ErLsGpfSW/PmzSUl7ovl5eVlvb5Vq1YqWbKk4uPjNXPmzCT3P3TokDXc69mzZ6IxBwcH9ejRQ5I0b968JL2i4uPj9cknn0iS2rdvb+2RlVYvvfSSJGOWVXKB10cffSRJeuKJJ1S1atV03RsAgLyCUAkAgAxUt25dtW7dWpI0efLkNF/3/vvvy2Qyadu2bfL397cuZQoJCdG7776rhQsXWoOF+w0cOFBFixbV9evX1bZtW+tyntjYWH399dfq16+fihQpkuy1NWrU0DvvvCNJeuONNzR69GjrrBjJaOD9008/qVevXuratWuia4cNG6bKlSvr/fff14EDB6zNpePj43Xu3DmNHj1agwYNkmQESs2aNUvz18OiQ4cO8vb2VlxcXLIhTkoaN26sggUL6p9//lGfPn2soUFkZKS++OILvfDCCypevHi667Fwc3PTwoUL9e6771qDvGvXrqlv377atm2bTCaTxo8fb/P97/f0009LkjZu3KgPP/zQukzyxo0bGj58uD788MNUn4+/v79MJlOiwCcrODs7W2eZffLJJ5o5c6aio6MlGUsUO3furPj4eDVu3Fjt2rVLcv2oUaPk5uamixcvqkuXLtbZejdu3JC/v78OHDig/Pnza8KECUmuPX/+vEwmk0wmk5YuXZpkPCAgQBUqVFBYWJjatWtnXWIXFhamESNGaN26dZKkDz74ICO+FAAA5E5mAACQJn379jVLMjdv3jzV83766SezJLMk8549e6zHz507Zz2enOnTp1vHTSaTuWjRomZHR0ezJPOQIUPMzZs3N0syL1myJMm1mzZtMjs7O1uvd3d3t37cuHFj86hRo8ySzK+99lqSa2NjY82vv/669VpJZjc3N7O7u7vZZDJZj/n6+ia6rmHDhomucXBwMBctWtTs5OSU6Hj16tXN58+fT/J5Lc+nb9++qX49Fy5caJZkdnJyMl+4cCHVcxP69NNPE9Xh7u5uzpcvn1mSuU6dOubZs2en+P2sUKGCWZJ5x44diY4vWbLEes3bb79tlmR2dHQ0Fy1aNNHXasaMGUnu+aDvv9lsNu/YscMsyVyhQoUkY126dEny82H5nK+88or153P8+PFJrrWMJXffh5HW7+Grr75qrd3Jycns6upq/bhixYrmy5cvp3jtTz/9ZC5YsGCi76PleefLl8+8YsWKZK9L+PVO7r8Zs9lsPnjwoLl48eKJfu4dHBysX+MPP/wwrV8KAADyJGYqAQCQwZ5++mlr75tJkyal+brhw4frxx9/VIsWLeTq6qrY2FjVq1dPy5cvT3bpUEJt2rTRb7/9Jj8/PxUvXlzR0dF69NFHNWHCBG3bts26bXpyM5Ys28X/+uuv6tWrlypUqKDo6GhFRUWpfPny6tChg+bOnau1a9cmum7Hjh369ttvNXDgQDVs2FDFihVTWFiYHB0dVa5cObVr106LFy/WwYMHVaFChTR/He7Xp08flS5dWjExMZo2bVqarxs0aJDWrVtnnbUUGxuratWqacKECdq9e7cKFy5sc02SMfNmyZIleuKJJxQbGytXV1e1aNFCP/74o3UZZEZavXq1pk6dqurVq8vJyUlms1mNGzfWsmXL9J///CfDP19GWrhwoVavXp3oZ7tatWoaM2aMDh48mGg3tvs9/fTTOnjwoPr16ydPT09FRkaqVKlS6tatm/bu3atevXrZXFft2rV15MgRDRo0SBUrVlR0dLSKFy+u559/Xlu2bNGoUaNsvjcAAHmByWzOAfvoAgCAh9K0aVP9+uuvWrJkifz9/e1dTo61dOlS9evXT82bN09zzywAAIDciplKAADkcnv27NGvv/4qBwcHdrECAABAhiFUAgAgF1i4cKE++OADnTlzxrojW3h4uJYvX25tgNytWzeVK1fOnmUCAAAgF8ln7wIAAMDDu3jxoqZMmaIxY8bI0dFR7u7uunPnjuLj4yUZu6/NmTPHzlUCAAAgNyFUAgAgF+jRo4ciIyO1a9cuXbp0Sbdu3ZKbm5tq1KghPz8/DRgwQC4uLvYuEwAAALkIjboBAAAAAACQbvRUAgAAAAAAQLoRKgEAAAAAACDdCJUAAAAAAACQboRKAAAAAAAASDdCJQAAAAAAAKQboRIAAAAAAADSjVAJAAAAAAAA6UaoBAAAAAAAgHQjVAIAAAAAAEC6ESoBAAAAAAAg3QiVAAAAAAAAkG6ESgAAAAAAAEg3QiUAAAAAAACkG6ESAAAAAAAA0o1QCQAAAAAAAOlGqAQAAAAAAIB0I1QCAAAAAABAuhEqAQAAAAAAIN0IlQAAAAAAAJBuhEoAAAAAAABIN0IlAAAAAAAApBuhEgAAAAAAANKNUAkAAAAAAADpRqgEAAAAAACAdCNUAgAAAAAAQLoRKgEAAAAAACDdCJUAAAAAAACQboRKAAAAAAAASDdCJQAAAAAAAKRbPnsXAMPNmze1efNmeXl5ycXFxd7lAACQp0VGRur8+fNq06aNSpQoYe9ycjX+BgIAIHtJz99BhErZxObNm9WrVy97lwEAABJYuXKlevbsae8ycjX+BgIAIHtKy99BhErZhJeXlyTjm1a9enX7FgMAQB537Ngx9erVy/r7GZmHv4EAAMhe0vN3EKFSNmGZ7l29enU9/vjjdq4GAABIYjlWFuBvIAAAsqe0/B1Eo24AAAAAAACkG6ESAAAAAAAA0o1QCQAAAAAAAOlGqAQAAAAAAIB0I1QCAAAAAABAuhEqAQAAAAAAIN0IlQAAAAAAAJBuhEoAAAAAAABIN0IlAAAAAAAApBuhEgAAAAAAANKNUAkAAAAAAADpRqgEAAAAAACAdCNUAgAAyAOmTp2q7t27q0qVKnJwcFC+fPlsuk9ERIRGjRolLy8vOTs7y8vLS6NHj1ZEREQGVwwAALI72/6aAAAAQI4yevRoFSlSRHXr1lV4eLhu3LiR7nvExcXpueee065du9S7d281a9ZMhw4d0owZM7R//35t2bJFDg68ZgkAQF5BqAQAAHKm8HBpzRrp7FmpUiWpa1fJ1dXeVWVbp0+fVqVKlSRJvr6+NoVKy5Yt065duzRw4EDNnj3betzLy0vDhg3TypUr1adPnwyr2Vb8aAAAkDV4KQkAAOQ8QUFSuXJS//7S9OnSK68YH+/ebe/Ksi1LoPQwli9fLkkaOnRoouNvvPGGXFxcrOP2xI8GAABZh1AJAADkLOHhUrt2UmioZDZLMTHGY2io9PzzxjgynNls1oEDB1SmTBlVqFAh0ZiLi4vq1KmjAwcO2Kk6Az8aAABkLZa/AQCAnGXNGunOnaTH4+ON44GBUr9+WV1Vrnfr1i1FRETIx8cn2XFPT0/t2bNHoaGhcnNzSzJ+9epVXb16NcnxY8eOZViNa9ZIISFGkJQQPxoAAGQOQiUAAJBzRERIqS2xcnIyGukgw1l2d3N2dk52vECBAtbzkguVFixYoAkTJmRegTK+9fnyGTOU7sePBgAAGY9QCQAAZH/x8dKKFdKYMdLlyymfFxMjVayYdXXlIQULFpQkRUdHJzseFRWV6Lz7BQQEqEOHDkmOHzt2TL169cqQGitWlGJjkx/jRwMAgIxHqAQAALK3bdukYcOkgwel4sWlGTOkyZOlsDAjbLJwcJDc3IytvpDhihUrpoIFC+rSpUvJjl+6dElubm7JzlKSJA8PD3l4eGRmierWTRo61OihxI8GAACZj0bdAAAge/rrL6PrcuvWxvsjRkinTxsB0w8/GCmByWSsa5KMjzduZO/4TGIymVSvXj1duXJFFy5cSDQWGRmpgwcPqn79+naqzuDqavwIWH40TCbjOD8aAABkDkIlAACQvVy/Lg0YINWqZSQBL74onTghTZsmFSlinNOokRQcLC1eLI0cKX3xhfFxo0Z2LT23iIiI0PHjx5M01u7du7ckaebMmYmOz58/X5GRkdZxe0r4o1GvnnEsKIgfDQAAMgPL3wAAQPYQESF98ok0daqx93uTJtJHH0lPPpn8+a6ubOWVDitWrLDOMLpw4YLMZrMmT55sHX/vvfes7+/fv18tWrRQ3759tXTpUuvxfv36afny5ZozZ45CQkLUrFkzHTp0SPPmzZOvr2+G9UZ6WJYfjZgY6cAB6dw5qUYNe1cFAEDuQ6gEAADsKz5eWrnSaMJ96ZJUubIxK6lz53/XL+GhLV68WLt27Up0bOzYsdb3E4ZKKXF0dNQPP/ygiRMnavXq1Vq1apU8PDw0dOhQjRs3To6Ojhle98OoWdN4PHpUev55+9YCAEBuRKgEAADsZ8cOo7PyH39IxYpJn35qLH3Ln9/eleU6O3fuTPO5vr6+MpvNyY65urpq+vTpmj59egZVlnksodKRI/atAwCA3IqeSgAAIOsdOya1by+1bGlMIxk2TDpzRho0iEAJGaZIEalsWeNHDAAAZDxmKgEAgMwTHi6tWSOdPStVqiT5+kozZkgLF0pxcVL37tKHH0qPPmrvSpFL+fhIP/9s/Lhls9V5AADkeIRKAAAgcwQFSe3aSSEhUr58Rtdki0aNpJkzpYYN7Vcf8oSaNaXNm41m3ZUr27saAAByF0IlAACQ8cLDjUApNFQymxMHSgULSps2SYUL268+5Bk+Psbj0aOESgAAZDR6KgEAgIy3Zo10546xs9v9IiKktWuzvCTkTTTrBgAg8xAqAQCAjHX1qjRrVsrjTk5GjyUgC9SoYTzSrBsAgIxHqAQAADJGdLQ0bZrk7S0dPpzyeTExUsWKWVcX8jRXV8nLi5lKAABkBkIlAADwcMxmacMGo3nNqFFSqVLS118b+7k73PenhoODcbxrV3tUijyqZk3pxAkpNtbelQAAkLsQKgEAANsdOya1bSt16CBduyZNnWqsM+reXdq4UXJzk0wmY8mbZHy8caMxfQTIIj4+0r170unT9q4EAIDchd3fAABA+t25I02YIM2da0z/6NNH+vBDqUyZf89p1EgKDpYCA40eShUrGjOUCJSQxRI2665Wzb61AACQmxAqAQCAtIuLkxYvlsaMkW7elBo0kGbPlp58MvnzXV2lfv2ytkbgPj4+xuPRo5Kfn31rAQAgN2H5GwAASJtffpHq15cCAqR8+aSlS6U9e1IOlIBsolo1o50XzboBAMhYhEoAACB1wcHSiy9KzZoZUz1GjpROnpT69k3aiBvIhlxcjNWXR4/auxIAAHIX/hIEAADJi4yUJk6UqlY1dnPr0MH4V/nUqVLhwvauDkgXHx8jC42OtnclAADkHoRKAADkZeHh0hdfSO+9Jy1ZYnxsNktr10rVq0vjx0sVKkibNknr10uVK9u7YsAmNWsaLcFOnrR3JQAA5B406gYAIK8KCpLatZNCQoweSbGx0uDBRnD0xx+Su7v0ySfSm29KTk72rhZ4KAmbddeqZd9aAADILQiVAADIi8LDjUApNNSYmRQTYxwPCzMCpX79pGnTpEcesW+dQAapWdN4pFk3AAAZh1AJAIC8aM0aY4aS2Zz8eNOmBErIVapWNSbk0awbAICMQ08lAADyorNnJUfH5MecnIxxIBfJn1+qUoWZSgAAZCRCJQAA8prbt41+SrGxyY/HxBj7rwO5TM2a0pkzxsaGAADg4REqAQCQV8THS0uXGuuAdu40Zio53PengIODVKSI1LWrHQoEMpePj7Hi89gxe1cCAEDuQKgEAEBecPiw1Ly50YDbZJJWrJB27ZLc3IyPLbu7ublJGzdKrq72rRfIBJZm3fRVAgAgY9CoGwCA3CwsTHr/fenTT40pGm+9JU2aZMxGkqTgYCkw0OihVLGiMUOJQAm5lI+P8UioBABAxiBUAgAgNzKbjbDonXekK1ekBg2k+fOlxx9PfJ6rqzF7CcgDKlc2GnbTrBsAgIzB8jcAAHKbkyelZ56Runc3OhIvWCDt2ZM0UALymHz5pGrVmKkEAEBGIVQCACC3iIiQxo6VatWStm6VXn5ZOnFCeu21pA25gTyqZk3p/HkpPNzelQAAkPPxFyYAALnBhg3Gv5YnTzamYgQFSYsXS488Yu/KgGzF0qz7r7/sWwcAALkBoRIAADnZ+fNSx45Shw7SP/9In3wi/e9/UqNG9q4MyJYszbrpqwQAwMOjUTcAANldeLi0Zo2xQ1ulSsYObU5O0syZxsykyEipRw/j4zJl7F0tkK1ZZirRVwkAgIeXbWcqrVu3Tg0bNlShQoVUtGhRdejQQUfS8ZJSRESERo0aJS8vLzk7O8vLy0ujR49WREREitesXbtWLVq0UJEiReTi4qLKlSvL398/yXmhoaGaNGmSatWqpcKFC6t48eKqX7++PvvsM8XExNjydAEASF5QkFSunNS/vzR9uvTKK1Lp0pK3tzRmjFS+vNE/adUqAiUgDR59VHJxIVQCACAjZMuZSosXL1b//v3l4+OjadOmKSoqSnPmzFGjRo0UFBSkWrVqpXp9XFycnnvuOe3atUu9e/dWs2bNdOjQIc2YMUP79+/Xli1b5HBfw9I333xT8+fPV/v27TVp0iS5uLgoODhYu3fvTnRebGysWrVqpd9//119+/bVW2+9pejoaH3zzTd66623tGfPHq1cuTLDvyYAgDwoPFxq104KDZXMZsnywsXdu8bb+PHS6NGSs7N96wRyEEdHqXp1lr8BAJARsl2odPv2bQ0ZMkSenp4KCgqSm5ubJKlbt26qUaOGBg8erO3bt6d6j2XLlmnXrl0aOHCgZs+ebT3u5eWlYcOGaeXKlerTp4/1+IoVKzRv3jwtXLhQr776aqr33rlzp3777TcNHTpUH330kfX4m2++qXr16mnVqlWaP3++ChcubMvTBwDgX2vWSCEhRqCUnAoVCJQAG/j4SL//Lt25IxUpYu9qAADIubLd8rf169crNDRU/fv3twZKklS+fHn5+flpx44dCg4OTvUey5cvlyQNHTo00fE33nhDLi4u1nGLSZMmqXbt2tZAKSwsTPHx8cneOyQkRJJU5r4lBo6OjipdurQcHR2VP3/+NDxTAAAe4OxZY1pFcpycjHEA6UZfJQAAMka2C5X27dsnSWqUzK41lmMHDhxI8Xqz2awDBw6oTJkyqlChQqIxFxcX1alTJ9H1J0+e1KlTp9SkSRNNnTpVpUqVkpubmwoVKqQuXbro/Pnzie7RuHFjFSpUSFOnTtWaNWt08eJFnTx5UpMnT9bmzZs1btw4OfOqMQDgYUVGSn/8IcXGJj8eEyNVrJi1NQG5BKESAAAZI9stf7t06ZIkydPTM8mY5ZjlnOTcunVLERER8rHsF5vMPfbs2aPQ0FC5ubnp2LFjkqQ1a9YoKipKY8aMkbe3t3bs2KG5c+dq3759OnjwoB555BFJUunSpbV+/Xq9/vrr6t69u/W+BQoU0OLFi9WvX79Un9/Vq1d19erVJMctdQAAoB07pNdek06fNmYqmc1Swhm0Dg6Sm5uxCxyAdLP8mUhfJQAAHk62C5Usu7MlN9unQIECic5J7/X338PNzU1hYWGSpBs3bmjz5s165plnJEmdO3eWu7u7Jk+erE8++UQffPCB9R7u7u6qWrWqfH199cwzzygiIkLLli3Tq6++KpPJlOyOcRYLFizQhAkTUhwHAORht25Jw4dLX3xhbE81fbr05JNSx45Gb6V8+YwZSm5u0saNkqurvSsGcqTy5Y3/fJipBADAw8l2oVLBggUlSdHR0UnGoqKiEp2T3uuTu4eLi4sko0eSJVCyePnllzV58uREjcEPHTqkJk2a6O2339bUqVOtx3v16qXGjRvrzTff1PPPP2+d2XS/gIAAdejQIcnxY8eOqVevXik+LwBALmY2G025Bw2S/v5bat1aWrDg3+VtwcFSYKDRQ6liRWOGEoESYDOTyVgCR6gEAMDDyXahUsIlbtWrV080ltrSOItixYqpYMGCKS6Ru3Tpktzc3KxNwMuVKydJ8vDwSHKu5ditW7esxz799FNFR0er631LDhwcHOTn56e9e/dq//79ev7555P9/B4eHsl+LgBAHnXxovTGG8bMo+LFpWXLpN69jX/1Wri6Sg9YXg0gfWrWlPbtk27elEqUsHc1AADkTNmuUXeDBg0kSXv27EkyZjlWv379FK83mUyqV6+erly5ogsXLiQai4yM1MGDBxNdX6tWrRRDKMsuc6VKlbIeu3z5siQpLi4uyfmx/99MNTalpqoAAFjExUmzZxv/st24UerZUzp2TOrTJ3GgBCBTWPoqMVsJAADbZbtQqVOnTipcuLAWLVqk0NBQ6/GLFy8qMDBQvr6+1tlFEREROn78eJLG171795YkzZw5M9Hx+fPnKzIy0jouGcvfunXrpuvXr2vt2rWJzv/ss88kSe3atbMeq/n/24UsXbo00bkxMTH66quv5OjoqHr16tny1AEAecXhw1LjxtLgwcYUiU2bpJUrpRSWTgPIeJYd4GjWDQCA7bLd8reiRYtqxowZGjBggBo3bqyAgABFR0drzpw5MplMmjVrlvXc/fv3q0WLFurbt2+ikKdfv35avny55syZo5CQEDVr1kyHDh3SvHnz5Ovrm6R30QcffKCtW7eqZ8+e2r17t7y9vbVz506tXr1aderU0cCBA63nvv3221qxYoXmz5+vS5cuqU2bNoqIiNDKlSv1559/asiQISpbtmxmf5kAADlRVJQ0aZLRgDs+XhoyRJo4USpUyN6VAXmOJVRiphIAALbLdqGSZDSzLl68uGbMmKERI0Yof/78atq0qaZMmaLHHnvsgdc7Ojrqhx9+0MSJE7V69WqtWrVKHh4eGjp0qMaNGydHR8dE53t4eGjv3r0aN26cvvrqK926dUtlypTRkCFDNH78+ESNwcuXL68DBw5o0qRJ2rJli3788Uflz59fPj4++s9//qOXX345w78eAIBcYOdO6bXXpFOnpDp1pEWLJGa2AnZTpoxUpAgzlQAAeBjZMlSSJD8/P/n5+aV6jq+vr8xmc7Jjrq6umj59uqZPn56mz1e2bFktXrw4Ted6eXml+VwAQB53+7Y0fLi0eLFUoIA0bZr0zjuSk5O9KwPytIQ7wJnNtDIDAMAW2TZUAgAgRwkPl9askc6elSpVkvz8pB9/lAYNkq5fl1q1khYsMMYAZAs+PlJQkPGfaOnS9q4GAICch1AJAICHFRQktWsnhYRI+fJJMTHGUrfYWKlYMWnpUnZ1A7KhhM26CZUAAEi/bLf7GwAAOUp4uBEohYYaa2hiYozjsbHGErfffpP69iVQArIhmnUDAPBwCJUAAHgYa9YYM5Ti45OOxcQYDboBZEs+PsYjzboBALANoRIAAA/j9OmUZyE5ORk9lgBkSyVLSiVKMFMJAABbESoBAGCrEyeMmUrJzVKSjJlKFStmbU0A0sXH598d4AAAQPoQKgEAkF5xcdLMmVKdOtKZM5Kzs+Rw369UBwepSBGpa1d7VAggjWrWNFqiXbpk70oAAMh5CJUAAEiPkyelZs2kYcMkT0/pl1+k7dslNzdjGZyTk3Gem5u0caPk6mrfegGkytJXiSVwAACkXz57FwAAQI4QFyd9+qk0ZowUHS29/bY0ZYpUsKAxHhwsBQYaPZQqVjRmKBEoAdmeZQe4I0ekZ5+1by0AAOQ0hEoAADzIyZPSyy9LQUFS5crSF19ITZsmPsfVVerXzz71AbCZJVRiphIAAOnH8jcAAFISFyd98olUu7YRKA0eLB06lDRQApBjFSsmeXgYM5UAAED6MFMJAIDknD5tzDz69VdjOduSJUYvJQC5Ts2a0u7dxkaO9/fcBwAAKePXJgAACcXHG72THnvMCJQGDpT+/JNACcjFfHykiAjp/Hl7VwIAQM5CqAQAgMWZM1KLFkYT7tKlpR07pNmzpUKF7F0ZgExEXyUAAGxDqAQAQHy8NGeOMTvp55+lN980Zif5+tq7MgBZwMfHeCRUAgAgfeipBADI286eNXZ227VL8vIydnZr0cLeVQHIQjVqGI806wYAIH0IlQAAeUd4uLRmjREkPfqodOeONG6c0UzljTekadMkV1d7Vwkgi7m5SeXKMVMJAID0IlQCAOQNQUFSu3ZSSIjk6CjFxhrHS5eWNmyQWra0b30A7MrHR9q+XYqLM/4XAQAAHoyeSgCA3C883AiUQkMls/nfQEmSIiOlBg3sVxuAbKFmTSk62ujXDwAA0oZQCQCQ+61ZYyx1i49POhYSIgUGZnlJALIXmnUDAJB+hEoAgNzvxx9THnNyMnosAcjTatY0HmnWDQBA2hEqAQByr7Aw6ZVXpLVrUz4nJkaqWDHragKQLVWvLplMzFQCACA9CJUAALnTnj1SnTrSF19IrVoZ2zs53Pdrz8FBKlJE6trVHhUCyEYKFTI2hWSmEgAAaUeoBADIXWJipPHjpSZNpCtXpNmzpS1bjCVwbm7GVAQnJ+NcNzdp40bJ1dW+NQPIFmrWlE6ckO7ds3clAADkDPnsXQAAABnm1Cmpd29p3z5jltLKlf82SmnUSAoONppynz1rLHnr2pVACYCVj4+0YYPxvxLL/zoAAEDKCJUAADmf2SwtXiy9/bYUESGNGCFNnCg5Oyc+z9VV6tfPLiUCyP4sQdLRo4RKAACkBcvfAAA5240bUufO0quvSsWKSdu3S9OmJQ2UAEiS1q1bp4YNG6pQoUIqWrSoOnTooCPpaCT0559/qkePHvLy8lKBAgVUvnx5de7cWbt3787EqrOGj4/xSLNuAADShlAJAJBz/fijVKuWtH699OKL0p9/Sr6+9q4KyLYWL16sF154QXfv3tW0adM0ZswYHTp0SI0aNdLhw4cfeP3+/fvVoEED/fLLL/L399dnn30mf39/7dmzR02bNtVPP/2UBc8i81StavTvp1k3AABpw/I3AEDOY1ni9tlnkru79OWX0ksv2bsqIFu7ffu2hgwZIk9PTwUFBcnNzU2S1K1bN9WoUUODBw/W9u3bU73H7NmzFR0drc2bN8vHMq1HUqdOnfTEE09o0aJFeuaZZzL1eWSmAgWkKlWYqQQAQFoxUwkAkLP8/rtUr54RKDVvLh06RKAEpMH69esVGhqq/v37WwMlSSpfvrz8/Py0Y8cOBQcHp3qPkJAQSVKZMmUSHS9btqwkqWDBghlcddarWdNo1B0VZe9KAADI/giVAAA5Q1yc0SupYUPp9Gnj/W3bpAoV7F0ZkCPs27dPktSoUaMkY5ZjBw4cSPUebdq0kSS99NJL2rdvn65cuaI9e/aoZ8+eKlq0qIYNG5bBVWe9mjWl+HjpxAl7VwIAQPbH8jcAQPZ34YLUp4/0889S9erGcre6de1dFZCjXLp0SZLk6emZZMxyzHJOSl5//XVdvnxZc+fOVcOGDa3HfXx8tG/fPlWpUiXFa69evaqrV68mOX7s2LE01Z9VLKv6jhyRate2by0AAGR3hEoAgOwjPFxas0Y6e1aqVEnq2tVowv3GG1JoqDRwoDFDycXF3pUCOU5ERIQkyTmZnRELFCiQ6JyUODg4qGzZsqpdu7Y6deokb29vnTx5UjNmzNCzzz6r7du3q0IKswcXLFigCRMmPOSzyHw1axqP9FUCAODBCJUAANlDUJDUrp0UEiLlyyfFxEgBAcZj6dLS119Lbdvau0ogx7L0O4qOjk4yFvX/DYQe1BNp9OjRmjlzpv74449EjbrbtGmjxx9/XMOHD9eaNWuSvTYgIEAdOnRIcvzYsWPq1atXmp9HZqtSRXJyIlQCACAtCJUAAPYXHm4ESqGhktlsBEmS8ejkJO3eLT36qH1rBHK4hEvcqlevnmgstaVxFjExMfrkk09UrVq1RIGSJNWqVUvVqlXTjh07Urzew8NDHh4etpafZfLnl7y9jeVvAAAgdTTqBgDY35o1xgyl+PikYzEx0s6dWV4SkNs0aNBAkrRnz54kY5Zj9evXT/H6mzdv6t69e4qLi0t2PDY2VrGxsRlQqf35+Ejnzkl379q7EgAAsjdCJQCA/Z09Kzk6Jj/m5GSMA3gonTp1UuHChbVo0SKFhoZaj1+8eFGBgYHy9fVVuXLlJBm9lY4fP56osXapUqVUokQJnThxQnv37k107z179ujkyZN68skns+bJZLKaNY1Jk9mshzgAANkOoRIAwP5CQ6WUZjjExEgVK2ZtPUAuVLRoUc2YMUOXLl1S48aNNXfuXM2cOVPNmjWTyWTSrFmzrOfu379f1atX1+jRo63HHBwcNGHCBMXHx+vpp5/W8OHDtXDhQg0fPlxPP/208ufPr4kTJ9rhmWU8mnUDAJA29FQCANjPvXvSqFHSnDmSyWQcM5v/HXdwkNzcjF3gADy0gIAAFS9eXDNmzNCIESOUP39+NW3aVFOmTNFjjz32wOvfeOMNlSlTRnPmzNF//vMfhYWFqXjx4mrbtq3ee+891a5dOwueReaztIyirxIAAKkjVAIA2MfZs1L37tJvv0lNmkhDhkgvv5x49zc3N2njRsnV1d7VArmGn5+f/Pz8Uj3H19dX5oQBbwKdOnVSp06dMqGy7KNSJcnZmZlKAAA8CKESACDrBQZK/ftLYWHSmDHS++8bQdLTTxtjZ88aS966diVQApDlHB2l6tUJlQAAeBBCJQBA1omKMmYkzZ8vlSwprV1rBEkWrq5Sv372qw8A/l/NmtKXXxot39zc7F0NAADZE426AQBZ48QJ6cknjUCpZUvp0KHEgRIAZCOWZt1//WXfOgAAyM4IlQAAmW/FCumJJ4yut5MmST/9JJUube+qACBFNOsGAODBWP4GAMg8d+9Kb70lLV0qlSljNN1u3tzeVQHAA1lmKtFXCQCAlBEqAQAyx+HDxu5ux45JbdtKy5ZJjzxi76oAIE28vKSCBZmpBABAalj+BgDIWGaztGiR1KCBdOqUNH269P33BEoAchQHB6lGDWYqAQCQGkIlAEDGCQ2VXnpJeu01Y3e3n3+Whg83/nUGADmMj4909ap065a9KwEAIHvir3wAQMb4/XejGffXX0udOkkHD0pPPWXvqgDAZvRVAgAgdfRUAgCkT3i4tGaNdPasVKmS5Odn9EsaOtQYnz3baM5tMtm3TgB4SAlDpaZN7VsLAADZEaESACDtgoKkdu2kkBApXz4pJkYKCDAeK1WSVq82ZisBQC7g42M80qwbAIDkESoBANImPNwIlEJDjWbcMTHG8ZgYycnJ6J9Upox9awSADOTpKbm5sfwNAICU0FMJAJA2a9YYM5Ti45OOxcRImzdnfU0AkIlMJmMJHDOVAABIHqESACBtzp41lrwlx8nJGAeAXKZmTenmTenvv+1dCQAA2Q+hEgAgbQoW/HfJ2/1iYqSKFbO2HgDIApa+SiyBAwAgKUIlAMCD/fe/0ocfGu/fv6ubg4NUpIjUtWuWlwUAmc2yAxxL4AAASIpQCQCQsrg4afRoqUsXycVFmj1bcnc3giUnJ+McNzdp40bJ1dW+tQJAJrCESsxUAgAgKXZ/AwAk7+ZN6cUXpa1bpQYNpLVrpXLlpH79pMBAo4dSxYrGDCUCJQC5VOnSUrFizFQCACA5NoVKFStWVNu2bfXZZ59ldD0AgOzgt9+kF16QLl6UAgKkTz+VnJ2NMVdXI1gCgDzAsgPc4cOS2Zx0BTAAAHmZTcvfbty4IXd394yuBQCQHSxeLDVpIl2/Ln3xhfT55/8GSgCQB/n4SHfuSFeu2LsSAACyF5tCpZo1a+rMmTMZXQsAwJ6io6XXXpP69zfWewQFMSMJAERfJQAAUmJTqDRo0CBt2LBBf/75Z0bXAwCwh+BgqWlTadEiqXVrY/nbE0/YuyoAyBZ8fIxHQiUAABKzqaeSp6enWrdurcaNGysgIED169dX6dKlZUpmkXmzZs0eukgAQCbavl3q3t1ozD16tDRpkuToaO+qACDbsMxUolk3AACJ2RQq+fr6ymQyyWw26+OPP042TLKIi4uzuTgAQCYym6UZM4wgqVAhad06qXNne1cFANlOiRJSyZLMVAIA4H42hUrjxo1LNUgCAGRzYWFGv6RvvpFq1DACpapV7V0VAGRbPj7S/v3sAAcAQEI2hUrvv/9+BpcBAMgyx48bM5KOH5e6djV2eHN1tXdVAJCt1axprBa+eFGqUMHe1QAAkD3Y1KgbAJBDffONVL++dOqU9NFH0urVBEoAkAaWZt30VQIA4F82zVRK6Ndff9Uff/yhO3fuyN3dXY8//riaNGmSEbUBAGwVHi6tWSOdPStVqmTMTPrwQ2n6dOmRR6TvvpNatLB3lQCQY1iadR89Kj3/vH1rAQAgu7A5VPrf//6n3r1768SJE5Iks9ls7bNUtWpVLV++XPXq1cuYKgEAaRcUJLVrJ4WESPnySTEx0muvSbGxUoMGxmwlT097VwkAOUrCUAkAABhsCpVOnz6tVq1aKTQ0VE2aNFHLli3l4eGhq1evavv27fr111/19NNPa//+/apSpUpG1wwASEl4uBEohYYa3WRjYozjsbFS/vzSDz9IxYvbt0YAyIGKFJHKlmX5GwAACdkUKk2aNElhYWFavXq1unbtmmjs/fff19q1a9WjRw9NnjxZy5Yty5BCAQBpsGaNMUPJbE46du+eseytX7+srwsAcoGaNaVffpHi4iRHR3tXAwCA/dnUqHvr1q3q3LlzkkDJws/PTx07dtTWrVsfqjgAQDqdPWsseUuOk5MxDgCwiY+PFBkpnTtn70oAAMgebAqVbt68qWrVqqV6TrVq1XTz5k2bigIA2Kh06X+XvN0vJkaqWDFr6wGAXIS+SgAAJGZTqPTII4/or7/+SvWc48ePq0SJEjYVBQCwwalT0uzZyY85OBgNQVKYYQoAeDAfH+ORvkoAABhsCpVatmyp7777Tl9//XWy4998843Wr1+v1q1bP1RxAIA02r5devJJ6cwZadAgI0AymYwlb5Lk5iZt3Ci5utq1TADIyWrUMB6ZqQQAgMGmRt3jxo3T+vXr1bNnT3322Wdq0aKFPDw8dO3aNe3cuVO//vqrChcurPfeey+j6wUA3G/BAumtt6SCBaXvv5fatpWmTJECA40eShUrGjOUCJQA4KG4ukpeXoRKAABY2BQqVa5cWVu3blWfPn0UFBSkoKAgmUwmmf9/t6GqVatq2bJlqlKlSoYWCwBIIDZWGjJEmjPHCI42bPj3ZXRXV3Z5A4BMULOmtGWL8b/glPZFAAAgr7D5V2H9+vV17Ngx7d69W7///rtCQkLk7u6uunXrqnHjxhlZIwDgfnfuSN27Sz/9JDVvLq1dK9HHDgAyXc2axmri06elB+xbAwBArmdzT6WxY8dKkho1aqS33npLY8aM0VtvvZVhgdK6devUsGFDFSpUSEWLFlWHDh10JB1dESMiIjRq1Ch5eXnJ2dlZXl5eGj16tCIiIlK8Zu3atWrRooWKFCkiFxcXVa5cWf7+/smeGxoaqvfee0/Vq1eXi4uLihUrpieffFIrV65M71MFgPQ5dUpq2NAIlF591XgkUAKALEGzbgAA/mXTTKW9e/eqYcOGGV2L1eLFi9W/f3/5+Pho2rRpioqK0pw5c9SoUSMFBQWpVq1aqV4fFxen5557Trt27VLv3r3VrFkzHTp0SDNmzND+/fu1ZcsWOTgkztPefPNNzZ8/X+3bt9ekSZPk4uKi4OBg7d69O8n9L1++rBYtWujmzZvy9/dXzZo1dffuXZ08eVIXLlzI0K8FACSyfbvk5yeFhEiffCINHmw05AYAZImaNY3Ho0eN/x0DAJCX2RQqValSRcHBwRldiyTp9u3bGjJkiDw9PRUUFCQ3NzdJUrdu3VSjRg0NHjxY27dvT/Uey5Yt065duzRw4EDNTrC9tpeXl4YNG6aVK1eqT58+1uMrVqzQvHnztHDhQr366qsPrLFPnz4KCwvToUOHVK5cORufKQCk0+efSwMHJm7IDQDIUtWrG1k+M5UAALBx+Vv//v21ceNGXbx4MaPr0fr16xUaGqr+/ftbAyVJKl++vPz8/LRjx44HBlrLly+XJA0dOjTR8TfeeEMuLi7WcYtJkyapdu3a1kApLCxM8fHxyd47KChI27dv18iRI1WuXDnFxcUpPDw83c8TANIsNtYIk15/XSpfXtq7l0AJAOzExUWqVIkd4AAAkGwMldq3b68mTZqocePGmjt3rvbt26cLFy7o4sWLSd7Sa9++fZKMXk33sxw7cOBAitebzWYdOHBAZcqUUYUKFRKNubi4qE6dOomuP3nypE6dOqUmTZpo6tSpKlWqlNzc3FSoUCF16dJF58+fT3SPjRs3SpIqVaqkF154QS4uLipcuLDKlCmjyZMnKy4uLt3PGQBSdOeO9Pzz0ty5RkPu/fuNl8kBAHZTrZp04oQ0apS0ZInE64sAgLzKpuVvFStWlMlkktls1uDBg1M8z2QyKTY2Nl33vnTpkiTJ09MzyZjlmOWc5Ny6dUsRERHysXRRTOYee/bsUWhoqNzc3HTs2DFJ0po1axQVFaUxY8bI29tbO3bssAZmBw8e1COPPCJJ1vNfeeUVPfroo/rPf/4jk8mkefPmaezYsbp48aIWLlyYYn1Xr17V1atXkxy33BcArE6dktq3N/7l8uqrRrCUP7+9qwKAPC0oSNqyRYqPl2bOlOLipCFDjB3hknlNFACAXM2mUKlPnz4yZVJjWMvubM7OzknGChQokOic9F5//z3c3NwUFhYmSbpx44Y2b96sZ555RpLUuXNnubu7a/Lkyfrkk0/0wQcfSJL1/EKFCunnn3+2fp7u3burRo0a+s9//qOhQ4eqatWqyX7+BQsWaMKECal8BQBAiRtyz5olDRpEQ24AsLPwcKldO+nePeNjy2unoaHGpNLgYMnV1X71AQCQ1WwKlZYuXZrBZfyrYMGCkqTo6OgkY1FRUYnOSe/1yd3DxcVFklSmTBlroGTx8ssva/LkyYkag1vOf+mllxIFV/nz51fPnj01ceJE7dixI8VQKSAgQB06dEhy/NixY+rVq1eKzwtAHvL559Jbb0mFChkvfT/7rL0rAgBIWrPGyPrN5sTH4+ON1cqBgVK/fnYpDQAAu7ApVGrZsqUaN26sSZMmZXQ9iZa4Vb+vb0hqS+MsihUrpoIFC6a4RO7SpUtyc3OzNgG37N7m4eGR5FzLsVu3blmPpff85M5J7loAUGys9M47xjK3SpWkDRvonwQA2cjZs1K+fFJMTNIxJydjHACAvMSmRt179+7NtIbUDRo0kCTt2bMnyZjlWP369VO83mQyqV69erpy5YouXLiQaCwyMlIHDx5MdH2tWrVSDKEsu8yVKlXKeqxhw4aJxh50PgCkKDxc+uIL6b33jCDpmWeMR19fad8+AiUAyGYqVvx3ydv9YmKMcQAA8hKbQqUqVaokG6pkhE6dOqlw4cJatGiRQkNDrccvXryowMBA+fr6WmcLRURE6Pjx40kaX/fu3VuSNHPmzETH58+fr8jISOu4ZCxn69atm65fv661a9cmOv+zzz6TJLVr1856rGPHjipSpIhWrFhh7a8kSeHh4Vq2bJmcnJySLKMDgCSCgqRy5aT+/aVp06SBA6UdO6QOHaTNm6Xixe1dIQDgPt26Se7uksN9f0E7OEhFikhdu9qlLAAA7Mam5W/9+/fX+PHjdfHiRZUvXz5DCypatKhmzJihAQMGqHHjxgoICFB0dLTmzJkjk8mkWbNmWc/dv3+/WrRoob59+ybq89SvXz8tX75cc+bMUUhIiJo1a6ZDhw5p3rx58vX1TdK76IMPPtDWrVvVs2dP7d69W97e3tq5c6dWr16tOnXqaODAgdZz3d3d9emnn6pv376qX7++XnnlFZlMJn3xxRe6fPmypkyZYg29ACBZlk6voaFGYw7Ly94mk/Tzz0YHWHZ5A4Bsx9XVaHX3/PNGDyULNzfjOE26AQB5jU2hUvv27bVlyxY1btxYI0eOVP369VW6dOlkd4SzJXQKCAhQ8eLFNWPGDI0YMUL58+dX06ZNNWXKFD322GMPvN7R0VE//PCDJk6cqNWrV2vVqlXy8PDQ0KFDNW7cODk6OiY638PDQ3v37tW4ceP01Vdf6datWypTpoyGDBmi8ePHJ2kM3qdPHz3yyCOaOnWqJkyYoPj4eNWqVUurVq1Sjx490v18AeQxKXV6NZvp9AoA2VyjRsYubwMGSF9+KQ0dKr3/PoESACBvsilUqlixokwmk8xmswYPHpzieSaTSbEpLTx/AD8/P/n5+aV6jq+vr8z3/6Ps/7m6umr69OmaPn16mj5f2bJltXjx4jTX17ZtW7Vt2zbN5wOA1Zkzxqyk5P7/RadXAMj2XF2lvn2NUKliRQIlAEDeZVOo1KdPn2RnJQEAHiA2VvrlF2P/6eTQ6RUAcgRvb+Px5En71gEAgD3ZFCol7F8EAEij8HCpe3cjVMqXzwiWEoZLDg5GYw46vQJAtleunFSggHTihL0rAQDAfmza/Q0AkE5//y21aCH98IPk7y9t22YESCaTseRNotMrAOQgDg5SlSrMVAIA5G02zVRK6Pjx4zp27JjCw8PVu3fvjKgJAHKXU6ekZ581eiWNHStNmGCEScHBRlPus2eNJW9duxIoAUAO4u0t/fe/UnS05Oxs72oAAMh6NodKBw8eVP/+/fXHH39Yj1lCpV27dqlt27ZavXq12rdv//BVAkBOtW+f1K6ddOuWtGCB9Npr/465urLLGwDkYFWrGquYz5yRatSwdzUAAGQ9m5a/nTx5Ur6+vjpx4oQGDx6cZBe0Zs2aqVixYlq7dm2GFAkAOdJ33xlL3u7elb79NnGgBADI8WjWDQDI62wKlSZMmKB79+5p3759+vjjj1W/fv1E4yaTSU899ZQOHDiQIUUCQI7z+edS585SoULSzp0SszYBINexhEo06wYA5FU2hUrbtm1Tly5dVCOVeb7lypXTlStXbC4MAHIks1l67z3p9delRx+V9uyRGjSwd1UAgExQtarxyEwlAEBeZVNPpdu3b8vT0zPVc8xms+7du2dTUQCQI8XESK++Ki1bJtWvL33/vVSypL2rAgBkkmLFpOLFCZUAAHmXTaFSqVKldPr06VTPOXr0qMqVK2dTUQCQ44SFSS+8IG3ZIj3/vLR6tbH0DQCQq3l7s/wNAJB32bT8rWXLltqwYYNOpPAb9MCBA9q2bZvatGnzUMUBQI5w9arUrJkRKL36qtGUm0AJAPKEqlWlGzek27ftXQkAAFnPplBp9OjRypcvn5o1a6b58+dbeycdPXpU8+fPV/v27VW4cGENGzYsQ4sFgGzn+HHpqaekgweliROlBQukfDZNAgUA5ECWZt2nTtm3DgAA7MGmf/lUrVpV33zzjV588UW99dZbkoweSo899pjMZrOKFCmidevWqXz58hlaLABkK0FBUocOUkiI9MUXUr9+9q4IAJDFEu4Ax74MAIC8xuaX05999lmdO3dOy5Yt0969e/XPP//I3d1dDRs2VL9+/VSsWLGMrBMAspd166SXXjJmJX3/vfTss/auCABgB+wABwDIyx5qjUaRIkU0ePBgDR48OKPqAYDsb84cafBg6ZFHpB9+kJ54wt4VAQDspFIlyWSiWTcAIG+i8QcApCQ8XFqzRjp71vhXwwsvSJMnSzNmSFWqSJs2SRUr2rtKAIAdubhIFSowUwkAkDcRKgFAcoKCpHbtjH5J+fJJsbFSQIAUE2M05v7uO6lECXtXCQDIBry9pV9/leLjJQebtsEBACBn4tceANwvPNwIlEJDJbPZCJIsj05O0rffEigByLHWrVunhg0bqlChQipatKg6dOigI0eOpOsev//+u7p27arSpUvL2dlZZcuWVYcOHXT+/PnMKTqb8/aWIiKky5ftXQkAAFmLUAkA7rdmjTFDKT4+6VhMjLRxY9bXBAAZYPHixXrhhRd09+5dTZs2TWPGjNGhQ4fUqFEjHT58OE33WLVqlRo0aKBz587pnXfe0fz58zVw4EA5OTnp1q1bmfwMsieadQMA8iqWvwHA/c6eNZa8xcQkHXNyMsYBIIe5ffu2hgwZIk9PTwUFBcnNzU2S1K1bN9WoUUODBw/W9u3bU73HyZMn9fLLL+ull17S0qVL5cBaL0nGTCXJCJVatbJvLQAAZCX+EgCA+1WsmHygJBnHac4NIAdav369QkND1b9/f2ugJEnly5eXn5+fduzYoeDg4FTvMWPGDMXGxurjjz+Wg4ODIiIidO/evcwuPduzhErsAAcAyGsIlQDgft7exv7Q93NwkIoUkbp2zfKSAOBh7du3T5LUqFGjJGOWYwcOHEj1Hhs3blS1atW0d+9e1ahRQ4UKFZKLi4ueeuop7dy5M8NrzinKl5ecnVn+BgDIe1j+BgAJBQVJzz9vLH/Ln9/ovGpZCufmZvRTcnW1d5UAkG6XLl2SJHl6eiYZsxyznJOckJAQXb16VdHR0ercubMCAgI0ZcoUnTp1SlOmTNHTTz+trVu3qnnz5slef/XqVV29ejXJ8WPHjtnydLIVBwepShVCJQBA3pOmUKmijUs9TCaTzpw5Y9O1AJDltmyROnUyZilt3izVry8FBho9lCpWNGYoESgByKEiIiIkSc7OzknGChQokOic5ISFhUmSbt26pdGjR+uDDz6wjj3xxBNq3bq1Ro8erd27dyd7/YIFCzRhwgSb68/uvL2NzUGjo41ZSwAA5AVpCpXi4+Nlum8pyL1796yvNjk6OqpEiRK6efOm4uLiJEkeHh7Knz9/BpcLAJnk22+l7t2lggWlH3+UGjY0jvfrZ9eyACCjFCxYUJIUHR2dZCwqKirROclxcXGxvt/vvv83tmrVSuXLl9e+ffsUERGR7H0CAgLUoUOHJMePHTumXr16pe1JZGNVqxqbhp49K1Wvbu9qAADIGmkKlc6fP5/o49DQULVu3VoVKlTQhx9+qCZNmsjR0VFxcXH65ZdfNHr0aMXHx2vr1q2ZUTMAZKwvv5T69pWKF5d++kmqXdveFQFAhku4xK36falHakvjLIoVK6ZChQrp7t278vDwSDLu4eGhixcv6s6dO8mGSh4eHslel1sk3AGOUAkAkFfY1Kh7zJgxunPnjnbu3KnmzZvL0dFRkjFjydfXVzt27NCtW7c0ZsyYDC0WADLcggVS796Sh4f0888ESgByrQYNGkiS9uzZk2TMcqx+/fopXm8ymaz3SG6XuODgYOXLl0/FihXLiHJzHHaAAwDkRTaFSv/973/VsWPHFJe3FShQQB07dtS6deseqjgAyFQffSQNGGD0S/rlF2PtAgDkUp06dVLhwoW1aNEihYaGWo9fvHhRgYGB8vX1Vbly5SQZvZWOHz+epLF23759JUmfffZZouPffvutrly5otatW1v7M+U1ll8hNOsGAOQlNu3+9s8//ygmJibVc2JiYvTPP//YVBQAZCqzWRo/Xpo0SapZ02jQnYuXZACAJBUtWlQzZszQgAED1LhxYwUEBCg6Olpz5syRyWTSrFmzrOfu379fLVq0UN++fbV06VLr8d69e+vLL7/UZ599pr///lstWrTQmTNnNHfuXLm7u2vmzJlZ/8SyieLFpWLFmKkEAMhbbJqpVKlSJa1du1YhISHJjt++fVtr1661edc4AMg0ZrM0ZIgRKNWrJ+3aRaAEIM8ICAhQYGCgChYsqBEjRmjSpEmqVauWgoKCVDsNy38dHBz03Xff6f3339cff/yhwYMHa+nSperUqZP279+vGjVqZMGzyL6qVmWmEgAgb7EpVBowYICuXLmiBg0aaPny5Tp//rwiIyN1/vx5LVu2TE8++aSuXbumN998M6PrBQDbxcVJr70mzZolNW0qbdtmvLQMANnMhg0b1KNHD9WuXVuVK1e2Hj927JimT5+uy5cv23xvPz8/6y5td+7c0YYNG/TYY48lOsfX11dmsznRLCWLAgUKaPz48Tp16pTu3bunmzdv6uuvv5a3palQHubtLf39t3Tnjr0rAQAga9i0/O2tt97SqVOnNGfOnCRbykqS2WzWwIED9cYbbzx0gQCQIWJijIbcq1dLbdpI69ZJqWydDQD2YDab5e/vr5UrV0qSXFxcFBkZaR0vWrSo3n33XZnNZo0cOdJeZSIFCXeA+/+e5gAA5Go2zVSSpE8//VRBQUF6+eWXVbduXVWsWFF169bVK6+8ol9//VWffvppRtYJALaLipK6dDECpS5dpPXrCZQAZEvz5s3TihUr1K9fP926dUvDhg1LNF66dGk1btxYGzdutFOFSA3NugEAeY1NM5UsnnrqKT311FMZVQsAZLzwcKljR2n7dmOm0hdfSPke6n99AJBpFi9erNq1a2vRokUymUwymUxJzqlSpYo2b95sh+rwIAlnKgEAkBfYPFMJALK927elp582AqXXX5eWLiVQApCtnThxQi1atEg2TLIoWbKkbty4kYVVIa0qV5ZMJnaAAwDkHQ8VKmVmE0kAeCh//y21aCHt3SuNHCl99pnkQI4OIHvLly+foqKiUj3n8uXLcnV1zaKKkB4uLlL58sxUAgDkHTa9ZE8TSQDZ2qVLUuvWxkvFU6ZI775r74oAIE1q1KihnTt3ymw2JztbKSoqStu3b1fdunXtUB3SwttbCgqSzGZj1hIAALmZTS/b00QSQLYRHm70SXrvPWnJEunPP6UmTYxA6dNPCZQA5Ci9e/fW8ePH9c477yg+Pj7RWFxcnIYMGaIrV67I39/fPgXigby9pYgIiQn7AIC8wKaZSjSRBJAtBAVJ7dpJISFGr6SYmH9fFv7iC6lfP/vWBwDpFBAQoO+++06zZ89WYGCgChcuLEny8/PT3r17deXKFXXs2FE9e/a0c6VIScId4Dw97VsLAACZzaaZSjSRBGB34eFGoBQaaqwxiIkxjpvNRlOLrl3tWx8A2MDR0VHff/+9xo0bp+joaJ08eVJms1nr1q1TRESExo4dq8DAQHuXiVRYdoCjWTcAIC+waaYSTSQB2N2aNcYMJbM56VhEhBQYyEwlADlSvnz59P7772v8+PE6efKk/vnnH7m7u6tatWpydHS0d3l4gIQzlQAAyO1sCpVoIgnA7s6e/XfJ2/2cnIxxAMjBTCaTqloSCuQY5cpJzs6ESgCAvMGm5W80kQRgdxUrJh8oScbxihWzth4AACQ5OkqVK7P8DQCQN9g0U4kmkgDs7tFHkz/u4CC5udFTCUCO1LJlyzSdZzKZtG3btkyuBraqWlX69lvp3j0pf357VwMAQOaxKVSyNJGcPHmy5s6dq6tXr0qS1q1bpyJFimjs2LEaO3ZshhYKAFa//SZ17mz8pZ4/v3T37r9L4dzcpI0bJXq6AciBdu7cmeq4yWRKsf0Asg9vbyk+3liJXa2avasBACDz2BQqSTSRBGAnv/8uPf20FB0t/fij1KCB0ZT77FljyVvXrgRKAHKs+9sKWISEhOjAgQMaOXKkvL29tXLlyiyuDOmRcAc4QiUAQG5m80ylHj166Msvv6SJJICsc+iQEShFRkobNkiWZSLs8gYgl3N3d1fr1q21ZcsW+fj4aObMmRoxYoS9y0IK2AEOAJBX2NSou3DhwipfvnxG1wIAKTt8WGrVSgoPNxpVPP20vSsCgCxXrFgxPffcc/rPf/5j71KQCstMJUIlAEBuZ9NMpbp16+qvv/7K6FoAIHlHjxqBUmio9N//Ss8+a++KAMBu3NzcdPHiRXuXgVQULy4VLcoOcACA3M+mmUojR47UDz/8oC1btmR0PQCQ2LFjxjK3O3ektWul55+3d0UAYDeRkZHauHGjSpYsae9SkAqTyVgCx0wlAEBuZ9NMpb///lvPPvus2rZtq06dOql+/foqXbp0sjuR9OnT56GLBJBHnThhBEq3bklr1kgdOti7IgDIVMuXL0/2eGxsrIKDg/XVV1/p9OnTGjZsWBZXhvTy9pb27pVCQiR3d3tXAwBA5rApVPL397duabtu3TqtW7dOkhKFSpbtbgmVANjk9GkjULpxQ/r6a6lzZ3tXBACZzvI31v3MZrMkycHBQb169dLkyZOzujSkU8K+SvXr27cWAAAyi02h0pIlSzK6DgD419mzUosW0rVr0ldfSX5+9q4IALJESn9jOTg4qGjRoqpXr55Kly6dxVXBFgl3gCNUAgDkVjaFSn379s3oOgDAcP68EShduSKtWCF1727vigAgy/A3Vu5hmalEs24AQG5mU6gEAJni4kUjUAoOlpYulV56yd4VAQBgkypVjEeadQMAcjNCJQDZw6VLRqB0/rz0xRcS/dgAADmYi4tUvjyhEgAgd7M5VLp7967mzZunzZs36/Lly4qOjk5yjslk0pkzZx6qQAB5wJUrRqB09qy0cKHUr5+9KwKALOHg4JBsY+4HMZlMio2NzYSKkJG8vaU9eySzWbLh2wwAQLZnU6h0584dNWnSRH/99Zfc3NwUGhoqd3d33bt3T5GRkZKkMmXKyMnJKUOLBZALXb1qBEqnT0vz50uvvmrvigAgyzRr1symUAk5Q9Wq0tatxmsnZcvauxoAADKeTaHS5MmT9ddff2nx4sXy9/eXo6Oj3nnnHY0dO1b79u3TW2+9pUKFCmnz5s0ZXS+A3OT6dalVK2NtwJw50oAB9q4IALLUzp077V0CMpGlWffJk4RKAIDcycGWi7777js1a9ZM/fr1S/TqmslkUsOGDfXDDz/o+PHjmjJlSoYVCiCXuXHDCJSOHZNmzZLeesveFQEAkKHYAQ4AkNvZFCoFBwfriSee+PcmDg6JeiqVLFlSbdu21ddff/3wFQLIfW7eNAKlo0elmTOlwYPtXREAABmualXjkWbdAIDcyqblbwULFpSDw795lLu7u65du5bonFKlSuny5csPVx2A3CE8XFqzxmjEXaqUtGiRdPiwNG2aNGSIvasDgGzn6tWr2rZtW6qboYwdO9YOlSE9ypeX8ucnVAIA5F42hUrlypVTcHCw9eMaNWro559/Vnx8vDVs+vXXX1W6dOmMqRJAzhUUJLVrJ4WESPnySTExxvHXXpNGjLBvbQCQDY0fP15Tp05NtLub2Wy2thywvE+olP05OkqVK7P8DQCQe9m0/K158+batWuXzGazJKl79+46c+aMnnvuOX322Wfq2rWr9u7dq+eeey5DiwWQw4SHG4FSaKixn7IlUDKZjJlL4eH2rQ8Aspkvv/xSkyZNUtOmTbV27VqZzWb17dtXX331lV599VU5ODioR48e2r59u71LRRpVrSqdOyfdu2fvSgAAyHg2zVTq27ev7t27p0uXLqlcuXIaMGCAtm/frm+//VY//fSTJKlx48aaPHlyhhYLIIdZs8aYofT/AbSV2SzduSMFBkr9+tmlNADIjubPny9PT09t2rRJ+fIZf6Z5eXmpR48e6tGjhzp37qznn39eL774op0rRVp5e0txcUawZOmxBABAbmFTqPT4449r/vz5/94kXz6tW7dO//vf/3T69Gl5eXmpfv36ifouAciDzp5NvOQtIScnYxwAYHX48GG9+OKL1kBJkuLi4qzvt2nTRm3atNGMGTPUvn17e5SIdLIESSdOECoBAHIfm0KllDzxxBOJdoUDkMd5eSUfKEnG8YoVs7QcAMjuYmJiVLx4cevHLi4uCgkJSXSOj4+PPv/886wuDTby9jYeadYNAMiNMjRUAgArs1k6cCD5MQcHyc1N6to1a2sCgGzOw8NDV69etX5cvnx5/fnnn4nOuXLlSqKZTMjeLKESzboBALmRTX+RTJw4MU3nsTMJkIdNniwtXCg9/rh05ozRrNuyFM7NTdq4UXJ1tXeVAJCt1K1bV0eOHLF+3LJlSy1cuFArVqxQly5dtHPnTq1du1aNGze2Y5VIjxIlpKJFmakEAMidbAqV3n///RTH2O4WgObPl8aNMwKlHTuMmUmBgUYPpYoVjRlKBEoAkES7du30xhtv6Ny5c3r00Uc1atQorV69Wv7+/vL395ckOTk5sRlKDmIyGbOVCJUAALmRTaHSjh07kj1+584dHThwQLNnz9bzzz+vAQMGPFRxAHKgwEDpzTelypWlH380ZiVJ7PIGAGmQMDySpHLlyunAgQOaOXOmzpw5Iy8vL73xxhuqVauW/YpEunl7S/v2GZN2Lb8WAQDIDWwKlZo3b57iWMeOHdW9e3c1aNBAPXr0sLkwADnQ1q1Sz55S6dLSTz9JJUvauyIAyPEeffRRzZ07195l4CFYdn07eVKqV8++tQAAkJEcMuOmtWrVUseOHfXBBx9kxu0BZEe//SZ17iwVKiRt3iw9+qi9KwKAHOevv/6ydwnIBOwABwDIrTIlVJKM3UoSNpoEkIudPCm1bSvFxkobNkgsywAAm/j4+OjJJ5/UvHnzdOvWLXuXgwzCDnAAgNwq00Klffv2ycXFJbNuDyC7uHxZeuYZ6fZtac0aqUkTe1cEADlWmzZt9Pvvv2vgwIEqU6aMunbtqu+//15xcXH2Lg0PoUoV45GZSgCA3MamnkoXL15M9nhsbKyCg4O1aNEi/frrr+rWrdtDFQcgm7t1S2rTRrpwQVq6VGrf3t4VAUCO9uOPP+ratWtasWKFli1bpm+++Ubr1q1TiRIl1LNnT/Xt21e1a9e2d5lIp4IFpXLlCJUAALmPTaGSl5eXTCZTiuNms1lVqlTRRx99ZHNhALK5iAipXTvp6FFpxgypb197VwQAuULp0qU1fPhwDR8+XL///ruWLl2qr7/+WrNmzdKnn36qWrVqyd/fX2+//ba9S0U6WHaAM5ulVP6MBgAgR7EpVOrTp0+yoZKDg4OKFi2qBg0aqGPHjnJ2dn7oAgFkQzExUteu0p490vDh0rBh9q4IAHKlxx9/XI8//rg+/vhjbdy4UcuXL9eGDRs0bNgwQqUcpmpVads26epVqUwZe1cDAEDGsClUWrp0aQaXASDHiI+XXn5Z+uEHyd9fmjbN3hUBQK4XERGhv//+W3///bdiY2NTnTGO7Clhs25CJQBAbpFpjbof1rp169SwYUMVKlRIRYsWVYcOHdK1m1xERIRGjRolLy8vOTs7y8vLS6NHj1ZERESK16xdu1YtWrRQkSJF5OLiosqVK8vf3z/VzxMfH6+GDRvKZDKpdevWaa4PyJHMZmNW0sqVUocO0qJFzOEHgExiNpu1adMmvfjii/Lw8NCAAQO0Z88etWrVSsuXL7d3eUinqlWNR/oqAQByE5tmKmW2xYsXq3///vLx8dG0adMUFRWlOXPmqFGjRgoKClKtB2xXHhcXp+eee067du1S79691axZMx06dEgzZszQ/v37tWXLFjk4JM7T3nzzTc2fP1/t27fXpEmT5OLiouDgYO3evTvVzzVr1iwdPXr0oZ8zkCNMny598omxw9vXX0v5suX/QgAgRzt69KiWLVumL7/8UteuXbP2quzbt6/69OkjT09Pe5cIG1hmKhEqAQByE5v+RdiyZUubPpnJZNK2bdtSPef27dsaMmSIPD09FRQUJDc3N0lSt27dVKNGDQ0ePFjbt29P9R7Lli3Trl27NHDgQM2ePdt63MvLS8OGDdPKlSvVp08f6/EVK1Zo3rx5WrhwoV599dU0P5+zZ89q7Nix+uCDD+hrgNxv8WJp1CipVi1pwwbJxcXeFQFArvPEE0/o4MGDMpvNcnd3V//+/eXv76+nnnrK3qXhIVWoIOXPbyx/AwAgt7ApVNq5c6ckIyQym81JxlM7/iDr169XaGiohgwZYg2UJKl8+fLy8/PTsmXLFBwcrHLlyqV4D8uU8KFDhyY6/sYbb2js2LFavnx5olBp0qRJql27tjVQCgsLU6FChZLMZrrfq6++qpo1a2rgwIGESsjdvv1Weu01yctL2rxZKlLEzgUBQO508OBBPf300/L391enTp1UoEABe5eEDOLoKFWuzEwlAEDuYlNPpaioKHXo0EGPPvqolixZonPnzikyMlLnzp3TF198oYoVK6pjx46Kjo5WfHy89S0uLu6B9963b58kqVGjRknGLMcOHDiQ4vVms1kHDhxQmTJlVKFChURjLi4uqlOnTqLrT548qVOnTqlJkyaaOnWqSpUqJTc3NxUqVEhdunTR+fPnk/08ixYt0s8//6xFixY9MHxK6OrVq/r999+TvB07dizN9wCy1K5dUo8eUokS0k8/SR4e9q4IAHKt4OBgbdq0ST169CBQyoW8vaWzZ41NVAEAyA1smqk0adIk/fbbbzpy5IiKJJixUKFCBfn7+6tDhw6qVauWJk2apIkTJ6br3pcuXZKkZPsFWI5ZzknOrVu3FBERIR8fn2THPT09tWfPHoWGhsrNzc0a5qxZs0ZRUVEaM2aMvL29tWPHDs2dO1f79u3TwYMH9cgjj1jvceXKFQ0fPlxDhw5V7dq10/X8FixYoAkTJqTrGsBuDh40GnLnzy/9+KNUpYq9KwKAXK0M24Llat7eUlycESxZGncDAJCT2RQqffnll3rhhRcSBUoJFStWTH5+flq5cmW6QyXL7mzOzs5Jxiyv2KW2g1tq199/Dzc3N4WFhUmSbty4oc2bN+uZZ56RJHXu3Fnu7u6aPHmyPvnkE33wwQfWe7z++usqUaKExo8fn67nJkkBAQHq0KFDkuPHjh1Tr1690n0/INOcOSM9+6wUFSVt2iQ9/ri9KwIAIEdLuAMcoRIAIDewKVS6cuWK8ufPn+o5Tk5Ounr1arrvXbBgQUlSdHR0krGoqKhE56T3+uTu4fL/zYbLlCljDZQsXn75ZU2ePDlRY/Cvv/5a3333nbZs2WK9Nj08PDzkwfIhZHfXrknPPCPduCEFBkotWti7IgAAcjx2gAMA5DY29VTy9PTU+vXrde/evWTHo6OjtX79epUtW9ame0vJL3FLbWmcRbFixVSwYMEUl8hdunRJbm5u1ibglobfyQU9lmO3bt2SZDyvQYMG6ZlnnpGXl5dOnz5tfZOkyMhInT59WtevX0/TcwWylfBw6YsvpOHDpQYNjLn5n38udeli78oAAMgVLKESO8ABAHILm0Klvn376vTp02rZsqV+/vlnawPuuLg47dq1S61atdLZs2fl7++f7ns3aNBAkrRnz54kY5Zj9evXT/F6k8mkevXq6cqVK7pw4UKiscjISB08eDDR9bVq1UoxhAoODpYklSpVynr9jRs39NNPP6lKlSqJ3iRp9+7dqlKligYPHpyepwzYX1CQVK6c1L+/NHOmFBwsFSgg1axp78oAAMg1HnnE2ECVmUoAgNzCplBp1KhR6tChg3bv3q0WLVqoQIECKlWqlAoUKKCWLVtq9+7dat++vUaNGpXue3fq1EmFCxfWokWLFBoaaj1+8eJFBQYGytfX1zq7KCIiQsePH0+yzK53796SpJkzZyY6Pn/+fEVGRlrHJWP5W7du3XT9+nWtXbs20fmfffaZJKldu3aSpEKFCikwMDDZN8kIqAIDA/XOO++k+3kDdhMeLrVrJ4WGSmaz8SZJ9+5Jzz9vjAMAgIdmMhmzlQiVAAC5hU09lZycnPTtt9/qq6++0pIlS/THH3/o1q1bcnd31+OPP65+/frpxRdftKmgokWLasaMGRowYIAaN26sgIAARUdHa86cOTKZTJo1a5b13P3796tFixbq27evli5daj3er18/LV++XHPmzFFISIiaNWumQ4cOad68efL19U3SEPuDDz7Q1q1b1bNnT+3evVve3t7auXOnVq9erTp16mjgwIHW5+3n55di7SVLlkx1HMiW1qyRQkL+DZMs4uOlO3eMnkr9+tmlNAAAcpuqVaX9+43Xcv6/GwMAADmWTaGSxUsvvaSXXnopo2qxCggIUPHixTVjxgyNGDFC+fPnV9OmTTVlyhQ99thjD7ze0dFRP/zwgyZOnKjVq1dr1apV8vDw0NChQzVu3Dg5OjomOt/Dw0N79+7VuHHj9NVXX+nWrVsqU6aMhgwZovHjx6faGBzI8c6elRwcjD2O7+fkZIwDALJUeHi4/vvf/+qPP/5QSEiI3N3dVbduXXXu3Fmurq72Lg8PwdJX6dQp6Ykn7FsLAAAP66FCpczk5+f3wFk/vr6+Mt8/u+L/ubq6avr06Zo+fXqaPl/ZsmW1ePHidNdpkVIdQLZ3927ygZIkxcRIFStmbT0AkMcFBgZqwIABunPnTqK/L0wmk95++20tWLCAmdE5WMJm3YRKAICczqaeSufPn9cPP/ygu3fvWo/FxsZq/Pjxql27tho1aqT//ve/GVYkgExy5Ij0n/8YTR4c7vvfgYOD0U20a1e7lAYAedGWLVv04osvKiwsTH369NGSJUv0448/asmSJerdu7fCwsL04osvauvWrfYuFTaqWtV4pK8SACA3sGmm0oQJE/Tdd9/p+vXr1mOTJ0/WpEmTrB9369ZNv/zyixo2bPjwVQLIeNevGw26o6Ol2bOlsWON3kr58hkzlNzcpI0bJZZZAECWmThxopydnfXLL7/o8ccfTzTWt29fvfXWW2rWrJkmTpyo1q1b26lKPIzKlY1HQiUAQG5g00ylPXv2qFWrVsqXz8ik4uPjNW/ePFWrVk0XL17U/v37VahQIX3yyScZWiyADBIZKXXqJF24IC1YIL31lhQcLC1eLI0cKX3xhfFxo0b2rhQA8pQ//vhD3bt3TxIoWdSrV0/dunXT77//nsWVIaMUKiR5ehrL3wAAyOlsmql0/fp1VahQwfrxwYMHdfPmTY0fP16enp7y9PRUx44d9csvv2RYoQAyiNksvfyytHevNGLEvzu7ubqyyxsA2Jmzs7M8PDxSPadMmTJydnbOooqQGapWlfbtM34lm0z2rgYAANvZNFMpJiZGpgS/AYOCgmQymdSyZUvrMU9PT129evXhKwSQsSZMkL7+WurcWfrwQ3tXAwBIoGnTpgoKCkr1nKCgIDVr1iyLKkJm8PaWwsOla9fsXQkAAA/HplDJ09NTf/75p/XjH374QSVKlFD16tWtx/7++2+5ubk9fIUAMs5XXxmh0uOPSytWJG3ODQCwq2nTpunPP//UqFGjEm2IIkl3797ViBEjdOTIEU2dOtVOFSIjJNwBDgCAnMym5W/t2rXTJ598omHDhqlAgQLasmWL+t23bObkyZOJlsgBsLPdu41lb2XKSN99ZzR1AABkK9OmTdNjjz2mGTNmaOHChXr88cdVqlQpXb9+Xb///rtCQkLUrFkzTZs2LdF1JpNJixcvtlPVSK+EO8D5+tq1FAAAHopNodKIESP07bff6uOPP5YklS1bVhMmTLCO//3339qzZ48GDRqUMVUCeDjnzhmNuR0dpQ0bpLJl7V0RACAZS5cutb5/584dbd++Pck5u3bt0q5duxIdS0+otG7dOk2fPl2HDx9W/vz51bRpU33wwQfy8fFJd70HDx5U/fr1FRsbqxUrVqhXr17pvkdeZJmpxA5wAICczqZQqWTJkjp8+LC2bdsmSWrevLkKFy5sHb9586ZmzJihNm3aZEyVAGwXEiK1ayfdvCmtW2csfQMAZEvnzp3L1PsvXrxY/fv3l4+Pj6ZNm6aoqCjNmTNHjRo1UlBQkGrVqpXme8XGxuqVV15RgQIFFB4enolV5z5eXpKTE8vfAAA5n02hkiS5uLioXbt2yY7VqFFDNWrUsLkoABkkNlbq3l366y9p+nRjthIAINvKzNYBt2/f1pAhQ+Tp6amgoCBr78tu3bqpRo0aGjx4cLIzo1Ly0Ucf6dSpUxo5cqTGjh2bWWXnSo6OUuXKzFQCAOR8dOkFcrN33pE2b5ZeeUUaNsze1QAA7Gj9+vUKDQ1V//79E22mUr58efn5+WnHjh0KDg5O071OnjypCRMmaMqUKfL09MysknM1b2/p7FkpJsbelQAAYDtCJSC3mjvXeGvRQpo3TzKZ7F0RAMCO9u3bJ0lq1KhRkjHLsQMHDjzwPmazWa+88opq166tN998M2OLzEOqVjUmFGfyikcAADKVzcvfAGRjmzZJgwdLVapIa9dK+fPbuyIAgJ1dunRJkpKdWWQ5ZjknNfPmzdO+ffv0v//9Tw4OaX998urVq7p69WqS48eOHUvzPXKThM26Le8DAJDTECoBuc2RI1K3bpK7u7Rxo1SsmL0rAgBkAxEREZIkZ2fnJGMFChRIdE5KLl68qNGjR2vYsGHpauotSQsWLEi0W3BeZwmSTpww9tMAACAnIlQCcpPr142/TKOipJ9+MmYqAQAgqWDBgpKk6OjoJGNRUVGJzklJQECASpUqpXHjxqX78wcEBKhDhw5Jjh87dky9evVK9/1yuqpVjUeadQMAcjJCJSC3iIoydne7cEH64gvJ19feFQEAspGES9yqV6+eaCy1pXEW//3vf7Vp0yYtWLAg0TK5v//+W5J0/fp1nT59WmXKlEk2nPLw8JCHh8dDP4/c4pFHjEnFhEoAgJyMRt1AbmA2Sy+/LO3dK40YIfXrZ++KAADZTIMGDSRJe/bsSTJmOVa/fv0Ur79w4YIkY8ZRlSpVrG8jR46UJA0bNkxVqlTRzz//nNGl50omk7EE7sQJe1cCAIDtHmqm0t9//63ffvtNt2/fVlxcXLLn9OnT52E+BYC0mDhRWrXKmKn04Yf2rgYAkA116tRJgwcP1qJFi/T222/Lzc1NktEnKTAwUL6+vipXrpwko7fSxYsX5e7ubp1d1K5du2RnMu3cuVOfffaZBg0apKZNm6pu3bpZ96RyuKpVpQMHpLAwqXBhe1cDAED62RQqxcTEaMCAAVq+fLni4+OTPcdsNstkMhEqAZlt1Srp/felxx+XVq6U0rETDwAg7yhatKhmzJihAQMGqHHjxgoICFB0dLTmzJkjk8mkWbNmWc/dv3+/WrRoob59+2rp0qWSpMqVK6ty5cpJ7hseHi7JmOXk5+eXFU8l17A06z51yvg1DgBATmNTqDR27FgtWbJElSpVUs+ePVWuXDnly0d7JiDL7dljLHUrU0b67jupUCF7VwQAyMYCAgJUvHhxzZgxQyNGjFD+/PnVtGlTTZkyRY899pi9y8tzEu4AR6gEAMiJbEqCvvrqK3l7e+uPP/6Qi4tLRtcEIC3On5c6dpQcHaUNG6SyZe1dEQAgB/Dz83vgjCJfX1+ZzeY03c/f31/+/v4ZUFneww5wAICczqZQ6e+//9Ybb7xBoARkpfBwac0a6exZycNDmjtXunlTWreOlzcBAMiBqlQxHgmVAAA5lU2hUvny5RUaGprRtQBISVCQ1K6dFBIi5csnxcQYx994w2jODQAAcpxChSRPT3aAAwDkXDZ19PX399ePP/6okJCQjK4HwP3Cw41AKTRUMpv/DZQk6auvjHEAAJAjeXsbM5XSuNoQAIBsxaZQadSoUWrSpIlat26tHTt2MGsJyExr1hgzlJLbafHOHSkwMMtLAgAAGcPbWwoLk65ds3clAACkn03L35ycnCRJZrNZrVu3TvE8k8mk2NhY2yoDYDh7NvGSt4ScnIxxAACQIyVs1u3hYd9aAABIL5tCpaZNm8pkMmV0LQCSU7Fi8oGSZByvWDFr6wEAABnG29t4PHlSat7cvrUAAJBeNoVKO3fuzOAyAKSoSxcpIEC6f9afg4Pk5iZ17WqfugAAwEOzhEo06wYA5EQ29VQCkIU++MAIlPLnl0wmY8mbZARKGzdKrq72rQ8AANjMy8v41X7ypL0rAQAg/WyaqQQgi3zzjTRjhvTUU9L330vr1xs9lCpWNGYoESgBAJCj5csnVapEqAQAyJkeKlS6evWqtm3bpsuXLys6OjrJuMlk0tixYx/mUwB51/Hjkr+/VLKkscNbsWJSv372rgoAAGQwb2/phx+MVomWCckAAOQENodK48eP19SpUxPt7mY2m60NvC3vEyoBNggPN3opRUZKGzZIZcvauyIAAJBJqlaVvvtOOn9eqlLF3tUAAJB2NvVU+vLLLzVp0iQ1bdpUa9euldlsVt++ffXVV1/p1VdflYODg3r06KHt27dndL1A7mc2S6+8Ih07Jk2dKvn62rsiAACQiRLuAAcAQE5iU6g0f/58eXp6atOmTercubMkycvLSz169NDnn3+u77//XmvWrFFoaGiGFgvkCbNmSWvWSC+8IA0dau9qAABAJqta1XhkBzgAQE5jU6h0+PBhPffcc8qX79/Vc3Fxcdb327RpozZt2mjGjBkPXyGQl/z8szR8uFStmrRkibHbGwAAyNWYqQQAyKlsCpViYmJUvHhx68cuLi4KCQlJdI6Pj48OHTr0cNUBecmVK1K3blKBAtK6dVLhwvauCAAAZIGSJSU3N0IlAEDOY1Ojbg8PD129etX6cfny5fXnn38mOufKlSuJZjIBSEVMjBEoXb8urV4tVa9u74oAAEAWMZmMJXAsfwMA5DQ2zVSqW7eujhw5Yv24ZcuW+uWXX7RixQrdvXtXGzdu1Nq1a1W3bt0MKxTI1YYPl4KCpCFDjHAJAADkKd7exqTl8HB7VwIAQNrZFCq1a9dOR44c0blz5yRJo0aNkru7u/z9/eXm5qYOHTrIbDZr8uTJGVoskCutWiV9+qnUrJmx2xsAAMhz6KsEAMiJbAqV/P39FRERoUcffVSSVK5cOR04cECvv/66nnnmGb322ms6cOCAGjZsmKHFArnOkSNS//6Sh4ex7M3Jyd4VAQAAO7DsAEeoBADISTKs6dGjjz6quXPnZtTtgNwvJETq0kW6d08KDJRKl7Z3RQAAwE6YqQQAyInopA3Yg9ks+ftLp04ZS98aN7Z3RQAAwI6qVDEeadYNAMhJbFr+ZrFhwwb16NFDtWvXVuXKla3Hjx07punTp+vy5csPXSCQK02fLn37rfTii9LAgfauBgAA2Jmrq1S2LDOVAAA5i00zlcxms/z9/bVy5UpJkouLiyIjI63jRYsW1bvvviuz2ayRI0dmTKVAbrFtm/Tuu5KPj7RokbGPMAAAyPO8vaX//c+Y0MyfBwCAnMCmmUrz5s3TihUr1K9fP926dUvDhg1LNF66dGk1btxYGzduzJAigVwjOFjq0cN4OfKbb6RChexdEQAAyCa8vaXQUOn6dXtXAgBA2tgUKi1evFi1a9fWokWL5O7uLlMyL6VUqVJF586de+gCgVwjOlrq2lW6eVNatuzfjpwAAABiBzgAQM5jU6h04sQJtWjRItkwyaJkyZK6ceOGzYUBuc4770j79kmjRkmdOtm7GgAAkM2wAxwAIKexKVTKly+foqKiUj3n8uXLcnV1takoINdZtkyaP19q1UqaNMne1QAAgGzIMlOJHeAAADmFTaFSjRo1tHPnTpnN5mTHo6KitH37dtWtW/ehigNyhYMHpQEDJE9PadUqKZ9N/fEBAEAu5+Vl/JnATCUAQE5hU6jUu3dvHT9+XO+8847i4+MTjcXFxWnIkCG6cuWK/P39M6JGIOe6fVvq0kWKjzcacz/yiL0rAgAA2VS+fFKlSoRKAICcw6YpEwEBAfruu+80e/ZsBQYGqnDhwpIkPz8/7d27V1euXFHHjh3Vs2fPDC0WyFHi46XevaVz54ylbw0a2LsiAACQzVWtKv34oxQby+RmAED2Z9NMJUdHR33//fcaN26coqOjdfLkSZnNZq1bt04REREaO3asAgMDM7pWIPsLD5e++EJ67z3phRekjRulvn2lgAB7VwYAAHIAb28pJkY6f97elQAA8GA2v/6RL18+vf/++xo/frxOnjypf/75R+7u7qpWrZocHR0zskYgZwgKktq1k0JCJAcHKS5OcnQ0QqVUdkoEAACwKF/eeHzvPalNG6lrV4m9bwAA2ZVNM5USMplMqlq1qho1aqSaNWsSKCFvCg83AqXQUMlsNgIlyXi/SxdjHAAAIBVBQdK77xrvBwZKr7wilSsn7d5t37oAAEjJQ4dKACStWWPMULqvcb3i46U7d4y/DAEAAFJgeX0qIsL4OD7eeG0qNFR6/nlenwIAZE82L3+7dOmSPvnkEx08eFCXLl1STExMknNMJpPOnDnzUAUCOcLZs0Y3zWT+O5CTkzEOAACQAsvrU2Zz4uMJX5/q188upQEAkCKbQqWdO3fqueeeU1RUlPLly6dSpUopXzLbU5jv/60I5FYVKyYfKEnG8YoVs7YeAACQo/D6FAAgJ7IpVBoxYoTi4uK0fPlyvfTSS3JwYBUd8rgWLYxm3PcHqQ4Okpub0WUTAAAgBRUrSrGxyY/x+hQAILuyKQ06fPiwXnzxRfXq1YtACTCbpUGDjMeCBY1wycnJGHNzkzZuZNsWAACQqm7dJHd34/WohBwcpCJFeH0KAJA92ZQIFS1aVMWKFcvoWoCc6bPPpO+/l3r3lq5flxYvlkaOlL74QgoOlho1sneFAAAgm3N1NV6HcnMzXp+y4PUpAEB2ZtPyt3bt2mnXrl0ZXQuQ8xw+LA0bZsxJnzvX+IuPLpoAAMAGjRoZr0cFBhqvUQUFGe/z+hQAILuyaabSBx98oJCQEL355pu6e/duRtcE5AyRkdKLL0pxcdJXXxkvJQIAADwEy+tTH39sfLx1q33rAQAgNTbNVCpRooQ2bdqkJ598UsuXL5e3t7fc3d2TnGcymbRt27aHLhLIloYNk44elT74QHrySXtXAwAAcpF69SQPD+m776SpU+1dDQAAybMpVDp69KhatGih27dvS5L++OOPZM8zJVwQDuQm330nzZsn+fpKI0bYuxoAAJDLODhI7dtLCxdKp05JVarYuyIAAJKyafnbkCFD9M8//2jixIm6cOGCYmJiFB8fn+QtLi4uo+sF7O/KFenll6VixaQVKyRHR3tXBAAAcqEOHYzHDRvsWwcAACmxKVTas2ePunTpovfee0/lypWTI/+oRl4RHy/16SP984/0n/9Inp72rggAAORSLVtKBQsaE6QBAMiObAqV8ufPLy8vrwwuBcgBPvpI2rZNCgiQOne2dzUAACAXc3GRnnlG+uUX4/UsAACyG5tCJV9fX+3fvz+jawGyt99+k8aMkapX/3dLFgAAgEzUoYMxUfqHH+xdCQAASdkUKk2fPl1//fWXpk6dKrPZnNE1AdlPWJj04otG18xVq4y56AAAAJns+eclk4klcACA7Mmm3d8mT54sHx8fjRkzRosWLVKdOnXk7u6e5DyTyaTFixc/dJGA3Q0aJJ0+Lc2aJdWube9qAABAHlGypPTUU9KmTVJ0tOTsbO+KAAD4l02h0tKlS63vnzt3TufOnUv2PEIl5Apffy0tXSq1bWuESwAAAFmoY0dp925p506pTRt7VwMAwL9sCpVSCpGAXOf8eaMpd6lSRrBkMtm7IgAAkMd06CCNHGksgSNUAgBkJzaFShUqVMjoOoDsJzZW6tlTCg2VVq825p8DAABksapVpSpVjFBp7lxe4wIAZB82NeoG8oRJk4y55u+8Iz37rL2rAQAAeZTJZMxWunRJOnjQ3tUAAPAvQiUgOb/8Ik2eLNWpI334ob2rAQAAeVyHDsbj+vX2rQMAgIQIlYD73b5tLHtzdpZWrWKbFQAAYHeNGknFihlL4AAAyC4IlYCEzGajMXdwsPTpp1K1avauCAAAQPnySc8/L/3xh/FnCgAA2QGhEpDQkiVSYKDUpYvUv7+9qwEAALCyLIHbsMG+dQAAYJFtQ6V169apYcOGKlSokIoWLaoOHTroyJEjab4+IiJCo0aNkpeXl5ydneXl5aXRo0crIiIixWvWrl2rFi1aqEiRInJxcVHlypXl7++f6JxTp07p/fffV+PGjVW6dGkVKlRINWrU0KBBg3T16lVbny6ygxMnpIEDJU9PadEitlYBAADZSps2Uv78LIEDAGQf+exdQHIWL16s/v37y8fHR9OmTVNUVJTmzJmjRo0aKSgoSLVq1Ur1+ri4OD333HPatWuXevfurWbNmunQoUOaMWOG9u/fry1btsjBIXGe9uabb2r+/Plq3769Jk2aJBcXFwUHB2v37t1Japs7d67at2+vbt26ycXFRXv37tW8efO0cuVK7d69W9VYMvV/7d15fI1n/v/x90mEbBJBS0yQKlWG0hY1UoT224UIbdGNWkabYiyVaUd/qhhdqFZb66ja1Yy1TUtVW0VHqraOLjO6qCG2KkUiQiy5fn/ck8hxksghJ/c5J6/n43EeJ677uq/zObklufLJdX1u35OdLT3yiHT6tLRwoVW0AAAAwItUrCi1by+tXStlZEgREXZHBAAo67wuqXT8+HENGzZMMTExSk1NVcT/flp2795dDRs21JAhQ/TZZ58VOca8efO0YcMGDRo0SJMmTcprj42N1Z///GctXLhQjz32WF77ggULNG3aNL311lt6/PHHixy7a9euGj58uCpVqpTX9sQTT6hly5ZKSkrS888/ryVLllzBO4etnntO+uoracQIqW1bu6MBAAAoUGKi9NFH0scfS1272h0NAKCs87rtbykpKcrIyFC/fv3yEkqSVKtWLXXt2lXr1q3TvstUJ5w/f74kKTk52al9wIABCgkJyTuea+zYsWrSpEleQunkyZPKyckpcOxmzZo5JZRyPfTQQ5Kkb775pug3CO/z8cfSq69KLVtKo0bZHQ0AAEChOnWyntkCBwDwBl6XVNq8ebMkqVWrVi7Hctu2bt1a6PnGGG3dulU1atRQ7dq1nY6FhISoadOmTuf/+OOP+umnn3T77bdr3LhxqlatmiIiIhQWFqb7779fe/bsKVbcBw4ckCRVq1atyH6HDh3SV1995fLYuXNnsV4HJezXX6XHHrPWk7/zjhQUZHdEAAAAhYqJkW65RVq1Sjp/3u5oAABlnddtf9u/f78kKSYmxuVYbltun4IcO3ZMWVlZatSoUYHHY2JitGnTJmVkZCgiIiIvmbNkyRKdOXNGI0aM0A033KB169ZpypQp2rx5s3bs2KFrrrmmyLhHjhwpSerTp0+R/WbMmKExY8YU2QcelpkpLVki/fyztHKldPiwVUepTh27IwMAALisxERp9GgpNZVd+wAAe3ldUin37mwVKlRwORYcHOzUx93zLx0jIiJCJ0+elCQdOXJEa9as0V133SVJuu+++xQZGakXXnhBr7/+ul566aVCX/Oll17S8uXL1aVLF/Xq1avI95eUlKTE3PvB5rNz50716NGjyHNRAlJTpYQEKT1dCgiQLlywViddd53dkQEAABRLblLp/fdJKgEA7OV1SaXQ0FBJUnZ2tsuxM2fOOPVx9/yCxggJCZEk1ahRIy+hlKtv37564YUXiiwM/uabb2rEiBGKj4/XO++8I8dlbkMfHR2t6OjoIvvAQzIzrYRSRoZkjJVQkqznjh2lffuk8HB7YwQAALiMpk2tbXApKVZZyMtMPwEA8Bivq6lU1Ba3orbG5apcubJCQ0ML3SK3f/9+RURE5BUBr1mzpiQVmOjJbTt27FiBY02cOFFDhw7VHXfcoVWrVhWZ7IIXWLLEWqF0aRH2nBzpxAlp6VJbwgIAAHCHw2GtVvr5Z+n77+2OBgBQlnldUqlFixaSpE2bNrkcy21r3rx5oec7HA41a9ZMBw8e1N69e52OnT59Wjt27HA6v3HjxoUmoXLvMldQ8e3x48crOTlZ99xzj1auXElCyRfs3i2VK2RxXlCQdRwAAMAHdO5sPXMXOACAnbwuqdSlSxdVrFhRM2fOVEZGRl57Wlqali5dqvj4+LzVRVlZWfr+++916NAhpzF69uwpSXrttdec2qdPn67Tp0/nHZes7W/du3fX4cOHtWzZMqf+U6dOlSQlJCQ4tb/00ksaPny4EhIS9N577+XVaYKXq1NHOneu4GPnzlGoGwAA+Iy2ba2b15JUAgDYyetqKkVFRWnChAl68sknFRcXp6SkJGVnZ2vy5MlyOBx644038vpu2bJF7dq1U69evTR37ty89j59+mj+/PmaPHmy0tPT1aZNG3399deaNm2a4uPjXQpiv/TSS/r000/16KOP6osvvtANN9yg9evXa/HixWratKkGDRqU13fq1KkaMWKEqlWrpvvvv19LL9kyFR4eri5dunjiU4OrlZBgFee+dPtbQIAUESF162ZPXAAAAG6qUEG65x5p2TLp11+la6+1OyIAQFnkdSuVJOsOaUuXLlVoaKieeeYZjR07Vo0bN1ZqaqqaNGly2fMDAwP14Ycf6umnn9b69evVv39/paSkKDk5WStXrlRgYKBT/+joaH355Zfq0aOHFi1apMGDB+vLL7/UsGHDtGHDBqetbVu3bpUkHT58WH379lXPnj2dHkOHDi3RzwVK0MsvWwml4GCrGEFQkNUeESGtWkWRbgBAmbBixQq1bNlSYWFhioqKUmJior777rtinfvBBx+oX79++v3vf6+KFSvqmmuu0R/+8AfNnj1b58+f93DkuFRionXvkZUr7Y4EAFBWOYwxxu4gIH311Ve69dZbtX37dt1yyy12h+N/Pv9cio+XWraUVq+WVqywaijVqWOtUCKhBADIx19/Ls+aNUv9+vVTo0aNlJSUpDNnzmjy5Mk6fvy4UlNT1bhx4yLPr169usLCwtSlSxc1aNBA6enp+sc//qFt27apQ4cOWrly5WXvhHspf/1cl4Zjx6wVSgkJ0nvv2R0NAMBfuPOz2eu2vwEl7tQpqU8fa4XS3LlSZKT1bwAAypDjx49r2LBhiomJUWpqat6dcLt3766GDRtqyJAh+uyzz4oc45133lH79u2dEkdDhw5VfHy8PvzwQ61evVodOnTw6PvARZUrS7ffLn38sXT6tBQSYndEAICyxiu3vwEl6i9/sVYlvfyydMMNdkcDAIAtUlJSlJGRoX79+uUllCSpVq1a6tq1q9atW5d359vC3HHHHS4rkQIDA9Xtf3UJv/nmm5IPHEVKTLQSSmvX2h0JAKAsIqkE//bZZ9LUqVLr1lK+gusAAJQ1mzdvliS1atXK5VhuW27tSHcdOHBAklStWrUrjA5XqlMn65m7wAEA7MD2N/ivkyelvn2l0FBpzhzrLm8AAJRR+/fvlyTFxMS4HMtty+3j7rgzZsxQVFSUOnfuXGi/Q4cO6dChQy7tO3fudPs1cVG9elKDBtIHH1j3I2G6AwAoTSSV4L+eflrau1eaMkW6/nq7owEAwFZZWVmSpAoVKrgcCw4OdupTXJmZmercubMyMjK0fPlyVa5cudC+M2bM0JgxY9waH8XTubM0bpy0bZvUooXd0QAAyhKSSvBPH38szZghtWsn9e9vdzQAANguNDRUkpSdne1y7MyZM059iiMzM1MdOnTQv/71L02ZMkX33Xdfkf2TkpKUmJjo0r5z50716NGj2K8LV4mJVlIpJYWkEgCgdJFUgv9JT5f69ZPCw6XZs1kHDgCAnLe4NWjQwOlYUVvjCnLy5Ende++9+uKLLzR9+nQlJSVd9pzo6GhFR0e7GTWKo0UL6dprrbpKL75odzQAgLKE37bhf5KTpX37pFdflWJj7Y4GAACv0OJ/S1g2bdrkciy3rXnz5pcdJz09XXfddZc2bdqkt99+u1gJJXhWYKCUkCB99511w1sAAEoLSSX4l9WrpVmzpDvvlJ54wu5oAADwGl26dFHFihU1c+ZMZWRk5LWnpaVp6dKlio+PV82aNSVZtZW+//57l8LauQmlrVu3au7cuerbt2+pvgcULndn4Qcf2BsHAKBsYfsb/Mfx49a2t4gIK7HkcNgdEQAAXiMqKkoTJkzQk08+qbi4OCUlJSk7O1uTJ0+Ww+HQG2+8kdd3y5YtateunXr16qW5c+fmtd95553atm2bOnfuLIfDoYULFzq9xk033aSbbrqplN4R8rvzTik42NoCN2SI3dEAAMoKkkrwH089JR08aCWUatWyOxoAALxOUlKSqlSpogkTJuiZZ55R+fLl1bp1a7344ovFSgZt27ZNkpSSkqKUlBSX46NGjSKpZJOwMCuxtHq19Xe2qCi7IwIAlAUkleAfPvhAmjdPuvdeqU8fu6MBAMBrde3aVV27di2yT3x8vIwxLu0FtcF7JCZKK1dKH30kPfyw3dEAAMoCairB9x07ZtVPioyUZs5k2xsAACiTOnWynt9/3944AABlByuV4PsGDZJ++cVaqfS739kdDQAAgC2qV5duu0368EPp7FmpfHm7IwIA+DtWKsG3rVghLVpk/WmuZ0+7owEAALBVYqKUkSF9/rndkQAAygKSSvBdR45ITz5pVaKcMYNtbwAAoMxLTLSe2QIHACgNJJXgu/70JyuxNGWKFB1tdzQAAAC2+/3vpeuus5JK1FUHAHgaSSX4piVLrMd993F7EwAAgP9xOKzVSnv3St9+a3c0AAB/R1IJvufwYWnAAKlKFWn6dLa9AQAA5MMWOABAaSGpBN9ijNS/v/Tbb9K0aVK1anZHBAAA4FVat5YiI0kqAQA8j6QSfMs//iG9+67Uvbv1AAAAgJOgIKlDB2nrVungQbujAQD4M5JK8B2HDkkDB0rXXitNnWp3NAAAAF6rc2fr+YMP7I0DAODfSCrBNxgjJSVJx49Lf/ubVLWq3REBAAB4rXvukcqVYwscAMCzSCrBNyxcaP2p7ZFHrDu+AQAAoFCRkVJ8vLR2rZSZaXc0AAB/RVIJ3u/AAWnwYKl6dWnSJLujAQAA8AmJiVJ2tvTJJ3ZHAgDwVySV4N2MkR5/XDpxQpoxQ6pSxe6IAAAAfEKnTtYzW+AAAJ5Szu4AABeZmdKSJdLu3dYtS1avlh57zPpzGwAAAIolNla66SZp5UrpwgUpMNDuiAAA/oakErxLaqqUkCClp1szn/PnJYdDevhhuyMDAADwOYmJ0gsvSF9+KcXF2R0NAMDfsP0N3iMz00ooZWRY297On7947OGHqTIJAADgptyF3myBAwB4AkkleI8lS6wVSjk5zu3GWDWVli61JSwAAABfdeutUo0aUkqK3ZEAAPwRSSV4j927pXKF7MgMCrKOAwAAoNgCAqyC3T/8YD0AAChJJJXgPerUcd7ylt+5c9ZxAAAAuCV3C9wHH9gbBwDA/5BUgvfo3l0KDnZtDwiQKlWSunUr9ZAAAAB8Xfv2UmgodZUAACWPpBK8x7Fj1p3ech9BQVZ7RIS0apUUHm5vfAAAAD4oOFi6+27rJrtHj9odDQDAnxRSwAYoZcZI/fpJWVnSu+9Kx49bNZTq1LFWKJFQAgAAuGKJidYU68MPpcceszsaAIC/IKkE7/D229Inn0h//KPUpYvd0QAAAPiVjh2theDvv09SCQBQctj+BvulpUnJyVJMjPTaa3ZHAwAA4HeuuUa67TarWPfw4dKcOVJmpt1RAQB8HUkl2Ct329vJk9LMmVJkpN0RAQAA+J3UVGnHDunsWenVV63F4TVrSl98YXdkAABfRlIJ9srd9ta3r3TPPXZHAwAA4HcyM6WEBCuhJEkXLlh/18vIsLbFsWIJAHClSCrBPvm3vU2caHc0AAAAfmnJEik9XcrJcW7PyZFOnJCWLrUlLACAH6BQN+yRf9vb4sVsewMAAPCQ3bulcuWkc+dcjwUFWccBALgSrFSCPWbNurjt7d577Y4GAADAb9WpI50/X/Cxc+es4wAAXAmSSih9aWnSsGFsewMAACgF3btbi8IDCpj5h4dL3bqVfkwAAP9AUgmlyxjp8cetbW9vvcW2NwAAAA8LD5dWrZIiIiSHw9rylis4WDp1yr7YAAC+jZpKKF2zZkkff8y2NwAAgFLUqpW0b59VlHv3bmvL24UL1t/6unaV1q6Vype3O0oAgK8hqYTSk7vt7Xe/k157ze5oAAAAypTwcKlPH+e2nTutagRDh0rTptkSFgDAh7H9DaUj/7a3mTOlSpXsjggAAKDMGz9euuMOafp0a4oGAIA7SCqhdORue+vTh21vAAAAXqJcOWnxYik2Vho4UPriC7sjAgD4EpJK8Lz829642xsAAIBXqVJFSkmxCng/8IB04IDdEQEAfAVJJXiWMdITT7DtDQAAwIvddJM0d670yy/S/fdLZ87YHREAwBeQVIJnzZ4trVnDtjcAAAAv162b9Oyz0pYt1lY4Y+yOCADg7UgqwXP27WPbGwAAgA8ZO9b6O+Ds2dwNDgBweSSV4Bm5d3vLyGDbGwAAgI8IDJQWLZLq1ZOGDpU2bLA7IgCANyOpBM9g2xsAAIBPqlRJeu89KTjY2hKXlmZ3RAAAb0VSCSWPbW8AAAA+rWFDacEC6cgR6b77pKwsuyMCAHgjkkooWfm3vb31FtveAAAAfFSXLtKoUdJXX1k386VwNwDgUiSVULJyt7317i116GB3NAAAALgKzz8vde4svfOO9PrrdkcDAPA2JJVQcvJve2PWAQAA4PMCAqT586UGDaSnn5Y+/dTuiAAA3oSkEkoG294AAAD8UkSEVbi7YkXpwQel3bvtjggA4C1IKqFkzJnDtjcAAAA/dcMN0qJF0vHjVq2lU6fsjggA4A1IKuHq7dsnPfWUVKMG294AAAD8VIcO0osvSt9+K/XpQ+FuAIBUzu4A4KMyM6UlS6Sff5bef9/a9vb3v7PtDQAAwI8NH27dDW7pUunmm6Vnn7U7IgCAnUgqwX2pqVJCgpSeblVvvHBBKl+ehBIAAICfczisqgc//CCNGCE1aULlAwAoy9j+BvdkZloJpYwMa83zhQtW+/nzUseO1nEAAAD4rfBwq3B3VJT0yCPSjz/aHREAwC4kleCeJUusFUo5Oc7tOTnSiRPWWmgAAAD4tTp1pMWLpZMnrcLdGRl2RwQAsAPb3+Ce3bulwEBrZdKlgoK4xywAAEAZceed0oQJUnKytWKpSxdpzx7p+uulbt2sFU0AAP9GUgnuqVy54ISSJJ07Z/3ZCgAAAGXCU09JH30krVplPYKCrKnisGHWv1u1sjtCAIAnsf0NxbdvnzR1qvWxw+F8LCDAKtTdrVuphwUAAAB7nDolbdly8d/nzlllNzMyKLcJAGUBSSUUz3//K7VpY21vS06WIiOtxFJQkHU8IsL6cxTrnAEAAMqMJUsKrqdEuU0AKBvY/obL+/FH6Y47pAMHpFmzpL59pdGjrVnC7t3Wljc2zgMAAJQ5u3dL5cpZK5QuFRAgffdd6ccEACg9JJVQtP/8x0ooHTkiLVxoVWGUrARSnz72xgYAAABb1alTeLnNnBxp8mTp9Gmr9lK9eqUbGwDA89j+hsJ9/bXUtq109Kh1z9jchBIAAAAgqXt3qypCwCW/VQQESKGhUqNG0vTpUv360v33S198YU+cAADPIKmEgm3dKrVrZ22SX7FCeuABuyMCAACAlwkPt8pqRkS4ltv85BNp+3ZpwwYpIUF6910pLs66I9y770oXLtgbOwDg6rH9Da5SU6UOHazN8R98IN11l90RAQAAwEu1amXdJLiwcptt2liP77+XJk6U5s+3Vi3VrSsNGyb16mWtagIA+B5WKsHZ+vXS3XdbfzpavZqEEgAAAC4rt9zm2LHWc0H3b7nxRumtt6S9e6WRI6Vjx6QBA6RataRRo6Rffy39uAEAV4ekEi5as0a6914pMFD6+GOrnhIAAABQgqpVk/76VyktTZo6VapUyfp3rVpSUpL0ww92RwgAKC6SSrB88IGUmCiFhEhr11rrmAEAAAAPCQuzVir98IO0fLl0883WSqYbb5Q6d5b++U/JGKtvZqY0e7b03HPSnDnWvwEA9qOmEqRly6SHH5aioqyKik2a2B0RAAAAyojAQKvG0v33W6U9X31VSkmR3n9fatHCKvI9caKUni6VKyedP2/VYlq1ir+DAoDdvHal0ooVK9SyZUuFhYUpKipKiYmJ+u6774p9flZWloYPH67Y2FhVqFBBsbGxevbZZ5WVlVXoOcuWLVO7du1UqVIlhYSEqG7duurdu7dH4vMa77wjPfigVLWqVU+JhBIAAABsEhdn3Rnu+++lJ5+Uvv5aev556cQJa9XSuXPWc0aG1LEjK5YAwG5emVSaNWuWHnjgAZ06dUrjx4/XiBEj9PXXX6tVq1b69ttvL3v+hQsX1KFDB40fP15t2rTR1KlT1alTJ02YMEGdOnVSTk6OyzkDBw5U9+7dFRERobFjx2ry5Ml69NFHdeDAgRKPz2vMni317CnVqCF9/rnUsKHdEQEAAAC64QZp+nRp/PiCj+fkWImmAQOkjRutjwEApc/rtr8dP35cw4YNU0xMjFJTUxURESFJ6t69uxo2bKghQ4bos88+K3KMefPmacOGDRo0aJAmTZqU1x4bG6s///nPWrhwoR577LG89gULFmjatGl666239Pjjj3s8Pq8wbZo0cKB03XVWDaXrrrM7IgAAAMDJkSNSUJC1QqkgCxZYD0mqWVNq3Pjio1Ejqz5ThQpFv0ZmprRkibR7t3T99VK3bgXfvQ4A4MrrkkopKSnKyMjQsGHD8hI2klSrVi117dpV8+bN0759+1SzZs1Cx5g/f74kKTk52al9wIABGjlypObPn++UVBo7dqyaNGmSl1A6efKkwsLCFBDgupCrJOKz3cSJUnKyVK+elVDy5lgBAABQZtWpY9VQKszQoVJ0tPTtt9bj00+lDz+8eLxcOWvVU/5kU+PGUu3aUkCAVcMpIcFz9ZpIWAHwd163/W3z5s2SpFYFfBfPbdu6dWuh5xtjtHXrVtWoUUO1a9d2OhYSEqKmTZs6nf/jjz/qp59+0u23365x48apWrVqioiIUFhYmO6//37t2bOnROOz3YsvWgmlhg2lDRtIKAEAUMbYUbcSuFLdu0uRkVYCKL+AAKlSJWnsWOmZZ6zVSjt2SKdOSf/5j7R4sXWnuI4dpTNnLv67c2crURUZaRUBb9/eSih5ol5Taqo11e7XT3rlFemPf7T+/cUXVzduftwVD4DdvG6l0v79+yVJMTExLsdy23L7FOTYsWPKyspSo0aNCjweExOjTZs2KSMjQxEREdq5c6ckacmSJTpz5oxGjBihG264QevWrdOUKVO0efNm7dixQ9dcc02JxHfo0CEdOnTIpT03jhKV/08jdepY92t95RWrGPcnn0j/e08AAKBsmDVrlvr166dGjRpp/PjxOnPmjCZPnqxWrVopNTVVjRs3LvL83LqVGzZsUM+ePdWmTRt9/fXXmjBhgrZs2aJPPvmkwJXewJUKD7dWDXXseHE10blzUkSE1X7pqp9y5aQGDaxH9+4X2zMzpX//++KKpm+/lbZulc6edX3N3HpNN95oLeyvUuXyj6go6y52+V8vIcFKUOUmrKSLCat9+65+xZIvr7Ly1bE9PT5jl/74jF0CjJdp3769kWR+/vlnl2Nr1641kszLL79c6PlpaWlGkmndunWBx3v27GkkmUOHDhljjFmwYIGRZCSZNWvWOPV97rnnjCTz7LPPllh8o0aNynu9gh7bt28v9Fy3bNxoTKVKxjgcxgQFGWP9PDPmxhuN+e23knkNAAD81Pbt20v257IXOHbsmImIiDAxMTEmPT09r33v3r0mLCzMtGvX7rJjzJo1y0gygwYNcmp/9dVXjSQzb948t+Pyx881St7Jk8bMnm3Mc89ZzydPXv2Y/+//GVOu3MVpcv6Hw2FMVJT1cDgK7lNQ/7p1jbntNmMaNy66/1NPGbNunTFffmnM118b8+OPxqSlGXPkiDGZmcacP3/5z0elSsYEBDiPGxBgtV/t5+fSXyUcDuvfqalXN64vj+3p8Rm79Mdn7MK587PZ61YqhYaGSpKys7Ndjp05c8apj7vnFzRGSEiIJKlGjRq66667nPr27dtXL7zwglPh7auNLykpSYmJiS7tO3fuVI8ePQo9zy2F/WlEkg4dksqXL5nXAQAAPsOOupVASQkPl/r0Kdkxr79eunCh4GPGSK+9Zr3mhQvS8ePSb78V/Th2zHrev1/65ZeiX/v1161HUYKCpJAQ6xEcfPHjkBDrtQq6413uKquuXaWmTa0VTEFBzs+X+/jcOal3bykry3WV1d13S6tXSxUrWlsQAwOt5+J8HBhojdmxo3TyZMmv4PL06jBPjs/Y/hW7r459pbwuqZR/C1mDBg2cjhW19SxX5cqVFRoaWugWtP379ysiIiJvMpU7cYqOjnbpm9t27NixEosvOjq6wNcqUUuWXNwcfqn0dGnp0pL/qQwAALza5epCzps3T1u3bi00qWTcrFt5qVItAQAUQ/fuVqnRjAwrGZMrIMDaXtetm/XvwECpalXrUVyzZ1u1lAqajktW0ubWW6XTp62aT6dPu35c0LH0dCthle/XkwKtWWM9SlJOjvULbevWJTtu7tgnTljJKsm6Bg6H9Sjux9nZVk2twsauWdP6ZTv3HOnix4W15f93enrRibwbb5QqV3Y+r7jPR48WPXaTJtK11148J//5l/v4l1+KHrtZM6vY/aXyj1NY26FDRY99221SjRqXH7ewYwcOFD3+H/4g/e53xRv70uP79hU9dqtWRZcfLuq1Ljf27bdfeWnjtLSix7bjV32vSyq1aNFCf/vb37Rp0yb93//9n9OxTZs2SZKaN29e6PkOh0PNmjXT559/rr179zpNek6fPq0dO3Y4TaYaN25caBJq3759kqRq1aqVWHylYvfuixvOLxUUZB0HAABlSmnXrbzUjBkzNGbMmCsJHfAId+s1ueNyCavJk69u/MslrV55Rbr/fqvO0rlz1nP+j4tqW7zYWo1U0CqugACpTRvpjjus93XhgvV86ceFHduyRfrmm4Ljdjik+vWl3//eOp6Tc3FjX3E+3rXr4uqqgsYOC7MSEPk3DEqumxMLajOm6LsQShcTf7nnF/fZmIKTBPkdOWIlzfK/t0vfZ2HHTp4seuy0NGuFXWFjFfV6p08XPfbPP0sHDxZvvILaC9l8lOeHH6Tc+2oVNl5hr1dQPbX8du60/k9diYJ+Dc/vu++s2AtT1Hsp6v+hbb/ql9yuu5Jx7NgxU7FixUL3+8fHx+e1nTp1yuzcudMcPHjQaYyZM2cWuN//tddeM5LM3Llzndp79+5tJJmlS5c6tQ8ZMsRIMuPGjbui+NxRovUEZs0qevP37NlX/xoAAPgxf6zzU9p1Ky918OBBs337dpfHwoUL/e5zDd/iiXpNxlj1TS4tcVpSdU88WVPJk79K+OrYvhy7r47ty7H76tj5uTMP8rqkkjHG/O1vfzOSTKNGjczkyZPNq6++amrXrm3Cw8PNjh078vqtW7fOSDK9evVyOv/8+fOmdevWRpJ57LHHzNtvv20GDRpkAgMDTXx8vDl/SeW7gwcPmpiYGFO+fHnz1FNPmenTp5sHH3zQSDJNmzY1p06duqL43FGik1dPV+4DAMDP+WNSKSEhwUgy//nPf1yOrVq1ykgyb775ZqHnHz161EgyLVq0KPB4t27djCSnP7oVhz9+roFcnkpYGeO5pJUnf5Xw1bF9OXZfHduXY/fVsfNz52ezV97zNSkpSUuXLlVoaKieeeYZjR07Vo0bN1ZqaqqaNGly2fMDAwP14Ycf6umnn9b69evVv39/paSkKDk5WStXrlRg/vt9yqpz9OWXX6pHjx5atGiRBg8erC+//FLDhg3Thg0bXApvX218Hpe7ljciwlrrGRRktZfEWl4AAOCTitri5om6lQAuFhgfO9Z6LslpeKtWVu2WWbOkv/zF2hK3b5/VfjU8+auEr47ty7H76ti+HLuvjn2lHMZcbvchSsNXX32lW2+9Vdu3b9ctt9xSMoNmZlqVunbvlurUsaoNklACAOCyPPJz2WZz5sxR3759NWbMGD3//PNOx/r06aO5c+cqLS2tyLu/tW3bVp9//rn27NnjUreySpUqatWqlT799FO34vLHzzXgDzz5q4Svju3p8Rm79Mdn7IK587OZpJKXYEIFAID38Mefy8ePH1ft2rUVGRmpf//733kritLS0tSwYUM1b95c69atkyRlZWUpLS1NkZGRTnetffvtt/X4449r0KBBmjRpUl77xIkTlZycrLlz56pXr15uxeWPn2sAAHyZOz+bve7ubwAAACh5UVFRmjBhgp588knFxcUpKSlJ2dnZmjx5shwOh9544428vlu2bFG7du3Uq1cvzZ07N6+9T58+mj9/viZPnqz09HS1adNGX3/9taZNm6b4+Hj16NGj9N8YAACwjVfWVAIAAEDJK+26lQAAwL+xUgkAAKAM6dq1q7p27Vpkn/j4eBVWISE8PFyvvPKKXnnlFU+EBwAAfAgrlQAAAAAAAOA2kkoAAAAAAABwG0klAAAAAAAAuI2kEgAAAAAAANxGUgkAAAAAAABuI6kEAAAAAAAAt5FUAgAAAAAAgNtIKgEAAAAAAMBtJJUAAAAAAADgNpJKAAAAAAAAcBtJJQAAAAAAALitnN0BwHL69GlJ0s6dO22OBAAA5P48zv35DM9hDgQAgHdxZx5EUslL7NmzR5LUo0cPewMBAAB59uzZo7i4OLvD8GvMgQAA8E7FmQc5jDGmlOJBEY4ePao1a9YoNjZWISEhdoeDq7Bz50716NFDCxcuVIMGDewOB1eJ6+l/uKb+xVPX8/Tp09qzZ4/uvvtuVa1atcTGhSvmQP6D76/+h2vqX7ie/sWT19OdeRArlbxE1apV9eijj9odBkpQgwYNdMstt9gdBkoI19P/cE39iyeuJyuUSgdzIP/D91f/wzX1L1xP/+Kp61nceRCFugEAAAAAAOA2kkoAAAAAAABwG0klAAAAAAAAuI2kEgAAAAAAANxGUgkoYdHR0Ro1apSio6PtDgUlgOvpf7im/oXrCXgPvh79D9fUv3A9/Yu3XE+HMcbYGgEAAAAAAAB8DiuVAAAAAAAA4DaSSgAAAAAAAHAbSSUAAAAAAAC4jaQSAAAAAAAA3EZSCSiEw+Eo9PHdd9859T1//rzGjx+v+vXrq0KFCqpRo4b69++v3377rcCxf/vtN/Xv3181atRQhQoVVL9+fb3yyis6f/58abw1vzZu3Dg9+OCDqlevngICAlSuXLki+3v62n3zzTfq1KmToqKiFBYWppYtW+q999672rdZZrhzPdevX1/o12zVqlULPIfrWbp++uknjR49WnFxcapevbrCwsLUsGFDDR48WIcOHXLpz9cnYA/mQL6JOZD/YR7kP/x6DmQAFEiSad26tVmwYIHL48SJE059e/ToYSSZhIQE89Zbb5lnn33WhISEmEaNGpnMzEynvhkZGaZhw4YmMDDQDBo0yMycOdP07NnTSDK9e/cuzbfolySZSpUqmXbt2pnq1aubwMDAIvt78trt2LHDhIeHmypVqpixY8ea6dOnm7i4OCPJzJkzpyTftt9y53quW7fOSDJPPPGEy9fs0qVLXfpzPUvfX/7yFxMWFmYeeugh88Ybb5gZM2aYPn36mMDAQBMVFWV27tzp1J+vT8AezIF8E3Mg/8M8yH/48xyIpBJQCEmmV69el+23du1aI8kkJiY6tS9btsxIMmPGjHFqHzlypJFkXnvtNaf2P/3pT0aS2bBhw1XHXpbt2rUr7+O2bdsW+cPX09eudevWxuFwmK1bt+a1nT171tx8882mUqVKJj093e33V9a4cz1zJ1PF/WHI9Sx9W7duNcePH3dpnzFjhpFkunXrltfG1ydgH+ZAvok5kP9hHuQ//HkORFIJKETuhOrs2bMmIyOj0H69evUyksz69etdjsXGxprrr7/eqa127domNDTUZGVlObX/97//NZLMH//4x5J5A7jsD19PXrvctvj4eJex58yZYySZBQsWuPuWyjR3JlOnTp1yuU6X4np6j/T0dCPJ1K9fP6+Nr0/APsyBfB9zIP/DPMg/+cMciJpKQBGWLVumkJAQRUREqFKlSurRo4f27Nnj1Gfz5s0KCAhQy5YtXc7/wx/+oJ9//lnHjh2TJB0+fFh79+5V06ZNFRIS4tQ3NjZW0dHR2rJli8feD5x58tpt3rxZktSqVSuXsXPbuNaeMWTIEIWFhSk0NFQ1a9bUs88+q6ysLKc+XE/vcuDAAUlStWrV8tr4+gTsxRzIv/E91n8xD/It/jAHKrp6G1CGNWvWTA888IBuuOEGZWdna+PGjZo5c6ZWr16t1NRU3XjjjZKk/fv3q2rVqqpQoYLLGDExMXl9KleurP379zu1F9R/165dHnpHuJQnr11R/fOPjZITFBSkjh07qkOHDqpZs6aOHDmid999V+PGjdOnn36qDRs2KDQ0VFLR1ye3netZekaOHClJ6tOnT14bX5+AfZgD+T++x/of5kG+yR/mQCSVgEJs3brV6d8PP/ywEhIS1KFDBw0dOlQfffSRJCkrK0tRUVEFjhEcHJzXJ/9zQd8gcvtf+pcEeI4nr11R/S8dGyUjLi5OK1eudGrr27evhg8frvHjx2vSpEkaPny4JK6nN3nppZe0fPlydenSRb169cpr5+sTsA9zIP/H91j/wzzI9/jLHIjtb4Ab7r33Xt12221au3atzpw5I0kKDQ1VdnZ2gf3z98n/XFT/3D7wPE9eu6L6Xzo2PGvkyJEKCAhwmmhxPb3Dm2++qREjRig+Pl7vvPOOHA5H3jG+PgHvwhzIv/A9tuxgHuSd/GkORFIJcNN1112n8+fP5+1jjYmJ0dGjRwv8wrx0eeHllhTu37+/0KWLKHmevHZF9b/cMlWUrLCwMF177bX69ddf89q4nvabOHGihg4dqjvuuEOrVq1ymcDw9Ql4H+ZA/oPvsWUH8yDv429zIJJKgJt+/PFHBQUFqUqVKpKkFi1aKCcnJ6/oWX6bNm3S9ddfr8qVK0uyCrDVqlVLO3bs0OnTp5367t27V4cOHVKLFi08/yYgybPXLvfjTZs2FTh2/j7wrIyMDB0+fFjVq1fPa+N62mv8+PFKTk7WPffco5UrVxb4FzG+PgHvwxzIf/A9tuxgHuRd/HIO5Na94oAy4ujRowW2L1q0yEgynTp1ymv75JNPjCSTmJjo1Hf58uVGkhk9erRT+4gRI4wk89prrzm1Dxo0qNBbR+LKXO7Wq56+dnFxccbhcJht27bltZ07d87ccsstJjIy0pw4ceJK31qZdLnrWdDXbU5OjklKSirwunE97fHiiy8aSSYhIcGcOXOm0H58fQL2YA7kH5gD+R/mQb7PX+dADmOMcS8NBfi/p556SqmpqWrfvr1q1aqls2fPKjU1VcuXL1f16tW1ceNG1alTJ6//I488or///e9KSEhQ586d9d///levv/66rrvuOm3evFnh4eF5fTMyMtSiRQvt2rVLAwYMUJMmTbRhwwYtWLBAPXv21Pz58+14y35jwYIF2rt3ryRp1qxZSktL05gxY/KOP/fcc079PXntvvrqK7Vp00bBwcF66qmnVLVqVS1YsECpqamaNWuW+vbt68HPhH9w53o2b95c1apVU7NmzRQTE6MjR44oJSVFmzdvVps2bfTxxx87FSXkepa+qVOn6k9/+pOqVauml19+WUFBQU7Hw8PD1aVLl7x/8/UJlD7mQL6LOZD/YR7kP/x6DuRWCgooI1JSUsw999xjYmJiTHBwsKlQoYKpX7++GTZsmDl8+LBL/7Nnz5qXXnrJ1KtXz5QvX95Ur17dPPHEE+bIkSMFjv/rr7+aJ554wlSvXt2UL1/e1KtXz7z88svm3Llznn5rfq9t27ZGUqGPS3n62u3YscN07NjRREZGmpCQENOiRQuzfPnyEn3P/syd6zlu3DgTFxdnrr32WhMUFGTCw8NN8+bNzeuvv27Onj1b4Phcz9LVq1evIq9n7dq1nfrz9QmUPuZAvos5kP9hHuQ//HkOxEolAAAAAAAAuI1C3QAAAAAAAHAbSSUAAAAAAAC4jaQSAAAAAAAA3EZSCQAAAAAAAG4jqQQAAAAAAAC3kVQCAAAAAACA20gqAQAAAAAAwG0klQAAAAAAAOA2kkoAyrz4+Hg5HI6rHmf06NFyOBxav3791QcFAABQCpgHAbgaJJUAAAAAAADgNpJKAAAAAAAAcBtJJQAAAAAAALiNpBIAvzR37lw98MADqlOnjkJCQhQREaG4uDgtXLiwWOevX79eDodDo0eP1qZNm3TnnXcqMjJSFStW1N13361t27YVef6yZcvUokULhYaGqnLlynrooYd04MABl37bt2/XkCFD1KRJE1WuXFnBwcGqV6+ekpOTdfz4cZf+Z8+e1aRJk3TLLbcoKipKoaGhio2NVefOnfXpp58W75MDAAD8GvMgAKWFpBIAv9S/f3/t3btXbdq00dChQ/XQQw9p79696tmzp0aOHFnscTZv3qz4+HhVqFBBAwcO1L333qu1a9eqdevW+uc//1ngOdOmTVOPHj0UGxurgQMHqlGjRlq8eLHuvPNOZWdnO/WdOXOm/vGPf6h+/frq06eP+vfvr+joaE2cOFFxcXE6efKkU//evXtryJAhOnfunB577DENHjxYbdq00bfffquPPvrI/U8UAADwO8yDAJQaAwB+aNeuXS5t2dnZpn379qZcuXJm//79ee1t27Y1l347XLdunZFkJJnJkyc7HXvvvfeMJFO3bl1z4cKFvPZRo0YZSaZixYrmm2++cTrn4YcfNpLM4sWLndr37Nljzp8/7xLr22+/bSSZcePG5bWdOHHCOBwOc+uttxZ4ztGjRwv6VAAAgDKGeRCA0sJKJQB+6frrr3dpK1++vAYOHKjz589r7dq1xRqnbt26GjBggFNb586d1bZtW+3atavAv9INHjxYjRs3dmp7/PHHJUlbtmxxaq9du7YCAwNdxujbt68iIiK0Zs2avDaHwyFjjCpUqKCAANdv31WqVCnWewIAAP6NeRCA0kJSCYBfSktL08CBA3XjjTcqNDRUDodDDodDDzzwgCQVuK+/IK1bty5w4hIfHy9J+te//uVyrFmzZi5tNWvWlCSX+gDnzp3TlClTdPvtt6ty5coKDAyUw+FQQECAMjIynOKMiIhQp06d9MUXX6hp06b661//qnXr1ikrK6tY7wUAAJQNzIMAlJZydgcAACVt9+7datGihY4fP67WrVvrrrvuUmRkpAIDA7Vnzx7NmzfPZU9/YapVq1Zge/Xq1SVJ6enpLscqVark0launPXt9sKFC07tDz74oN59913VqVNHnTt3VvXq1VWhQgVJ0htvvOES5+LFizV+/HgtWrRIo0aNkiQFBwera9euevXVVwuNFwAAlA3MgwCUJpJKAPzOxIkT9dtvv2nOnDnq3bu307G///3vmjdvXrHHOnz4cIHtv/zyiyQpMjLyiuPctm2b3n33Xd15551avXp13oRLknJycvTKK6+4nBMSEqLRo0dr9OjR2rdvnz7//HPNnTtXCxcu1J49ewotmgkAAMoG5kEAShPb3wD4nV27dklS3hLv/DZs2ODWWBs3blROTo5L+/r16yVJN998s/sB/k9unImJiU4TKcmqOXD69Okiz69Zs6YeffRRrVmzRnXr1tXGjRv122+/XXE8AADA9zEPAlCaSCoB8DuxsbGSLk54cq1Zs0Zvv/22W2P99NNPmjZtmlNbSkqKNmzYoLp166p169YlHuevv/6qgQMHuvQ/cuSIvv32W5f2U6dOKTMzU+XKlVP58uWvOB4AAOD7mAcBKE1sfwPgdwYMGKA5c+aoW7du6tq1q2rUqKHvvvtOH330kbp3767FixcXe6x77rlHycnJWr16tZo0aaJdu3ZpxYoVCg4O1uzZswssXllczZs3V1xcnFasWKFWrVrp9ttv1+HDh7V69WrVr19fNWrUcOp/4MAB3XzzzWrcuLFuuukm1axZUxkZGVq5cqV++eUXDR48WBUrVrzieAAAgO9jHgSgNLFSCYDfuemmm7Ru3Tq1atVKq1at0vTp05WRkaEVK1boySefdGus2267TevXr1d2dramTJmi1atXq3379vr888+v6q9zkhQYGKj3339f/fv318GDBzVp0iRt3LhR/fr105o1axQUFOTUPzY2VmPGjFHVqlW1bt06TZw4UStWrNB1112nRYsW6Y033riqeAAAgO9jHgSgNDmMMcbuIADA26xfv17t2rXTqFGjNHr0aLvDAQAAKDXMgwAUFyuVAAAAAAAA4DaSSgAAAAAAAHAbSSUAAAAAAAC4jZpKAAAAAAAAcBsrlQAAAAAAAOA2kkoAAAAAAABwG0klAAAAAAAAuI2kEgAAAAAAANxGUgkAAAAAAABuI6kEAAAAAAAAt5FUAgAAAAAAgNtIKgEAAAAAAMBtJJUAAAAAAADgtv8Pyg7Y9QZfyhMAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"print(stats.spearmanr(a=preds_test, b=y_test, axis=0))"
],
"metadata": {
"id": "GF8eqBXJkhjV",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "7e5cec1e-0974-4fb6-c741-bd2b111aed04"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"SignificanceResult(statistic=0.7156659724956432, pvalue=0.0)\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(ridgsesr_alpha)"
],
"metadata": {
"id": "Wjw1kNkHkiCY",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "6c7e66a1-e4a7-4eb8-a883-ea97091c597c"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"400.0\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"### Bagging Regressor"
],
"metadata": {
"id": "sEzbHeH7K02s"
}
},
{
"cell_type": "markdown",
"source": [
"The Bagging Regressor or Ensembled Ridge SR procedure implemented below has been described in [Low-N protein engineering with data-efficient deep learning](https://www.nature.com/articles/s41592-021-01100-y) paper from Biswas et al, 2021 published in Nature methods.\n",
"\n",
">Ensembled Ridge SR: This is the same as the ‘Ridge SR’ procedure above, except that the final top model is an ensemble of Ridge SR top models. The ensemble is composed of 100 members. Each member (a Ridge SR top model) is fit to a bootstrap of the training data (N training points are resampled N times with replacement) and a random subset of the features. The final prediction is an average of all members in the ensemble. The rationale for this approach is\n",
"that it is based on consensus of many different Ridge SR models that have different ‘hypotheses’ for how sequence might influence function. Differences in these ‘hypotheses’ are driven by the fact that every bootstrap represents a different plausible instantiation of the training data and that every random subsample of features represents different variables that could influence function."
],
"metadata": {
"id": "xS73oPq9Vsxy"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.ensemble import BaggingRegressor\n",
"\n",
"# define ridge model with RidgeSR alpha\n",
"ridge = make_pipeline(StandardScaler(),\n",
" Ridge(alpha=ridgsesr_alpha))\n",
"\n",
"# define bag model\n",
"bag = BaggingRegressor(estimator=ridge,\n",
" n_estimators=100,\n",
" max_samples=1.0,\n",
" max_features=1.0,\n",
" bootstrap=True,\n",
" bootstrap_features=False,\n",
" n_jobs=-1)\n",
"\n",
"# fit the data\n",
"bag.fit(X_train, y_train)\n",
"\n",
"# make predictions\n",
"preds_train = bag.predict(X_train)\n",
"preds_test = bag.predict(X_test)"
],
"metadata": {
"id": "qofbJBBIUd7F"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"spearmanr = stats.spearmanr(a=preds_test, b=y_test, axis=0)\n",
"print(spearmanr)"
],
"metadata": {
"id": "2GFmzulBUhQB",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "6e3b7128-216e-4dba-e430-42f426466de5"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"SignificanceResult(statistic=0.7144792120843033, pvalue=0.0)\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"from sklearn.metrics import PredictionErrorDisplay\n",
"fig, (ax0, ax1) = plt.subplots(figsize=(12, 6), nrows=1, ncols=2)\n",
"\n",
"# plot actual vs predicted values\n",
"PredictionErrorDisplay.from_predictions(\n",
" y_test,\n",
" preds_test,\n",
" ax=ax0,\n",
" kind='actual_vs_predicted',\n",
" scatter_kwargs={\"alpha\":0.5}\n",
")\n",
"ax0.plot([], [], \" \", label=f\"Spearman r: {np.round(spearmanr.statistic, 4)}\")\n",
"ax0.legend(loc=\"best\")\n",
"ax0.axis('tight')\n",
"\n",
"PredictionErrorDisplay.from_predictions(\n",
" y_test,\n",
" preds_test,\n",
" kind='residual_vs_predicted',\n",
" ax=ax1,\n",
" scatter_kwargs={\"alpha\":0.5}\n",
")\n",
"\n",
"ax1.plot([], [], \" \", label=f\"Spearman r: {np.round(spearmanr.statistic, 4)}\")\n",
"ax1.legend(loc=\"best\")\n",
"ax1.axis('tight')\n",
"\n",
"plt.tight_layout()\n",
"plt.show();"
],
"metadata": {
"id": "9mH1iruEUrQb",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 546
},
"outputId": "5ee5ea2e-cf9c-484c-84b7-ff768cbebb4b"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
\n"
]
},
"metadata": {},
"execution_count": 89
}
]
},
{
"cell_type": "code",
"source": [
"df_with_preds.sort_values(by = ['predicted_label', 'labels'],\n",
" ascending = [False, False]).to_csv('data/rep7868aav2_preds_emb_esm1v.csv')"
],
"metadata": {
"id": "SRBThO-VayOB"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"The model can additionally serve for prospective design by generating sequence proposals through in silico directed evolution. The exploration of in silico directed evolution will be delved into in a future notebook. In part two of this notebook, we will develop a complementary approach for sequence-to-function modeling on deep mutational scanning data: one relying fine-tuning pretrained protein langauge model."
],
"metadata": {
"id": "8Uz-S3s3piol"
}
},
{
"cell_type": "markdown",
"source": [
"## Please don’t fall into blind love with models' elegance and power"
],
"metadata": {
"id": "jPNDJJomlR4k"
}
},
{
"cell_type": "markdown",
"source": [
"I would like to end this notebook with an excerpt from Richard McElreath's book Statistical Rethinking about statistical models:\n",
"\n",
"> Scientists also make golems. Our golems rarely have physical form, but they too are often made of clay, living in silicon as computer code. These golems are scientific model. But these golems have real effects on the world, through the predictions they make and the intuitions they challenge or inspire. A concern with truth enlivens these models, but just like a golem or a modern robot, scientific models are neither true nor false, neither prophets nor charlatans. Rather they are constructs engineered for some purpose. These constructs are incredibly powerful, dutifully conducting their programmed calculations"
],
"metadata": {
"id": "BgZgjPNVc52-"
}
},
{
"cell_type": "markdown",
"source": [
"In the context of model inference, it is imperative to prioritize scientific rigor over statistical outcomes. A thorough comprehension of the data generation process, acknowledgment of model limitations, and an understanding of the distribution within the inference regime are essential. Consideration of specific experimental details is paramount:\n",
"\n",
"1) **Assay fidelity vs Assay throughput**:\n",
"One practical application of the [DMS data](https://raw.githubusercontent.com/churchlab/aav_rep_scan/master/analysis/selection_values/wtaav2_selection_values_barcode.csv) from [rep mutagenesis scan paper published in 2023 from George M. Church lab](https://doi.org/10.7554/eLife.87730.1) is to improve recombinant adeno-associated virus (rAAV) production for therapeutic purposes. rAAV production is carefully measured using viral genome titer assay (high fidelity, low throughput assay). Deep mutational scanning experiments use a high-throughput assay to screen an initial variant library and isolate variants with a desired functional property. The initial library and the isolated variants are sequenced, and a fitness score is computed for each variant based on the frequency of reads in both sets. The fitness score from low fidelity high throughput assay are only a proxy measurement for the viral genome titer we want to optimize for.\n",
"\n",
"2) **Role of Data Quality in Learning Accurate Sequence-function Models**:\n",
"The accuracy of the computed fitness scores hinges on the sensitivity and specificity of the high-throughput assay, the number of times each variant was characterized in the high-throughput assay, and the number of DNA sequencing reads per variant. In cases where any of these factors is insufficient, the resultant fitness scores may not accurately represent the genuine fitness values of the characterized proteins. This discrepancy complicates the task of training a model to grasp the underlying sequence-to-function mapping. Hence, practical considerations such as the size and quality of the DMS dataset could influence protein-specific performance.\n",
"\n",
"3) **Design of the study**:\n",
"The paper could have additionally enriched for high fitness variants by performing transduction with isolated AAV particles.\n",
"\n",
"4) **Sequence-to-function modeling complexity**:\n",
"The protein sequence-to-function model faces complexity due to the necessity to capture non-additive effects (epistasis) and the challenge of generalizing to unseen mutations, spanning from low-order to higher-order mutations."
],
"metadata": {
"id": "L-8jea-9bLEp"
}
},
{
"cell_type": "code",
"source": [
"# Download model\n",
"from google.colab import files\n",
"files.download(\"models/bag_emb_esm1v_rep7868aav2.pkl\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 17
},
"id": "0s80FhlLz5Uh",
"outputId": "517c2704-63a6-41db-80b9-e6d20d1007aa"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"application/javascript": [
"\n",
" async function download(id, filename, size) {\n",
" if (!google.colab.kernel.accessAllowed) {\n",
" return;\n",
" }\n",
" const div = document.createElement('div');\n",
" const label = document.createElement('label');\n",
" label.textContent = `Downloading \"${filename}\": `;\n",
" div.appendChild(label);\n",
" const progress = document.createElement('progress');\n",
" progress.max = size;\n",
" div.appendChild(progress);\n",
" document.body.appendChild(div);\n",
"\n",
" const buffers = [];\n",
" let downloaded = 0;\n",
"\n",
" const channel = await google.colab.kernel.comms.open(id);\n",
" // Send a message to notify the kernel that we're ready.\n",
" channel.send({})\n",
"\n",
" for await (const message of channel.messages) {\n",
" // Send a message to notify the kernel that we're ready.\n",
" channel.send({})\n",
" if (message.buffers) {\n",
" for (const buffer of message.buffers) {\n",
" buffers.push(buffer);\n",
" downloaded += buffer.byteLength;\n",
" progress.value = downloaded;\n",
" }\n",
" }\n",
" }\n",
" const blob = new Blob(buffers, {type: 'application/binary'});\n",
" const a = document.createElement('a');\n",
" a.href = window.URL.createObjectURL(blob);\n",
" a.download = filename;\n",
" div.appendChild(a);\n",
" a.click();\n",
" div.remove();\n",
" }\n",
" "
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"application/javascript": [
"download(\"download_e7f38038-dad7-4fd8-9f9c-e3add2994b77\", \"bag_emb_esm1v_rep7868aav2.pkl\", 4762664)"
]
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"!md5sum models/bag_emb_esm1v_rep7868aav2.pkl"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "L3aIvsPJ1yJr",
"outputId": "c8827d46-47c2-42f2-d1c9-e676baf1eb88"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"b2adfa4cf9be0b8614ab2b0c6aeee622 models/bag_emb_esm1v_rep7868aav2.pkl\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# download all files from colab data folder\n",
"!zip -r /content/data.zip /content/data\n",
"files.download('/content/data.zip')\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 104
},
"id": "N8NhEQFv2_Ia",
"outputId": "1bdb3b31-ad67-4017-b6c7-2d4596b7fd27"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"updating: content/data/ (stored 0%)\n",
"updating: content/data/rep7868aav2_emb_esm1v.pkl (deflated 42%)\n",
"updating: content/data/fitness_by_mutation_rep7868aav2.pkl (deflated 84%)\n",
"updating: content/data/rep7868aav2_preds_emb_esm1v.csv (deflated 98%)\n",
"updating: content/data/.ipynb_checkpoints/ (stored 0%)\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"application/javascript": [
"\n",
" async function download(id, filename, size) {\n",
" if (!google.colab.kernel.accessAllowed) {\n",
" return;\n",
" }\n",
" const div = document.createElement('div');\n",
" const label = document.createElement('label');\n",
" label.textContent = `Downloading \"${filename}\": `;\n",
" div.appendChild(label);\n",
" const progress = document.createElement('progress');\n",
" progress.max = size;\n",
" div.appendChild(progress);\n",
" document.body.appendChild(div);\n",
"\n",
" const buffers = [];\n",
" let downloaded = 0;\n",
"\n",
" const channel = await google.colab.kernel.comms.open(id);\n",
" // Send a message to notify the kernel that we're ready.\n",
" channel.send({})\n",
"\n",
" for await (const message of channel.messages) {\n",
" // Send a message to notify the kernel that we're ready.\n",
" channel.send({})\n",
" if (message.buffers) {\n",
" for (const buffer of message.buffers) {\n",
" buffers.push(buffer);\n",
" downloaded += buffer.byteLength;\n",
" progress.value = downloaded;\n",
" }\n",
" }\n",
" }\n",
" const blob = new Blob(buffers, {type: 'application/binary'});\n",
" const a = document.createElement('a');\n",
" a.href = window.URL.createObjectURL(blob);\n",
" a.download = filename;\n",
" div.appendChild(a);\n",
" a.click();\n",
" div.remove();\n",
" }\n",
" "
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"application/javascript": [
"download(\"download_b95f9c24-e122-4c39-817e-4e85cd641cf3\", \"data.zip\", 115688424)"
]
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "XjiYVfLE3OYa"
},
"execution_count": null,
"outputs": []
}
]
}