{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "toc_visible": true, "authorship_tag": "ABX9TyPktUSzGMpGU1YmHHSsNC7z", "include_colab_link": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "vyn8znjVP_Fg" }, "outputs": [], "source": [ "# Install for running in colab\n", "!pip install biopython fair-esm -U kaleido &> /dev/null" ] }, { "cell_type": "markdown", "source": [ "# Zero-shot prediction of functional protein sequence variants" ], "metadata": { "id": "Qs3Xu2RWQhZq" } }, { "cell_type": "markdown", "source": [ "In Moderna Therapeutics's study titled [\"Therapeutic Enzyme Engineering Using a Generative Neural Network\"](https://www.nature.com/articles/s41598-022-05195-x), scientists turbocharge ornithine transcarbamylase (OTC), a critical player in the urea cycle combating a rare metabolic ailment. Their secret sauce? Marrying insights from nature's evolution dance with a dash of artificial evolution guided by savvy deep learning models. Meanwhile, in the paper [\"Efficient evolution of human antibodies from general protein language models\"](https://www.nature.com/articles/s41587-023-01763-2), authors play protein origami, deftly evolving human antibodies sans the cheat sheet on target antigen specifics binding specificity, or protein structure. No experimental data for model supervision; both approaches propose beneficial mutations in a zero-shot manner.\n", "\n", "Crafting functional protein sequences in the protein engineering arena is a puzzle akin to navigating a vast cosmic expanse. Picture a protein with 200 amino acids; a mere switcheroo of one amino acid spawns a array of 4000 potential variants (200*20). My [previous notebooks](https://nbviewer.org/github/arjan-hada/protein-variant-prediction/blob/master/00_protein_seq_to_fxn_model.ipynb) used machine learning as the Sherpa guiding directed evolution when armed with experimental compass. But what if the experimental compass is missing? Can we still map out a path to promising protein sequences by divining the protein's mutational horoscope?\n", "\n", "Nature leaves us clues, imprinting functional wisdom in protein sequences. Enter the unsupervised models, revealing higher functional variant tales from the sequence data troves, as showcased in the article [\"Language models enable zero-shot prediction of the effects of mutations on protein function\"](https://www.biorxiv.org/content/10.1101/2021.07.09.450648v2). These unsupervised maestros for predicting protein variant effects fall into three troupes: **hybrid protein language models (PLMs)**, **PLMs**, **Alignment based models**, and **Inverse folding models**.\n", "\n", "Our playbook? This notebook orchestrates and contrasts these model from each class, aiming to spotlight protein sequence gems that can lighten the load of experimental quests in directed evolution. The playbook uses competitive models from the benchmarks set by ProteinGym](https://proteingym.org/), providing a comprehensive evaluation of these models' capabilities in predicting the mutational landscape of proteins.\n", "\n", "**Goals**\n", "- Efficiently identify promising protein sequence variants to alleviate the experimental screening burden in directed evolution.\n", "- Provide a canvas of mutational landscape, specifically focusing on the [encapsidation protein 22K crucial for recombinant Adeno-Associated Virus (rAAV) production](https://pubmed.ncbi.nlm.nih.gov/38062776/). Maybe there are protein sequence gems that hold the key to improving rAAV production?" ], "metadata": { "id": "BnyB29yrtlKT" } }, { "cell_type": "markdown", "source": [ "## Protein fitness landscape prediction using Hybrid PLMs" ], "metadata": { "id": "CZUcWQ5fp8nn" } }, { "cell_type": "markdown", "source": [ "- Large Protein Language Models (PLMs) are trained on large protein databases encompassing all known sequences or on sets of homologous sequences spanning many protein families.\n", "- Hybrid PLMs are PLMs that leverage multiple sequence alignment (MSAs) such as [Tranception](https://arxiv.org/abs/2205.13760), and [MSA Transformer](https://www.biorxiv.org/content/10.1101/2021.02.12.430858v1.full).\n", "- Below is the take on hybrid PLMs from [Pascal Notin](https://twitter.com/NotinPascal) author of [ProteinGym](https://proteingym.org/benchmarks) paper." ], "metadata": { "id": "xAFnB7MrXxgo" } }, { "cell_type": "markdown", "source": [ "![download.png]()" ], "metadata": { "id": "Q1UYmhXGv-jJ" } }, { "cell_type": "markdown", "source": [ "From the hybrid PLMs class, we will be using [MSA Transformer](https://www.biorxiv.org/content/10.1101/2021.02.12.430858v1.full) to predict mutational landscape for encapsidation protein 22K." ], "metadata": { "id": "eIZKlYZuktkY" } }, { "cell_type": "markdown", "source": [ "### Obtain FASTA file of protein sequence" ], "metadata": { "id": "QgJXp5Q4q61k" } }, { "cell_type": "code", "source": [ "query_url = \"https://rest.uniprot.org/uniprotkb/A0A7L4WH77.fasta\"" ], "metadata": { "id": "Z3FenhSreyYO" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "import requests\n", "from Bio import SeqIO\n", "from io import StringIO\n", "\n", "def read_fasta_from_url(url):\n", " # Download the FASTA file content from the web link\n", " response = requests.get(url)\n", "\n", " if response.status_code == 200:\n", " # Parse the content using Biopython's SeqIO\n", " fasta_content = StringIO(response.text)\n", " record = next(SeqIO.parse(fasta_content, 'fasta'))\n", " sequence = str(record.seq)\n", "\n", " return sequence\n", " else:\n", " print(f\"Failed to retrieve data. HTTP Status Code: {response.status_code}\")" ], "metadata": { "id": "WYqDhRoTlUZ8" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "protein_sequence = read_fasta_from_url(query_url)\n", "print(f\"Protein Sequence: {protein_sequence}\")\n", "print(f\"Protein Sequence Length: {len(protein_sequence)}\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "M6I_sLtNmH0O", "outputId": "072d7c5d-ee4a-4f99-f8f0-eb211251a254" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Protein Sequence: MAPKKKLQLPPPPTDEEEYWDSQAEEVLDEEEEEDMMEDWESLDEEASEAEEVSDETPSPSVAFPSPAPQKSATGSSMATTSAPQASPALPVRRPNRRWDTTGTRAGKSKQPPPLAQEQQQRQGYRSWRGHKNAIVACLQDCGGNISFARRFLLYHHGVAFPRNILHYYRHLYSPYCTGGSSSNSSGHTEAKATG\n", "Protein Sequence Length: 195\n" ] } ] }, { "cell_type": "code", "source": [ "# Save FASTA file locally for future reference\n", "# The -O option in wget allows you to specify the name of the output file.\n", "!wget $query_url -O data/Encapsidation_protein_22K.fasta" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "BcW1Th1KAJfo", "outputId": "e5a0a218-e4e9-4c08-c850-8cec7d08148e" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "--2023-12-18 21:53:32-- https://rest.uniprot.org/uniprotkb/A0A7L4WH77.fasta\n", "Resolving rest.uniprot.org (rest.uniprot.org)... 193.62.193.81\n", "Connecting to rest.uniprot.org (rest.uniprot.org)|193.62.193.81|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", "Length: unspecified [text/plain]\n", "Saving to: ‘data/Encapsidation_protein_22K.fasta’\n", "\n", "data/Encapsidation_ [ <=> ] 309 --.-KB/s in 0s \n", "\n", "2023-12-18 21:53:32 (185 MB/s) - ‘data/Encapsidation_protein_22K.fasta’ saved [309]\n", "\n" ] } ] }, { "cell_type": "markdown", "source": [ "### Generate sequence alignment in a3m format" ], "metadata": { "id": "mHtnbwJHwoe0" } }, { "cell_type": "markdown", "source": [ "The sequence alignment for encapsidation protein 22K was generated using [MMSeq2](https://github.com/soedinglab/MMseqs2) from [ColabFold v1.5.3 server](https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb#scrollTo=kOblAo-xetgx)." ], "metadata": { "id": "Bbj52wdrwvaA" } }, { "cell_type": "code", "source": [ "# Number of entries in the MSA file\n", "!grep -c \"^>\" data/Encapsidation_protein_22K.a3m" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "QcAg0eaZ_BNQ", "outputId": "d308d0d1-8394-4b9a-a8d4-01993859fc93" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "124\n" ] } ] }, { "cell_type": "code", "source": [ "!head -n 9 data/Encapsidation_protein_22K.a3m" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "jwQ9MEJN_WSb", "outputId": "b1f066d1-14f1-4cd7-f58f-a68a8b005fc3" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "#195\t1\n", ">101\n", "MAPKKKLQLPPPPTDEEEYWDSQAEEVLDEEEEEDMMEDWESLDEEASEAEEVSDETPSPSVAFPSPAPQKSATGSSMATTSAPQASPALPVRRPNRRWDTTGTRAGKSKQPPPLAQEQQQRQGYRSWRGHKNAIVACLQDCGGNISFARRFLLYHHGVAFPRNILHYYRHLYSPYCTGGSSSNSSGHTEAKATG\n", ">UniRef100_A0A7L4WJM1\t270\t0.923\t1.137E-78\t0\t194\t195\t0\t193\t194\n", "MAPKKKLQLP-PPPTDEEEYWDSQAEEVLDEEEEDMMEDWESLDEEASEAEEVSDETPSPSVAFPSPAPQKSATGSSMATTSAPQASPALPVRRPNRRWDTTGTRAGKSKQPPPLAQEQQQRQGYRSWRGHKNAIVACLQDCGGNISFARRFLLYHHGVAFPRNILHYYRHLYSPYCTGGSSSNSSGHTEAKATG\n", ">UniRef100_A0A3Q9HLG8\t259\t0.892\t7.754E-75\t0\t194\t195\t0\t193\t194\n", "MAPKKKLQLP-PPPTDEEEYWDSQAEEVLDEEEEDMMEDWESLDEEASEAEEVSDGTPSPSVASPSPAPQKSATGPSMATTSAPQAPPALPVRRPNRRWDTTGTRAGKSKQPPPLAQEQQQRQGYRSWRGHKNAIVACLQDCGGNISFARRFLLYHHGVAFPRNILHYYRHLYSPYCTGGSGSNSSGHTEAKAPG\n", ">UniRef100_A0A3Q9HL92\t258\t0.888\t1.457E-74\t0\t194\t195\t0\t196\t197\n", "MAPKKKLQLPPPPPTDEEEYWDSQAEEVLDEEEEDTMEDWDSLDEEASEAEEVSDETPSPSVAFPSPAPQKSATGPSMATTSAPQAPPALPVRRPNRRWDTTGTRAGKSKQPPPLAQEQQQRQGYRSWRGHKNAIVACLQDCGGNISFARRFLLYHHGVAFPRNILHYYRHLYSPYYTGgsGSGSNSSGHTEAKATG\n" ] } ] }, { "cell_type": "markdown", "source": [ "### Generate mutant triplets to make predictions" ], "metadata": { "id": "y86uPNMoq-rH" } }, { "cell_type": "code", "source": [ "def generate_mutant_triplet(protein_sequence):\n", "\n", " '''\n", " Input:\n", " protein_sequence: the input protein sequence for which you want to generate mutant triplets.\n", "\n", " Output:\n", " This script will generate all possible mutant triplets for the input protein sequence.\n", " '''\n", "\n", " # Define the amino acid alphabet (one-letter codes)\n", " amino_acids = \"ACDEFGHIKLMNPQRSTVWY\"\n", "\n", " # Create a list to store the mutant sequences\n", " mutants = []\n", "\n", " # Iterate through each position in the protein sequence\n", " for position in range(len(protein_sequence)):\n", "\n", " # Generate mutants for each amino acid in the alphabet\n", " for aa in amino_acids:\n", " # Create a mutant sequence by replacing the original amino acid\n", " mutant = protein_sequence[position] + str(position+1) + aa\n", " mutants.append(mutant)\n", "\n", " # Print the list of mutant sequences\n", " return mutants" ], "metadata": { "id": "Aad73eTrpp6j" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "mutant = generate_mutant_triplet(protein_sequence)" ], "metadata": { "id": "kUQa_MKsrLS8" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "import pandas as pd\n", "\n", "Encapsidation_protein_22K_mutants_df = pd.DataFrame({\n", " \"mutant\": mutant\n", "})\n", "\n", "Encapsidation_protein_22K_mutants_df['wildtype'] = Encapsidation_protein_22K_mutants_df['mutant'].str[:-1]\n", "Encapsidation_protein_22K_mutants_df['mutation'] = Encapsidation_protein_22K_mutants_df['mutant'].str[-1]\n", "\n", "Encapsidation_protein_22K_mutants_df.to_csv('data/Encapsidation_protein_22K_mutants_unlabeled.csv', index=False)" ], "metadata": { "id": "QNomPwTQrc11" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "### Predict fitness landscape" ], "metadata": { "id": "imqfZ4aQQRVW" } }, { "cell_type": "code", "source": [ "# We meed the MSA file in .a3m format and csv file with mutant triplet to run the script below\n", "!ls data/" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "OBS6pnWLDIYI", "outputId": "30a8c038-1cae-41eb-b03b-1f7f7ab4f183" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Encapsidation_protein_22K.a3m\t Encapsidation_protein_22K_mutants_unlabeled.csv\n", "Encapsidation_protein_22K.fasta\n" ] } ] }, { "cell_type": "code", "source": [ "# Script to generate mutational landscape\n", "# predict_esm.py script from: https://github.com/facebookresearch/esm/blob/main/examples/variant-prediction/predict.py\n", "\n", "!python scripts/predict_esm.py \\\n", " --model-location esm_msa1b_t12_100M_UR50S \\\n", " --sequence $protein_sequence \\\n", " --dms-input ./data/Encapsidation_protein_22K_mutants_unlabeled.csv \\\n", " --mutation-col mutant \\\n", " --dms-output ./data/Encapsidation_protein_22K_mutants_labeled.csv \\\n", " --offset-idx 1 \\\n", " --scoring-strategy masked-marginals \\\n", " --msa-path ./data/Encapsidation_protein_22K.a3m" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "VpkE4fvzt_iE", "outputId": "61b71e55-ed55-448c-d762-383b80f1d518" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Downloading: \"https://dl.fbaipublicfiles.com/fair-esm/models/esm_msa1b_t12_100M_UR50S.pt\" to /root/.cache/torch/hub/checkpoints/esm_msa1b_t12_100M_UR50S.pt\n", "Downloading: \"https://dl.fbaipublicfiles.com/fair-esm/regression/esm_msa1b_t12_100M_UR50S-contact-regression.pt\" to /root/.cache/torch/hub/checkpoints/esm_msa1b_t12_100M_UR50S-contact-regression.pt\n", "Transferred model to GPU\n", "100% 196/196 [01:43<00:00, 1.89it/s]\n" ] } ] }, { "cell_type": "markdown", "source": [ "### Visualize fitness landscape" ], "metadata": { "id": "5RvQcP8dwzVk" } }, { "cell_type": "code", "source": [ "import pandas as pd\n", "\n", "# Read the csv file containing mutation score from MSA Transformer model\n", "fitness_prot22k_msa1b = pd.read_csv('data/Encapsidation_protein_22K_mutants_labeled.csv',\n", " index_col=0)\n", "fitness_prot22k_msa1b" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 424 }, "id": "8uxkE4caw1xk", "outputId": "e4f88de3-5df2-4a67-c27c-0b744a52d41e" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " mutant wildtype mutation esm_msa1b_t12_100M_UR50S\n", "0 M1A M1 A -16.325127\n", "1 M1C M1 C -16.986792\n", "2 M1D M1 D -18.815874\n", "3 M1E M1 E -17.576103\n", "4 M1F M1 F -13.433237\n", "... ... ... ... ...\n", "3895 G195S G195 S -9.930399\n", "3896 G195T G195 T -13.784996\n", "3897 G195V G195 V -12.468152\n", "3898 G195W G195 W -14.053451\n", "3899 G195Y G195 Y -15.699408\n", "\n", "[3900 rows x 4 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
mutantwildtypemutationesm_msa1b_t12_100M_UR50S
0M1AM1A-16.325127
1M1CM1C-16.986792
2M1DM1D-18.815874
3M1EM1E-17.576103
4M1FM1F-13.433237
...............
3895G195SG195S-9.930399
3896G195TG195T-13.784996
3897G195VG195V-12.468152
3898G195WG195W-14.053451
3899G195YG195Y-15.699408
\n", "

3900 rows × 4 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", " \n", " \n", " \n", "
\n", "\n", "
\n", "
\n" ] }, "metadata": {}, "execution_count": 14 } ] }, { "cell_type": "code", "source": [ "# Long to wide format conversion for plotting heatmap\n", "fitness_prot22k_msa1b_wide = fitness_prot22k_msa1b.pivot_table(index='mutation',\n", " columns='wildtype',\n", " values='esm_msa1b_t12_100M_UR50S',\n", " sort=False)" ], "metadata": { "id": "-wF_4rE5NnGW" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "from pathlib import Path\n", "import plotly.graph_objects as go\n", "import plotly.io as pio\n", "from IPython.display import Image\n", "\n", "def create_heatmap(values, title='Predicted mutation effects', plot_interactive=True):\n", " # Create a directory to save the images\n", " images = Path('images')\n", " images.mkdir(parents=True, exist_ok=True)\n", "\n", " # Put 0 as midpoint for divergent colorscale\n", " midpoint = (0 - values.min().min()) / (values.max().max() - values.min().min())\n", "\n", " # Define custom colorscale for blue (negative) to red (positive)\n", " custom_colorscale = [[0, 'midnightblue'],\n", " [midpoint, 'white'],\n", " [1, 'red']]\n", "\n", " # Create heatmap trace\n", " heatmap_trace = go.Heatmap(\n", " x=values.columns,\n", " y=values.index,\n", " z=values,\n", " colorscale=custom_colorscale\n", " )\n", "\n", " # Create layout with equal aspect ratio\n", " layout = go.Layout(\n", " title=title,\n", " xaxis=dict(title='wildtype'),\n", " yaxis=dict(title='mutation', autorange='reversed')\n", " )\n", "\n", " # Create figure\n", " fig = go.Figure(data=[heatmap_trace], layout=layout)\n", "\n", " if plot_interactive:\n", " # Show the plot\n", " fig.show()\n", " else:\n", " # Save the plot as a PNG file\n", " image_path = images/f'{title}.png'\n", " pio.write_image(fig, image_path)\n", "\n", " # Display the saved PNG file\n", " display(Image(filename=image_path))" ], "metadata": { "id": "7ZZ1ymZ8mh3A" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "create_heatmap(fitness_prot22k_msa1b_wide,\n", " title='Predicted mutation effects using esm_msa1b_t12_100M_UR50S',\n", " plot_interactive=False)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 517 }, "id": "s8EN_Ngnmuiz", "outputId": "df10593c-ceea-4f15-f4b1-704a335339b1" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAH0CAYAAADfWf7fAAAgAElEQVR4XuydB3RVRdeGNwQSCCWE3nvvvQhI7wJKFxFBEERRpHwiohSlSlOkCQgIivSm9CK9g/TeIZQQakghJPCvPYcpCQncQu6N+d9Zi5Vhzswp78yZee4+e2YSPHv27BkhQAEoAAWgABSAAlAACkCBeKpAAgBvPK1ZPBYUgAJQAApAASgABaCAUADAi4YABaAAFIACUAAKQAEoEK8VAPDG6+rFw0EBKAAFoAAUgAJQAAoAeNEGoAAUgAJQAApAASgABeK1AgDeeF29eDgoAAWgABSAAlAACkABAC/aABSAAlAACkABKAAFoEC8VgDAG6+rFw8HBaAAFIACUAAKQAEoAOBFG4ACUAAKQAEoAAWgABSI1woAeON19eLhoAAUgAJQAApAASgABQC8aANQAApAASgABaAAFIAC8VoBAG+8rl48HBSAAlAACkABKAAFoACAF20ACkABKAAFoAAUgAJQIF4rAOCN19WLh4MCUAAKQAEoAAWgABQA8KINQAEoAAWgABSAAlAACsRrBQC88bp68XBQAApAASgABaAAFIACAF60ASgABaAAFIACUAAKQIF4rQCAN15XLx4OCkABKAAFoAAUgAJQAMCLNgAFoAAUgAJQAApAASgQrxUA8Mbr6sXDQQEoAAWgABSAAlAACgB40QagABSAAlAACkABKAAF4rUCAN54Xb14OCgABaAAFIACUAAKQAEAL9oAFIACUAAKQAEoAAWgQLxWAMAbr6sXDwcFoAAUgAJQAApAASgA4EUbgAJQAApAASgABaAAFIjXCgB443X14uGgABSAAlAACkABKAAFALxoA1AACkABKAAFoAAUgALxWgEAb7yuXjwcFIACUAAKQAEoAAWgAIAXbQAKQAEoAAWgABSAAlAgXisA4I3X1YuHgwJQAApAASgABaAAFADwog1AASgABaAAFIACUAAKxGsFALzxunrxcFAACkABKAAFoAAUgAIAXrQBKAAFoAAUgAJQAApAgXitAIA3XlcvHg4KQAEoAAWgABSAAlAAwIs2AAWgABSAAlAACkABKBCvFQDwxuvqxcNBASgABaAAFIACUAAKAHjRBqAAFIACUAAKQAEoAAXitQIA3nhdvXg4KAAFoAAUgAJQAApAgTgHvN/+MIOWrNoaqWY8PBJS+rS+VLNyaer+4TuUMrl3rNXcZ/1/Ir+bAbTk1+/FNeq3/ZJKF8tHw/p9FGvXfNmJKzTqRm/Xr0L9PnvPLdd/nRd1t5bRPcuDh0HUa9BE+vfYWSpfqiBNGdmbvh83m1Zu3E1PnoTTgbVTX6cEcepccbE+4pRAbryZv9fvou/G/Ua5c2SmeZMHRLqTv9btpK+GTaXVf4yk7FkyxNpdvuwe+KI3/O/S+OmLad+hk3T/4SNxL62b1KDWTWs6dE8Bdx/QNyOn07Y9R8V7WLVCsRfOs2rjHpr2x1908epNSu6dlGpULkX/+6RNpDHhxJlLNOaXBXT4+DlRvkzxAvS/bm0ob64s6nzc9q9e96evP3+P3mtWJ9r7/bjvGHEvXdo1ph6dm9v8TKfOXaHmnQfQ4D4dqcVb1V4od/P2XarVshd98VEL+ui9t9Q4w/djhgQJElDG9KmpUN7s4h6KFcqtDn89fBotX7sj2nva9fckpcedew9p9OT5tHXPYQoKDqU8OTLTpx3foZqVS0Uqe/biNZo5bzXtPXSKuB4SJkhA2bKkpwY1KtCHbRqQp2dim58fGaFAXFUgTgLv0tXbaMbYvkqz4JBQOnziPM1euJZyZc9E86cMJIbg2AhRgZfBJ21qH6pQqpBNl3sQGERvNP6U9q2eQt5Jk9hU5mWZ3A28jj5PdOXs1dJp8Ww4wdylG2noT3NoZP+uVKJIHnr8+Ak17dif3m9Rl95pUJUK5Mlmw1lsy7Jh2wH6Zc5ftHDqINsKxHKuuFgfsfzIcf70gY+CafDY32jH3qOUzDsJpU2TKtaB950Pv6EenVtQ9TdKCn1suYeHj4KpRecBlDBhQure8R1KlzYVrflnLy1Y8Q9988X79O7btezSevPOQ/TNyF8pQzpfYmCMDng3bjtIn387nto1r0M1q5Sm2wH36cdpCwWYzRz3lbjejVt3xPtbskheavtObZH228I1dPaCH/01exj5+qRQgHn7zn3KniU9LZ0x5IV79Q+4T7Va9aTEiRLRB63quwR4kydLSl9+8q66l4iICAHlM+evodt37tHi6d9TjqzWDxzWwe9GAPX9tO0L9166eD5K5OFBERFPqU2370R9sqEoXZpUtHbzPlFHv479Uo1pp89fpfafD6P8ubMK+M+SKR2FhDymHfuO0sz5q6nGG6Xop+8/s6s+kRkKxEUF4iTwLluzjY5umvmCXr8vXk/Df/4jxl//r0PgqMBr7znZIsCWgfgCvI4+j6Pl7NXb2fyTZi2jibOW0bF/ZhJbVPYdOkUdvhhBM8b1tflHjq33MPaXBbTrwIk4A7y23jfyuU4Btt7OW76JRg/oRgNHzyQGy9i08AaHPKYKjT6mn4f0UMBryz38uWwjDflxjoBFBiUZWnYZRB4JE9C8KQPtEq1Jh/7UpmlNKlIgJ7X95Pto+3gGcwZihmEZdu4/Rh/1Ga3e12Hj/6CVG3fRhvljKWkST5GNf3zXatmTOrRqIMCPA1t4GR637z0q7rVYwVyR7nfq738RG17CwsKpSb3KLgHeLBnTChCNGm7dvkd12/Sht+pUoqFfdRaHO/X6QVhdJ4/oGaPO/AO7x7c/i/ZjWofbdR9KCRMmoNnjvxZlB42eJTTbtuxnSuJlaSbDtD/+ptWb9tDUUX2E4QcBCvyXFfhPAe/x05eoVddBNLDXB9SqSQ0aMGoGHTt1kTq1bUTDx/9BNauUou/+9yE9e/aM5i7dQEtWbaPL126Sl5cnvVmhBPX+uFWkl5YtBuOmLaRr1/0pY/o01KltQ9q66/BLXRr41/JP0xfT+q376VFQiPjk2KXdW1TnzbI0ceZSmvTbctUe3qxYQnRItt4Pl52/fJPooAvkzkZ9u7elbl+NfalLA1vpvvx+Cv056VsaPWW+sI5wp8W/1Js3elN0ZgePnqFEiTxEx93n49bi/q743aIG7/WlEV93ocZ134jUwf04bREdXDeNpv/xd7TPwxb3H6exBvuIP5mx1YQt4L0/bi0GpJh0iPoJnQfzcb8soE07/qV7DwLFeapVKkE9u7RUlhi+/8MnzglLxtipC+jytVvC8tWkbmXxSfBlgfOOm7qQjpw8T/cePKJc2TLSh+82pLdqVxLFuONnVwYZ+PPhTf+7kU55fPMsm+vv0tWb4vPh3kMnheWreKHc1KtrKyqYNzt90GM47T98Wp2b66FjmwbC4jLjz1V08eoNcR3+gtHp3YZUr3r5GB+tRosvqEr54vT9lx+qPPwFxASFp0+fEQ/a/NmTP6Em9fIUgx5ry/fDwawPtnZVb/6FsHSzJpt2HBTtm/P27/G+KsP3OHn2CmEl4nZaOF8OYdH7YsAEUXdff94uxvvese+YuKezF67Rk/BwKl4oD/Xs2pKKFtCw8So9ZHv4vHNzGjd1EfnduC3cnfp++i6l8kku+gHWktsSWy0b1qpgV//csF1foW3a1ClpwV+bRfvmT8oj+nehfYdO04x5q+jW7buUJ0cWGvy/jkoXfu/Y2njs1CUKCgmljOl8qXHdyvTx+00EXHBguGIL/8mzl+jZMxLWxQ6tG1DTepXVPbJlMbVvCmGh6/K/0S8FXrZq8v3sP3xKtDe2xH3bsz2xpdCWsPffU9Sx5wiVlQFx/5qpZMs9cD/I7SpfLg27fKJegyYRuxSsmfuDLbeg8rBlNlOGNOJLXnTAK9snt/lmDd9U5bid81ewVk2qC7cFrr/ihfOIfs0MH/cdS3fvP6QFv1hfV7jt82f9dVv3U9XyxWhg7w6R8nPfyOMJu3Xw9Vzh0hAT8PKNNXjvS9HOf/upn7hPHgfZhYR/GMUU+F3ZtucIbVw4NlIWbjNjpixQRpn+I6YTw/GWJT+9ALx2VSIyQ4E4rsB/Cnj5k1nvwZPEr83K5YoKX0v+FJY5Y1rq+n5j8Ys9W+b0YlAZ/+ti+rxTc/GrmDvT78bNFn5JC6cNpsSJPOjcRT9q1vlbqlappAAn/vzz84wldOTEeUrjmzJGH14eIK5ev039e7SjTOnT0F/rd9Ks+WvEPZUull98AmLgWz9vNKVMkUwMPrbcDwMEf8pk/6omdd8Q98ywxgNpy8bVY/ThZUBgH1T2M2bYz5E1I/0w6U+as2idsFp8+em74r7YWsGfDKV2tgAvDybRPU+/YdMEEDEcsV8cD5Dfj/uNknknpd8n9KeQ0LBoy5mAxeD03qdD6PqtOzSg1wdUME828aysQab0qenPyQOExZWtSKwxf6Ic1KejAAn+IcM/dn4e8rn4tBldYIB+u+M3Anz4/GydWLVxt6jjUd92EyDEg/Yvv/8lfNe2L/+ZnjyJoGOnLtBn34wX5y5VLJ8ob0v9MRixBSpf7qzUrX1T8vJMTON/XULHz1ykFbOGif8zDNy590BYcZIm8SIG5BYfDRR+fPJHx8oNu2jK7BXiBwwP3NEFW4D3jyXrafSUBTSkbycqVjA3PXwUJJ7jwJHTtGnhODGwmfXBelVp+pn4wcLvQ4OaFelRULCwJHE9LJ7+nbgV6QLCPoV8z2fOXyW2kjP8sAtITL7mDPv87tSuWoY+69Sc+HPthBlLiS10fG4evLn+X6WHbA+VyxWjQX06CDDs3PsHuuLnT/lyZ6Fh/bpQ+jSphHWULVObFo0jnxTJbO6G2dJ4/0Gg+MHIvou3Au4Jf0zuE0oUziuAku+dPwFzHc6d9C2FR0RQjeZfiPriz/v8zvOPBu6fPm7fVPyA4bpu2qE/NahVgTq/24gSJ04kfjTzOz599P+oUtkiL9zjq4A3T84s9H6LOuLdOHT8HA396XeqV60cjfymq03P+yQ8gg4cPk2dev8gylQpV0z8aDBDTPcQ3QXYR5SBs2qF4qLdORJiAl4J52yVLFM8f6RTc/3w5/qJw76gknU60Scd3hbvoBlGTJhLC//arHzyue3zDzR2O+N3ZcuS8coizG2Vf6Byu+Tnb96omluBl394vvnO59SgZgVl4WWdy5YoIPr8mAI/g0fChML6bYZN2w+KPk5atuX/ebz46L3GVKls4dfijudI/aMMFIhNBeIs8P67frp67tDQMGGlGzh6lhhkFjO0Jk4kYIg/rfGgU+I5HDwOe0JVmnanqhVK0NhBn6hzHD15QfgzSdgZNXmegMJ/Fv0oBjMO3LHUaNGTsmVOFy3wHjx6lt7/bCj9+F13YdGVgeGraMHc1KpxdQFPbGmVLg223g//YudJUqY/2Z5/T9KHPUcKn7WYQEICL3/q4sltHE6evSzAoX3LesLyxYGBvkTtTvR5p2ZiAoQtwMuQFvV5+Fw8WeXx4zDKmS2j0oAHDf6cuGflZDHgR1fOBCw5gHEdmdZMtkjyhAxZp7KOV84Zoa7HsFyq7kfUoVX9GK28DI0MtytmDSUGAxnY3YR/sPD5OEhrNFtyOcj7YusZT2Kztf4YJifOWhqpPfEPgeE//07tmtcVg3S3r8aJCSHSh5cnZ/IkzQ3zxwjrlgxskWdLr/Q3jNoB2AK8PKnp36Nnae2fo1RxBpIzF65S4fw5BYBHB7z8Q4DfERn4kyZb/P9dN018QuV29fTpU/V+cL4V63YQ/wh6WTtlcOavLSt/HymuzYF/GNVu3YvqvllWWNhs0UO2B/5ByT90Ofy2cC39MPFP+nloDzUZR747/AOsVNF8NvehDLyhoY+Fbgz6HLp//RNt2X2Iti+foOCZYX363L+J+6lrN24LLXliq2mtZd9I/hqRlX0iQ8Po2g1/ypwhrUiTgf39+b3lH6ZRw6uAl631nds2UsXYUsc/mHavnGyzpe7Y6YvUuutgAYvSh9e8D1uBl/uXnoMmiK8Yi6d9F6k92yw+UYwWXv4KxO5mDKHyC4U8L4NdeHgE/fJDb2Ht/ap7W+GDbwb5nh/a8KsweEjgfa9ZbfGliwGdf7Bx4P6Hf3zxxGUGTVcBb+YMaWjq6D7qtp9GPBU/5His2nXguOgT5dcQvi/+cc0/+Hhs4zktRQrkEmBeKF8OcQ7+IcDvCP94N4Ps46aN7kNvlC0qDrFBhL9csiWdz8VfbsqVLEQNapYX/QUCFIgPCsRJ4I26SoMUmqGBOyY5M5kHvwV//UOH1v+qPhsePXWR2nw8+IXBh8/BnWGLRtXErN6uX44RVtQVvw2LVI/sv/kwMCha4JUD6+bFPwqLQnQhKujZej8McM0aVBUWJBl4EClVt7OYAPIq4J3/y0DVGfIqE+zzFXWWsHj+t6qJT3/OAC9bA39bsFZ8LmOA48/TDOvsD7hu3mjiT3OvAl75WS2qluyGwNYLOfFF+Amu3vbCagnc4deqWka4t0QX+BPmhcvXxf2YQdbh3lVTBHi8CnhtrT+GogtXrtOq30fG2C9EBV6ekNKqyyDyTZWCWr5VXVj5eJKcBK2YTmQL8LL1kN0MGNob13mDKpYurABRnjc64GW3nw/bNFSXZhcb/jrCnzvF5M1G3ahhzQqRPgHzD0VOfxnwlqnXRVioolr+WDe2ovKPAFv04PbAPv786V0G+fXCXLVAzpSfNLynsOTZGhh4uf2avpEMQAwc/ONYBp5AO3Lin7Rv9S8C4PnHNN8/r1LwRrmiVLpoPvGj3Axbdh2m+Ss20YXLNygwKFi4sDwMDBZfdKJbBeZVwBv1K8DilVvFl4+ofrUve/bXAbz83vNXJl4Vgb8gmf6ituou88Vk4X0Z8LK1nb9GTRnZK0bg5R8ok2cvp8MbfxWQKIGX+1V2beLfNnN+7i9WMqjW7HPxFeKDlvVcCrxRV2mQmnCf0LNLq0irVvAqD9x/sVGDfai5z+cfp9x/Lpo2WPxgjgl45Y/BqF8WeLzhH9v7j5ymA0fO0P5Dp4i/ArBLx3f/6/jKfsneukZ+KOBqBeIk8PKAxp+0ZeAOigFTWmJlOg9+qzbtpp0rJqq8u/Yfp859RolOLcFz3zl5kKGMB132e+LP6WwVYFA0wyf9xgk/zuiWJZOd5ssmpEUFPVvuZ/jXXahk7U7Cp1P62Mp7Ktegq+hwXgW8y2YOUf50Enij+ueawO8o8PLA0qzTt3T77n3q//n7YpKJl1di4S7AfmG2Ai9bE9ifk8FFTi7hZ2aArtash/A1ZetVdHXM+QTwVin9gu+d1E3650aFjmdPn4lP0H/PHi4GhVcBry31x+2JB1224r1sBYaowMv3yoOc+NKw8xBdvxlA6dOmErPCebCNCXxtAV4+N1vb+AsIPwP727JljN0V+JMzh+iAl31w2eolgwm8/Lm7RK1Ool64fsxQrsHH1Kxh9C4NrDeXY19WDw+PSOXYPSB1qpQCqG3RI7r2IIGXfRUzpkstziOBNybLZUwdLQNv7uyZxFccGRh4+euO6ZeqgddajYWhn+cNrNuyX3xh4bS3alekPt3aCDBZu3mvcGlhF6t2zeqIHw/cP7F1ld2zHAFe86sH36t0+TK/eL1qQHEWePkrBs8z4PY1ZUSvSEt/vera0R2PCXilm8GsH7+iciULRirK/RH7308Y+gWVqP2hcGdgtwYz8GRnNqTwDxTZ9vmHEPeri/7eIlxg/po9nA4eOSOWg2O3H64jRyy8Zy5cE+5NMa1WIftnNjx0aF1f3U+qlMnoG8PgsWXnITGHIjo3jui0u3s/kGq16kWN61QSrg7sQsS+4qyZGeRqF+zPzP13TIHnWAwb/zvxJMaoXzUdqVuUgQLuViDOAm90qzREFSu6wU9ObOPO5M1oLDveSb3EoMhQ7H/73gsWXnZZ4F/50QGv9F+M+gnavK+owGvr/TAQsPXVtPAyoLPllwHk9QOvv5gIERWK2Q2A3QF40lp0Lg1ygOQOlSfFycAdM8OjrcArdYrJwisnJjoKvPzD5exFP/GZM7rAVjx+vlcBr63113PgBOK8US3K5rWjA17zOP8Imb/8H5q1YE2Ma3hy/potexL7sJqT1nYfPCH8baNbzol/pBw9dYEm/7aMeOIY+xQz7NsLvAwAxWt9+MIXh7CwJ1SmfhexDFRM7ZR/uLGbkZwlbz43+9ab7jHyWHR6xFXgNZ/n/oNHtPqfPcSrcvDa4ewfy3V/9sJVWjdvjPoaxT8EytbrQg1rVXQIePnHlfm5WbqERHXjedkg4wzwst86/9Dj9XAnDv/itczijwl45Q/hAT3bR1rnlzWs2Kib8LnmH2GN2/ej/Hmy0ZiB2p2Nn5+t5YFBIcI3Pirw8o8V/pHN8MlgzT9Q+MsAB0eAl3XhcvyjNTpXFfkjmn8oswFG3k/USWtscX33E2tZsSW/DolkGIipTvmd5neJrd38ZWbj88loZn62BPMcl72rfhHn5C92CSjBC/7bXEYuL8nzDF41SdjdMIPrQ4FXKRDvgJcH38pNP4vW2nT+8nVhvWHLGf/in7dsk7AsyYka/OLXbNlLzOaPDnilH7Dp78UC89Iv7KfHrhIS5OQnc1vvh60U5uQgPi9PyPv06x9t8uG118LLg3Llpt3FrHrToseuAOyqEBV45fNIP2bTX5IHnSYffC0+p7HvI2sRVQfZqctNPPiTGQ+WUX14pbWOP8uxL5qjwMudOsPshgVjIw3EbJFii7ScyPQq4LW1/n79c5UAHPn8YrB4GEQf9hpJnd5tJCbJMfSwjxw/GweGjcDA4BcmLDHQVn+jFPHgHl3gdUZzZYtshZQuIhJ4ue1kyZQ20ix69gfkHzkMA/VrlHcIeN9q308sas9WRBl4Jnvfob+8tJ3y0lE8YU++Vxpq/cVERPYPtkWPuAi8/C79e/wcNapVMVJ1sSYnTl8SlkOeGMb55OQ/zij91XnFkeFfv7ixzatcGri/YT92GYSVct1O2v33JJs3CpDAO2FYD7HKQ9QQ0z2wO4b8qsErB5h+ya8adF52PCbg5TI8z4GvI9fc5TTp6vDHxG/E5D32d2XXDjZKyNUqGJbrtOlDn3zQNNJGD9LCy+fpO+QX0f64D+P3o171cuI2HQFeLsfLs/kH3BM/Ln1S6kmT/OOTdTt9/opYOk0eY1CNbpUG/lLBz226tfGXIH7O1k1qUsUyhZWc7KJX990+Ys4Az91gFxr+4c/1wxPcOHC9teo6mFKlTE7sw8tAyxMuub8x57zIk8of0o6srexMO0BZKBAbCsQ74GWReAIR+2v16tKSeGkw9jHlGbpsPeOBmj/jSMsdL03TtX0T4d7A1s3LV2+K1RVi2mmNBy7+ZPlNj/ZiVQh2qeBVGiRoSCsLW04Z2HgVA1vuR/qW8ue4ejXK0fWbd2jCzKV06eqNWHFpYJ3qvfs/AYNsDUiSxIuWr9kurslQJoE36vPwLH7+bMYTgQb17iCsJrwqRLZM6cQyTj98+7Gwaq3etFtMyDJ1iLos2fufDSO/m7eFNTNvrqxihQSe2c66Scuso8ArV2ngpZ+++KilWPnh1Pmr4odOoXzZafz31kSOVwGvre2JrTD137MGLV4Oi78kTP5tuVg2b9nMocJVgSeSMYhO/aE3pUntIz5zT5y5TAxO5UsVEj94tu89Iib/jRvcnepW0xMjzZefV9vgZYR4AxZ+Pv4RMuTH2cSfUmU75B8uvDIAT+DJkzOzcLf4ffE6Wrlht3Dn4Elyjlh4+b1i1x7+glKnWlk6fe6KaN8XrnA7ffUqDc0bVqM2b9cUn/x5mS4euHt3bSVgmaH9VXrEReA9f+m68OFli17T+lUElPHOVQN+mCF+WPCybtzOpsxZQT9995lYzYHbwfK128U6r095qbcRPcW7yHXIYMxhzJT5xEsAftvT8lNPm8ZH/GCXO62xb2e3D5oK3/1/j52jb3/4lRrVrvjSmftRBxF2qeF2wBZSrj/eiYt3MXvVPciJigxCvERb1FCqaN4XfJhjGsD4ixr3xxzOX/YTP3J5OT9eXYQDbwjDX2P46wTPveAlKRlIGfx4lQuesMw/wDkw3Dbp8LXwhed1d9llZuoff4tNKpbPGqog2PTh5XLS6so/5tgIIncWcxR42TjC80G4Ttu3rEtZMqYTy9kt/HuLGD/MScZ8/ZiAl4/xO8JjjHRtYGhu2WWgAGrua3jyGmvBq6XcvvtA/Kjifsj6UTKcbvjfoS86txD3smztdlq9cY9YTUf6WvMXpVGT5gkf4ab1qlCGdKkp9PFjOnLigtjsySdlcvEj/XX9qIkNkME5oYAtCsRL4OUHZ9/FP5duFJOzvL2TUME82QXYmjum/b1hlxiIGC4Z5Dq/95aY8cr/2GIqOyJza2H2axo7ZQFt3H5AuD7wp+GP2zdRqzbwL+au/xtNJ89eER21XNz7VffDndhP0xcJPzOGSF7fkj8Ps//gmxWLx7i+qVylwV4LLz8bW1MYMC9euUEpknuLwZnhiNdvlL610T3P1t2HRQd57WYA8cxiXhKufvXy9MEXI+jkmUtigK79ZpkXdIgKvAyJbBWV6/Byh1y3WjmxnBwDIwdHgZfL8mDOA+LuAycoOPSxcGXh+/q0wzvq86AtwGtrezp/yY9GTZ4vJnzwTOeiBXMJn2w5q5yXvOs5cKKwdPL6qzyjesa81WJSHg9Y7N/KnyPbvlNLzRiP7iXmHyRszZPXKV00P3V+r5HwS2dw4h95UtvNuw7RvfuBlCxZUiqcLyd1+6CJWKYuatuWy5K9zIeX64cnsYya9KdYnzTsyRMqWTQffdPjfQF8vEoJg0pMgeuBN/ngdVrZn1duRcsAw4EH6FfpEReBl+Gd2zCvW81uNPzFg9saQxlbFRmeGFzF5L+dhwTgst8ugzBPhhs8ZpZYkYPdYfgrAL9f0QVeAYJ9feVXEF5Wirf2lets88oxfE7TJ96WQYBXd1i1aY8ot2rOSOo3fNor74Etotx/xoHyyvoAACAASURBVBTkJEdbri+tzDHllW5SfJyX0OIf5TwhlQ0T3GfxhC7zmXnJSZ5QyLrw+sRsBeUflfzlSYaowMv9b53WvYUbnDkR1lHg5evwj8BfZq8QKwyx9ZXHITYU8KTQqEurvQx4+cdq0w5fiz5Fujawvy73XVt2H6aAO/fF+81j22cfNhNjkgzcf3NfzctI8uRC6cfPk1jNwG1u/op/6NTZK3Tn/kOxhGfWzOmpeqUS4guVaaW2pU6RBwrERQXiHPDGRZFwT1AAClgKsF8hw7G56xIPvlXf/kysi8urTSBAASgABaAAFIhrCgB441qN4H6gQBxW4I8lG8TMbXaVYB9I9lNmV6DjZy4J6yAsQXG48nBrUAAKQIH/xwoAeP8fVz4eHQrYqwC7HfAazItWbhFrf7LPI/vEs580rwcaFwO7CfDn7VcF9n00P3u/Kn9cPc7Pys/8qtCgRgVhlY+NEBfu4XU+V3x7ntepDc4FBf4rCgB4/ys1hfuEAlDAIQV4IhPvmPeqwH78vH73fz3ws/Izvyqwn3xMu/m9quyrjseFe3jVPdpzPL49jz3PjrxQIL4oAOCNLzWJ54ACUAAKQAEoAAWgABSIVgEALxoGFIACUAAKQAEoAAWgQLxWAMAbr6sXDwcFoAAUgAJQAApAASgA4EUbgAJQAApAASgABaAAFIjXCgB443X14uGgABSAAlAACkABKAAFALxoA1AACkABKAAFoAAUgALxWgEAb7yuXjwcFIACUAAKQAEoAAWgAIAXbQAKQAEoAAWgABSAAlAgXisA4I3X1YuHgwJQAApAASgABaAAFADwog1AASgABaAAFIACUAAKxGsFALzxunrxcFAACkABKAAFoAAUgAIAXrQBKAAFoAAUgAJQAApAgXitAIA3XlcvHg4KQAEoAAWgABSAAlAAwIs2AAWgABSAAlAACkABKBCvFQDwxuvqxcNBASgABaAAFIACUAAKAHjRBqAAFIACUAAKQAEoAAXitQIA3nhdvXg4KAAFoAAUgAJQAApAAQAv2gAUgAJQAApAASgABaBAvFYAwBuvqxcPBwWgABSAAlAACkABKADgRRuAAlAACkABKAAFoAAUiNcKAHjjdfXi4aAAFIACUAAKQAEoAAUAvGgDUAAKQAEoAAWgABSAAvFaAQBvvK5ePBwUgAJQAApAASgABaAAgBdtAApAASgABaAAFIACUCBeKwDgjdfVi4eDAlAACkABKAAFoAAUAPCiDUABKAAFoAAUgAJQAArEawUAvPG6evFwUAAKQAEoAAWgABSAAgBetAEoAAWgABSAAlAACkCBeK0AgDdeVy8eDgpAASgABaAAFIACUADAizYABaAAFIACUAAKQAEoEK8VAPDG6+rFw0EBKAAFoAAUgAJQAAoAeNEGoAAUgAJQAApAASgABeK1AgDeeF29eDgoAAWgABSAAlAACkABAC/aABSAAlAACkABKAAFoEC8VgDAG6+rFw8HBaAAFIACUAAKQAEoAOBFG4ACUAAKQAEoAAWgABSI1woAeON19eLhoAAUgAJQAApAASgABQC8aANQAApAASgABaAAFIAC8VoBAG+8rl48HBSAAlAACkABKAAFoACAF20ACkABKAAFoAAUgAJQIF4rAOCN19WLh4MCUAAKQAEoAAWgABQA8KINQAEoAAWgABSAAlAACsRrBQC88bp68XBQAApAASgABaAAFIACAF60ASgABaAAFIACUAAKQIF4rQCAN15XLx4OCkABKAAFoAAUgAJQAMCLNgAFoAAUgAJQAApAASgQrxUA8DpZvbVq/aDOsHHjlyI+cuQqlXbr1kMV9/BIoOJp0iQX8dy506m0gIBHKn7xYoCIJ06cUKU1a1ZGxUNCnoi4t7dntNcqXz63Sl+79qiI370bpNIyZUql4p6eiUT84cMQlZYsmT5vePhTkZ48uZc63qBBca2cn5+Kj1twXMTbtauk0vz9tQb37weLdPNZ8+ZNr/LKa2XPnlqlbdt2RsWfPdOXPXnyhvhPAi0r+fgkVRlCQy2N1q49ptKaNi31wnNzwuXLd0R6mTI51PHg4DAVl/XRr18jlTZjxrYXjn///Tsqbc6cnSoeGBiq4i1blhNxU5c1a/Q9Bgc/Fsdr1iykyhw6dEXF69QpIuKHD1/V52yi6+O7kWtU+oABTa14794q7afs9VU8ffqUIv5uUW+VRsWKqfjgwctF3GwbGTJYZTj4+iZT8Y8+qibiu3efV2mnT99UcVm38vn4QObMuh02b15W5d206aSI37mj34mICKsdcmjTpoL4O2KEftcSJ/ZQx3v3rmfFH+nyX36n8/7wQyuV959/rGutWnVEpQ0c+Fw34xoZM/qo42b7TJEiiUhfuVKXDwqy6pDD7duBKl66tNW+atcurNISGA24XD5fkR6aROtqtsPUqa30zZtPqfLmu1SuXC6VLuvuq68aqrQjR66puHx/ChfOrNKaT/9GxWn1ahGfOHGTSkuVSr9fadOmUOlnzlj1nDy5pQUHs25l+/fysvoaDmvWWP0SB7Pu8uXLINI2brTqhYOvr26fH39cQ6TNnLldHQ8J0e9qxYp5RHrXrtXV8RYtJqp4o0YlVLxjxyoibr6rv/++Sx1/992KIm7Wt2ybnF6qlFWfly9b/TUH810167ZNm/Li+NKlB1XeqVM7qPgHH0wX8WdGJyf7Zk4PC4sQxx890n2Jp6du88mS6f7Zw8MaNwoV0nVraty9ey1x/LPP/lDXT5dO16fZX4WFhYs88i/HzbEkQwbrvbhx4746l3lfRYtmFen37unxxxy3zpy5pcr16FHnBY3McadatQIqr4zId4L/v2LFIZFs1v2FC7dVmb17L6j49evW/SZNqse6NGn0e5cjR1px3NTNvJbsL775prE657hx61S8Z8+6Ki776g0brPGRQ+/euh9+4aGQECsKAHidlBXAS0QAXpJADOAF8HKXAuAF8HI7APASAXi1cQLA6yRwOVkcwOukgABeAC83IQAvESy8sPDCwgsLL/eHsPASwcLrJFzFQnEAr42ivvfpEAoOCaWlM4ZEKgHgBfACeK1XAsAL4AXwAngBvFZ/COC1Ea5cmA3Aa4PY5y760egp8yhhwoTUpV1jKlkkryoF4AXwAngBvKwAfHjhw8vtAD68sPACeG0AKzdkAfDaIPqoyfMob84s5OmZmPYfPk0De30A4MWkNcKkNUxa444Ak9aIMGkNk9YwaY0Ik9ZsACo3ZgHwvkJ8nhnesF1fWjz9O/Lw8KDG7b+iVb+PFPDLARZeWHhh4YWFFxZerNIghxJYeGHhhYXXjVT7kksDeF9RL1t3H6bla3fQmIGfiJz9hk2jGpVLUd1q1hJKAF4AL4AXwAvgBfACeLEsGSy8cRN05V0BeF9RP70GTSSGXrbucoiIiKAKpQvTxGFfAHildliWDKs0YNIafHixDq/oEWHhhYUXFt64Cb4A3pfUy8NHwdTwvb70z6JxlDixtWB6eEQE1WzRk5bNHEqpU6WAhZdFAfACeAG8AF4AL4D3+XiKZcmwSkNcRF4A70tqZd7yTbTv0CnlziCzsltDkQI5qV3zOgBeAK9oFliHF8uSYZUGrNIAC681SgJ43QS8CfXOrC4Fzqd6F0yXXtfOiwF4XyJYm27fUfsW9ahhLWsbUxk2bjtIU+asoIVTBwF4AbwA3ucvBtbhxTq8WIcXLg0AXqtDdMs6vImtyfQuD0+euPySjlwQwOuIakYZTFqDSwMsvNYLAeAF8AJ4AbwAXjcCb5IkThKNg8VDQx0s6NpiAF4n9QbwAngBvABeVgAuDXBp4HaASWtwaXCbhTdZMieJxsHiQUEOFnRtMQCvk3oDeAG8AF4AL4AXy5LJoQTAC+B1G/CmTOkk0ThY/OFDBwu6thiA10m9AbwAXgAvgBfAC+AF8GIdXrevw+vr6yTROFj83j0HC7q2GIDXSb0rVx6mzlCjRkERN3/hJ0vmpY7fvPlAxaWvW/36xVSav7/+lXT5srVVpb9/oDreooW12QWHS5es46VKZVdp+/ZdVPGCBTOp+Pr1x5/HE6i0VKm8X7jvoKDHKs3PTzfgNGmSi/Q7dx6p4w8ehKi4l5e1ZBuH7dvPir8tW5ZTaSlTar+iJ08iRPru3ReiPZ40qadI9/a2/nK4dUvrIrdx5XSpQfLkWuOzZ2+pckWKZBFxsw6uXLmjjpcunUPFr1+3OuscOdKotFOnrEGcw9mzVrxRoxIq7eFD7be0ffsZkV6+fG51/PhxPxU370FqY973L79sVnnv3rU+DxUtat1/VA06dXpTpC1dekAdr1evqIqvWyfrm6hQIasdNG+u286ECRtV3oQJrTZharF//yV1XLZlU3dfX/3ZLFu21CpvaGiYiMs1qzku0zieIkVScdycwR0aGq7KP3v2TMUDAqx2L5cD5Livr26zjx5ZbfX8eX9VJlEiPUO5adNSIt3LS0/iMDUuWzanKpc4sbXG9q5d51Vaw4bFVfzBg2ARl1px3M9PD+6VK+cTx58aM5UvXLityj99qp/r2LFrIr16dauv4CDfL47LtvH777uM41pv2eYuX9btODRUTxgpU0a36enTt4pzfPVVI3WuWbO2q/j9+9Zz5ciRVqWNGNFCxXfsOCfif/31r0rz9tbvWpo0+r5Onrwh8kgtOW5qePz4dXHcbPPqpETk42O1DQ5XrtwVfx8/1s+V0Jh9niVLKnHcfD937rT6HQ5vvJFX/DWaEx04oNt0uXK5VF7ZZgYNelulNWs2QcWzZ7fat2y7HP/++3fU8R9/XCfi4eF6lvq//15Rxx890n2EbCdm+5d1wAVkH+HhEf1M+/PnrTYl2yPHCxXKrK51544eK+S5PD1132y2k5QpLb3lX45v3XpanatSJUtDDrLNBgdb7zeHJEn0e5U3b3qRZvZx5nVl+zb7XjkOWNrq8SFBAqs/WrfumLpWly7VVbxBA2u8HDNmrUoj0u+XfO8+/riGOi5X0OGE3butNs3h3j2r/ZsamO+i1KtkyWyqzOHDV1Vc3mPFilors259fHR/JcdIc3yaMKGd8QyvKZpWv8uv6Yy2nSZAb61tWwH35ALwOqk7gJehAsAL4NVwC+AlAvACeHloAfDqH3QAXjacaINMrABvhgxOEo2DxW/p53LwDC4pBuB1UmYAL4CXmxCAF8ALCy8svNwXwMLLX3G0EQQWXj1GxjrwZtYWfyfRxr7i160vOHE9AHhfUUPb9hyhSb8tp1PnrlBSL08qW7IA9fm4NWXPYv2SAvACeAG81ksElwb9WRsWXlh4YeG1+gUArwuBN5t2v3ApfF7Vrh4uva6dFwPwvkSwzTsP0f++n0xffvou1a5ahtjv6LeFa2jF2h3095wR5JMiGYBX+EnCpQEWXgAvLLyw8MLCaw2osPCyX7obfHhz6rkJdrKgc9kvaR95504Uu6UBvC/Rt3nnAdSodkX6sE3DSLkWr9xK1SqVoLSpfQC8AF7RNgC8AF4AL4AXwAvglbDgFuDNkyd2iTGms5/XE37dcwO2XRXAG4NOj4JCqEKjbrRu3mjKkjHmmY9waYCFF8ALlwZWAMAL4AXwAnjdCrz589tGfq871xlrlaK4HgC8MdTQDf+7VLtVLzq4bhp5eca8PzWAF8AL4AXwAnixLJkcSjBpDS4N3BbcYuEtVMg9zHnypHuua+dVAbwxCBYeEUGl635Ef/02nHJkjXmpDwAvgBfAC+AF8AJ4Abx6jWb48LoJeIvq9djtZEHnsh/T6yY7d6LYLQ3gfYm+7382lMqXKkSffdgsUq6JM5dSverlKW+uLPDhhQ+vaBvw4YUPL1wa4NLAfQEsvLDwus3CW0JvjBS76Bjl7IcPu/Ryjl4MwPsS5fYdOkVdvhxDvbq0pIa1Koqcvy1YQ2v+2UtLfv2ekidLCuAF8AJ4n79DWJYMy5JhpzUAL3cHsPC6ycJburSjLOhcuYMHnSvvotIA3lcIvX3vUZowcymdPn+VvJN6UeWyRan3x60pQzprz2q4NMClARZeuDTApQEuDXBpgEuD27cWLlfORegY5TL79rnnunZeFcBrp2BRswN4AbwAXgAvgBfAC+AF8LodeCtVcpJoHCy+a5eDBV1bDMDrpN4AXgAvgBfAC+AF8AJ4AbxuB94qVZwkGgeLb9/uYEHXFgPwOqk3gBfAC+AF8AJ4AbwAXgCv24G3WjUnicbB4lu2OFjQtcUAvE7qDeAF8AJ4AbwAXgAvgBfA63bgrVnTSaJxsPimTQ4WdG0xAK+TeufP30+doWfPuiK+fLmesZgrVzp1/MGDEBVPkSKJiKdKpffbjojQs7y3bj0tjqdJk1yVad++soonTJhAxMPDI1TawYOXVXzMmDYqfuzYNRG/cuWuSitSJIuKP3xo3dfx434qrU2bCip+5codEV+zRq+1lz17anU8Z069E92pU9bAV7Gi3uJwwQLt0P7557XF8cePw1X5u3cfqfj9+8EinjJlUpV27do9Fa9QIbeKf/DBdBH38kqk0jp21J90KlXKK9LNHyUjR7ZUeR89ClXx+fP3ivjMmZ1U2qZNejHtgIBAkX7xYoA6XqJENhWX97tr1zmVVqhQZhX39U32gl4bN55Qae3aad+rRYv2i3QPj4Tq+NSpm43n1u1AJtatq9df7NjxV5W3VStrEoN5L7Nm6c9PefKkF8eTJdODlaxvTj979pY4LtsrxwsX1m3n8mWthzzXxYu31fUbNiyu4gcOWO0zgdV0RUiYUD+jh4c+cOLEdXHc21vfl1wFgtOzZUsjjptLgYWEhKnzNm1qzVa+dk23+WXL/lXHCxbMpOKXL1vt22yHrVuXV8e3bLHexadPn6m0sDDdfj/6yLKq/PFH9H5sJ09a7wSH9ev7iL+//rpNpSVOrDVo0qSUSN+wQbeNjBl9VN5btx6I+DN9K5Hav/kuyHb05pt696Vduy6oc0m9kyTRG+v8YLwfU36x2lxg4GNVxnz/ZB9k3e9xkSdduhQqb4kS2VV82zZrJ6bUqfV7cPdukDp+5MhVFff29hRx870377Fx45Li+IEDl1SZS5d0O6xTp4hIN/vOX3/dqvJmyWJNOOZQq1bhF84l+14+8OabBcTxyZPbqzKdOs1Q8QYNrPZ986ZVLxzMtjV48HKVLt8P2ZfwAbMfvnrVaqvmShdBQVr769fvi+NmOyxUSLfj5MmtMYWDj4/Vf5rjz/Hj1jjAQdbNn3/uUWlJkuh+1MtLt4myZXOKPPI94HhgoO47K1fOJ46bsPfkiR7L5Htr1oc51qROrcc4OR6ePq3fmdKlc6h7zJQp1QsamHoEBVn3Zd5/sWJZVXlzLOrQwepHx4/foI6bfW6zZmVEutkvBATosapAgYzi+N69+p0KC9PjsbxXziM1MPs7yQvq4q8jUqfO6ziL/edYv97+Mm4oAeB1UnQALxGAVwM6gJd/FAB4zW4FwEsE4CUC8GqwBfASxQrw1q/vJNE4WHzNGgcLurYYgNdJvQG8AF5uQrDw6gEdwBu5UwHwAni5RQB4AbyxbuFt1MhJonGw+MqVDhZ0bTEA70v0btd9KB09eYESJExAHgkTUv482ei9ZrXprdr68zOAF8AL4LVeIrg0wKUBLg1waeC+AC4NRG5xaWjSxLUEKa+2YoW6bljYEypV9yNKnFi7yNSsXIrGDvrUPfdmXBXA+wrgbd2kBjWu+wY9CgqhnfuP07Dxv1P7lnXpwzYNRUkAL4AXwAvgZQXgwwsfXm4H8OEF8HI7cAvwvvOOe6By6VJ13YC7D6hpx/60Y/kE99zLS64K4LUReGW2Pf+epE/7jaMtS8ZTMu8kAF4C8AJ4AbwAXkxak2MEgBfA6zbgbdHCPZC5aJG67sUrN6jbV+Nozdwf3HMvAF7HdGeXBmnhNc9Qu3VvGvJlJ6pYpjCAF8ArmgZ8eOHSAAsvLLyw8FojJVwa3GThbd3aMdhxttT8+eoMR06cp8++GU+5c2Sisxf8qEDebPTtF+0pZzZrVQt3Blh47bTwcvZmnb6lbh80pTpvlgXwAngBvM/fIfjwwocXPrxwaQDwWh2iW1wa2rZ1D0/Onauue/6SH81ZtJ7at6pHWTKmpUmzltGWXYdp2cwh7rk346oAXgeAt3zDj2nKyF5Uulh+AC+AF8AL4BUKwMILCy8svLDwSqRwC/C+/757oHLOnBiv+yQ8gsrV70Lr5o2h9GmtdZTdFQC8dgLvph3/Uv/h02jzkp/IyzMxgBfAC+AF8AJ4sfGEGkngwwuXBrdZeDt0cA9Lzpqlrnv7zn16GBhEeXJaGxTxqg1l6nehrUvHk6+P3pjGHTcK4LUReENCw2jHvqM0eMws6t7xHWrd1NrCD6s0YNIatwP48MKHFxZeWHhh4YWF160W3k56p1CXAuWvenfPbXuOCE76bfzXlDFdapo4a6lY4Wre5AEuvaXoLgbgfQXwynV4OVuubBmp07uN6K06WIcXWwvz9pzYWhhbCxNha2FsLYythbG1sGXNdPPWwl26uAcqp06NdN1pf/xNc5duoMdhT6hogVw0sHcH4c/r7gDgdbIGYOGFhRcWXuslwqQ1TFrDpDVMWuO+AKs0uGnSWrduThKNg8UnT3awoGuLAXid1BvAC+AF8AJ4WQG4NMClAS4NcGlwq0tD9+5OEo2DxSfEvU0m4NLgYF2+rBiAF8AL4AXwAnix8YQcJzBpDRZebgtuWaWhR49YoBwbTvnTTzZkcn8WWHidrAMAL4AXwAvgBfACeAG8Hmo0hUuDm4C3Vy8nicbB4mPHOljQtcUAvE7qXbbsYHWG7t1rifiiRftVWtWq+VU8MDBUxZMn9xJxD4+EKi1VKm8VX7Bgr4h7eSVWaUOGNFPxO3ceibi/f6BKO3fulor3799YxRMmTPDyp/TzE8e3XQhS+cqUyaniu3efF/FcubTTuXmvvr7JXjz/P/+otJmX9DN09A2w0t9+2yHl9+y58MJ9PXwYotK+/baJiq9de0zER41ardI2bPifis+Zs1PF9++/JOLvv/+GSitbVmsgEwcNWqaO16lTRMUrV84n4qtXH1VpDRoUi/YZV606ItI9PROp43nypFPxXLms+LRpW1TaX38dUvFu3awVQvLmTa/S8s3Uv7Bbncuq0uWEKtPaYJ7X09MapPLl07vgXLx4W5WXbadAgUwqTZbhhL17L6r0nDnTiPiFC8/rmIgKFNDnlfUUEfFUlSlSxFq6hsPJk9dV/OrVe8810oNoUNBjdbxYMesZL13S1ypcOLM6njdvBhE328ayZQdf0JgTwsOt+zl16oY6braj+fP3iPTHj8PV8du39XvXqFEJkb5z5zl1/PHjJyp+5codFW/Xzmpf5jt5755+7+rWLSqOHzhgtUcO5vslz5U4sdbFtCgeO2a9yxzOnrX6gzff1H3Q4sW6b0qUyDqHr6/ud/r2baTKz51r+SSnT59Spb39dmkVP3/eX8U3bz4t4jlyWG2Ag1nPsh6uX7+vjh89ek3FzecJCLD6tmfPnqnjyZJZ/SUH+d6Zz2LWvaybatUKqDLTp29Vcfl+ccI771jPY7qj3LjxQOX95BPrXZPtjeMDBy417sWqr4AA3R7MCWwHD15WedOmTS7iDx/qcaBixTzq+O3bD0U8QQLdX8s65PTkyZOI46Ghum2ZGmfN6qvOJVeNMevD3986P4c0aax7Mfur1Kl1P27277Ierl2z3kkO5rgknys8XE/YSpJE9/k+PrJ96fo0NTDbf4YMPuL85r2WKpVDXTdJEqvPLF5cTxgODg5Tx+VYJcdXPvDGG1bfzMHsAxo3tt5bs22Yz9Wp05vi+PHj+p1KlEiP17JvNceE7Nl1+3/yROvx9Kn17GbbGDzYsTFQPUx0kf/p8e2l+V73wVGjXvcZY+V8AF4nZQXwRh6QlZwAXgLwAnj5fQDw6h8eAF4AL78TAF6iWAHer75ykmgcLD5ihIMFXVsMwOuk3gBeAC83IVh42bUFFl7ZncDCCwsvtwVYeIlg4SVymYW3f38nicbB4kOHOljQtcUAvC/ROzwigkrU6hTp86PMPmNsXypXsiABeAG8AF7rrQDwwqUBLg2RP1sDeAG83De6DHgHuGlzh+++cy25Ong1AK8NwLtx4VixY0h0AcAL4AXwAnhZAfjwwoeX2wF8eIngw8srVbjBh3ewnlPkIBM6VmzgQMfKubgUgBfAS4RJa4RJa5i0hklrRJi0RoRJa0SYtEb0n5y0NmSIixHy+eW++cY917XzqgBeAC+AlwjAi1UasEoDAXh5OADwAni5HfwngXf4cDsR8DVl79fvNZ0odk8D4LUBeBMn1stHcXZ2b1gz9wdREi4NcGmASwNcGuDSgGXJ5FAClwa4NHBbcItLww8Wl7g8fPmlyy/pyAUBvDYAL3x4sQ6vbCZYh5fXD9ZrwGIdXiKsw0uEdXixDi/W4SVy+zq8Y8Y4woHOl+nd2/lzuOAMAF4AL1wa4NKAjSew8YToCeHDC5cGbgfw4f2PujT8+KMLsDGaS3zxhXuua+dVAbwAXgAvgBfAC+AF8D4fC+DDC+DlpvCf9OH9+Wc7EfA1Zf/ss9d0otg9DYDXBuCNbmvezz5sRl3aNYYPb5StT5Wc2GkNO61ha2HxOmCnNey0xu0AWwtja+FY31p40qTYJcaYzv7JJ+65rp1XBfDaKVjU7Ji0hklr3Caw0xo2nsA6vFiHl/sCTFrDpDVuB26ZtPbLL04SjYPFu3Z1sKBriwF4ndQbwAvgBfBaLxF2WsNOa9hpDcDLfQE2nnAT8E6f7iTROFi8c2cHC7q2GIDXSb0BvABeAC+AlxWAhRcWXlh4rb4AwOsm4J0500micbB4x44OFnRtMQCvk3oDeAG8AF4AL4AX6/DKoQQuDQBet7k0zJnjJNE4WPz99x0s6NpiAF4n9e7cWf+iSpMmuTjbsWPX1FlDQ8NV/OHDscBrJgAAIABJREFUYBX39Ews4v37v6XS5s/fq+IVKuQW8TVrjqq08uWtNA4hIU/E32zZUqu0ixdvq3iaNMlU/MCByyKeLJmXSkuQQD94q1blxX/M8v/+e0VlyJrVV8QDAh6pNHMiX6JEel1WaeXq06e+ypssmaeKS7+mRYv2qzRvb31fKVIkEenm+R8+DFF5fX29jWewHiJt2hQqbfFifd506az0N97Iq45v2HBCxYsVy6riMo+f3z2VZlrsLl++I9Lr1y+mjl+9aqVxOH36pvgr643ju3dfUMfTpbPaBofmzcuKv0WKZFFp33yzRMUDA0NFPHPmVCotUaKEKt6yZTkRX7PmmEorXlw/S2io1TY4yOcZMaKlShsxYpWKX79uPW+uXOlU2smTN1Q8IMBaX9RsOzdv3lfHc+dOr+L37lnt22x7Z8/eUscLFLC2L757N0il1atXVMUvXQpQ8WvXdD3IxMeP9buUPbvV7s12alqVKle26tzLy3rPOKxefUTFU6fW9VG1an6RvmzZQXW8fn19X/L9efxY65oyZVKVV5Y/dsxPpR0/ruMVK+ZR6Vu3WmDYunUFlebhoV/GWrUKi/Tp07eq46YvoIeH1Q7MiXBZs+o+IHFi/S5u2XJK5J0woZ06V//+i1VcvrfyPeEDvXvr93bq1M0ib1iY1t3TU2/CI++F88i6K1culzq/We7mzYcvnKtSJa3L6tW6n8uXL4PIaz73kSNX1XnlWqdm+Z9+Wq+OS3968z0wl9kqVCiTyrtnj/WOyj6O476+uu+U731ExFNVpmhR/a4tWrRPpHt76z7u6tW7Km+dOkVUPDzcOsewYc1Vmjl+yPfC7PsWLfpU5Z06dYuIBwc/Vmmy7XHCpEn/qPRMmXxE/OhRPRa9+abVzjn4+Vnv8NixbVRa27ba/9O8RlBQmMhTpUo+ldd8f548sdqH7Ls5bj6DvIcCBbTuJUtmV+cy33vZX8mt3jnT55/XVnkzZrSea8KEjSotJMS6Pw6yz545s5NK27DhuIqbffK9e1Y/ZI6hZlzew4cfVlXlzfd6yZIDIr1CBd2OE+pumsz3ysfHGrc2bjypzrVuXSysXTt3rjq/SyNt27r0co5eDMDrqHLPywF4iQC8AF5+HQC8AF4ALxGAF8DL/aFbgHf+fCeJxsHirVs7WNC1xQC8TuoN4AXwchOChRfACwsvEYAXwMv9ISy8bgLeRYucJBoHi7do4WBB1xYD8L5C7137j1PnPqMivcBcpFXjGvRtz/YE4AXwAnitlwgWXlh4AbwAXgCv1R+6xcK7dKlrCVJe7Z133HNdO68K4LUBeAeP/Y3WzP0h2pwAXgAvgBfAywrAwgsLL7cDuDTAwus24F2xwk4EfE3ZmzR5TSeK3dMAeAG8hElremIbJq0RYdIaT07EpDVMWiPCpDUiTFr7D01aW7kydokxprM3auSe69p5VQAvgBfAa6zkAOAF8HKXAOAlAvACePldAPD+h4B3zRo7EfA1Za+vV3d5TWeMldMAeG0A3i5fjiZfH730FRf5pMPb1KZpTfjwElwa4NIAlwa4NFhLysGHFy4N3A4wac1NPrzr9fJ8sUKMMZ20Th2XXs7RiwF4bQDeAaNn0p+Tvo2UM5l3UkqaxBPAC+AV7QKrNGDSGnx4AbzcF8CHF8DL7cAtk9Y2bXKUBZ0rV7Omc+VdVBrAawPwYtIaNp7AxhN6cxBsPEGEjSeIsPEEETae4A1CsPGExAi3bzyxxdqcxOWhWjWXX9KRCwJ4Abzw4YUPL3Zaw05roifETmvYaY3bAXZaI/pP7rS2fbsjHOh8mSpVnD+HC84A4AXwAngBvABeAC+A9/lYgK2FAbzcFP6TwLtrlwuwMZpLVKrknuvaeVUAr52CRc2OdXgxaY3bBHx44cMLH1748HJfAB9e+PByO3CLD+/evU4SjYPFy5d3sKBriwF4ndQbwAvgBfBaLxF2WsNOa1ilAcDLfQFWaXAT8B444CTROFi8TBkHC7q2GIDXSb0BvABeAC+AlxWAhRcWXlh4rb4AwOsm4D10yEmicbB4yZIOFnRtMQCvk3oDeAG8AF4AL4AX6/DKoQQuDQBet7k0HD3qJNE4WLxYMQcLurYYgNdJvYsX1+vzjhzZUpxtxgw9UzJbttTqCuHhESr+9OkzEc+dO51Ku38/WMX/+eeUiCdPrpeD6tBBz4S8deuhOO7t7anKHDp0RcXbtdNO5AcPXhbpT57o66dOnUzlTZXKW8TDw58aalj3x0HutBMcHKbS8uXLoOIeHglUfMeOcyJet24RlWZavnLlsp732rW76rivr3V9DunSpRR/IyL0vTx69Fgdv3PnkYpv2HBcxBMk0NcvWDCTOp4pk4+Ir1p1RKVVrJhHxTNnTqXi8+dbvk8ffqh31blx4746fvdukIjnz5/xhTROkMuWyWty2uPH1nI9HAIDQ1Vc1s3GjSdU2r171vk5yOctWzaXShs7dq2Kf/JJDRE/f/62SqtZs5CK9+u3SMW//votETeX0ZowYYM6njevVY/16umtdDdvttoeh+jaYZ486dVxL69EKl6tWgERX7lS6z1sWHN1fPx467rmvTx4oNt8rlxpVd5Vq17suM13KVGihCKv2WZTpkyiystP6+Y7NWuWfi+rVMmv8l66ZMGambd69YLq+Pnz/iKeNKl+10yoadGirDgu/bg5fvt2oCr/8GGIistnTJFC32uSJInV8ebNrXMtXLhPpeXIoXW5fNm615Yty6njw4fr7UT7JdC6tT1iLSco64Xjsp1y/MqVO+K4qevwEVYfxmHNaqsed+w4q9IyZ7bOycHsA+QEH3N2/3f99O5LM+ftF2U6dtTvV8+ef6pzZcqk30XZ5/n7aw3N5Z4GDGgqyrVvP02V9/LSGhYpklmk+/jofuX333eqvGYfULp0DpEu32+O//67nvgj36tixbKq8gEBug/q0uXF5Zg++WSOymvu3Ni+/RsiXfY1HK9QQfdHjx5ZfYS53JvUldOfPdN9srxA4sQe6lqmz6g8x4QJ7dTxoUP/VvEcOdKI+F9/aYugeX5TI39/a6w5c+aWobd+7zNmtPpZs28235UqVfKJ42fP6vLmWCLbIeepVauwyCv7HY6b7bNp01LiuFwKjeM1aui+T97gqVM31L3mzKnfnwkTNqp0OWyY72qyZHq8/fbbJiLvzp3WmMbhxInrKn73rtUOSpTIrtKOHr0W7XVl/9+xYyyvZnBCjynqRlwRKWzVW1wPAF4nawjAyx00gBfAq8EKwAvg5W4VwEsE4CUC8GqDR6wD7+nTThKNg8ULWMaOuB4AvE7WEIAXwMtNCMAL4IWFN/JyVgBeAC/3jQBeFwLvOW2NdhJt7CueN699+d2UG8D7EuEfPgqm8dMX08btB+je/UBK4+tDtaqWpi8+akHeSa1PkgBeAC+A13qJ4NJwU/UmcGmAhZcbAyy8AF5uBy5zabh40T0omUu737nnBmy7KoA3Bp3CIyKo3adDKGWKZNSrayvKmS0j+d24TaMmz2OvUZoysheA97l2cGmAhRfACx9ebgPw4SWCD29kf3dYeF0IvFf0PB7bEPA15cqu/Zhf0xlj5TQA3hhk3bDtAA35cQ6t/XMUeXnqCREhoWEUFBxCaVNbjvqw8MLCCwsvLLysAFwaALzcDgC8AF5uB+ZkOZdZeP30WuCxQowxnTRLFpdeztGLAXhjUG78r4vp7r1AGtSnw0u1BfACeAG8AF4A7yXRCGDhBfByO8AqDW4C3pvarcpRKHSoXEa9epFD5V1UCMAbg9ADRs0QVtzPO1nLKm3bc5T6j9DL4MwY25fy5soCC69YRgerNGDSGnx4YeEF8MLCaw2oAF43Ae9tvVSlixjSukw6vbyqS69r58UAvDEINnHmUrrhf5eG9O0kcoSFPSGexMbh/c+G0rjB3alg3uwAXgCvaBMAXgAvgBfAC+AF8EqkcItLw129vr2dLOhc9tR6vwHnThS7pQG8Mei759+T1HPgBFo/bwwl89aLxHP2hu360thBnwJ4n2sHCy+Al5sCVmnAKg1waYBLAyy81sDoFuB98CB2iTGms/tYc5pk4C/io6fMo9sB96lowVw0rN9Hat6Te27QuiqA9yXqf9x3LAUFh1L/Hu0oT47MdCvgHs1euJZWb9pDS2cMERUIH164NMDCa71EAF4AL4AXwAvgdSPwPtK7ALoULJMnV5cLfBRM9d/7kiYO+0LA7sSZy+jS1Rviq7i7A4D3JTUQHPKYJsxYQms376M79x6IdXirvVGSPn6/CaVPa22FCeAF8AJ4AbysAFwa4NLA7QCrNMCH120W3hC9jblL4TJpUnW5tZv30uKVW2nqqD4ijQG46juf096Vk8nTWPHKpff3/GIAXidVB/ACeAG8AF4AL1ZpkEMJgBfA6zbgDQtzkmgcLO7pqQr+MucvYSD8+vN2Ku3Ndz6n2eO/FvsZuDMAeJ1UH8AL4AXwAngBvABeAK/+nI5VGtzkwxsR4STROFjcw0MV/HHaIoqIeEq9P26l0uq26UPjh3wu5j25MwB4nVQfwAvgBfACeAG8AF4AL4D36NFriijcMWnt2bNnThKNY8UTJNBLk079/S/yD7hP33zxvjpZlaaf0dxJ31D2LBkcu8BrKgXgdVJIAC+AF8AL4AXwAngBvABedwPv06fuAd6ECTXwrt+6n+YsWidcGDjcun1PrGy1Z9VkSmRYgp1EL4eKA3gdkk0XKlCgn/pPy5blRPzhQ+04niSJsS1xiPav8fKy0mvWLKTKP34cruLr1h0TcfMHW/v2b6jjQUGPXyg/evQadTxfPv1L6u7dIJF+8aJelLpIEb0VYNasvuL4iRPXVXkfH28V9/XVcZl47py/Ov706VMVP3z4qog3bFhcpYWGPlHxtGlTiPjOnedUWrJkXsZxa7anqWFoqNYlY0a9/MnGjcdFXg+PhKp8ypTaeT5LFuu5tm07o46XKqU/qSRMqMvJX8Zly+ZUefftswZxDo8ehYq/iRLpTzepUydTx/39H4q4WV/mr+2kSXU7kNqnSqV1PXTI0o2Dn9898bdQoUwq7eLFgBeewexk0qdPqY6PG7dOxeU+9q1bl1dpq1YdUfFLl6zzli6dQ6Xt2HFWxZMksXyzypTRx/39A4171es+ymYQGqrbualH5szWRE+zPZjt9NgxvS2mbN/Jk+slAQMD9Xsl24zZdky9UqSwymXIoHWZMWO78Vy6PrJls9aQPH9et+k6dYqovE+eWJ8J5fagHJfrLnP8q68aiuNLlhxQZeT9c8KuXedVeuHCmUXctP6Ehen2XatWYXF8z54LqkyuXGlVXKab74f5ToQYfcyZM7dEuX79GqnyY8euVXGpnTlIftOrljo+e9EhES9SxLpnDleu6PrOnl2vvennd18cl7pz3Gz/sg/588896lwFCmh/vgwZ9Hu9Zs1Rkef+fWvdcw7meyvTeveur45/8MF0FW/btqKIb958SqVt3ar7ALPNZcpkXTc4WLfZq1f1M3brVkMcl22A4+vXW/0OB19fqw+4d8/qYznI9sTxf/45qdLTpbPaollHsl/h9Jo1rbo3jGV0/75u835+1n0lTqz7oMKFdT/evbuuO3nRr75apK5/+bLuQ/LkSS/Sb92y+i0O6dJZfXPUZ5Dvq/ksuXPrjQZ+/LGtKGP2O+pERCT71KpV86vkFSv+VfEHD/Qz7t1rtXuzT69bt6jKK8eqLVtOqzTZzk1t3323gjqeKZPV73AYM0aPkVWqWPezdas+lxyXrXuwIG7iRG2pXLBgrzqXbF9hYdqNoGjRrOr4zZvWO8FBtu99+y6qtLlzu5oyvZY4uxK4I5j1xStb1X23D40Z+AmVLVGAho3/g0JCHtPwrz9yx61FuiaA18kqAPASAXiJALzcDqyXCcBLBOAF8PK7AOAF8LoSeMPD3ePDaxqC+Hl37j9GI36eSwF3H1DJonlp2FcfUSofvXSZk9jlcHEAr8PSWQUBvABebgcAXgAvLLyw8HJfAAtv5EEVFl7XWXjNLxFOoo1dxc2vDnYVdHFmAO9LBG/XfSi1blKDGtfVrgSnzl2hD3oMpz0rJwN4n2sHCy+Al5sCLLxwaYBLA4A36pAK4HUd8JruUa5kSU/PRK68nMPXAvACeAk+vPrzK3x4ieDDSwQfXiL48BLBh1f73MOHlyiu+/A+fqznyzhMhQ4UNH2fHSjusiIAXgAvgNeYYAPgBfBylwDgBfByOwDwAnj/S5PWzAnBLqNIIjIn57vyuvZeC8AL4AXwAnixSgNWaRA9IVZpIMIqDZHdMrBKw39nlQZzBRB7YdCZ/OZGI86cJ7bLAnhfAbxnL14jL2P/5/CICLGLCHx4sSwZliXjJdSwLBmWJeN2gGXJ5FCCSWuRB1X48LrOhzc42Fqu1NXB21svLerqa9tzPQDvK4C3Ya2KVLdaWZXr3EU/6jHgZwAv1uElAC+AlzsGAC+AF+vwYh1e7gvcvQ6vuRyiPSDobF5zPXRnzxWb5QG8cGmASwNcGuDSAJcGuDQ8Hwvg0gCXBm4K/8WNJ8zNcWITHKOe21ydxZXXtfdaAF4AL4AXwAvgBfACeAG8ajQ03TLgw/vf8eE1d2C0FwadyW/ucOrMeWK7LIAXwAvgBfACeAG8AF4AL4DXS285/l+08JrbNMc2PJrn9/FJ6srLOXwtAK/D0lkFsdMadlrjdoCd1rDxBHZaw05r3Bdg0lrkQRWT1lw3ae3+/WAnicax4qlSeTtW0MWlALxOCg7gBfACeK2XCDutYac17LQG4I06pAJ4XQe85uRJJ9HGruK+vsnsyu+uzABeJ5UH8AJ4AbwAXlYAFl5YeGHhfXFABfC6Dnjv3g1ykmgcK26uWOTYGVxTCsDrpM4AXgAvgBfAC+DFOrxyKIFLA1waWIGbN613gkOGDD7i7759F1Xa3LldnaSPF4vfufPotZ/TlhOmSZPclmxuzwPgdbIKvvhirjpDunQpRXznzrMqLWfOtCpuLhkiF2pu2bKcOr5+/TEVL148m4gvW3ZQpTVsWFzFnzyJEHFzdqT5WcGcrbljh3U/YWHhqnyWLL4qXrBgJhE/deqGSjNfHPnrLSRE79Md0zIk//57WZyjR4+6xr3q6967Z/kYHTp0RR0PD3+q4tL5nTf3kMHcLtFc7y9PnnQii7no9YwZ21S5BAmsaPLkSVRawoTPE4kiraNboUIekScgIFDlPXlS63H+vLXRRoMGug7ks3L63btWR1O3blFVfu1aXZ+ZM2u927WrKPKkTZtC5f3yywUv3GOZMjlVmrlHeqFCmUX6+vXH1fGqVfOreMmS2VV806aTIl6uXC6VZraNmTO3i/QqVfIZx0NVXLaJTJmsDpuDh0dCFTf1ku2vWrUC6vicObtUPF0663nlX46//XZpdXz37nMqLuv0qfSTIKItW86o4/nypRfxvXv1AJI2re505fN6e3uqMvPn71PxokWzqLjcRnjs2LUq7euv31Lxv/46JOKenolUmtmOatYsKNJ37Tqvjp85c0vFzbp79MhaGL5791rqeOLEHipeooT13l+7dk+lLVyo71u+9w8eaF+9qlW13idO+L1wDxMmtFNpPXro/kq+H2ZfMGjQ2yrvTz+tE3Hznbt4MUAdN606556vy507t/VOcsiRI42Ky6W+zGc1/Q1Ny5R8X2/efKDKm/1NnjxW3V+4oDe/MftW+a6ZbbZHjzrqXBcu3Fbx6dO3iviNGxpOSpXS709goFVfpt7mfT18aL0rz549U+fMkMEaBzhMndpBxT/9dI6Im3Bg9nP+/lbf4+Wl21n69PpcUluzb96//5I6v3kPjx5Z92X2rQMGNFV5V68+IuLVq1ttl8OUKf+ouDmuyPioUa3UcdmvcIIco8xreXrqNi3r06z7ChVyq3MtX/6visu+4fx5XUe1axdWx6UGly/fUWl7915Q8WPHrPb/6ac1VZpZXwcOWOMThyRJLJ0TyBeBiMx7vH3bqo9WrcqrMubGDrNm7RDpJUta7ywHs2+LiNBtQnLAtGlbDA2/VPHXFTH749d1TlvOY45ltuR3Vx4Ar5PKA3gjCwjgBfACeIkAvABe7hkBvNrgAOAlim3glZDuJNbYXdwEfbsLu7AAgNdJsQG8AF5WABZeIlh4YeGFhZc/X8PCCwsvkTssvHK1ICexxu7i5pcIuwu7sACA106xr/jdokbvf0VHN80UJQG8AF4Ar9UGALwAXgAvgJf7AgCve4D31i3tBmQn2jiVXfooO3USFxQG8NopMoDXEgw+vETw4Y3s8wzgBfACeAG8AF5rjHSHhdf0V7YTbZzKnjGjnuPh1IliuTCA106BAbwAXtlkALwAXm4LmLRGhElrmLSGSWvun7RmTr60E22cyp4pUyqnyruqMIDXTqUBvABeAC9WacAqDZFXOQHwAngBvO4H3uvX9eoudqKNU9nNVYicOlEsFwbw2ikwgBfAC+AF8AJ4AbzcD2BZMixLFpeWJfPzcw/wmksb2olULs0O4LVTbgAvgBfAC+AF8AJ4AbxWT4h1eOPOOrxyvWs7scbp7OZmK06fLBZPAOC1U1wAL4AXwAvgBfACeAG8AF5WIC5ZeK9c0Rty2Ik2TmXPnl1vMuPUiWK5MIDXToEBvABeAC+AF8AL4AXwAnjjGvCaO9DZiTZOZTd3VXTqRLFcGMBrp8AAXgAvgBfAC+AF8AJ4AbxxDXgvXdJbf9uJNk5ll1snO3USFxQG8DopMjaeiCwgthbG1sLYWhhbC3OvYFp9pG+hub3s/fvBqvO4ezdIxZMnTyLi5pqi5rrfefKkF8cvXPBXZQIDQ1VczhjPlEmvDdqjRx11/MKF2yo+ffpWETeXcypVKrtx3sci/uCBvlfzvjBpDT68ccml4eJF3badRBu7iufKlc6u/O7KDOB1UnkAL4CXFcDWwthpbdcubDyBjSew8QT3h9hpzT0bT5g/5pxEG7uKm++9XQVdnBnA66TgAF4AL4DXagPYaQ3AC+AF8AJ4rf7QHTutnT+vv3o4iTZ2FZdfXewq5IbMAF4nRQfwAngBvABeVgAWXiIAL4AXwOs+4D137paTRONY8bx5MzhW0MWlALxOCl6t2gh1hvr1i4n40aPXVNrcuV1feoU9ey6o46Yf24QJG0R6ihRJ1fF5vcuouH+OAiJuzsoMCAhUx318vFU8ODhMxM1FqVOnTqaOJ0iQQMRPnryu0tKnT6nit249FPFChTKpNHO9PzOvXBalUKHMKu+pUzdUXK7XZ/rcmZ+/PDysCVEREU9VmSRJEqu4n999FX/0yPLbS5hQT6Iy/fZkPezff1GVad++soqb2sn7LlUqhzqeJo3WSO4iZNatudi2j49VT6YuefNavoZRnyck5IlIM38VHzx4WeWV55Xn5AN//LFLHW/UqISIh4dHqLSyZXOp+OjRq1W8dOmcIv7GG3lV2oYNx1Vc+iMWLZpVpZlbJj95Yl2jWrWC6vh771VU8a+/Xqzisp7MugsNtZ6Vg6zbcuX0vfr66nb699+HVd6kSa069/LSdR8UZPlTckiUyKpz6UPJ8bJlrWfl4O3t+UL55csPquOpUydX8erVrXdp9uydKq1Xr3oqXrRoFhE3r9+370J1vFIlS9usWX1V2u3b+l1cvfqoSs+ePbWId+hQRaXJXco4oVgxqx6uXtXLCyVJYj0LhzNnboq/jx+Hq7SOHfW5pk7drNK7dKku4mb7nz59mzqeKpXVZkND9bn69Kn/wrXM90+2B86UNm0Kldff3+ojLl/Wk2by5cuojst3fOlSXQeyX+JM5jPMmrVdlAsIeKTKyzrihKRJLT22bTujjk+e3F7Fp0yxNAgL08+1d6/uZ728Eqm8BQtafZrZD5ttqkMHq78w+85t286q8pUq5RHxa9fuqjRziSZzmSj5Lly9qjcHyJxZ+xmXL5/7eX3od2bjxpPqvLLPDg7W74G5u1nNmoVUXjmWmH2r7MdNDY8cuarKmH1nnTp6LoK875079XMHBVljCgf5I8d8VumHzcerVs0v8pkwZvpvm+eSk0HNsdD0qc6Y0dLLfK5jx/zUvcj3rlatwiqtdGndp8+Zo9/xevWs8XrmTP1OZMigx70cOdKK4/I9MXXjuBx31q7V7/f48e+p644apfthOe6tW6f73hkzPlR5X1fk7Fn3AG++fADe11WHcfo8AF4iAC8RgJcIwAvgBfASAXiJALxE7gBe+YPY1dCUP7/+cevqa9tzPVh47VErmrwAXgAvNwsAL4AXFl5YeLkvAPACeLkduAN4T5/WX1OdRBu7ihcooL/+2lXQxZkBvC8RPDwigkrU6kQbF46ljOmsT5Er1u2gSbOW0+8T+lPa1D4E4AXwAnitlwgWXlh4YeEF8HJfAAuve4DXdB90JUtK1yBXXtORawF47QDe3QdPUL9hU+m3n/pR9iyWzwqAF8AL4AXwsgKw8MLCCwuv1RcAeN0DvOY8HEeA0NEy5pwdR8/hinIAXhuB92FgMHX9cjT9PLQHFS2gJ90AeAG8AF4AL4AXk9bkUAKXBgAvtwV3uDScOKEn8LkCIOU1Che2JvbG9RCngPfMhWv084wldPHKDQp9rGeBShE3zB/jUj2lS8Ofk76lXoMn0eA+HalyOT17FRZeqzowaQ0+vNwO4NIAlwa4NMClARZea1x0B/AeP+4e4C1SBMBrN5w27zyA8ubKQuVKFCQvT70ckTxR47pv2H1OZwpI4M2WOT2FhD6m/3VrQ2/VqRTplLDwAnhh4YWFFxZeWHhh4dVL6cGlwT3Aay6b6Qz72FtWLqdobzlX549TFt76bb+kNXN/cLUGMV5PAu/kET0pja8Pde79A/02/mvKn1uvWQrgBfACeAG8AF4AL4AXwOvudXjNdZVdCVLFi2dz5eUcvlacAt62n3xPv47tS0mNhdYdfrLXUDDqKg1/LttIsxeupQUCK+vQAAAgAElEQVS/DKIUya0F8wG8AF4AL4AXwAvgBfACeN0NvIcP641EXgMC2XyKEiUAvDaLJTOu3byPlq7eSi3fqkHp0/nS8w3A1HnMyWJ2n9yBAtEtS9bnu8kUGhpGPw/9nHiHMgAvgBfAC+AF8AJ4AbwAXncD76FDVxwgHeeLlCyZ3fmTuOAMccrCW6R6h5c+8vHNs1wgib5EdMAbHBJKLbsMoiZ1K1PX9xsDeDFpTTQYbDyBSWtYlgzLknFfgFUasEoDtwN3TFozt4V3JSyVKqW3b3blde29VpwC3qDgUEqUyCPGZ4huIpu9D/y688PCCwsvgBcWXlh4YeGFhRcWXndbeA8evPy6Ecem85UuDeC1SaiomZ6ER9C+Qyfp+s079DjsidjgoWLpQpQ4cSKHzhfbhQC8AF4AL4AXwAvgBfACeN0NvAcOXIpt5In2/GXK5HTLde29aJyy8J676Ecf9x1DAXcfUPq01pqW/gH3KG2aVGJ3sywZ09r7fLGeH8AL4AXwAngBvABeAC+A193Au3//xVhnnuguULas3ozLLTdg40XjFPB+0GM4FcqXgz7v1Iy8kyYRj8BuDuOmLqTrtwJo0vCeNj6W67IBeAG8AF4AL4AXwAvgBfC6G3j37XMP8JYrB+C1mzorvvUJbVny0wubToSEhlGtVj1p54qJdp8ztgt8990KdYkUKbxE/P79EJV29epdFQ8KeqziHh4JRXzu3K4qbcaMbSr+4YdVRfznnzeqtPLldaN68MC6hpwsxfHAwFCV9/79YBW/cOG2iIeE6N3rkibVG3vIxnrjxgNV5saN+8a9Wn7V2bOnVmkXL1rn5ODlpc+1e/d5kdazZ1113PzcIctNn75VHc+ZU1vukyb1FOlhYeHq+PXr+l5CQ58Y57X8hry9Ld05zJ69U8Xv3Hkk4m3bVlRp5sLcnp7aX3zo0OYiz8qVh1XeDRtOqPjNm5Y29esXU2nmBIHAQKtuW7Uqp47PmrVdxVOnTqbinTq9KeKls1g/6ji07L5YxZ8+fSripi5Fi+q1n3PnTieOm0vQ5MuXQZV/9uyZiu/Zc0HEP/igsko7f95fxRct2i/iDRro5zp3Th8PDrbajNn2Fi60ynDImDGlist2nymTj0rbtu2MipcqZc3kDQiw6oXDd9+9o+Jnz95S8WPHrom4v3+gSgsO1u9P5szWFyCzbfj6WksFcsiSxTputr3Zs3eo47KdccLgwW+L9D595qvjZj3Lz4SGrJHeO7nDXHh4hCp/+vRNFc+cOZWKL1y4T8Q7dqyi0nx9dduoWbOQSF++/F91PDzcag+WHhZYPnig3++qVfOr40eOWLpxOHnyhvg7e3ZnlTZw4DIVl/edNat+rzt00O1k8ODlIm/evOlVmWPH9E5OZpu8dMnqD/Lly6jypkih27e875Mnr6vjZr+RPLl+h588sXTkVXBkkO2Q/+/tbfU3Zh3u2mX1OxzkuYoV00sl+fjoe8mZ03p/OGzfbrVPs28eMaKlOr558ykRX7bsoEozryvbrNkvyb6ZC5jvnexDMmTQ74zpc5kuXQpxjcSJdb+UI0cadd327XXdyMReveYZ96X7Ydl/njih9W7YsLjKGxZmaWxuGGBaB0NCdD8r13Zt1KiEKt+5s9WHcRg7dq34e+3avWjvRbZ/T0/tlvjRR9VU3r59F6p4mjTWu/C8CxRxs++U97t+/XFVxhyrZH83YEATddzPT9/Xjh3nVLqss4wZdX+VLJluhxcuWP3goEFW/8Bh/37tMjB37m6RZvqvmuXNVaZk3S5ZckCda926Pir+uiJ791r9vatD+fK5bbpkWNgTKlX3o0guqjUrl6Kxgz61qbyzmeKUhbdmy57056QBlCGd3qKTH/DW7XvUpttg+mfRj84+7/+xdxbQUSTPHy+CBAnBJUhwdznc3f1w1zv8gMP9cDkOt8Pd3d0tuLu7BUgIhAT+r3qYnonv7mx2cv/ft9/jpehpmamW+WxNdbfd8wN4AbzcqQC82g89AC8RgJcIwAvg5bkRwEvkKOBVgd/uoBNGgQULWga87K5as9UAOrZpmqNvUdQXoYB35OQldPHaXerQtIY4YpgtVbfvP6FZizdT5vTuNLKvZqkwRVvBVArgBfACeJWBAQsvLLyw8LL1XfvCBwsvgJfnRkcBr/qF1dF8VKhQOouqvP/oOf3ed5JpJ+pGKOBl14WJs1bR+u2HxQ4NHKJFi0pVyxai/l2bSL9eizRrx0RNO4+kBjVKU/UKRYKUCuAF8AJ4AbysAbg0wKWB+wGAl91NNPcKWHgdB7wnTmguG3ZEoDCLKlw4fZhpOMGla3epy8AplDaVG92+95QypU9Jg7o3p9QpNVcoiwqyMVGEAl71Gdiyy6Zv329+YreGqKHszWvjc1uVDcALH1748Gr+4/DhDeg7Dx9eIvjwaj6vAF4Ar/h8rrmgO8zCe/y4OcBbpIgGvF+++tKdB5qvvwpbcV1d6OtXX1qydg81r19R7Lo1Y+FGOnTiIm1cMMIqJrM1senAu2z9XipXPJ/w22U5tNCkTjlbn9NQPgAvgBfAC+DFojUiLFoLuFgOi9awaC0iLVo7duy2IdaxNXPRohlk1mcv3tDE2auDFJUvZyZqXLtsgHg+d+GXSu1p98qJlDihtrjX1vsIK5/pwFunzSAa3rs1Zc+UhlgOLayf91dYzxMu1wG8AF4AL4AXwAvg5RcMdmkgwi4NvMNSxNulQb8rTrjAUAiF6neKCa3e12896eMnb0qXOrlIxrs25KvUng5vmELx4ii7lIRnMB14LXk4dnFg/zizTlsD8AJ4AbwAXgAvgBfAq7yxAbwRE3gPH9a2gbSEreyVpkQJbWvE0Mo8cuoSDZu4kBZN6U9JE8Wn6Qs30HGPq7Ry5mB73Uqo5UQo4C3XoCftXTUxyA1/+ORNlRv3puNbzNmHF8AL4AXwAngBvABeAC+AVwWUiGjhPXTopkPAMXAlJUtmsrjeucu20vINe8XGBPxlf0jPlg47RTdCAO+xM1fo+JkrtHTdHmpat3wQxT1+/opOnbtOp7bNtFip9kwI4AXwAngBvABeAC+AF8AbkYFXPSjFnvxjSVmlSmW2JJnpaSIE8N598JS27DlB81Zso1KFcwdRSvTo0ah6+SJUopB20osjNQfgBfACeAG8AF4AL4AXwBuRgffAAeVkQEeH0qUBvFbrfNr8DdS5tXbUqL6Ac5dvU94c2kpAqws3kIGB98LVOwG2GWnTqCp1b1ePsA8v9uHlroWT1nDwBPbhxT68PBdgWzJsS8b9wIxtyfbvv26AdGzPqh6JbnsJjskZISy8+kflVXtPXrwRq/fU8OrNe+oxdDp57JzjGK1YUQuAF8AL4FUGDE5aw0lrOGkNwKtYwXHwhBnAu2/fNSvoxX5Jy5bNar/CwrGkCAW8xz2uUM+hM+ij1+cAjxwlcmRxytmIPm3CURW2FQ3gBfACeAG8rAFYeGHhhYVXmQsAvOZYePfuNQd4y5UD8FpNkLVbD6SalYpRrYrFqHqLfrR96Vi6eO0urdq0n/7s2JDckyexuszwzgDgBfACeAG8AN7XohPAwgsLL4BXmQ/NsPDu2XM1vJEn2PLLl89mSr3WVhqhLLx5KrSj09tmiv12i9XsQkc3TRXPc/32QxozbTktmtzP2ucL9/QAXgAvgBfAC+AF8KovG/jwwsJrFvDu3n0l3JknuAoqVMhuSr3WVhqhgLdknW60ZGp/YcktV78HLZ0+UGxO7O//nQpV60hndsyy9vkcmn7YsE2iPv2vrFy53OU9+Pr6STlKFCch166dT8YdPqztoefmphyzt2XLBXm9YcOCUv7yxVfICRK4yDhX1xhSvnbtmZSfPXsvZB8fzS86cWLtVJMGDZRyt2+/JPNcv67ljxs3pohPnNhVXk+RIp6Unz71lPKJE8pZ3t26advLxYrlHOS+zp9/KONix9bu29U1uojnNleD6hvK/48cWTugfPjwoAscGzeeLfM9fvxOyPqjHz9/VvTGwclJK6tu3fwi7sKFR/L6/fvKS5zD69efxF/9meHnz2tpv31T/Df1G3Drt4iJE0fRIYdatfKIv3nypJJxbdrMl3L06Ir/W4kS2t6GZ88+kNfLlVN+Tau6Dlzvp09fZNpnz5S20ftYnT59X14/elTZqFz/XJ6emkvR1avKmeiFC2tnpX/86CPzP3mi6JiD+oy5c2t9fvXq00Gu6/vpvHmt5PXZsw9KOXJkZXx8+KDdy9mzWp/Jl0/RnX6RRtasyuk9HNzc4oi/adMmknHTpu2Tsl4fBQqkFfHDhyvjl0OPHhWlfOXKEyH7+/+QcY8evZVyrlwphezl9VXG3bz5XMrOzpo/46VLj0X8sGG15HX9uMyRI4WID6kfvnql9MO3b71k/iZNCkt5167LUn7+/IOQF9V3k3H1Fmj9KNJPE5R6/5yodeviMu3cuYeErPZHlvVtHy9eLJn26VNljkmeXJsX1HlDn+/Bgzcyjx4M9WnVPuvios0b6r1yZrVt79/XytJ/QlfHYsaMSWVdsWMr8wqHZMm0I0wvXVLaVj/f6V/e6px98uRdmf/7d60ffP2qzOn6fvrlizbP6uf348eVY18TJdLm0ahRlR1wOHh7K/1HfTewrD/VTT3sQb/Xqn4OePNG6xPqPerLqldPmeM43L2rzG16vejfP8mSae344oUyh1SsmEPm19+36jeq6oIT6dsuZcr4Ip+XlzYv6XW8bJlyYhmHpEmVcXvv3isZly9fainnz6/sFvP69UcZd+KE1jbqe6V16xLy+ufP2rg8elQ7etfPT3vHaPVrbaPOg5Ur55RlRYsWRcorV54Scrp0iWVcunTafPPunbeMz5BB+Tq9aNExGbd3759Stpewa5c5wFuxIoDX6jYcO30Fbd1znDYvGkWT5qyh2/efUq2KRenC1bt09dYD2rxwpNVlOjIDgFeDMAAvEYCXCMAb8AsIgBfAC+AlAvAShQfw7typ/eB1JPtUqqT9GHJkvdbWFaEsvGzVW7v1INWqXJy+ffOjYX8vpPNX7ohTOHp3bETZMmm/9Kx9UEekB/ACeGHhJYKFlwgWXiJYeAN+wYOFFxbe8Lbw7tihfaV1BPOodeit4I6s19q6IhTw3n34jNKlShbkGfgIuis37lO+nJad12ytEgKn9/P3p1xl21DNikVpVL92AS4PnbCQ1mw9SBf3zSPePUIfALwAXgAvgJfnBAAvgJf7AVwaiODSwIs5HePSoHdLNMpB1uSvUkVz+7Amn6PTRijgzV+pfbB77b7/8InK1e9JZ3c5Zh9eBt6CVX6n+PFcacuiURTdOZpol29+/lSjRT96/uodeeycDeD92Vvhw0sEH1748MKHFz68PCXChxc+vNwPzPDh3bbtoqMZUtRXtao5p+Ba+7ARAnhXbzlIa7YcFLsxZMmgLeRRH+bNO09yjhaNdi4fZ+3z2ZSegTd/pQ5UtlheKl8iP1UqXUCUc/jkRdq06xjtPHAaFl4sWiMsWiPCojUiLFojwqI1bXElgBfAaxbwbt2qLXK3CX5szFStWm4bczo2W4QAXp8vvnT+yi3q2HcS9ehQP4gGokd3puIFc5JbYmW1Z3gHBt485dvS5OFdaP32IzRtVDdRZZ+Rs6lc8XzUffA0AC+AF8BLAF6eFwC8AF7s0kCEXRp4xwZzd2nYvNkc4K1RA8BrNZee8LhKhfObv4GxCrznds2lsvV70JZFo4m3FqrcpDftXD6e8lZoB+AF8AJ4AbxijgPwAngBvABengvMBt5Nm85bzV32yFCzprLVZkQPEcLCqypp9NRlIeqLj+0c9Edzh+hTBd7L+xfQ4PHzKXumNBTHNRYdPnmJRvZtS9lKtQTwAngBvABeAO/PGRkuDXBpgIXXfODduPGcQxgpcCW1auU1pV5rK41QwMuuAvrw48cPevbyLT14/JyqlC1Ew3ppm9Rb+6DWpNcD76nz12nOki0U2yUm/Vq9FBX9JTuAl4hw8AQBeAG8AF4Ar9AALLyw8EYEC++GDeYAb+3aAF5rGDPUtEdOXSL+179rU7uVGVpBeuDlE2uqNuvDJ2PT1sWjiU+AgoUXwMv9B4vW4MPL/QAuDXBpAPACeCMC8K5ff9YhjBS4kjp1tBNjTbkBCyuNUBbe0O65Rov+4gQ2RwQ98HJ946avIN9vfjSwezNRPYAXwAvgVUYidmkA8HI/gEsDXBrg0mC+S8O6dR6OQKQgddStqx1bbcoNWFjpfwJ4b9x5RB16T6RD6ydb+FjmJMPBEzh4AgdP4OAJnn1w8AQOnuB+gIMncPAE9wNHHTyxdq05wFuvHoDXauosXa97kDx8ytqHj97Uvml16ta2rtVlOjIDgBfAC+AF8AJ4lVkXRwsDeLkf4KQ1xwHvmjVnHIk8sq5ff/3FlHqtrTRCWXi37zsV5P6do0Wl1CmTULrUya19NoenB/ACeAG8AF4AL4BXffnAwgvgdaSFd/Xq0w7nHq6wfn3lcK6IHiIU8EZ0ZYV1fwBeAC+AF8AL4AXwAnid5esSFl7HWXhXrTIHeBs0APCGxYdBrvNODH/PXk2Pn70idmUIHHhf3IgWcuYcLG+pUaOCQj5//qGMK1kyk5T9/L5LWd3W6/17bbGDt/dXeV3dXiRmzGgyrm3bElL+/l0pK3dudxl38OBNKRcvnlHKR47cEvK1a89knL6DvnnzScSfO/dIXi9aNL2UEyRwEfKFC9r1t2+95PUYMbR7fPjwrYgvXTqzvK4uaOGINGmUk2j0cd+++cm02bOnEPLly09knP6ozqxZk8l49fMN75yhhtixo0s5b97UQlZ/iLDcrFlheT1VqgRS3rpVOYO8WbMiMu7kybtSVs9F19dVuXIOef3YsTtCfv/eW8a5ucWRsn5BR968yvHZwemN4y9deiyulyunHcIyZ85BWVaHDqWEfPfuKxlXpIjWXoMHb5TxFSooZRQrlkHGrVihfUlR+6G+n1279lymffjwjZBTpUoo47p1Ky/lXbuuSFldqe7sHEXG/fghRXJxUV6CadNqpxHp+8H9+0pd+qDm4TgnJ62d1XxJkwav44IF04hiUqfW6urXb60sWn0Jc0SsWMp93br1Ql6vWDG7lKNEUer9+PGLjLt69amUZ85U9gcfM2abjPP01Ma1h8cDGd+pU1khJ0sWV8ap448jihZV2kk/vm7e1O5LzfTixQeZX992en3s3q20TcWKWj/Vb0zv7q6cXPnsmacsa9yfpbXnWqvk17dB+vRJ5HV/f38pv3qlzCH6+/7lF6UNONy9+1r8ff36o4z7+NFHyr6+Wllx4sQQ8fq+5eam6atMGWVuefLkvcyvjk+OGD26nogfO3a7vH7nzksp6+dhdVycO6fN2SdOaONenSf1Y33WrAOyrBo1lA33z5y5L+MGDaoh5S5dtL3l06RRxtD+/dfl9SRJXKXs5BRJyFGiRA5WRy9fKrrTjyl1hxCOz507ZZBnVMvkC/r5rF495RP0jBn7ZR79fKSfuyZMaCDS9OixUqZ98EAbq+pcr94fJ4oUSXkWDmo/05ev93H399cmCXVO3rnzssxftWouKWfKlFTIPj6+Mu7iRWW+5KDOZ/r5qmDBtPL68uUnpazO9RMm7JRxsWJp7zL1vvT9+NUrrf8ePXpb5lOFfPmUdw6H16+VMcFBfS59G4wYUSdIfqMRK1cG/UputExL8jdsqLBPRA8RysJbrkFPql+9FOXMmo6iRdVemqoS8+bQIC6iKBbAGzy4AXiJALwBX84AXiIAL4AXwBtwUSeA1340s2KFBvT2KzXskho1KhR2ogiQIkIBryO3HrOX7gG8AF7uS7Dwapvvw8JLBAsvESy8RLDwwsLrSAuv3oJtL8axpJzGjQG8lugpQJqBY+dRnSolKG8O7fOr1YXYMUPTziPJ58tXWjNnGKmfhj56fabyDXrSqW0zRU0AXgAvgFcZdHBpgEsDXBqI4NIAlwaeD81waVi27IQdCcjyopo00VwFLc/l+JQRysLL++227D6GkidNSPHjupLODUhoZs74Xg7VEAPvi1dvqX2zGsLVggOAV2kC+PASwYc3oJ8lgBfAC+AF8PL7AT685gDv0qXHHcpIamVNm2prX0y5AQsrjVDAyy4NCeK7Uo7MaYm3IwscOrWqbeFj2ScZA2/tysVpyrx14ljh2C4xAbw/VQvgBfByV8CiNSIsWiPCojUsWsOiNSKzF60tXmwO8DZvDuC1mjorNOxFu1aMD/Dr0OpC7JiBgbdHh/q0fd9Jiho1CvXp1AjAC+CVPQwWXgAvdwYAL4AXuzQQAXjNB95Fi47ZkYAsL6pFi6KWJzYxZYSy8LbrNYHGDGhPCeJpW7WYqBtSgPdXSpcqOVVv0Y8WTu5HCePHgQ8vXBpEtwTwAngBvMoMDQsvLLwAXvOBd+HCo6YgU8uWxUyp19pKIxTw/rt8G63ffphKF81DiRPGI20nP+Wxmv9a0drnM5ReBV7eDm3Z+j10+OQlGj/4dwAvgBfA+3NkwaUBFl4AL/bh5T4A4DUfeBcsMAd4W7UC8FoNm/XaDQmw6XbgAlbO1A55sLpwGzLogdfP35/qtB5EHZrXoOF/L8IuDTh4AhZe+PCKWQUuDbDwwqUBwMtzgdk+vPPnH7GBdIxnad26uPFCHFBChLLwOuB5rapCD7yc8diZK/TXpMX0/sMnAC+AF8AL4AXw/pxR4dIAlwZYeM0H3nnzDlvFOPZK3KaNdgqsvcoMj3IAvKFoNTDwctJO/f8hj4s3AbwAXgAvgBfAC+AVGoCFFxbeiGDh/fdfc4C3bVsAb3gAeoQrEwdP4OAJYf0/dkf0zffvvWUfxdHCOFqYO4OHxwPZJ3C0MI4WxtHCOFqYJ4QRI+rYnWfmzj1k9zItKbBdu5KWJDM9DSy8BpsAwAvgBfAqgwgHT+DgCRw8gYMneC7AwRPmHDwxZ85Bg0RjW/b27ZWDuSJ6APAabCEAL4AXwAvgZQ2MGQPgBfACeAG8ynxoxtHCs2ebA7wdOgB4DaLkfyM7gBfAC+AF8AJ4P4lOAOAF8AJ4zQPeWbMOmAJOv/1W2pR6ra0UFl5rNRYo/S+/DJcxmzd3FbKbW1wZ17v3ainHjRtTyh8++Ai5WrVcMu75c08pf/r0Vcht2li+3cfSpSdk/oIF00pZXUF97txDGZcmTcIgT/7w4RsZlzNnSik/farcV9Kk2oEgkSM76crX/PKuXn0q4kuWzCyvu7g4S/nLl29CVn1eWU6VKoG8/v37DyFHj64dLf348Vt5XV/vvXuvRbz+85mf33eZNkWKeEI+ePCGjEuXLrGUM2ZMKuVIPzd91pefLJnWjgcOKGVkyJBE5kmbNpGUd+68LORkyZQ6OTx6pN13/PixZHyZMlmkrAorV56Scd+++Qu5UqUcMq5evfxSXrvWQ8j6uJMn78rrCxdqp+0UKJBGxLduXlirM0oUKU+evEfI3bqVl3GjRm2Vcv/+1YQ8ZMhGGRcvnvYsnz4p/ZiD2g56vezYoeiFw7BhtcRf/dY5+fOnltcvX34iZW9vXyHXr/+LjNP375QpFT3/8Ye2N/fRo7dk2mLXFV+2Qxm1xRQlS2aS148c0dKePHlPxP/5ZyV5/caN51Jeteq0kOPF08Zv166aviZO3CWu+/go98whRoxoUr5yRXsutf/XqZNPXtePVXc3ZYwdPKa1p9ofOP7dO8VHXL/9kd5v/ObNF7JcdSyWL59NxgXX9+RFIvL318aPugBGn0ffnvq2u39fGYtRo0aWxUWLpvWzKFGU+OPHFV93Dn5+Sj/noO9Trq7RRdyVK8pcwkE/FlV9Xb+utZH6rJzW1TWGyJM6tTbH6feLjh1bKZ+Dfu5R4z5+1Pp0kiRKe1y+rN1LggRa/1d3JvihTFsi6HUQK5Y29+XIkTzIc+nHijp+9Pnv3Hkly1XnbH0bnT2rzen6fqSm0c8LiRNr87eaVt/PJ01qJOuaMGGnlO/fV94LqssSy/q5U53brl9/JvPEjKk9d/r0ypzr7Kz1h8+ftbFy4cIjmS97dkVH+vE1YsQWeV19L3l5fZFx+vea2h7696b6ruUM589r+nr+/IMoI1s2pU4Onz8r710Oqm6mTWsm41wuKnMvh5Zzr4u/mTO7yTh9P1D7Dl8sVy6rSPPHHytl2nXrOknZXsLMmfvtVZRV5fz+exmr0puVGMBrUPMAXt6DE8AL4AXwAngBvPw6AfASAXiJzADeGTPMAd6OHQG8BlHyv5EdwAvg5Z4K4AXwAngBvABe5b0N4DUHeKdP32cKOKm7z5hSuRWVwsIbirL4dLVcZdtQ1KjKp5jITk6Uxt2Nev3WgArlUz5RAHgBvABeZRDBpQEuDXBpgIUXwKvMh2ZYeKdN22sF/tkvaefO5exXWDiWBOC1AHj3rfmbkiaKTwzAuw6eoWETF9KuFeMpXpzYAF4C8AJ4AbysAVh4YeGFhRcWXhUpzADeKVPMAd6uXQG84cjpjilatfCqwKvWWrv1QOrSpi6VKZoHwAvgFd0CLg2w8AJ4AbwAXgCvmcCrLkJ2DCFptegXPTu6bmvqg4XXCguvmrRmqwHCraF4wZwAXgAvgPfnwIBLA1wa4NIAlwa4NJjn0vDPP7ut4T+7pe3evYLFZbEh8Z+5a2nByh10dNNU8aWcw1ffbzRkwgI6dvoyxYjuTG0bV6X6Ney73RmA1wrg/ebnT7sPnaFRU5bSzmXjKLZLTAAvgBfAC+AVGoCFFxZeWHhh4TXTwjtpkjnA+8cflgNvlwGTKXN6d5q1ZDMd3jBFAu/0BRvozoOnNLp/e3r7/iM16TSC5ozvRRnTprAYpsNKCOC1AHj1i9YypElOfbs0odzZ0oucWLQGH164NCiDCBZeWHhh4YWFFxZe8yy8f/+t7Anu6NCjh7Yfelh137jzSABvjjKtAgBvjRb96a8+bShX1nSiiHHTV2EVgVoAACAASURBVFCsmNGpU6vaYRVp8XUArwXAG9iHV58FwAvgBfACeGHhxcET6nsB+/BiWzLuC2YsWps4UTswxGIKtEPCnj21Q3ssLS4w8PKOWGzxjeOqHOyyatN+8rh0k8YP+t3SIsNMB+AF8EoN4KQ1Ipy0RoST1rRTlsTEi5PW5ByBk9aIcNIaTlrjARERT1rTn5AXJv3ZMUGvXhrwfvnqK1wTAoe4ri6Uwk07nVQPvOwumrtcGzq7aw5Fd1ZOqdy06xjtPexBU0d2s9udAngBvABe8TleUQOAF8DL/QBHCxPhaGHNSoejhXG0MM8LEf1o4fHjd9gNDq0p6M8/K8vkz168oYmzVwfJni9nJmpcu6yMD87Ce3D9P9Knd8XGfXThyh0aO7CDNbcSaloAr0FVwqUBLg3chbAtGXx4sWgNi9Z4LoBLA1wauB+Y4dIwbtx2g0RjW/bevatYnTEw8NZqNZD6dW1CBfNkEWUNHj9fWITbN61uddkhZQDwGlQlgBfAC+BVBhEWrWHRGhatAXh5LsDRwuYA79ix5gBvnz7GgXfW4s104ept+md4F3ry7DW16D6alk8fRKlSJDFIaVp2AK9BVQJ4AbwAXgAvawAWXlh4YeFV5gIArznAO2bMNoNEY1v2vn2rWpTR84MXlarXXaT99s2P1B2w9q6aSK4uMWnIhIV05NQlsTtDx5a1qGbFohaVa2kiAK+lmgohHYAXwAvgBfACeLFLg/qKgEsDgJf7ghkuDaNHbzVINLZl79evmm0ZHZwLwGtQ4RUqTJAlVK+eW8hPnryXcWnSJJSyq2sMKXt7fxVyqVKZZVyGDJrpvnPnpSJeP3kOHKj5siTYsVFc96xWR+bfvPmClGPGVFY6cqhYMbv4u337JRlXqJCy1x2Hjx99xN/799/IuM+flfvj4O//Xfxt0qSwjLt48bGUnzx5J+WbN18IuWzZrDLuwQOt3AQJXET8pUta/mzZksu0qvDpk3JPHL5//yHlu3eVFysHVYeenp9lnF6H588/FPFPn3rK6x07lpHy0aO3pJwqldJOUaI4yTj1uTlC1eeFC9p9J06snBDDwclJWfWmzxMtWlR5PVq0yFJWP/0XLqy1gboTACdSdaTvOx4eD2T+fPlSCzl27OgyLnVqrZ917bpMxqv9q2xZxS+Kw6lT96R8584rIRctmkHG7d17VcpubnGFPGxYLRm3aNExXf6XUlb7t7691TbiRFmzKu2sb9tmzYrI/PPmHZHyhw9K+8eLF1PGeXlpfTJWLKV/6/v54ME1ZdojR5S2zZs3lYwbNGiDlGPE0NpGTXP4sNYf9J/onj5VxrN+Idvdu4reOKj99+tXPxmnHz/6PqOm6dJFW7yhtgFnzpdPud8LFx7JsjJndgvyXD+0IUF58mjPePq01rbqPej96/76a7Msy9lZ0YFeh+3bl5TXFy5U2lkfp7+v3LndZdrghJMn78podb7p3VtbzOLr6y+vly+fTcpbtyrzWJQo2pjJkCGxvB4rlrOQfXy+yTj9uFP7XOLErvL6vHmHpazvE7lyKc9w+PDNYJ9l6dL2In7q1L26Nrgt5dy5Uwr59m1tHMSJo/XZ69efybQqAL148UHGqWOdI8qUUcaovh/t339dplX7wbdvmt70c2+lSjmCPMPVq9pqeX29adIoq+XPntXmFf07QT+3XbmilHH9+nNZfv78yhzEIW1apSz9vOLiorQRh+LFM4q/+vffw4dv5fUzZ+5L+cfPjh03rqZDfTsmTRpHpPX11caafly+e+ctrhcsmFaW2a6+8l7m0KG38t7kkDFjUvH35UutPT5+/CKvq3NP/foFZJx+Hj90SOkz+vqLFVOelcPt28q7kIM6P2/ceF7GrVnTUcr2EvQ77NirTEvK6d8fwGuJnv7zaQC8DPgAXgCv9kID8BIBeIkAvAyJAF4Ar+OAd+TILaYw1YAB9ltYFp4PAAuvQe0CeAG83IUAvABeWHgDTqYAXgAv9wgAr+OAd8QI7QuOQbSxKvvAgTWsSm9WYgBvKJr/6PWZpvy7jvYeOUueHz5R0sQJqFalYtS2SVWKEln53AbgBfACeJVBBJcGuDTop1MAL4AXwOtYl4bhw80B3sGDAbxmQbxd6uWTP5p2GkFx47hQjw71xX5w128/pOGTFtMvuTLRoD+aA3h/ahouDbDwAngD+l7CpQEuDTwm4NIACy/3A0f58A4btsku/GNtIUOGaOsnrM3ryPSw8Iag7W37TtLEWato57JxpF989PjZK6rRcgBtmPcXpU6ZFBZesUgPPrxwaYCFFy4NcGlgDWDRGhEWrZmzaG3oUG1RniNBcuhQbVGzI+u1ti4AbwgaGzphoThmVrXk6pM17TySqpQtJI7Jg0sDgBcuDXBpYA0AeAG8AF6lDwB4zQHeIUPMAV79Lj7WQqgj0wN4Q9B2j6HTKWPalPRb86C+KT2GzqAMaZPT781rAnhh4RU9CBZeWHgBvABeAC+AVx0FZmxLNniwtvWiI0Fy+PDajqzO5roAvCGobsy05eIkkOAsvM26jKI6VYpT7crFAbwAXgDvzzGERWtYtKafTrFoDT683B+wS4PjfHgHDVpvMwwayfjXX9p5AEbKCe+8AN4QNLzr4BkaM20Z7Vo+PoAP78vX76lyk960ccEIck+eBMAL4AXwAniFBmDhhYUXFl5YeM208A4caA7wjhgB4A1vWA/X8vl0rwa/DaOkieJR/65NyS1JAnr45CX1GTGLsmRMTUN6tBD1w4cXPrxwaVCGIiy8sPDCwotFa9wH4MNrjg/vgAHrwpWLQip85Mi6ptRrbaWw8IaiMS9vHxo1ZSntO3qOfL/5UZKE8YQrQ9vG1aTPJoAXwAvgBfDCwht0IoVLA1wauFfApcFxLg39+6+1lgHtkn7UqHp2KSe8CwHwWqjhOm0GUbsm1ahymYIBcgB4AbwAXgAvgBfAq2oA25LBwst9wYxFa/36mQO8o0cDeC1Eyf9Gsn+Xb6P9R8/Rwn/6BvDpBfACeAG8AF4AL4AXwHtPdgK4NJgDvH37rjEFqMaM+dWUeq2tFBZeCzX25asv9R4xi86cv0GdW9ehJnXKiZwAXgAvgBfAC+AF8AJ4AbzFimWUA8EMC2+fPqstJBr7Jhs7tr59Cwyn0gC8BhUL4AXwAngBvABeAC+AF8BrNvD27m0O8I4bB+A1iJL/jewlS46RN1q5ck4hP3/uKeN69aok5aNHbwf55JMkiauM8/X1l/Ly5SeFHCNGVBk38dfUUj7vnEzIuXKllHErV56ScqxYzlJ+88ZLyF5eX2RcnDgxpJwuXWIhOztrdel/nUaNGllcT5gwtsxz7doz3X1rq9Pv3Xst4kuU0H7pOjk5ybSRIiniuXMPZZy6up8jXFyii/gfP37I63pZv/WT+lxRomjl+/rqV8r7ijJix1bK5ODn913KadIklPKrVx+FHDduTBnn5fVVyt++aW2jRsaPH0tef/78w09Zu+8oURS9BQ4pUsQTURkyJJGXduy4LGVV32nTJpJxV648lXKpUpmF7On5WcalS6elnTXroIzPmTOFkGvWzCvjtmy5IOXXrz8JOXv25DLu0KGbUlY/TebPn0bGxYun6ej+faW99eHBg7fyv/p+prZj9uzKPXHg0wzVcPToLSmr+nZ2jiLjEiTQ+t+DB29EvKur1rZ6fSVKpKTVl799+yVZlnpQCEfkzauMq9OntRd2pUo5ZNp69fIHecbff18s49Txox/r+gyTJu2S/71x44WQ69bNJ+M8PX2kXKWKUu/q1WdkXOvWxaU8c+YBIev1qj4rx796pbQnB7V/6/vhkiXH5fWYMaMJ2d9fGxN9+1aV19evPyvkAgW0tn/7VplLOCRPrvRjDmr/1F/v0KGUvP706Xshb916UcY9fqwdSa7f1mjGjP0yjSp07FhGxt28qehw505tzGTMmFReVxfL6cfniRN35XW9vpInjyvikyaNI6+fPn1fymXKZBHyxYuPZVyCBNq4V/Pp9X7tmjZWY8fW5tnEiZU+qZ87o0XT+vfs2crOP/rQtu0C+V913oikTqJEdOuWogsOzZoVkbLa7x8+1MaiqjdOpI4rdfxznLt7fJl/wIDqUh45cquQ7959JeP0c1e+fMr42bpVm1fUeZzjR41SVvDrx5/6nuB4Pz9tblXj9c+YOrU2T6vvu9u3X8p78fbW5ml1Hq9dWxtf+veDflypc6N+cWWiRNr7WG2v3LndZV36+e78+Uci/tMn7b2qB7+JE3fKfClTJhDynTvafYeH3+uff64K1IMc89/x4xs4piKDtcDCa1CBAF4iPWQCeAG8AN6AkwqAlwjASwTg1X5wAniJwgN4e/VaaZBobMs+YUJD2zI6OBeA16DCAbwAXu5CsPBqAwnAC+BlDcDCy1+XYOGFhZfIURbeHj3MAd6//wbwGkRJ87M37TySLl+/R5GclO/wztGiUs4s6ah/1yaUxt1NxAF4AbwA3oBjFcAL4AXwKn0AwAuXBu4HjgLeP/5YYQo4TZrUyJR6ra0UFt5QNMbA26BGaapeQfGN4p0aZizcSCfPXaPVs4cCeH/qDi4NsPDqhxGAF8AL4AXwqqMAFl7HAW/37uYA7z//AHithe8Ilz4w8PINPnr6kqo170cX984jdqyHhRcWXlh4YeFlDWDRGhEWrfGiNCxaw6I1IjMWrXXrttwUjpo8ubEp9VpbKSy8Vlh4P/t8pcn/rqXrtx/S4in9YeGFhVf2HvjwagMJFl5YeGHhhYUXFl7H79LQtesyaxnQLumnTGlil3LCuxAAbxjAy3Crbuvj5e1DFUsVoL6dG1PihMp2NrDwwsILCy8svLDwKlZNWHhh4eV+AAuvORbeLl3MAd6pUwG84Q3r4V5+YJeGBh2G0a/VS1G9aiVl3QBeAC+AF8AL4AXwqqMALg0AXu4LZrg0dO68NNy5KLgKpk1rakq91lYKC28YFl79ojVerNZnxGzasWwsxYyhbHgP4AXwAngBvABeAC+AFwdPmH3wRKdOS6xlQLuknz69mV3KCe9CALxWAC8nbddrAmXPnIa6tVVOjwHwAngBvABeAC+AF8AL4DUbeDt2NAd4Z8wA8IY3rId7+cHt0nDt1gNq1mUUbV0yhtwSxwfwEoAXwAvgBfACeAG8AF6zgVd/5Hm4A5KugpkzmzuyOpvrgoXXZtUpGWHhBfACeAG8AF4AL4AXwGs28P722yKDRGNb9lmzWtiW0cG5ALwGFQ7gBfACeAG8AF4AL4AXwGs28HboYA7wzp4N4DWIkv+N7ABeAC+AF8AL4AXwAngBvGYDb/v2C00BpzlzWppSr7WVwsJrrcYCpQfwAngBvABeAC+AF8AL4DUbeNu1W2CQaGzLPnduK9syOjgXgNegwosXHy1L+PvvhkI+ceKujPP09Jbyly9+Uo4TJ4aQc+RIIeMeP34n5TNn7gs5XbrEMq548QxS9vL6KuTYsZXt0Tg8eqTlb5T6u4wfd8RTyM+fK385ZM+u1Zs6dQIR5+npI68nS6YcrMGhcOF0P/N/kHH37r3Wya+k/OGDUkbu3CllXNGi2n2rdWzdqk2OBQumlWnV54oePaqMu3TpsZSdnCJJ+fRpRUc+Pt9knIuLs5RLlcos5FWrTsm41KkTSXno0JpS/vffw0J2c4sj49688ZKyh4dSV86c2nO1a6ftx6we6ahvrxcvNH1HjRpFltWoUUEhZ87sJuOGDNko5ZcvFT3XqZNPxqn9gSMGDKgu4jdv1nRYo0ZuXfmzpNyxYxkhF4/9WcYtuazJzZoVEfEfP2ptv2TJCZ0OPgn59WvlL4fGjQtJuUiR9FLevv2SkGPE0Nru7Vut/9erl1+mVYXly0/KuHjxYkpZPa0tcWJXGVe3rqYPtb30/eH9e62unm1+3mNcrR/367dWlpUnj7uU1T6nH3+5c2vX795V+re7uzJOOPj4+Eo5ffokQj537oGM+/xZ65P6fhAtmtIPqlXLJdOqcRzxywMPEX8hg9JHOKhjiuWSeZQ+s/2oVpe+bVq0KCrzqacu/frrLzLu/Xut7Z8+fS/i9WOm2bLhMu3WzmOFfP++NtZTpdJ0UKWK9gz37ik62rZN6QMcihfPGOQZvLy+yDi9viNpw5o6dSor0gwbtkmm1bdzuXJZRfyuXVfk9XfvtLZX+7Snp/as+n6mzr2cuXHjwqKMT5+0/r9o0XFZbv78qYXs7h5fxjk7a2PZ3/+HiH/zRhsfMiEReXho7aTuVTpmzDaZJFu25FK+dOmJkKNGjSzjokZ1krI6H339qr1H9Gn1hz2omdKl0+a7c+ceyrKqVMkp5FOn7sm4BAlc9Lcu5XjxYgn54MEbMi56dE0Hbm7KGPP11e7L2VmbA9Q5Vd9P9X1e7YdcxvDhtUVZo0Zt1dWvzQsNGyrjWt8nb9x4LtOqba7Oe8E+0M/Iw4dvCqlEiUzBJlu48JiIz5JFm6djxowm006btk/I+jnwyxdt3Ov7f9KkyntlwYKjMn/PnhVDuz2brrVtaw7w/vsvgNemBvuvZQLwEqkvO247AK/2AwXAyydvAXgBvNq8AOAlAvASAXiJwgN427SZbwpCzZvX2pR6ra0UFl5rNRYoPYAXwMtdAhZeIlh4YeGFhTfgCwIWXu2rGSy84W/hbdVqnkGisS37ggVtbMvo4FwA3jAUfuf+Uxo/cyXx/rvff/yglG6JqFvbelQ4fzaRE8AL4AXwKoMIwAvgBfACeFkDcGkI6NLjKJeGli3NAd6FCwG8Dmb38KmuStM+1KxeBWpQowyxn9nuQ2dowJh/ad/qSRTHNRaAlwC8AF4AL2sAPrzw4Q38FoKFFxZe7hOOAt4WLf4NHxAKo9RFi9qaUq+1lcLCG4rGvvn5U+5ybejQ+smUML62mOn+o+fknjwJRY7sBOAF8IoeBJcGWHgBvABeAK+iAVh4zbHwNm8+11oGtEv6xYvb2aWc8C4EwBuGhjv2m0Sv336gFr9WpIJ5s1CiBNqqb7g0KMrDojUAL1waYOHlPgCXBrg0AHiVPmDGLg3NmpkDvEuWAHjDG9YdUv5X32+0ZstB4cpw6fo9SuvuRh2a1aCKpZStfuDDC+CFhVcZivDhhQ8vgBfAC+A1D3ibNp3jEC4KXMnSpe1NqdfaSmHhtUJjX7760t7DZ2noxAU0/+8+lDNrOgAvLLyiB8GlAcALlwZYeAO/TuDDCx9e7hOO8uFt0mS2FURjv6TLlnWwX2HhWBKANxTlPn/5lm7cfUSli+QJkKr9nxOobLG81KBmGQAvgBfA+3N0wMILCy8svLDwwsJrnoW3cWNzgHf5cgBvOHK6Y4rmxWkNfhtGI/q0FYDLp/2cuXCTug+eSvMn9aHM6d0BvABeAC+AV2gAFl5YeGHhVTSARWvm+PA2aqSdsukYSlJqWbHiN0dWZ3NdsPCGoboTHldp+sKNdO/hM4rkFEnsw9uuSXUqWzyvyAkfXvjwcj+ASwNcGgC8AF4AL4BX7QNmLFpr2HCmzTBoJOPKlb8bye6wvABeg6oG8AJ4AbzKIIJLA1wa4NIQ8IUCH1748HKPcJQPb4MG5gDvqlWWA6+fvz/9M3ctLVi5g45umkrx4sQWg+bv2atp4eqd5OTkJAfRqllDKFO6lAYpTcsO4DWoSgAvgBfAC+BlDcDCCwsvLLyw8Jpp4a1ff4ZBorEt++rVHS3O2GXAZOEOOmvJZjq8YYoE3mETF1KGtCmpce2yFpdlbUIAr7UaC5QewAvgBfACeAG8r0QngIUXFl7WAHx4zfHh/fXX6QaJxrbsa9Z0sjjjjTuPBPDmKNMqAPD2Gj6TShbKRdUrFLG4LGsTAnit1RiAV2jg3r3XUhM4eAI+vNwZ4NIAlwYAL4AXwKv0ATN8eOvVMwd41661HHjVERIYeDv0nkjfv/+gB09eUCQi+rV6KWrXpJpBQguYHcBrUJ0VKkyQJQwfXvunleOijIsTJ6aUuTHVECuWsxDTpk0k496985Ly7t1XhRwvnpa/devi8vqLFx+EHDNmNBlXrFhGKV++/ETKBw/eEPLjx+9kXJkyWaQcO3YMId+69ULGff78VcrlymUT8tWrT2VcihTxpPzy5Ucpnzv3UMiVKuWQcXwEsxpev1bSPnnyXsYlTuwqZWfnKEL29/+uuxdfKWfK5CblCxeUut6+9ZZxfn7+OlkpY+PGczKubFntufPnTyPj79xRLFQJE7rIOG9vTQcq4BcrlkFeJzEslXD8+G3xN1++1Lr7eyRlV1dFxxxU3eR319q217gD8rqPj/K806c3k3EDB66XcrlyWYX84oWm96JF08vrkybtlnLLlkWFnCiR4ifF4ciRW1L29PQRcvbsyWWcvh+o8ufPWhsUKaLVpfZjzuztraSpX185lIXDoEHafefIofhiff+uta2+PZ8+1fpEtWq5ZBmqsHnzeRn38eMXIXt6fpZx+nts3LiQiNe34YwZ+2Xa/Pm1dkqeXOnLKrCzXLOmthXhrVsvxfU8edxl/pMn70o5ffrEQj5z5n6Q++OICxe0fpAxY1KRZurUJkGeT0Sc//mMebT6168/K9OmTBlfyLdvK/fEQd+2+jnmwIHr4vqoUfVk2lWrTktZ1Xe2bMlkXOVUyvjjsOm20v9fvdL6WerUCeX12LGjS1kdz+/eaWMxSRJtXCdIoIyr48fvyDyvX3+ScvToWr1p0ihz4tq1HvK6fp5UQULfj6NEiSzT5syZQsju7glknDoHckRwc+bWrRdkWnUO44jatZXFyXq96ucuNZN+DlTbiK9Fi6bdl4uLoi+1XVgeMaKOrFftn/pnUfs5J4oSRZlHP3xQxiyHHz+0d0ry5NopoN++KfOg/r4zZ9bmzixZFHndOq1v6XWsr8PNLY5Iqx9fN248l/egzt/PnyvvpMA61perXlfvj/+v78s1auQWSc6f18+dWj/r0KGUuB4vXixZ18yZ2typvvf070r1ncIZ9PVev/4siD71kLphg/LeaNCggKwrUyZl/HLo2nWZ+FuwYDoZp29vdV7hi+qc2bLlPJl24cI2UraXULfuNHsVZVU569Z1lun5vII7DzRWUC/EdXWhFG4a7wQG3jlLt1Bsl5hUt0oJevj0JTEA9+vShMqXyG/VvYSWGMBrUJUAXiIAL4CXhxGAF8AL4CUC8Ab8UQHgdRzw1q491SDR2JZ9w4YuMuOzF29o4uzVQQrKlzNTAP/cwMAbOMOMRZvo5et3NKxXK9tuKphcAF6DqgTwAni5C8HCC+CFhZcIwAvg5flQb0UH8DoOeGvVMgd4N27UgNdSpAoMvOcu36LsmdJQtGhRRRGT/11Hn7w+08Du2pdOS8sOKR2ANwwN5i7flvz9tc9DfPgEh8zpU9GaOUMJwAvgBfAqgwgWXlh4AbwAXgCvMh+a4dJQs+YUo0xoU/5Nm7panS8w8Db8bRiVKJSLfmtek548f0Utu4+hYb1aU/GCmnuk1ZUEygDgtVCDj56+pBotB9CFPf8GyAHgBfACeAG8rAFYeGHh5X4AlwZYeM0C3ho1JltINPZNtnlzN4sK9PzgRaXqdRdpv33zo6hRFd/9vasmkpe3Dw2duJB4FwdXl5jUrF4F8c+eAcBroTYBvFi0xl0Fi9a0z3OsDyxaI8KiNW0RKiy8AF5YeM2z8Favbg7wbtliGfBaiFvhlgzAa6FqAbwAXgCvMliwSwMRdmkgwi4N2ssDuzQQYZeGgLtymOHSUK3aPxYSjX2Tbd2qWG0jegDwWthCAF4AL4AXwKtOFwBeAK/+1QHgBfByfzB7W7KqVSdZSDT2TbZt2x/2LTCcSgPwWqhYAC+AF8AL4AXwYh9e7MNLhH14I+Y+vFWqmAO827cDeC1Eyf9GMgAvgBfAC+AF8AJ4AbwAXp4HIuLBE5Ur/20KUO3Y0cOUeq2tFBZeCzUG4AXwAngBvABeAC+AF8AbUYG3UqWJFhKNfZPt3NnTvgWGU2kAXgsVC+AF8AJ4AbwAXgAvgBfAG1GBt2JFc4B31y4Ar4Uo+d9Ohn14sQ8v92CctIaDJ7APL/bh5bkA+/BiH17uB2bs0qDnEUeS1e7dvRxZnc11wcJrs+qUjABeAC+AVxkLOGkNJ61hH14AL88FOFrYHOAtX368QaKxLfuePX/altHBuQC8BhUO4AXwAngBvKwBWHhh4YWFV5kLALzmAG+5cuYA7969AF6DKPnfyA7gBfACeAG8AN73ohPAwgsLL4BXmQ/NcGkoW3acKeC0b19vU+q1tlJYeK3VWKD0gwatlzFFi2YQ8rx5R2RctGjKWdEcvLy+SNnZWYnv0KGUjDt48IaUkyaNI+RDh27KuFq18krZ2/urkNV0LH/96iev6wfboUNKuX5+34OUry/j7t1X8ro+7efPSl0uLtHl9Tx53KXs6+sv5V27Lgt54sSGMk6/Z+P9+29E/Nev3+R1Ly+lfA6qZUCvt8+ffXVpNR1GjRpZxAd8Vk1fvr6KPt688ZL5U6dOIGV9fL58qUW82i4sv3jxQaZVF6pUqpRDxm3adE7KkSJFEnK9evll3I4dii44ZMiQRMotWhQV8rlzD2XcihWnpOzqGkPI6vOx/PHjZ3k9X740Qj5x4o6Mq1Ilp5TLlMki5XXrPIRcoEBaGXfgwHWdrPSNmjXzyDi9sGXLBfFffT/79ElrA32fK106s0gbObKTLOLatWdSVjfnjx49qoxr1qyIlN++1drp+XNPEa/qguU9e67KtJUrK+2wZs0ZGRcnTkwpN2hQQMj6Mbdo0TF5vXbtfFJOksRVyBMn7pJxGzd2kfIff6wQsv6+06ZNJK+7ucUV8qlTd2Xcw4dvpaxvR/Ue9W0UN65234ULpxP5Ll9+IvN7eDyQ8o8fP34+lzZmcuVKKa/fu/dayvv3K+28vIvWN/5YrZXl56eMW/X+We5fS+sna656i+v6cfD9u1I/B/1zXb2qtHOmTFo/T5lSiBf82QAAIABJREFUG2sPHyrjXt+P9M/l6an175+PSOr45Xz6ehs1KijKWrlSGzP6vpMuXWJxXT8m9Nf1fU4ddxcvPpLPpT8u28lJ6cvx42tt9OCB1rbqPPX9uza36vv8b7+VluWqYzFtWuX+OOTOrbXd0qUnRFyUKMq8xkE9tlq5h1giTv+j4s6dlzKtflz6+Cjzq75vjB5dT6ZdvVoZN66u2pw+Z84hed3FxVnKqg46dy4j4/Rtd+nSYxEfUt+IGVMrSy2gQAFlDuOwa9cVKat9Rv8uqlJFm3MTJowt0j54oPQnDvr3x4ULSjvWrq29K1+//iTT6t+natvp30X6e3V3jy/yZcmSTOb/+NFHyufPK3Xp34X69lDfKfp79PDQ3J7++aexLMteQunSY+1VlFXlHDjQx6r0ZiUG8BrUPICXCMBLBOAlAvACeAG8RADegD+GALwalIc38JYqZQ7wHjwI4DWIkv+N7ABeAC/3VAAvgBcWXlh4eS4A8AJ4uR+YYeEtWXKMKeB06FBfU+q1tlJYeEPRWJNOI6h6hSLUsKb2KYeTr958gLbsOU5Lpg4gAC+AF8CrDCJYeGHhhYUXwMtzgd7dBRZex1l4S5QYbS0D2iX94cP97FJOeBcC4A1Fw2u2HqQN24/Q8hmDAqRq1mUk1apUnOpWLQHgJQAvgBfAyxqAhRcWXlh4lbkAwGuOhbd4cXOA98gRAG94w3q4l+/l7UMl63SjDfNHkHtyZaHB0xdvqGbL/nRo/RSKFTM6gBfAK/oFXBpg4QXwAngBvABeFUzMcGkoVmxUuHNRcBUcPdrflHqtrRQW3jA01vuvWZTa3Y06tqgpUs5esoXuPXpGYwd0EP+HSwMsvABeWHhh4cUuDeqrBD68sPByXzADeIsWHWktA9ol/bFjA+xSTngXAuANQ8PHPa7QX5OW0I5lyurHas370cBuzahQvqwA3p+6wy4NsPByV4APL3x44cMLH16eC+DSYA7wFiliDvAePw7gDW9Yd0j5vLdg+QY9adKwTuQU2Ym6D5pKu1dOJCcnZd9VWHhh4YWFFxZeWHhh4YWFN/g9mrFozXGL1goXHuEQLgpcyYkTA02p19pKYeG1QGP/zF1LPl++UmQnJ4oePRp1bVNX5gLwAngBvABeAC+AF8AL4DX74IlChf6ygGjsn+TkyYAL++1fg31KBPBaoMeHT15Su17jiU+cmTO+J7kn104TAvACeAG8AF4AL4AXwAvgNRt4CxY0B3hPnQLwWoCS/50kTTuPJD49lvfe1QcAL4AXwAvgBfACeAG8AF6zgbdAgeGmQNXp04NNqdfaSmHhtVZjgdIDeAG8AF4AL4AXwAvgBfCaDby//DLMINHYlv3MmSG2ZXRwLgCvQYUDeAG8AF4AL4AXwAvgBfCaDbz585sDvB4eAF6DKPnfyA7gBfACeAG8AF4AL4AXwGs28ObLN9QUcDp71px6rX1YWHit1RhcGoQG8uRxl5rAPrzYh5c7A/bhxT682IcX+/DyXIB9eM3ZhzdPHnMsrefPm2NZthbfALzWaixQ+nLlxsuYhAljC/nWrRcyLleulFK+c+eVlF1cnIVcvnw2Gff06Xspv3vnHaSsWrXyyutv3yrXU6SIJ+Nu3nwu5dixY0j55csPQq5UKYeMO336vpSbNCkk5Ny5NYgdNGiDvJ4sWVwhe3t/lXGfP2ty1KhRZPzBgzeE3K9fVRnn4+Mr5ZQpEwh55sz9Ms7P77uUs2VLLuR7917LOHXPY454985Lxv/4aVCIHz+WjLtxQ9OBer+HD2vnfFesOFF3L/GlrLbTmzda+Y8fvw1yj25uii446NvLz89fxDk7R5XXP370kbJeR7lypRDxqVMnlNcXLjwm5Zgxowk5ViyljyjPrbQ3h4YNC4i/J05ogJU3byp5/ejR27p6Iwu5bdsSMm79+rNSVp8hQwZt5xEPjwfyeuTIyn7TadIkCpKHI1xdtX724oXSz+LE0eKiRFHq56DqiPe2VoO+/x8/fkfGv3z5Ucj6tlf1wvHqC1XfXmo/5evquND/GNPrK0YMrZ3UZ79y5amsv3jxDFJ2cYkuZE/PzzLuzBlt/BQpkl7Eq32XZf1pW8OG1ZL51H0yq1TJKeP0faZevfwifvTobfK6flxev65YUvVA4eysjT99n7l6VXmeli2LybLGj98h5ejRFR3Ei6eNn44dy8jrK1eeEnKiRMq8FvgZb916KePv3lXmNv18pL9v9V4+fNDGROzYil458IJgNTx8qIy7OXNayrhhwzZJ2ctLmXv093Xo0E15Xe1n6vPxBf28UKpUZplWvYcECVyC1M8RceMqffnGDW1OL1kyk0x7+vQ9IceNG1PGbdp0XspJk8aRstrPkiRx1eXX+lG1arlEvL5tP336ItOq4+vbN2Wu4eDmppV/86Z2j2qf1Y8f/Zzt76+MweTJtfeH/r2l9mlOs2HDOZH2+3dtns6fP7W8B3WfXX0/VOtX6lDmzNu3tfefGsfx+nGljnv9/F+3rjImOGTKlFT8XbDgiIzTjx/1HdipU1l5/eLFx1Lev/+6lNX3kv79oZ/fP39W3ls5cijzNYfnzz2lfO7cQyHr+3HhwspcwEEdqywnSaK0k/4dumRJO5nWXkLu3OYA74ULAF57tWGELgfAyxM0gBfASwTgVX6scQDwBvwBDeAlAvACeMMbeHPlMme3hIsXzdkdwlo4hIXXWo0FSg/gBfBylwDwAnhh4YWFl+cCWHiJYOE1x8KbM6c5++FeumTO/r/W4huAV6cxzw9eVKxWFzqwdhIlSqB8hjl76RY17zqKDq2fTAnjK58lTp2/Tn1GzKaD6/4hAC+AF8CrDCJYeGHhhUsDgJfnAgCvOcCbI4c5wHv5MoDXWviOEOl/bT+UWvxakaqVLyzuZ8bCjbRsw17q37UpVS2r+LpOmbeOXrx6R6P6tQPwCp8zuDTAwgvghYUXFl5YeJXXOIDXHODNnn2gKRx15coIU+q1tlJYeANpbNKcNfT2/Uca0aeNuMLW3TzZM5DnRy8a1quViGvSaQQ1qlVWQDEsvABeWHhh4WUNAHgBvABeAK+KFGYsWsuWLeBJsNYCoa3pr14daWtWh+YD8AZS98lz12jg2Hm0d9VE+vLVl8rW70Fr5wyj1j3G0o5l4+izzxcqUr0T7V39t3BxAPACeAG8AF4AL3ZpUF8l8OGFhZf7ghnAmzWrOcB77RqA16Hkbq/Kvn3zo0LVOtKG+SPo6fPXtGjNTpo1tidVbtKbFvzTl27fe0J/z14trnMA8AJ4AbwAXgAvgBfAq7m2waXBHODNkqW/vVDIqnKuXx9lVXqzEsPCG4zmO/SeSGWL56NnL96Qa+yY1LphFRo0bj79kjsT3br3hH58/0F/dmwI4P2pO/jwYpcG7gpYtIZFa1i0hkVrPBcAeM0B3syZtT3nHQmVN26MdmR1NtcF4A1GdQtX76Qbdx7R0+dvqHenRpQjcxrasvs4nbl4g27ff0qdWtaiYgWUQxxg4YWFFxZeWHhh4YWFFxZeWHjNPngiUyZzgPfmTQCvzRRudsbb959Q5/6ThQ/v/jWTKHJkJ3rx+h216TGOXr/1pEPrp1CM6MppWABeAC+AF8AL4AXwAngBvGYDb8aMfU3Bp1u3xphSr7WVwsIbgsZK1ulGWTOmpplj/pApKjXuTW5J4tOCSVqnAvACeAG8AF4AL4AXwAvgNRt4M2ToYy0D2iX97dtj7VJOeBcC4DWoYQAvgBfAC+AF8AJ4AbwAXrOBN316c4D3zh0Ar0GU/G9kB/ACeAG8AF4AL4AXwAvgNRt406XrbQo43b07zpR6ra0UFl5rNRYoPYAXwAvgBfACeAG8AF4Ar9nAmybNnwaJxrbs9++Pty2jg3MBeA0qHMAL4AXwAngBvABeAC+A12zgTZ3aHOB98ADAaxAl/xvZS5bUVifmyJFC3PSdO8rkzyFhQhcpv379ScqxY0cXcsmSmWTc48fvgqR99sxTxlWunFPKfEAGhzRpEsm4I0duSblAgTRSvnr1qZAjRYok42LFcpZy//7VhLxhw7lg7yVBglgi/vnzD/L6u3feUk6aNI6Ujx27LeTatfPJOC+vL1JOlSqBkI8fvyPjfH2VZ+GQOLGr+PvlyzcZ5+OjyYkSxZbxp07dE7KqS5bfvNF0rLZHlChOMs/168+lrN8zVN1LOG9ed3l9166rUn771kvIadIklHGfPmnPpdbr6hpDXv/40UfK+vg8eZQ60qVLIq/v3HlZyg8fvhWym5umV3WPW45v3bq4uL5v33WZJ3t2bQ9YD4/7Ml5t5w4dSsm4xYuPS1m9b30/unTpsbz+/v1nIbu7x5dxfn7fpazX7Zs3io70fUvftvHixRTXv3zR2jtzZjdZ1p07L6Xs7f1VyFGjRpZx3775SzldusRCPnv2gYxT+w5H5MyZUsRHi6blX7/+rEwbP742LlOmVJ7twoVH8nr58tmkrPZ1b2+tvT09tbZt3bqYSHv0qNL3OejHslo+x3t7+4rr6dJp41ZmIqKqVXOJ/86ff0RG6/u32g9fvvwor+vHn36MX778RKQZMqSGTDto0AYpOzsrgKLvm127lpfXN28+L2TepUYN+rR+flp7PHnyXiTRjw/9vag6fP5cm8+mTWsqy+3efYWUY8ZUdsDRh6dPlfI5xI2r9KNmzYrIuMGDtedq2LCgiD9wQBsf+vFToUJ2mU+dGzNlSirjTp/Wxo8ar7/+/fsPmXbfvmtBdKTvs/qxEj16VJE2Sxatz+/erc0xSZMqc58+9O5dRf53wIB1Qvb11fS+cWMXeX3atH1SVvvEunUeMs7FRZvz1TbNkyeVvK7Xl34f3QQJlLFy9672XnNy0t4lf/xRQVzXw57+Gf76a7P4b968Wl36uVNtL04zdOgmkVY/B61f31kWp75DJ03aLePUMcERt269EPGbNnWV13fuvCLl9es1faRKpczlT55o79306bU5+eZNpax27UrI/CdO3JWy2k9ixdL6q7u78n7j4OOjjHUOap/18NDmq+3btQXxen0ZkVOl6mUku815Hz6cYHNeR2aEhdegtgG8RABeDbQBvABenlIAvAF/YAN4iQC8AN7wBl53954Gica27I8eTbQto4NzAXgNKhzAC+DlLgQLL+sAFl51OgHwAni5L8DCSwQLr+MsvClTmgO8jx8DeA2ipPnZl6zdTdv2nqAVMwdLd4AfP35Q084jqXKZgtS0bnkC8AJ4AbzKWAXwwqUBLg0B3XAAvABeR7o0pEjRwxRwevLkb1PqtbZSWHhD0Zi//3eq124wNf+1ItWurPhN8hHDC1btoDVzhgnfNgAvgBfAC+BlDcCHFz683A/gwxvwpQoLr+MsvMmT298v2BKofPp0kiXJTE8D4A2jCc5dvkV/DJlO25aMIXbUr9qsL/09tBPlyZ5B5ATwAngBvABeAC8WramvEgAvgJc1YMaitWTJzAHeZ88AvKbTvL1uoN+ouRQ3jgtFixqF3r7/SCP6tJFFA3gBvABeAC+AF8AL4E0f7CsXFl7HWXjtxTz/X8uBhdeClmXIrdlygHBh2LhgBMWLo22NBeAF8AJ4AbwAXgAvgBfAa/a2ZBbgzP90EgCvhc3/16TFFDlyZOrftUmAHABeAC+AF8AL4AXwAngBvABeC4HKpGQAXgsVP3rqMooSOTL92bEhgJeIcPAEEQ6eIMLBE3wQCA6ewMET2uEc8OGFD69ZPrwW4sz/bDIAr4VND+DFSWvcVXDSWsC9RQG8AF4eFwBeAC9OWuMTKc09ac1CnPmfTQbgtbDpAbwAXgCvMlhwtDARjhbmfoCjhXG0MBGOFo44RwtbiDP/s8kAvAabHj688OGFDy98eOHDCx9e+PDChxcWXoNAFc7ZAbwGFQzgBfACeAG8AF4AL4AXwAvgNQhU4ZwdwGtQwQBeAC+AF8AL4AXwAngBvABeg0AVztkBvAYVDOAF8AJ4AbwAXgAvgBfAC+A1CFThnB3AG84KRvHQADQADUAD0AA0AA1AA+ZqAMBrrv5ROzQADUAD0AA0AA1AA9BAOGsAwBvOCkbx0AA0AA1AA9AANAANQAPmagDAa67+UTs0AA1AA9AANAANQAPQQDhrAMAbzgpG8dAANAANQAPQADQADUAD5moAwGuu/lE7NAANQAPQADQADUAD0EA4awDAG84KRvHQADQADUAD0AA0AA1AA+ZqAMBrhf79/LWz40PKFiVy5FBLNFqG0fyh3Zy//3dasXEfNa1bPsRkRus3mp9vzGgZ//X8auM8ePyCnKNFJbckCWR7ffPzp6hRQu+D9tBhw9+HU+1Kxahy2ULk6hLTilGkJDWaX63w1RtPunLzPr16857ixI5F+XNlokQJ4lp0P2b3A/UmP3p9pgtXbtM7z08UxzUW5c6WnuLFiW3RM5jZB/Q3aKQdzHwGo33AHmPJ6D2Ynd/oO8UeOuQyjPQjo2PRXvOZRYMeiWzWAIDXCtXlKNMq2NROkZwoSpTI9OWrL109uDDUErOVahlmjaGVYTR/SJWfu3ybRvyzmKJFjUIrZw0J8R6N1m80P9+Y0XYweg9m52cdnPC4Sl0HTaWxAztQmaJ56KvvN+oxdDodPH6BUqVIQlP+6krp0yQPt3bcvu8U7T1ylk6fv04F8mSh2pWLUZH82SlyZKcw+zcnMJr/x48fNG7GSvEDLVmSBJQ0UXx68+4DPXzyUvxg6/V7A4oUKVKEH4szF2+iuUu3CsBNmjg+vX3/kV68ekuNa5ejPzs2DPUZzO4DrFyj7WD0GUKbC7gv8rgI7/nU7HuICPNRcAPN0ncK5zX6DEb7Ed+DkbFodD6zaNJEIsMaAPAaUOG3b3505PRl2rn/FJ2/eofy5cxIY/q3D7VEnhz3rJoYahp+eYcUXrx+Jy9Vatybdi4fFyApx13Y86/FT8Uv2ImzVtGxM1eoW9u6VLty8VBfsoHvP/A9lG/Qky7vXxBi/UbzB1ewte1gtA2MPkPu8m2DtJv+uSxpw6adRwqwq1S6gMi6bP0eWr/9CM0a20OAKIPv7HE9w70f+fp+oyI1OlGJQrnp6s37VL5kfqpVsViosK2/KVvzz1m6hTbuPEoTBv9OWTOmlkXevPuYug2aSg1rlaGW9SuFOg6MjiV9fq6oRov+tHnRqADjM7SxuHLTfpq9ZDONH/S7sEyr4erNB/THkGnUuE65UJ/BaB8wOg74fo22g9FnCK6Bv3//QWu3HaLpCzZQhZL5aUC3ZhbPR8ElDG0+Dqlga+7BaD/S53/v+Yna9ZpAa/8dFuDWLH2n2NKPA+vA2ncK5zc6Fo32I6NjUdWBrfOZxS9sJDSkAQCvlerjiczj4k3atu8EHTh2nnJkSUvVyhWm0kXzUHTnaGGWxi+Z0IAwzAJ0CRicAr9Qg4vTlzl66jL5Xz8/f9p18AxVK1+YOrWsRbEt+DQd+P4D1xfW8xnNr968kXYI6x7DagOjzxBWG4V1ne+vcLWOdHTTNGlRbd51FP1arRRVr1CEWDcl63SlIxunhvUo4rot/UhfcMGqv9OpbTPJy9uH9hz2ENbbzz5faNn0gRbVb0v+UnW709QRXcX4CxzY2jNi8hLatmSMRfXbQwdchvocaqVhtWONlgPoz98bUPGCOYPc53GPKzRqyjLaunh0iM9gtA8YHQd8Y0bbwegzBFbO6fM3aMy0ZRQ/niv169yY0qUO+SsH57WHDozeQ+D81vYjfX7+ylGnzSA6vGGKxX3faP1G3ymB67dlPjLaj4yORXvOhzY3HDKGqQEAb5gq0hKMn7FSWM+SJ01IFUv9QhVLFaC4cVysKMG+E2y+iu3p5LaZ0meTfbkKVP6Nzu2eG+I98TOogf09dx08Lay67ZtWo5gxoof5LEZhz2h+vkGj7WD0JWf0Gbjd9q3+O9i+wy+s6s370YmtM0Jti6I1O9PRjVOFNZ4/2/JLcs/KCcJ/lT8zF6vVhY5tmhZme3ICW/pRcBO8zxdf2n/sHO3Yd4qePH9NGxeMsKh+9QVvSf7L1+/Rtn0niS0y53bNJSenoG4LDN7FanamC3vnWVS/PXTA7Va5SW86s2O2rDMs4OXrxzdPp5gxnEWbeX/+Qi6xYoj8LBet0SnUZzDaB4yMA3u1g9FnUJX99MUbMS/cvPuI/vy9IZUplteitjeig8AV2HoPgYHV2n5kT+C1pR8bfacE1qMt85HRfmR0LNpzPrSo4yKRTRoA8Fqhtr8mLabjHlcpc/qUVKl0QSpZOJdFVl19FfacYBt0GEbN61ekqmULiSoYBBas3EFr5wb8nBXaI/JCmb9nrya2KPVoX19Ye0MLRmHPaH6+N6PtYLQNjD5Dmx7jqFiBHNSqYeUgqub2O33hBs0c80eo7dDwt2HU87cG9EvuzKLd/122lTbMVwCTf8RwOaH5YusLN9KP+EdWoaq/U4WSvwh/XrZW1qhYlPJkz2DRyLIm/4xFm2jR6p1UpWwh8Yw7l48PdsHc3YfPqFX3MVZZuWzVAYMp63rp+j3ErjXsYsQ/OhgcarceGKqVnV1BdiwdJxaqBbbM8SIwttQd3RSyld5oH7B1HNizHYw+w2efr8KtYu3WQ9SifkXhAhI1ahSL+h4nslUH+gqM3oP6A8fWfmQP4DXSjwMr29p3SuD8toxFo/3I6FhUn8Ga+cziToqEdtMAgNdKVXKHPnn2Gm3fd5JOnL1KBfNmFcBZOH82CmuHBq6KfWWL/pLdylqDT86LAjr1m0SJE8Ujp0iRhFVt8l9dxOIha8P5K7cFSMaI7hzqp+jAL4jAPrxhvUCM5tdPLLa2g9E2MPoMbB1r3WMs1a9RmmpUKCoWXbFVctOuYzRvxXaaN/FPypk1XahNuO/IORo0fh7lzJKWzl66RSP6tBFfHO4/ek712g2hqSO7WtwPbOlHXP++o2fp6OnLlD1zGqpZsRiVLpKbokWLalHXsyV/keqdaM3cYeILy6Bx84nXpA3r1SqAzzm7c/QaPkNYSof/2dqie+FEtuhg8ZpdNHvpFsqROa1YYLZhxxHituU23XHgFCVJGI9G9m0b4j10GTCZCuXLRk3qlAsCvP/MXUv3Hj0Tiw9DCkb7gK3jwJ7tYPQZ2KWCdypp16QaxY8bm378CKqtssVDtvbaqgN9LUbvwWg/4vxq8Pb5QvNX7KAurWsHUETzXyuG2I+M1h9SwZa+UwLnt2UsGu1H9hiLRuZDiycqJDSkAQCvAfXxp+RDJy4Ka9O1Ww/Ey2tIjxYGSiQaOHaegBdLw4dP3nT+8m3iLcVyZUtHCePHsTRrkHRcxvINe6lZvQohlsHWlPZNq4d4/cyFG8LqGFIwmj+4cm1tB/5VX6ZoXur1WwOrXFPs8Qy8MGnKvHV06vx1YRlk1wS2iv7R/lfKm8My6+iNO4/o4tU7lDlDKsr1E5C5DT95fbbqeVin1vYjhuqaFYtS1XKFBWhYG2zJ3/uvWTRu0G+iqg8fvalZl5HCh7l8yV8oYTxXYqsoj8XIkSPTvL97U4J4rlbdlrU6YAtu746NxI9dDrxgha2fF6/doUzp3KlL6zoUK2bIbkKXrt2ltr3GU5UyhYRbyrEzl4VV+vGzV9Sk0whaNLkfpXF3C/UZjPQBds8qVzxfkPLZ/5rBMaR7t3c7GHkGBpWwwtSR3UJMYqsO9AUavQej/cjs+kPTvyXvlODyWzsWuQwj/cjoWLRlPgur3+K6/TUA4LVCpyFtncJ+hPySZXAJa1sy/nQU2kswLL8/zw9eVsOM/hGN5mcrVtni+YJ8Sn75+r2AtsQJw94Dld0n4sd1pczp3eWtsf8b6y91yqRhtog92oErKVG7K3VuXYcWrtpBHZrVEABnTegycIoABmvz6evgLwZeXj6iT1jzKVYt4/b9J/T46SvivVxjx4pJmdKnpBRuiSx+DKP5Q6qI+wn7htsaLMnPgLlp9zGxiJT34XV1iUVFC+SgOlWKW/S1he+NXQnUH4nPX74VZf2gH/RLrswB9jcO7jnYmhycD7E1z8wWxrsPnoosMWI4i4WHHPhHS1iLSI2O5ZDmGt7ajSFq4eR+Fv2YMdIORp/BGl0Hl9ZeOjByH/boR2bWb482NFqG0fysPzPHopH2Q17LNQDgtVxXhg884KoY1hhusmRIRWWL5aXKZQoG2Cg/LOAN6fr12w9pxsKNNGl451Bf9kbz8/27JY5PA7s3p1JFckvtsWVtyISFYls2fXxg9bKf2uK1u2h0//ZUKG9WefnIqcvUZ+QsGvxHC7nVVkhNY3SjdbVcBl62qPE2OuNmrKDXbzxpcI8WFkE3l8ELJYrkz0Zv3320Kh/v1zxr8Waxo0K6VMnEQkiGDAac2LFiiL/s4xtaYCsgb7/l+dFLHLjw4MlL4d7Am6+zVZD1y+0UUjCaP6xhE1Y/tkd+hvxnL96I5+XP2hx48VdY+++qdS9Zu5uWb9hHO5aNpd2HPGjg2H+FlZ3z8+fY0f3ahbr4ifvhkVOXqHSRPKLenQdOCx9/sWiwQI4w+3FYOgjrutGxnLtcG5o/qU+w1Rw4dkEsAJszvldYt2HoutFnMGqhtYcOjN7Dfz2/0TbkDmS0DKP5DXViO9y/0fqR3zINAHgt05NIZY9fkQw7/On1zoOndOTkRTp88hIVK5hDuAmwb2JYoBDadd530uerr/hEH1KwR37e7qljv0n0e/OaAV7q7Hs1ZPx82hLKVkrlGvSk+X/3IffkicUtjp+5Uqyq5sB7qPL+o9uXjg2zVYxYid9/+CTKD7xvKvsET52/Xmwz17FlrTDvQQVmvpex01dQxZK/CF/CsCy1/UbNpXeeH+mv3m2ERZz9NbmMjGlTCl9efgFeORDyXsZ8Y/U7DKVGtcpKK+rJc4pf+dCerWjBqh0CxBb+0zfEZzCanz/h8d6eWTK4C4u/3lof2gtMvSGj+Q8cP0+9/5otfjwy7M4Y3Z1GTl5KZy7eoHRACczsAAAcuUlEQVSpktOYAe2D3FNgZRSr2YVWzBxEKZMlJt6WiP1tc2ROI5Lx6W39Rs4JtS/3Hz1XWIgZCrnf7D54hmpWKiasvht3HBVjI7R+xDoIboEpf5rl9gxrH2GjY5l/vIa1bdfmhSNDHQdmP4NRC609dGD0Hv6/5ueOY8k7Kaz5wpIyjI4Fs/txmC8bJLCLBgC8VqgxPH5Fsu/e+u2HafGa3VSlbEGat3xbqFsR8QQd2mdU/jwW1slCRvKrOmBob9FtNA3s3kwuwuO6C1X7nU5vnxWiVvV7TPI2VPkrtRd7uPIiI/b3Yr9a/n9owaiVmEGVA68mDsn/1JJ9LFXg5bK4Hdm3l/dm7tu5CRXIE7IfMz/j3lUT5TZw/EOqZfcxchuvsH70cH2FqnWkE1umS2smWxXLN+wlyuXt5gpX+508ds4JUY1G8zNQqz/cDp+8KE7oa9O4KlUuXVD41Yb1DEbzs98jL0rjfXj5U2TvEbOoU8vaVKVMQbGYdOm6PWHuA8x7d+5bM0lsC1ateT+hf3XhKX+mL1qzC53ZEXpf5u3luO9WbPSnqE91j+CvBvXbD6V9a/62+scnt2XXgVOoYukC4sdXSMHoXBBWG1kyNYZUhsOewaCV2i46MHoP//H8Rvsh9zOjZRjNb3Y/tmSsIY1xDQB4rdCh0V+RoVXF8Dd/xTbafdiDNi0I2arC93Bg7aRQ75qPKQ0p2CO/etgFfz5v/+cEcaoV7wzBhw7worXFU/qHWH/dtoPForjq5YsQf1Led/ScsPbyjgX7jpylS9fvhWqZ5ILtZSXWA6sV3UBYAzk8ePycUqcMuKjI88Mn4SIR2o+OknW6CSu26svNFudarQbSofXKAhxLXsJ8shBvz9WgRmmRhxcb8h64Cyb1FbsFLFq9K9R9cI3mD6wvXrT57/JtYpeIPp0b0299/rbqxD9r8/NepTuWaacMMrzq9y4O7hTCwPc8dMJCevbyjVhcxv2O3SNa1K9En7w/ix8v3t5faNqokBc8cTsunzFIfJnhbZFmj+8l3Es4WLKfcvbSrahgnizBdj3vzz7E26vp9/UNnNDoWOYfDepWdtb0f31as5/BqIXWHjoweg//9fxG+6E655n5XjO7H9s6/pDPOg0AeK3Ql9FfkVZUFSqwWnN0cHAvSXvm5yMhx01fIbZ14gVn7AObNpSV5bwoqNvgqWKVfdpUyWjR5L40Zd56OnTiAqVOoeQPa+GaPazEXD9beNO4a4vk2N2EP4+H5QN679FzoVbeJWDJVAV+A4fQdMCg9fzVW2rdqApFdnKi2Uu2CNcGdQsrS4CXYajPiNl05/4TUTWD98ShHYVPcN9Rc6h5vQoBjtwNfH9G84fUQflz/Jhpy8UPn7AWcAZXhqX5qzbrK34Y8Z63j56+pJqtBtK/E/4Ux3uzPzvvdrLu3+GhDjm2hC9YuV38QHj87LVIy5ZJhlY+Ipn3OXYN5fTBFRv3iS8yjWqXo69ffcX2cLWrFBduKXytRMFc1PO3+iHeQ66ybeSuEyEl4gNuQgqW9BN7zDmhlWH2M9hDBzwXsD+2flcPS+cCFdbsOada22ZGdWB2/oigQ7P7sbVtjvS2aQDAa4Xe7PFL1orqgk2qX1VuS1lG89vDj5ldF9gKyp9/bVnlbtRKzHvH9hw2gwZ1bx7goA3eB3fqvHU0bVT3MP0/WfcHj18IdYFeSO3DG9XPWLSRDp+4SN/8/MQCp+7tfpUW32Xr94q9WS0JvHDL39+fQrPqh1aO0fwhlW20n4SVnxebzVy0UUD9rXuPaUC3ZgK0GTx9v/nRhMEdqXjB0Bf+6e+dv7CwVZX9r1UrrSX65x96G3ceoVt3H9Mnbx/h2uGePIkA5tDcEezxkjc6lo36LUaEZzBqobXHXGD0Hv7r+Y32Q+5HRsswmt8o9But35K5BmmMawDAa4UOjQ4KK6oKMal6qg9bsvhUKzXwPoK8EI63ggrNQml0ZbnRHQaMrkjm5zVqJeYXDO93W6JQLqE+XgDFK+05MPSu2XKQlk4L3nLLaYzqkMtg0GR/UfYftWVbInvoMbT+GNZ+0Gb3Q753doPgPp87W3oBmbytHVt7kyZOEOrWf+pzh7cOeScMXhAXUuCdTfiwECOBd5PYsf8U3X/0gny+fKXo0aOJLyV88l1ofuShwaql/rdchtFn4IV/dauWFJZ5feBFgy9evQt2n+DA+jJioTU6F+jvZeHqnWIeSZUiidVNanQ+MJpfvWHeDo//ubjEDPXrRuAHZODbdfCM2ENa5I8VQxgNgtvC0mrlUNj70/N2n3OXbRVuQMUL5BAucvye4FMrM6RJTuVL5A+1WqP92B7vBFv0gjzWaQDAa4W+IsKvOAYR3vO2X9cmAVwH+FPw4PHzqegvOahb27ohPpXRleVGdxgwuiJZfTAjVmJesHVy6wxRlDiwo1wburD3XwGg/LJnl4nQFt4Z1SFvwdZj6HSaO6GXgLUBY/4V0CK2Jfv5b8WMQaH2TKN6NLoftNn9kJXDO1tkSJNCuDXwi+7z5y9Cf/yyZVeEsE59M6rDsKYOS34g8yEPvOiO/eH5R0SM6NEoVYqkYru7sPbhZcDiU7JqVSomDrrgvGypfvjkBa3ffoR+rV6K2jSqEuJtGvVb5IKN7svNpxby7iR8+iT/CFV/rJ+7fEu4pfAJfh2ahXzQjVELrdG5QK9c9iPnvlipTEFq17hqmLu1qHmNzgdG87MRY9KcNbRlz3Hhaib2lXdyEl/g6lQpQe2aVqeoUSKH2I94ASq7V7EBJo6rC/EiVj6Mhcs6e+kmjR/0e5g/vozOR+zGxWOJ72HPIQ/xQ5OPOi+ULytduHpX9K/u7eqFOmR5Prn74Jk4PTVj2hTCNYnfq+xiF9aBTkbfCWHNJbhuHw0AeO2jR4eVwguteMETv9Q58Lnjq2YPEXLgxU/B3RTDnJGV5UZ3GLDHvpdhKTss6yTvZjBtZDf6v/bOO7yKKg3jL6hJkJaAoS6CgguiLi6CgrAiRWnRKC1gkGKABAiBNBK6JBQTIAUCAWlSk40UkQiCVFGEBVFUFAuwuvRQbCjV7PMdTJ4Qc+eWM5cLN+/8B3dmzjm/OZl555vve0/d2jWUaBqbuAD9Av3Q3b+VullPnZ0FIzsmXYZihyaFXXlLTMsD683srRgxpCd+vfAbuvYfZ+jUIePX5ajrB+3qebggc51yYng9MQp17qsOyYuWSL2Xp4cqOpOHrbUcYl2GkrteuVIFPFinpopQijtFwc2a4BUbvKi4dJVHLoJVorMXL17Gf4+eVHnICaOCDf2YW3eNUF8iqlau+Jc/iZyzP6LHoHjl2mFp081blPPq+nILoz3rZiM6frYaR8zgHvndlRf77gPHY+uKFItj0I3Q6t4LCnZM/iY2Zk5VHttSkzAyrKfhqpN5x+reD3SPl/QuWVJ+QE8/JVgzVm9WX0iebPywskz0LlcG8cMtL9PdplsEZk4OV/dT2U6cPqc8redPG65WkoxLWgSxsjTadO9HUqSavWSyClrIi6O8fGxblaJSveTfnfuNuaHItXBfpEj1zezt+OdDdfDpge8wtH8XJKQth493WZzOOY9xkX0MfbV1nwnWnmn83RwCFLzmcLxpZ5F17KWaX3INJQ9WbrLyUJOHhbwlP9sjCh+uSbPYH93Kcl2HAd2KZBmYbjQgc80WFdGQG/Th708gPSFC3aB/OHZa3TCnjRuYn+5QFEhdhgWL7uT88jmsVZdwtQiGErPP9LPqcKDLUdcP2tXzsGWXYViaNlo5JMgmhYTxyYuUS8XNYjhtdhZOnz2P744cgxRvdmzdFH26tUW1P/tk7TqK20dsaA/lcFJ4k9zg8UlvGDq2yDwUIZH38lvwHBLtEhFgZK9nrX+23NTkHDq+3Hl9kHSUkNgkPPaPuhjU2181LUKlTUAEdr4902JXdCO0uveCwoI3j7d8cRChJ6seis+4d/kyFsegez8w4/gP307Lt+STr1wdesaqBVnki0GLTmGGX7zEz3rrypT8KLBY+nXsNQLvZU5Vdo3N/UMN3UYEjO79qKAri3y1E3tMeQ7KVx5JGev4coyh4BXXl4xZY9V1EreWdoHDkZk+VtUISJrGoNhkQ09u3WeCLX9r3EefAAWvPsObeoaQmGmo4lsR7Vs/oXJN5e1b8vjE5F6ilfLb5JH9LfZJt7Jc12HAjIesbjRA4Minqrz8T3koyU1SljeWT5Lyadho02XYKWgMwgd0yy+q2vLhJ6pYLs8iyhZGtuxjz8S01w/a1fNQvjTsWD0jP6oq/ZeI5wdrZtgseM1kKBHVdzbvghQcShFiWFAntOwSbvjiIi8N7781vciVEeUl6KkXwrBzrWWxJ0V6Eo3q3bUt6taRlAZPVbQnq/bJaoaSGjE2vJfFaaCbt1jwxcJRX+6C10AE7uCRyfD08FApHfLlw6d8GUMnCzMitDr3AmEwIWWJYlx4OWwRjtt37Ve51UZBCN37ge7xHXrGqLSDh+rWUuOQepBxUxeq+5EsBiR/60ZR9uj4dOTmQi2EU6IEsHTlJnh43KlW3Zw0famaj3MSI+25HSmhbI8/ffDwaar/Tzd9VK14KDngpe8uhRZNG0C+pMhL4YSYIIt9KGxjKBFi+dvLS7EpbINY+ES6zwS74HBnhwlQ8DqMzjUHyueiyTOW4tvDx1R+0uihL2Pj9j3YJrZeNaqoh9/dpbwMO6dTWa7rMKBbkWxGNMCMK6fD8KO9BzBsXJqKMMtn8C8OHlGuAnJzls0Wf2AzOBbFwVY/aFfPw/5RU9Ggfm0E93pePWRnLnxLPajnJw23WfA6g6FEKrPWbsWSFe/h6IkcwxXzBsYmo0Y1X7XKYsEcQckdnJ+xDge+PmK4tK9ErsQhQnIv5UuFCCsRvVI0JcVwAf4tDZcZF1Bm5kE74std2ClChL68yH/yp81hn4B2hvczMyK0BWszTpw6q4qdcpGLxg3qFZkuUvjv5t9rtqj/mjYnC5HBRdvQBfi3snjb0b0f6B6/5YN9GPnaPNR/oKYSeJ8fPKzEaqvmDSHXR3zT/ds2s9h/ma+yrL2sDnhVoqsNH1Te1pKDLkKwQ6smKF/uuj+1vZut9yOJyk6avgzfHjmq0kjkRU9eQCSlQqwa+3bvoAqELW0yTlmhVJ6pm3fsw4TUxUrAS9Gd8JV0KUnRMNp0ngn2cuH+jhGg4HWMG4+6hQjYGw24Fbou6Sh79x/ElSvX0OjRumqZXm62E5DPjFHj0/HVd9+jZIkSyoc4JS4038NZigKTXh1s+wlN3lNyiOVh+2wLy9XhYr322szlakliiUCJWJVPu1Jx36JJA7WKobVimYLdlojiqTPnVbStiq+PVT9pU/KgC6Xf2OvLbQ27NacLOV4nQiuL34jFnXy+37h9r0pt+ufDDyh28uVs8oj+SvjZskm+q7XCKEvn0b0f6B4von//gUMqvUoKaSv7+qiuynyUvHh7NnvnYd65zXKasKevefv+55ODGDZ2Bn6/dBlVK1VA+msRmD5/JXbv+wq1a1VTOcziBGO06biFONJnHmM/AQpe+5nxiFuUgK3RgFu0++yWAwRk8RCJquY9oB04hcsPkf5LOo2yFfP0UHnJ1hwmpNMiqFPnrlCrvUlkK2LcTBw/dVZV2VetVBHJ4wejdq3qFsdnRh60Nb9kXbi2pJ1IlLqCd7kbvLOFp3C1toiN5J9mpI9RVf2SUy2LvzxS7z7VbfksPmLi64a5m3nj04mUO5th4VSLoq6JDkPdeSj90XWaMMNTWsR+ztmfUKmi918KUK3NY123EGvn5+/mEKDgNYcjz0ICJEACdhHQ9TKWvMLhg3so79deYZNUGkNeHqV86herO6Nlvs3Ig9b1MtZ1uliYuV7lK08eOQBNGtbP5y8CKmbibIwN721YXS+5mpvfTFafu/16jVDLcUvhqmxSfNXMfwj2rJ9teF11I+WWRL04dUiqQHJcqNXUFKMOWntp0GWoOw+l77pOE5bGaI+ntBFDa84/um4hdt04uLPDBCh4HUbHA0mABEjAcQK6XsaN2wdjV3a6ika1CYhUVfF5RTZShCmCdvc76RY7aEYetK6Xsa7ThYx7QVIM7q1+fYGPKemZyhVBNim4Ch+XpmwcLW1ShHv81BmVc/rZV4dVhX7vbu2UtZ1YVV24cBFpk4YaXmTdSLmRIJ25cLX6zC75pZY2iW5KStSDD1xf6EEWfCi4WRO8ugx156H0VddpQtdTWtf5R9ctxPG7CI+0hwAFrz20uC8JkAAJmERA18s4KCJR+f/2D/RD4qwMNGpQD22fbqwWT/n321tV8dfKeXEWe2tGHrSul3HBzjnidFFQKElKU6N2A5TIl5xoW0T/lavXsDBznSpw+t/xHNUd4SfLS8vy0JEhAVZXHNONlIvrjNES61KcaOQpLQs/iEuGuM6Ij7gsbx30Uke0b/mEehmyJnh1GerOQ2Gu6zSh6ymt6/xjhluISbcVnsaAAAUvpwcJkAAJuICArpexLMwwKmEeDhw8gpo1qqjiLcndvfDb76pCXor28hYDMBqeTh60rh90Uf2yx+mic7+xykXguWeehBSgbf5gn4r2ytKym3d8rKK2b6Rc92a2tolgFnbicS6C19ZNN1IugnTrimTD5mQBBVs3WXJ73vJ3cOSHE2qBm5CYJEN7PF2GZsxDXacJa6LeGjtdH2Az3EKs9ZG/6xOg4NVnyDOQAAmQgN0EdL2M8xoUwfHN4f/hl19/V/6nUk3+wH3Vrbo02N3hIg7QFRpGfbDF6UIsxIaOnaFW1ru/ZjUsSo3F9Pmr1EpntcSHOKK31cI1XQ66kXJnMZQXIPFq3vPpQcMIsVkMdeehjtOEGZ7SBeeBI84/Om4hunOQx9tGgILXNk7ciwRIgARMJWCGl7GpHXLgZM7wMra3G5K6IGJJLNyMUgPsPa+9+zsaKS/oA2xvm7bsb4sLxK3C0Jbx3Mx96PxzM2k7vy0KXuczZgskQAIkQAIkQAIkQAIuJEDB60L4bJoESIAESIAESIAESMD5BCh4nc+YLZAACZAACZAACZAACbiQAAWvC+GzaRIgARIgARIgARIgAecToOB1PmO2QAIkQAIkQAIkQAIk4EICFLwuhM+mSYAESIAESIAESIAEnE+Agtf5jNkCCZAACZAACZAACZCACwlQ8LoQPpsmARIgARIgARIgARJwPgEKXuczZgskQAIkQAIkQAIkQAIuJEDB60L4bJoESIAESIAESIAESMD5BCh4nc+YLZAACZAACZAACZAACbiQAAWvC+GzaRIgARIgARIgARIgAecToOB1PmO2QAIkQAIkQAIkQAIk4EICFLwuhM+mSYAESIAESIAESIAEnE+Agtf5jNkCCZDAbUygU9AYdO7YAoGd2mDyjGU4lXMeKXGhRY6oZZdhiB7YAx1aP3Ebj5hdJwESIAH3I0DB637XlCMiARIwkcAXXx+BbwVvVPb1sUvwHvrvMZzMOY9mjR82sTc8FQmQAAmQgCMEKHgdocZjSIAEiiUBeyK8qfNW4vLlK4ge1L1YsuKgSYAESOBWIkDBeytdDfaFBEjgphCImTAH3uXLYMSQQNXe3GXZSJm7Au+vno6KPuWQm5uLZs+HIjkuFAlpy4tMabhy9ZqK+L67ZTc8PO7CoD4vYPbiNYgK6Y7D3x/HnKVvo2SJkvC9xxvtWz6BfZ9/g2UzR+ePb+/+r9Evaopqs2foRPi1aYKPP/sGR344gVwA46P64MlG16PDR0/kYGLqUuz/8jtcu/YHnm3RGCPDeqKUl8dN4cVGSIAESOB2J0DBe7tfQfafBEjAbgKr1r2PzDVbkDXnVXVsSMw0HDtxBmH9OuOZpxrh2yNHERA8HruyZ6H7wLgiBe+yVe9h7rJ3sCA5BlV8K2DKrAys2fAhJsT0Uzm8Q0al4t7qlVWE99D3x/F875F4d3kialSrpNoUsXzy9Dmkxg+B5An/9PMFLJo+An+r6ovV63dgYuoSJYa9PD3xQt9RaPJYfYQP6IaLly4hduLruKdCeUyM7Wf32HkACZAACRRHAhS8xfGqc8wkUMwJHD95Bu0Ch2NXdjo8Pe7Cv14cggGBz+FkzjnEhr6kxPCmHR9j3tRoJUaLKlrrM+w1PFLvfkSGdFM0RbA28w9F4uiQvwhe+V0EdIsnH8Wg3v5q/9ZdIzAiLBBt/vWYauOxf/wdo4a+rH67eu0amnQcqM5VvlwZvBKegN3r0uHleT2i+9mXh9ArbBL2rJ+Du+66s5hfTQ6fBEiABKwToOC1zoh7kAAJuCGBZ7tHIT4mCKXv9sKElCUYH9UXYxLnq6hvdHw66ta+F/1e6mhR8LYPHI7e3dqhu3+rfDpPvRiG2NDAIgVvxlubsWTFRqxbmoDPvzqMAdFTVQRXBKsIXv92zdG7a9v8c0n/XunRQQny0Qnzi7wCGzKmqIgwNxIgARIgAWMCFLycISRAAsWSwJjEBahe5R54eXkg58yPiAwJQHP/UGzKmga/XiMwY8JQPFS3lkXBKxHaAT39EFBA8D7eIQSvRvYtUvD+9MsFtOg0FEvTRmHD1j349cJvGBfZR7EXwduxTVME9eiQfy3adItA/0A/lCtbGnFJi/BR9qxieZ04aBIgARIwgwAFrxkUeQ4SIIHbjkD2po+wduNO3HnnHejc4Sm0at5QFZG1e/pxJM3Jwgdr0lCyZAmLgldyex9/tB4igq+nNJw595MStFPGDCxS8Mo+4ePSVF7vui27kTBqABo+8vd8wfvIg/erKLNsFy9dRhO/QUgZHwrfit7oFvwqNmUloWqlCur3336/pPap4F32tuPODpMACZCAKwhQ8LqCOtskARJwOQERqC/0HY1c5CJ78WT4lC+LmQtXY8O2Pbi/ZrX8xSUs5fDOeuMtZK3dhrlTo1Cpog+mpGfi3a27ERcdpARvVFw6rly5qtImypYuhRIlSmDbzk8RM3GOitpuzJii/k82aePHn39VArdenXsxL2MdFmauVykP4sQg+b+VfH0QH/0K7rijpCp4O3H6LBYmx7qcIztAAiRAArcDAQre2+EqsY8kQAJOISDOCWJBtnbxZHX+nXu/QP+oqRgT3is/N9eS4L10+Qrikxdj846PlS1Z6CsvYnHWBgT3eh5+bZri/V37ER0/G3eULIntq1JVrq4Uo7XsPAxdn3saYUGd88ckbUjx2v4vD2HPpwdRwaccJgwPUs4MsoktmeQZ791/ULXVpGF9ZUsmTg3cSIAESIAErBOg4LXOiHuQAAmQgCkEzv34C54JiMSaNybeUGxWUFSb0hBPQgIkQAIkcAMBCl5OCBIgARJwMoE//sjFz79cUC4Qpbw8kTgm5IYWKXidfAF4ehIggWJPgIK32E8BAiABEnA2gR27P0PoyFQ0bfQQEkYFo3y50hS8zobO85MACZBAAQIUvJwOJEACJEACJEACJEACbk2AgtetLy8HRwIkQAIkQAIkQAIkQMHLOUACJEACJEACJEACJODWBCh43frycnAkQAIkQAIkQAIkQAIUvJwDJEACJEACJEACJEACbk2AgtetLy8HRwIkQAIkQAIkQAIkQMHLOUACJEACJEACJEACJODWBCh43frycnAkQAIkQAIkQAIkQAIUvJwDJEACJEACJEACJEACbk2AgtetLy8HRwIkQAIkQAIkQAIkQMHLOUACJEACJEACJEACJODWBCh43frycnAkQAIkQAIkQAIkQAIUvJwDJEACJEACJEACJEACbk2AgtetLy8HRwIkQAIkQAIkQAIkQMHLOUACJEACJEACJEACJODWBCh43frycnAkQAIkQAIkQAIkQAL/B5FZPiotiEwQAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "Heatmap which shows us hotspots for mutations that are beneficial or detrimental to the function of the protein." ], "metadata": { "id": "XFIOi-jFlaBx" } }, { "cell_type": "markdown", "source": [ "## Protein fitness landscape prediction using PLMs" ], "metadata": { "id": "D4339j3kSlDU" } }, { "cell_type": "markdown", "source": [ "- Protein Language Models (PLMs) are LLMs trained on large protein databases encompassing all known sequences such as [VESPA](https://link.springer.com/article/10.1007/s00439-021-02411-y), [ESM2](https://github.com/facebookresearch/esm#esmfold), and [ESM1v](https://github.com/facebookresearch/esm#zs_variant).\n", "\n", "- PLMs adeptly learn evolutionary constraints that generalize across protein families.\n", "\n", "- PLM both bidirectional and autoregressive generative models particularly excel in scenarios involving small families with sparse homologs. However, they generally underperform family-specific models for larger families." ], "metadata": { "id": "uUTIMZe5YVBF" } }, { "cell_type": "markdown", "source": [ "We will be using [ESM2](https://github.com/facebookresearch/esm#esmfold), and [ESM1v](https://github.com/facebookresearch/esm#zs_variant) to predict mutational landscape for encapsidation protein 22K." ], "metadata": { "id": "-8wuTWWrl9lB" } }, { "cell_type": "markdown", "source": [ "### Predict fitness landscape" ], "metadata": { "id": "dEUAT2bbSzDM" } }, { "cell_type": "code", "source": [ "# Script to generate mutational landscape\n", "# predict_esm.py script from: https://github.com/facebookresearch/esm/blob/main/examples/variant-prediction/predict.py\n", "\n", "!python scripts/predict_esm.py \\\n", " --model-location esm2_t33_650M_UR50D esm1v_t33_650M_UR90S_1 esm1v_t33_650M_UR90S_2 esm1v_t33_650M_UR90S_3 esm1v_t33_650M_UR90S_4 esm1v_t33_650M_UR90S_5 esm1b_t33_650M_UR50S \\\n", " --sequence $protein_sequence \\\n", " --dms-input ./data/Encapsidation_protein_22K_mutants_labeled.csv \\\n", " --mutation-col mutant \\\n", " --dms-output ./data/Encapsidation_protein_22K_mutants_labeled.csv \\\n", " --offset-idx 1 \\\n", " --scoring-strategy masked-marginals" ], "metadata": { "id": "LsAszt3bSrDf", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "c5b1423b-0d75-4b09-a354-eeef751d497c" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Downloading: \"https://dl.fbaipublicfiles.com/fair-esm/models/esm2_t33_650M_UR50D.pt\" to /root/.cache/torch/hub/checkpoints/esm2_t33_650M_UR50D.pt\n", "Downloading: \"https://dl.fbaipublicfiles.com/fair-esm/regression/esm2_t33_650M_UR50D-contact-regression.pt\" to /root/.cache/torch/hub/checkpoints/esm2_t33_650M_UR50D-contact-regression.pt\n", "Transferred model to GPU\n", "100% 197/197 [00:07<00:00, 27.46it/s]\n", "Downloading: \"https://dl.fbaipublicfiles.com/fair-esm/models/esm1v_t33_650M_UR90S_1.pt\" to /root/.cache/torch/hub/checkpoints/esm1v_t33_650M_UR90S_1.pt\n", "/usr/local/lib/python3.10/dist-packages/esm/pretrained.py:215: UserWarning: Regression weights not found, predicting contacts will not produce correct results.\n", " warnings.warn(\n", "Transferred model to GPU\n", "100% 197/197 [00:06<00:00, 31.84it/s]\n", "Downloading: \"https://dl.fbaipublicfiles.com/fair-esm/models/esm1v_t33_650M_UR90S_2.pt\" to /root/.cache/torch/hub/checkpoints/esm1v_t33_650M_UR90S_2.pt\n", "/usr/local/lib/python3.10/dist-packages/esm/pretrained.py:215: UserWarning: Regression weights not found, predicting contacts will not produce correct results.\n", " warnings.warn(\n", "Transferred model to GPU\n", "100% 197/197 [00:06<00:00, 32.32it/s]\n", "Downloading: \"https://dl.fbaipublicfiles.com/fair-esm/models/esm1v_t33_650M_UR90S_3.pt\" to /root/.cache/torch/hub/checkpoints/esm1v_t33_650M_UR90S_3.pt\n", "/usr/local/lib/python3.10/dist-packages/esm/pretrained.py:215: UserWarning: Regression weights not found, predicting contacts will not produce correct results.\n", " warnings.warn(\n", "Transferred model to GPU\n", "100% 197/197 [00:06<00:00, 32.35it/s]\n", "Downloading: \"https://dl.fbaipublicfiles.com/fair-esm/models/esm1v_t33_650M_UR90S_4.pt\" to /root/.cache/torch/hub/checkpoints/esm1v_t33_650M_UR90S_4.pt\n", "/usr/local/lib/python3.10/dist-packages/esm/pretrained.py:215: UserWarning: Regression weights not found, predicting contacts will not produce correct results.\n", " warnings.warn(\n", "Transferred model to GPU\n", "100% 197/197 [00:06<00:00, 32.31it/s]\n", "Downloading: \"https://dl.fbaipublicfiles.com/fair-esm/models/esm1v_t33_650M_UR90S_5.pt\" to /root/.cache/torch/hub/checkpoints/esm1v_t33_650M_UR90S_5.pt\n", "/usr/local/lib/python3.10/dist-packages/esm/pretrained.py:215: UserWarning: Regression weights not found, predicting contacts will not produce correct results.\n", " warnings.warn(\n", "Transferred model to GPU\n", "100% 197/197 [00:06<00:00, 32.27it/s]\n", "Downloading: \"https://dl.fbaipublicfiles.com/fair-esm/models/esm1b_t33_650M_UR50S.pt\" to /root/.cache/torch/hub/checkpoints/esm1b_t33_650M_UR50S.pt\n", "Downloading: \"https://dl.fbaipublicfiles.com/fair-esm/regression/esm1b_t33_650M_UR50S-contact-regression.pt\" to /root/.cache/torch/hub/checkpoints/esm1b_t33_650M_UR50S-contact-regression.pt\n", "Transferred model to GPU\n", "100% 197/197 [00:06<00:00, 32.30it/s]\n" ] } ] }, { "cell_type": "markdown", "source": [ "### Visualize fitness landscape" ], "metadata": { "id": "rgO2DdtVn_hn" } }, { "cell_type": "code", "source": [ "# Read the csv file containing mutation score from ESM models\n", "fitness_prot22k_esm = pd.read_csv('data/Encapsidation_protein_22K_mutants_labeled.csv',\n", " index_col=0)\n", "fitness_prot22k_esm" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 461 }, "id": "XP4mAK4xn_Hz", "outputId": "845a0151-98fd-4b5f-b7de-7a048b9b30b6" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Unnamed: 0 mutant wildtype mutation esm_msa1b_t12_100M_UR50S \\\n", "0 0 M1A M1 A -16.325127 \n", "1 1 M1C M1 C -16.986792 \n", "2 2 M1D M1 D -18.815874 \n", "3 3 M1E M1 E -17.576103 \n", "4 4 M1F M1 F -13.433237 \n", "... ... ... ... ... ... \n", "3895 3895 G195S G195 S -9.930399 \n", "3896 3896 G195T G195 T -13.784996 \n", "3897 3897 G195V G195 V -12.468152 \n", "3898 3898 G195W G195 W -14.053451 \n", "3899 3899 G195Y G195 Y -15.699408 \n", "\n", " esm2_t33_650M_UR50D esm1v_t33_650M_UR90S_1 esm1v_t33_650M_UR90S_2 \\\n", "0 -8.098816 -8.235819 -5.609891 \n", "1 -11.144790 -10.752127 -7.939667 \n", "2 -10.257328 -9.317606 -6.818065 \n", "3 -9.041828 -9.080865 -6.556577 \n", "4 -10.600483 -9.636066 -7.294350 \n", "... ... ... ... \n", "3895 0.551918 0.538798 0.282230 \n", "3896 0.215631 0.102809 0.036828 \n", "3897 -0.506383 -0.631024 -0.503328 \n", "3898 -3.002845 -2.173256 -1.882592 \n", "3899 -2.778253 -2.155714 -1.750376 \n", "\n", " esm1v_t33_650M_UR90S_3 esm1v_t33_650M_UR90S_4 esm1v_t33_650M_UR90S_5 \\\n", "0 -6.854110 -6.774120 -6.800508 \n", "1 -9.681019 -10.263803 -10.269108 \n", "2 -8.292774 -8.394552 -8.780309 \n", "3 -7.643363 -7.661278 -7.244850 \n", "4 -8.199809 -8.164932 -8.874701 \n", "... ... ... ... \n", "3895 0.335325 0.482387 0.505919 \n", "3896 -0.015700 0.123055 0.254141 \n", "3897 -0.551369 -0.467469 -0.509331 \n", "3898 -1.959077 -2.038070 -2.005057 \n", "3899 -1.710923 -1.869018 -1.828054 \n", "\n", " esm1b_t33_650M_UR50S \n", "0 -6.751205 \n", "1 -9.223083 \n", "2 -8.850616 \n", "3 -7.663014 \n", "4 -9.020489 \n", "... ... \n", "3895 0.841090 \n", "3896 0.318797 \n", "3897 -0.360502 \n", "3898 -2.339551 \n", "3899 -2.049861 \n", "\n", "[3900 rows x 12 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0mutantwildtypemutationesm_msa1b_t12_100M_UR50Sesm2_t33_650M_UR50Desm1v_t33_650M_UR90S_1esm1v_t33_650M_UR90S_2esm1v_t33_650M_UR90S_3esm1v_t33_650M_UR90S_4esm1v_t33_650M_UR90S_5esm1b_t33_650M_UR50S
00M1AM1A-16.325127-8.098816-8.235819-5.609891-6.854110-6.774120-6.800508-6.751205
11M1CM1C-16.986792-11.144790-10.752127-7.939667-9.681019-10.263803-10.269108-9.223083
22M1DM1D-18.815874-10.257328-9.317606-6.818065-8.292774-8.394552-8.780309-8.850616
33M1EM1E-17.576103-9.041828-9.080865-6.556577-7.643363-7.661278-7.244850-7.663014
44M1FM1F-13.433237-10.600483-9.636066-7.294350-8.199809-8.164932-8.874701-9.020489
.......................................
38953895G195SG195S-9.9303990.5519180.5387980.2822300.3353250.4823870.5059190.841090
38963896G195TG195T-13.7849960.2156310.1028090.036828-0.0157000.1230550.2541410.318797
38973897G195VG195V-12.468152-0.506383-0.631024-0.503328-0.551369-0.467469-0.509331-0.360502
38983898G195WG195W-14.053451-3.002845-2.173256-1.882592-1.959077-2.038070-2.005057-2.339551
38993899G195YG195Y-15.699408-2.778253-2.155714-1.750376-1.710923-1.869018-1.828054-2.049861
\n", "

3900 rows × 12 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", " \n", " \n", " \n", "
\n", "\n", "
\n", "
\n" ] }, "metadata": {}, "execution_count": 19 } ] }, { "cell_type": "code", "source": [ "# Long to wide format conversion for plotting heatmap\n", "fitness_prot22k_esm2_650M_wide = fitness_prot22k_esm.pivot_table(index='mutation',\n", " columns='wildtype',\n", " values='esm2_t33_650M_UR50D',\n", " sort=False)\n", "\n", "fitness_prot22k_esm1v_1_wide = fitness_prot22k_esm.pivot_table(index='mutation',\n", " columns='wildtype',\n", " values='esm1v_t33_650M_UR90S_1',\n", " sort=False)" ], "metadata": { "id": "OhXb4-VDqFoS" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "create_heatmap(fitness_prot22k_esm2_650M_wide,\n", " title='Predicted mutation effects from esm2_t33_650M_UR50D',\n", " plot_interactive=False)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 517 }, "id": "a61XzyuJqIMH", "outputId": "1bce4967-f25d-4ddd-a3f9-a9115eabeea2" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAH0CAYAAADfWf7fAAAgAElEQVR4XuydB3QWRReGL+kFEiAJPfRepAsC0kGkCIIUFWyggF0sWFBBxQ4oCiioiCgiKM0GSpMqgoAU6YTeIaR3+M+dzZSEBL6Sr8j/7jmcDLMzs7PvzM4+3907M4UuX758mXBAASgABaAAFIACUAAKQIHrVIFCAN7rtGVxW1AACkABKAAFoAAUgAJCAQAvOgIUgAJQAApAASgABaDAda0AgPe6bl7cHBSAAlAACkABKAAFoACAF30ACkABKAAFoAAUgAJQ4LpWAMB7XTcvbg4KQAEoAAWgABSAAlAAwIs+AAWgABSAAlAACkABKHBdKwDgva6bFzcHBaAAFIACUAAKQAEoAOBFH4ACUAAKQAEoAAWgABS4rhUA8F7XzYubgwJQAApAASgABaAAFADwog9AASgABaAAFIACUAAKXNcKAHiv6+bFzUEBKAAFoAAUgAJQAAoAeNEHoAAUgAJQAApAASgABa5rBQC813Xz4uagABSAAlAACkABKAAFALzoA1AACkABKAAFoAAUgALXtQIA3uu6eXFzUAAKQAEoAAWgABSAAgBe9AEoAAWgABSAAlAACkCB61oBAO913by4OSgABaAAFIACUAAKQAEAL/oAFIACUAAKQAEoAAWgwHWtAID3um5e3BwUgAJQAApAASgABaAAgBd9AApAASgABaAAFIACUOC6VgDAe103L24OCkABKAAFoAAUgAJQAMCLPgAFoAAUgAJQAApAAShwXSsA4L2umxc3BwWgABSAAlAACkABKADgRR+AAlAACkABKAAFoAAUuK4VAPBe182Lm4MCUAAKQAEoAAWgABQA8KIPQAEoAAWgABSAAlAAClzXCgB4r+vmxc1BASgABaAAFIACUAAKAHjRB6AAFIACUAAKQAEoAAWuawUAvNd18+LmoAAUgAJQAApAASgABQC86ANQAApAASgABaAAFIAC17UCAN7runlxc1AACkABKAAFoAAUgAIAXvQBKAAFoAAUgAJQAApAgetaAQDvdd28uDkoAAWgABSAAlAACkABAC/6ABSAAlAACkABKAAFoMB1rQCA97puXtwcFIACUAAKQAEoAAWgAIAXfQAKQAEoAAWgABSAAlDgulYAwHtdNy9uDgpAASgABaAAFIACUMDrgPfld7+geb+sytEyvr4+VCKyGLVv2YgefeB2Cisc4rKWe+ylD+n4qXM07/PXxTW63PUcNapXjd584UGXXfNqBTfrNpx6dWlFLzx2t0euX5AX9bSWed1LXHwSjRg9ibbs2Ec3NqxJn7zzNL0+4Sv6edmflJGRSX8vmVqQEhRIWXnVuUAKvg4KSUlNp89m/URLVm6kE6fOUcmoYtTh5sY0bNBtVDg02Ok73HPgKE3+coHoL/EJSVS2dBT17dGW7u17CxUqVEiUn5V1ib6au4QWLFlDR4+focAAf2pSvwY9NbQfVS5f2u46bN6+jyZMnUM79xyi4OBAurnZDfTCo3dTeFioKGv+r6tp1Duf51nuxNcfpw43N1L1mjxjAS1cspbOnrsotOG6D7mrm6r7j7+to+ffnEoRxcJo+fcTyM/X94pyt+86SAOGvybi/1n2eZ5p8rtJHs/a3tSA3hk1NM8kPEaUL1uCpr73jDif1/uA44sXLUKVypemfre1o+4db1JluUILWTi3b5HQYKpaqSx1aNWY+t3WlkKCg+xuT2SAAlDAMwp4JfDyoPXF+JFKkeSUVPrn3wPiJcKD3HefvEoMwa44cgMvg09k8XBq1rCWTZeLS0iiFj0eoY2/flIgg6GngdfR+8krn71a2iS4k4lmzV9GYz+cSe+8NJTq16lCaWkZ1PP+l2jQHZ3p9ltvphpVop28gs6+dPXf9OnMH2nu1NFOlZm7ztFlSjhV3vWU+bFRE2n9ph306P29qW7NSrRjdwx9+PkP1K5FAxo/+hG7bvXNid+Qv58vPfvwAJHv8LHT1G/oaKpeuRw9cGdX8XwvW/03fTNvKT33yJ0CevngH0w//LKKHr3/dmpYtxqdOnuBJn72A2VmZtGC6W9QETt+sO/YE0MDHx0roK5319Z09vxFemfSLKpQriRNn/C8uN7XP/xOb330jfq/eZPVKpelYuFFRNTbH8+iuT+upCeG9KHa1SsSl/3BtO/pobu708P39RJpJPAGBQYIKO14c+MrNBsz7ksBzWnpGW4B3tzvg8t0mc5diBOGkT///pfefXkYdevQ3GVavPj43VStUjRdunyJLsQm0Matu8T9sxHms3HPUrnSUXb1KySGAlDAMwp4JfAuWLyati+ffoUicmBnK9zNzeq5RLHcwGvvRVZv2E7DRo67boDX0ftxNJ+9ejubnq11k75cQDtWTBdWro1bd9N9T75NX0wYafOPHFvrMP7TObT+73+dBt7cdbb1+td7ugOHjtNt971EDCh39+6kbve9ybNpxtwl9Ncv/CM00GYZ2IrZuF51BbzTvvmJPv/2F1o2ZzyFhmjLHqfjrwE/fPYapaalU6f+TwvL42MP9FbXks/DR2OfoPYtG9pchweeeof8/f3o03efVnkYVPfHHKduHW8SQP7JV4uEVXvT4vy/RpyPjad2dzxJTwy5gwbf2VWVxcA78/vfaPWCiQLgJfC2urGeeB4+eWdEjrry/bXp/QTVqV6RNmzZ5Rbgze99wJb0PkNeoaSUVPp99vuinq7QYuZHL1KjetVz6MB9jceJiGLhot1dZYCxuaMgIRSAAtdU4D8FvPxJjy0sr464V7xQXnnvC2HBGXxXN3pr4jfUvlVDeu3ZB+jy5cs0a/5SmvfLajp87BQFBgZQ62b16elh/YS1Vh7LVm+mCdPm0rETZ6hUiQgafFdXWrX+n6u6NCQkJtOHn/1Av6/aRIlJKVS5Qhl6aGB36tS6CU2aPp8mz1ioym/dvD5Nefspm+vDeb9buJzYOlqjcjSNfPQuGv78+Ku6NLDV9LnXP6FvJ79M73/yHe3ef4TYOsMv/D7dWtPo97+kzdv3kp+fL912S0t6Zlh/Ub8jx0/TrXePpLdffIh6dG6h6swvdX4Jbv5tGn32zU953g9b3D+YxhpsJH6RsgWJLeBPD+svPpPmp0Nul4b4xGSa8OkcWr52C8XGJYhy2txUn556qK+ySnH9//l3P4185C4aP3WOsLIxbNzWuSU9+eAdV+3gnHbC1Lm0bdcBio1LpErRpYRlTn4CZcsZf5qWR6kSxenUmQs5yty58kub2+/Q0VP0/pTv6K+tu8jHx4duqFWZRgztRzWrlqd7n3iLNv2zR5XN7XD/gFvFp/cvvv2FYo6eFNfhLxgMJLe0vTHPe8tdZ/5U/u6oYdS+71OiLRcsXkN/b99Lv379DpUuGUEr1m0RVuW9B46K8izrZDfq3KaJ+D9bDNv2eZLeevFBWrdpJ63ZsJ3S0tOpbYsG9MpT94r2X7xiAyUlp1LzxrXp9WcHq0/peVVQ9o01f22jE6fPi+et1y2taOg9twk444Pbevync4nTxF5MoPCwwuIz/bPDB4iyHa1TenoGHTt1jkpFFcvxdWX2wuXC6rps7ngqFVX8moMiJ6jT9r4c6b779FWqW6NSnnnvfuQNysjMpDmf5m+5X7dpBz34zPs0+a2nRB+35bhwMYFu7vUYjR/9cL79gct5b8ps+un39fTHvA/zLVaOE4tnvUvmF4Htu2NowLAxql4SePlHA1uEl343XjzT8uDz7D7BrmU8TrjDpSE/4OU68Tvgh59XCQOJj08hl2iRF/DytRf9tpZeeHMamW4jtrQr0kABKOAZBf5TwLt4xV/09JjJwr+rZdO64iW2ct1WKlMqkoYO6iE+8/Fgzi/4iZ//QI8P7kPdO91EJ0+fp9cmfEU+hQrR3GljxIuXLSS9h7xMbW5qIMCJrQUffTGPtv17QPiv5efDe/9Tb9PRE2fppScGUukSEfTj7+voy+8WizqxFWD6d78K4GOLQ1iRUOE3aEt95ixaQWPGz6BH7r+dbuvcQtSZYY0Blv3s8vPhZWBiH1T2M2bYr1CuFL07+VthtalXs5L41Mr1kr5tUjtbgPfSpct53g8P8svXbhZuAOzPdubcRXp9wgwKDQmmrz9+idiPMi8dTOBluGNQYCh6ZcS9VLNKtLhX1qB0ieL07ZRXhIXpjQ9mCo0b1KlKo5+5X8AM/5DhF91HbzxO7VtZ/om5D4aqXvePEuDM5TN4/bLsT9HG7708nLp2aEb84+XTr3+k6bN/pTULP6KMjCzasfsg8WdxLrthvWoivy3tx+B/+wOjqFrlcjT8np7Cb3Pi5/No594YWvTlm+L/I0ZPpvOxcfT5+OcoOCiQGJDvePBVevDu7upHx89L1wsrFf+AuaF2lSvuK3ed2ccyIzNLgBHDLP/wYnisXiWa/tqyW3xt6Nu9LQ26oxNRoUKir/KnYAlerFOrno+JZ+iVp+4htuwtW7OZnnj5I6oYXUq4dtzRvY34ocF15c/2V/uhMfjpd4Wv6ein7xPAv3XnARoz/kvq2r4Zvfq0BZFc9t6DR2nMMw9QmVIRws/1zYlfU9nSkcKHuqDrNPz5CXTw8Ala8u17No+yXAe21Pa8pZWAO3ZDMP1ZGez5R9T8X1YL6+q4Vx9RvrLyImz1TU5Noz37j9IbH3wlxoIZE19U4H+tyqzftJOGPPMefT7uOZrz40rasOVfUYdb2jYVbSD9R/lHIZ/79Zt38y2SxyTu61t//1yAoTy4PzXv/rAwBjwwoKuy8C79bhx1v+cF0TeH3XObSs/jX+HQEGrVtK4YUz0NvDyGnDl/UVl4XaFFfsCbnJJGzbsPF8/Xy0/dc63mxHkoAAU8rIDXAu+W3z9T0qSmpgsr3avvfylA4QeGVn8/AUPfLlhGsya/TPWz4YD9ylr1fJRublZfWEbkISdaSNhhqwhD4YrvPxCAywdbbNvd8RRFl4nKE3h58sigx8bSB689KsBCHgxfdWtWpn492gp4Ykur9OG1tT5sueYX5Pwv3lDl8idD/qQ5sE+nawLv2OeHCEswH7v2HRZwck/fW2jkI3eKOAb6+h0H0+ODe9NDA3vYZOFlSMt9P1zWyTMXKC0tXQCRPL6Z9zuxz+OGn6eIF3te+UzgZRjjl2du6xX7xr341jTVprKNf575troew3LDzg/Sff265AtfDI0Mt4u+HEtVKpZV9WQA5B8sXB4f0hrNllw+ZL3YP5InsdnafgzFk76cn6M/8Q+Btz76mgb26UyNb6hODF7seyh9eBk8eVIOwwVbY+XBFnm29Erfy9xjRO46S0DkH4Fysg/nYasyQ9nC6W+oSUmsHVv25cQgmZf7DvchedzYdZj48cifa+Vxz+NvUkCAP332/rN5Dltc70GPvSle/gN6tldp2A2Af7wtnzuBSkQWpQ59R9BNTerQGyMHqzQ8wYy/bNSqVkEBb0HU6cs5i4XV/eOxTwirtT1Hky4PUf/b2iuXBpmXYbfprcPEf9lizD/E8nKxYlcKvj4ffC/8I9meSU5stR059lMqX7YkDezTkRrUqSZ+FI775DuqVb2CAGE+2AiwbddB8ZWFLckJiSlUpWIZur9/F2UZfmfSt+JH758/Tc4hAfeHuu3uF2DLEC0tvOt/mkxjP5gpvoDwDwX+8Xns5Fm65c5nhUXz3IWLbgVe833AN3D2fBx9O3+pcDHhMY7HOldpkR/w8vXYvYN/mPIPZBxQAAp4twJeCby5V2mQEjI08EuSXwB8MAzN+XFFDquF/ETHqyr0vKVlDvV5Atgd3dqIF9jQ58YJK+qiGW/mSMN+WTz7Oi8LL/sBvjvpW1r5wwcUFVE0z5bNDXq21ocBrvetN+ewFDCkNuw8hO7s1eGawGt+cuVVJjoPeIbGPHO/sM7JQ9x/9zbi07EtFt78gJchacacJbR6wzYBcPw5V1izUtLot9nvU9lSkdcE3i9m/0LjPplzhZZsSew6cCSNenKQuG9uY35R514tofXtPPu8sXBvyesYNnK8sOpxfcxDtiH7c7JrxLWA19b2e/TFD+ngkRP0y9fv5PvE5wbeoyfOUL+HRlOxokWElYghkCfJydn++RWUH/CyJZKty+p5ueUh6tGpBY1+JufneXaBEe4LCz9ScCldLGTejv2fFv6r5mx69m8/fS4230/3sk1zA7z8ATbpzScFdPIEK57oxc9nu5YN6caGtXKsvCIh3Nk6sU5TvlokLNfsAmXvkR/w8pePrTv30cX4JFqxdgstXLKGRj15j/jBax78HDIkxhw5KZ4H/iHIk3Hl6grXqo/8KsNffR6+V7erjJdfAZ55bYrwPR/Qqz01b1SbEpNS6fufVhJPkmRXFXb/uRbw8o9gnsxmAu/O3THKwszuLPzVjN1D/pg3keb9/IfbgDe/9wGPwfyj977+XZSUrtDiasDb4rZHhOb2Toi8VtvjPBSAAgWvgFcCL/ts8SdtefBnPB7cpCVWxjMM/bL8T1q3aJJKKz8Dcp5Cxqc7TsBQdmv7ZvT+K8PF53SeNc2gaB4PvzBB+HHmBbwff8Ev0IVXnZCWG3htqc9bLz5EDToOFj6d0sdW1qnprUPF7OxruTTw7O9qlcqJbBJ4c/vnmsDvKPDyy7734Jfp7IWL9NLjg6hOjYoUGOgv3AUYYG0FXvaDnvr1j2KiTXBQgGoCBmi2mrAfLy+XlFcbc2IBvK0aqc/kuR8N6evKXwLM4/Kly5SZlUU/ffWWsKJeC3htaT/uT2z9ZFeOq63AkBt4uV4MveJLw7qtYhkttoDe269LjmWuct9bfsD74uMD6e7eHUVyvsf6HfLuU+w2wr6+W36bpoDXzMv5GXhvalyHXn/uAXV5Bt5TZ2PzvUfZprk1l8+e9L3nPsRuKouWrBX+xpcuXaIWTerS84/eJaz4EngdrRO7eLz87uf028qNxM8WuwA4cuQHvLnLYtcq1nP1go/ynRTHKzXwF44hd3YTLhK2HAys7P7B8wB4PoA8uJ90GvCMcGFiP/28Drbc9h82RrjtsKsD+2JPmbFAGAfMCVbsR39T94fFj2AGRxN4C4cEU+cBT1ODutWEnzi7ePASZ9wuPNfAEZcGXsGG4Tk/QOR+x6457HLDB38Byf0+OH0mlp589SN65L7bc7hb5Keps1rkB7zSx5pdQdglBAcUgALerYDXAm9eqzTkljIvGJIT23gAb53H5BCepc2fIdk37szZ2CssvOyywBN08gJeuRxUbguWWa/cwGtrfRhO2Ppq+oIxoLPllyGm4IH3DN1693NXTFpjNwB2B+BJa3lZeHmGeP+hY6542fILlUHMVuCVOuW2lksLr4QjR4GXf7jsizmeY3a72U5sheb7uxbw2tp+T736sfBdzW1RNq+ZF/Ca5/lHyHcLV4jP4Lmt82Y6W4CX0zOwde+Yt4WX3WV4kpOzcGnWi/2D2VXoq4kvCqt17iOiaNgV1k2e9c/WZv78n5GRQUu+fZ/iE5OEX7EjwMtfRZ55bTJt3LqHJr/1ZJ5+0LYOybmBl5fASs/IyAGfXJa0uPKPTnZD4XRsteYfL+bRsd8I4frELlG2HHLVidxfq/hHEsNz7h+0uctkWOQfovx1RM5/+PGrt3KsBczLPd718OviOWH/bRN4eb1z/hHD/fGDMY8SP1M8MY9/5DoKvD3ueUFMIv5+2pgrJOAvRC16PEy3d22tvtxI4M39PuAJdbMXLBNzMuQP/atp6owW+QGv/Fr05QfPU9MGNW1pUqSBAlDAgwpcd8DLM7Vb9nyMene9+QpIPHD4hBjs+ZMxf1advYA/z31IRcMLiybgl3/7viPEbP68gFf6AbNbBa/RKg+2wvBajOwqIUFOfjK3tT5sNeV6mT6TPCHvkRc/sMmH114L78W4RGrZ89EroIJdAdhVITfwyvuRfszm8kpsTbzt3hfFxCb292MtcuvAWpk+vH9v2yusorl9eCU88AuR/TkdBV5ebYLBcOmc8TlW5mC/WrZIhxexFu2/FvDa2n7sS8jLjsn757J5g4gHRrxDg+/sJibJMfDyCgTyZc8/HhISkoUrg3nwigttWzQUn+LzOmwFXvb/PhcbL/yY5cHW1S53PUvVK0fTx28+UaDAu3XnfvHlJPesdfZ5ZS3YT5n95P/48x9q1bReDvjlmfbsC79q/kQxqcpR4GVAY79+hhRbQOhqYy8Db78e7cTETz7YV3btxh3iR425+Q1bzHl927WLPharljDUsQsCuyLIg/tdh35PCX9u6Vdvy7jPPrNs9TaXJZv700qx+go/81UrlqVX358u/NTlOsBcLj+Tt98/Svhc85jC+rfp/Tg9NOi2HO4R7OrALgOsO/8AzA288ktQlQplxKRH2ZccBV65RBz/KOKJtubBft6fzfqZpr3/jLD485Ef8DIc33bvC1SsaBh9O+VlMZmPLbmu0CIv4P137yG694m3qVa18uIHHg4oAAW8X4HrDnhZcp5AxK4HIx7qK6wx7GPKLyS2nvEEN7ZQSMsdr4nJSyaxewNbNw8fPSVWV8hvlQaehc4+iaOeuEesCsEuFWzZkmsDy4lIbH1hYONVDGypj7QWsA/mLe2a0olT5+nj6fPp0NGTLnFpYJ34ZcqrF/Bam0FBgbRw8RpxTYYyCby570fsXNVvhFhQn2fiJySliFUhoktHiZnkvAg874j36/I/xcvK1CH3smQ8wen4qbPCmlm1UjmxQgJ/Hmbd5AveUeCVqzTw5KwnH+wrVn7YfeCo+KHDLymGMluA19b+xJ+Ou9z9nPBf5rVO+UvClBkLxbJ5C6aPFdY+3sGKf8RMffdpiigeTktW/kWTpi8QAMQWQf7Bw0t18eS/CWMeVUuH5R5GbAVeuRQWTyDjST2ZmZlikg+7E8z40AKOgrTwcj35ywlbJtk6y5sbnDkXS+wKxMuu/TzT8m/mT+O1q1egYff0FEtecRoGIV5PdeH0sQ7XieGM1+Fl3+BuHfTuW1I/nsiV2y3qakM0T65jSOevLtx+DK3sJsArigy5uzuFFQ6l9X/vFKs0sL853zMf7Ee6dNUmMa40uaEG8afvT2cuEu4rfH+8IoatB/cRXt2D/YN5+cD9h06IH1bsNyotxdxfvl2wVOwmxz+eGAZ5WcY/1v+T48eHtNY+MbiP2JSDf3TyREt2o5KTvnIDL9dTugfJlRw4zlHgZfC+8+HXxKSze/p2ptrVKlJSSgotX7NFLPXIhgRzMmN+wMt14PtjqzOvxsOr9PDhCi3kxhNcPj/nvCLG9z/9IdqRfbJzW/JtbVukgwJQwL0KXJfAyxKylefb+cvE5KyQkCCqWaW8eAGZO6b9tHS9sPAxXPKLl19ibMXlf2w94SOvtWPHfzKHlq35W7g+sB8oL9sjV23gmeZDn32fdu07Inbukr/+r1Uftrx9+Nn3wtrCEMnWKXZj4BULWje/Qb1Mc3cPuSyZvRZeLoc/ZzJg8qQaXnapS7sbxexuth5J39q87mfVn/8IQOE1T8uUjBAvmy5tb6R7n3ybdu09RC8/dS91bN34Ch1ya8kvD355y3V4Gb47t2kqXmBygwBHgZfvjwGDrUb8iZmXh2JXFq4X+/5Jv+FrWXil3tdqP07HoPfelO8ESLCfJEMFwwSvw8sHL3n31KuTxNJk9/W/VUwS+mL2r+KTOPtl+vr6CmveXbd3yPEFwVHg5XwM2J98tZD2HDwmluVjCH3k/l4CmPgoaOBl2OIfjuw/y/7Y7NrQtEEN8SNA7kjFOo2fOlesAJCUlEoRxcOoWcPa9PiQPuKHiaN1YghhC19+h1yhxdYhlpcK5BVX2MeYfU75xzOvkvDBtLnEXzrYfaJcmSgB2IP6dBYrx/DBrkjsBsD14fkArAGv4cu+u7Iv2FoHTsfuCOzvzpMw+TnlSWjcd9h6ywfXg6/HP1jZf58t5NzOQ+7qnmP1CLaA8pcP/mHKWwszsPEKMNLvm8vKC3j5PkaP+1KtssHpHAVezst+w/wDYO1fO+jYyTPihx6Pd7z8Iq9mYU7avBrwcln8Y2D5mr+Va4MrtDDbitc4Z0MHr5PNS/3Zs+qGPW2OtFAAChS8Al4HvAV/iygRCkABKAAFoAAUgAJQ4P9ZAQDv/3Pr496hABSAAlAACkABKPB/oACA9/+gkXGLUAAKWArw0nzXOkpGFrti9ZZr5bHnvDfUwZ76Xivt9XY/17pfnIcCUOC/qQCA97/Zbqg1FIACDijAPq7XOtj/mv29XXV4Qx0K8t6ut/spSG1QFhSAAt6jAIDXe9oCNYECUAAKQAEoAAWgABRwgQIAXheIiiKhABSAAlAACkABKAAFvEcBAK/3tAVqAgWgABSAAlAACkABKOACBQC8LhAVRUIBKAAFoAAUgAJQAAp4jwIAXu9pC9QECkABKAAFoAAUgAJQwAUKAHhdICqKhAJQAApAASgABaAAFPAeBQC83tMWqAkUgAJQAApAASgABaCACxQA8LpAVBQJBaAAFIACUAAKQAEo4D0KAHi9py1QEygABaAAFIACUAAKQAEXKADgdYGoKBIKQAEoAAWgABSAAlDAexQA8HpPW6AmUAAKQAEoAAWgABSAAi5QAMDrAlFRJBSAAlAACkABKAAFoID3KADg9Z62QE2gABSAAlAACkABKAAFXKAAgNcFoqJIKAAFoAAUgAJQAApAAe9RAMDrPW2BmkABKAAFoAAUgAJQAAq4QAEArwtERZFQAApAASgABaAAFIAC3qMAgNd72gI1gQJQAApAASgABaAAFHCBAgBeF4iKIqEAFIACUAAKQAEoAAW8RwEAr/e0BWoCBaAAFIACUAAKQAEo4AIFALwuEBVFQgEoAAWgABSAAlAACniPAgBe72kL1AQKQAEoAAWgABSAAlDABQoAeF0gKoqEAlAACkABKAAFoAAU8B4FALze0xaoCRSAAlAACkABKAAFoIALFADwukBUFAkFoAAUgAJQAApAASjgPQoAeL2nLVATKAAFoAAUgAJQAFRT0NYAACAASURBVApAARcoAOB1gagoEgpAASgABaAAFIACUMB7FADwek9boCZQAApAASgABaAAFIACLlAAwOsCUVEkFIACUAAKQAEoAAWggPcoAOD1nrZATaAAFIACUAAKQAEoAAVcoACA1wWiokgoAAWgABSAAlAACkAB71EAwOs9bYGaQAEoAAWgABSAAlAACrhAAQCvC0RFkVAACkABKAAFoAAUgALeowCA13vaAjWBAlAACkABKAAFoAAUcIECAF4XiIoioQAUgAJQAApAASgABbxHAQCv97QFagIFoAAUgAJQAApAASjgAgUAvC4QFUVCASgABaAAFIACUAAKeI8CAF7vaQvUBApAASgABaAAFIACUMAFCgB4XSAqioQCUAAKQAEoAAWgABTwHgUAvN7TFqgJFIACUAAKQAEoAAWggAsUAPC6QFQUCQWgABSAAlAACkABKOA9CgB4vactUBMoAAWgABSAAlAACkABFygA4HWBqCgSCkABKAAFoAAUgAJQwHsUAPB6T1ugJlAACkABKAAFoAAUgAIuUADA6wJRUSQUgAJQAApAASgABaCA9ygA4PWetkBNoAAUgAJQAApAASgABVygAIDXBaKiSCgABaAAFIACUAAKQAHvUQDA62RbvP76IlXCyy/fJsInTlxUcX5+PiocFOSvwgEBfiIcdPSQrkGRIjp8/rwIn4mKVnE+PoVUuFAhK+zv76viwk4cVuHEcpVU+MgRq6zLly9fkZ8jap/cZcWXKKHOHwwtdcV1KwZn6fqVLKnCa9fuU+GQkAARvuEGXW/zumfOJIjzFy4k6rJI35evr6WXqVtm5iWVtly5Yipc5PQxK3zhgorbV6yCChcrFiLCkT9+r+JO3dpbhUsFGPfjn902P/2kzu9p1E5fq0iQCJcpU1TFpaZmqHB8fEq2hGEqLibmnAoHB+u2L3UpyYoPsLTiI6tYcRX2PXHcCu/Zo+LSW7dV4YBYqz2zIqN0nqNHVJgOHNDhDh2scI0aKi5z578q7ONj6Z2Skq7iQkMDddps7f3mzNZlbtmiwwMH6nD9+lZ47Vodl2C1Nx+ZHTuLv76+Rj9+8EGd9rPPdPjsWSscqOtCmZn6fPFsvWJjddyUKTr84otW+MQJFZcRpfus+dzQsmUiTWKzVipt4X1aI8q+r7QM3Q/N/uk76xsr/+19VX75fHJE6GPDdb2qVbPCQ4bouHStPUm9QkP1+fXrdbhfPyt85oyO+9eoa5UqOj4iwgrv089nUtWa6rzUwKyr/y+6/1PPnlbaU6d0mdnjDkccSbPGMD4CA61werp+piIiCht6WMHTp+NV3IoVu1XYfJZKlLDGwfnzN6vzjz6a3Y+JqHm09Sy+OUP3Q3OMeSkzO9+rr6r8ZlkVK2brQkQNG1rjxVdf6T67cqV+7kaN6iHOV16hx/mY9tm6aFVo587sZ5aI/vxTP3+dOtVRqdoUTRXhLZf0GNawYXl1/oEHvhDhKlX0c12pkg6fOhUnzteqVVrlKVFCjzfmc7t48fbssvSYfumSHv979mwozm/YcFCVtXFjjAofO6bHVPnaePllSws+Xn11gQq3aFFVhCdOXKriatTQdXzyyU4ivnp1/U6Ji0tWaXfs0Nq1bGmVdeFC9hjJr6UXntJKt2xphbt2VXGXSujnWvajhARLaz7MvmV0XyrvlybOn/bV/dR8rgsXtvpZ4KgX9PUff1yH162zwv3767iXXtLhsWN1eOdOKyyfSQ6X0nrohAi5UgEAr5PqAniZbwC8AF4iCYYAXiIAL7/bAbwAXiIALxEBeJ0krYLJDuB1UkcAL4CXuxCAF8ALCy8svDwWwMLLH5Rg4SVYeJ2kq4LPDuC1UdO7H3mDklNSaf4Xb+TIAeAF8AJ4sx8JuDSosQEWXlh4uTPAwgsLrxgUYOG1kbRcmwzAa4O++2OO0/ufzCb2d3xoYA9qUMfyM+IDwAvgBfACeFkBWHhh4YWF1xoLYOElgoXXBrhycxIArw2CvzdlNlWtWJYCAvxp0z976NUR9wJ4MWktx2QIuDTApQHAC+AF8AJ4FRz8n7o0pKdnUMPOD5K/v57U2r5lQxo/+hEbaMu1SQC819A3K+sSdR04kn747DXy9fWlHvc8T798/Y6AX1h4LfEwaQ0+vKIjwKVBjSZwaYBLA3cGuDTApUEMCv9HLg3nLsRRz/tforULP3YtvTpQOoD3GqKt+vMfWrhkLY179WGR8oU3p1G7lg2pc5smAN5s7QC8AF4AL1wauA9gWTJMWoNLQ/aL8f/Uwhtz5CQNf34CLZ71rgNI6tosAN5r6Dti9CRi6GXrLh9ZWVnUrFFtmvTmkwBeAK/qPXBpgIUXLg0AXh4QsEoDfHjFi+H/FHi3/XuAHhs1kSpXKE37Dh6nGlWj6eUn76GK0Z5fdxjAexXgjU9Mpq53j6QV309Q/iiZWVnU/o6naMH0sVS8aBFMWoNLg+hBAF4AL4AXwAvgtV6omLT2/wu8Bw4dp5nf/0739LuFypaKpMlfLqA/1v9DC6bnXOHKtbbcvEsH8F5F9dkLl9PGrbuVO4NMym4NdWpUpIF9OgF4AbwAXvlgwIdXjSbw4YUPL3cG+PDCh1cMCu7y4c3eOdPtMHlJ70KZ+9oZmVnUtMtD9NvscVQiUu9U6vY6EhGA9yqqDxj+Gt1zxy3UtUOzHKmWrd5Mn8xcRHOnjgbwAngBvABeoQAsvLDwwsILC6+CBU+4NBjb1bsVKI3t0c+ev0jxCUlUpWJZUQVetaFxl4do1fyJVCzc2jbcUweA10nlsQ4vVmngLgSXBrg0AHgBvABeAK9HgTc42EmicTB7SorKuHrDNhoz7kuaMfFFKhVVnCZ9OZ/WbdpJs6e84mDhBZcNwOuklgBeAC+AN/shgkuDGk3g0gCXBu4McGmAS4MYFNzl0lC4sJNE42D2xMQcGad98xPNmr+U0tIzqG6NSvTq0/cJf15PHwBeJ1sAwAvgBfACeFkBWHhh4YWFFxZej1p4i3rIR/biRSdJyj3ZAbxO6gzgBfACeAG8AF5rVyWsw4tlybgfYJUGD63SEBHhJNE4mP38eQczujcbgNdJve+4Y5IqoUePBiIcHq79aIoX158YAgP1Vnvyk6cZFxRk7d7GR3Jyuvh76lScivP3t9YC5kPmDwjQcVFR2iH85Emd7/x563NDamqGym9eq02bGiI+IEDXb926fSqtn591jVq1yqi4s2fjVXjDhoNXlNuqVXWjrlrkw4etB0P6vHI4JUXXy8en0BV1ycjIUgWUKKHvsXZtqz4JCanq/NatR1W4XLliIlyvXjkVt3FjTJ5lyXY6c0bf1759p6+4r0qV9GeZc+f0Z5y0tEyR1mz7mJizKn9YmO4TFStaZfj6+qjziYlpV+hl5jHrJfOZfScpyeovfJgaSZ0b1ojSGuzU9yW1NfuGeV15X+XLF1f5Q0ICVPjQoXMqHBys42Vk4cKB6vzZswkinJV1WcXVq2dNbODD3MAkMtJqZx9j1vHFi0kqbWioVW5mpp4dXLp0uDov+7/pWpCWlnf/DwsLEvlOndJtHx2t71c+i2b+iAj9XMvnbv/+M+r6sh9zRL2SWpekUKuOZ85YWlh66HuQ7REcrMcCs//LcCHrMRFH6dLaqnPihLa0yDpcvqz1Pn1a36N83k2NihSxtLC0tZ478/rmGLRnzymV1s/P6styrOBwZKTWqFq1kuL8tm3HVB7ZtzgiKEiPPXFxlj/g338fUmlbtKiqwg0alBfhlSt3q7hjx2JVuEOHWiJs3DZNnrxcne/cua4KlypltUe7djVVnDmmDx/eTsQ3blxRnS9aNESFly/fJcLm87Njh77H5GTd57p1u0GklWMgh83nR/ZlUzdZP1MPs2/WqaOfH3MMSUqyxpOUFD0umO1Yq1bp7PO6fjNnrlP3VbeuLlf+iKlfP1qd/+MPrX3DhhVE/KJFW9X5mjX1mquy7SpU0GOn2edjY/VzXbOmVa+YGD2u1E09qcqlJtaGT6beZp+WCWUf4v+np1tjMx/mc1O1qtUnDx7U47T5rMjnWr5HOK15LVmu+f4x+4ZZB/lcmeNC2bLW+6lAjxIlCrQ4mws7o8c+m/N4ICGA10nRAbxEAF4iAC8RgBfAC+AlAvASAXiJPAK8ZbRRykm0sS/7iRP2pfdQagCvk8IDeAG83IUAvABeWHhh4eWxAMAL4OV+4BHgjdZWeCfRxr7sR/WXVfsyujc1gPcaevMSG5NnLKTd+49QcGAANWlQg54Z1p/Kl7U+hwB4AbwAXushgoUXFl5YeAG8PBbAwush4K1Uyb0EKa8Wo10FPVMB264K4L2KTivXbaVnX59Czz1yJ3W8ubHwZZsxdzEtWrKWfpr5NoUXCQXwEoAXwAvgZQVg4YWFFxZeaywA8HoIeKtqX3fbELCAUu3fX0AFubYYAO9V9O0z5BXq1rE5PTCga45UP/y8itrcVJ8ii4cDeAG8om/ApQEWXgAvgBfAC+CVsOARl4Ya1gR0tx979rj9ko5cEMCbj2qJSSnUrNtw+m32+1ddMBkuDbDwAnhh4YWFF6s0yFcJfHhh4eW+4BHgrVPHEQ50Po/cWMP5klxaAoA3H3lPnrlAHfuNoM2/TaPAAL1EUO7kAF4AL4AXwAvgBfACeLEsmceXJbvBWvrO7ce2bW6/pCMXBPDmo1pmVhY16vwg/TjjLapQzpqgltcB4AXwAngBvABeAC+AF8DrceBt2NARDnQ+z5YtzpfhhhIAvFcRedBjY+nGhrXosQd650g1afp8uqXtjVS1Uln48MKHV/QN+PDChxc+vPDh5bEALg1waeB+4BGXhqZN3YCNeVxi40bPXNfOqwJ4ryLYxq276aHnxtGIh/pS1w7NRcoZcxbT4hV/0bzPX6fCocEAXgAvgDf7GcKyZFiWDMuSAXh5OMAqDR4C3uYWp7j9+PNPt1/SkQsCeK+h2pq/ttPH0+fTngNHKSQ4kFo2qUtPD+tPJaOsbQHh0gCXBlh4rYcIwAvgBfACeAG81njoEQtvq1aOcKDzedascb4MN5QA4HVSZAAvgBfAC+BlBeDSAJcG7gdwaYCF12PA26aNk0TjYPY//nAwo3uzAXid1BvAC+AF8AJ4AbyYtCZfJQBeAK/HgLd9eyeJxsHsy5c7mNG92QC8TuoN4AXwAngBvABeAC+AF6s0eHyVhs6dnSQaB7P/9puDGd2bDcDrpN4AXgAvgBfAC+AF8AJ4AbweB95bb3WSaBzM/uuvDmZ0bzYAr5N6P/DAF6qE55+3tiD29bUGfz5iY5NVODKysAoHBlqbWYSGBqg4M196eqaIP3UqXp0PDr5yA4wSJcLU+ZD9u/XdGAtQJyeni3hZZu46Ful+i5WvUSOdf8IEFZZLbgWOfEafj4pS4SODhl1xXyW3/6XThofrcPayKefPJ6q4y5cvG2Er6O/vq+Kysi6pcESE1pDGjbPijX28k8d9qPUIydZ2wAB9fZmHY8zFsiMjrTTGsi4XLiSpfD4+hUS46GY9GzXjZu0vJe8hYM8uledERLQKFy4cqMJh+7PTVKig6xURcaXea7Rf1Kk6TdT59PQsETZ1M/tOeHiwSnvxotX/og/ohcF3l9LbT8q2NcsKCPBT+f38rL5cpkxRfS9ZaSp8PlO3k+xnZn6zXnFxVl3M9qxeKkSVtf2w7uuyDKk7JzL7r4+PVS+zn0RFFVFlnT1rlXXpku5bUjeOl/fF4dBQq23MPlmqlO6zSUnW/Zr3EiL7FhEVKxYqzsfEnFXXl883R1TY87du52wLTF59y7xHcwJgIavriSM1NUP8NR4ZMvuWqa1sD1ND87qyjrJMLtcco+Q1zb6RlaX1PHbsgqpXoexKmmXpWusJjaZGe/acUklMPeX1pkxZoc6PHt1The+4w1p66dNPV6q4nTuPq/CUdkFWezTVn3eHDZuhzt98c3UV7tKlngjfe+9nKi4szMrPxyef3Cv+1q+vn+VOnd7X15pyjwjv3n1SxVWtWkKFJ0zQlq9u3axNAVav3qvOHz9+UYXlfUdHF1dxZp88eTJOxMtyOHzjjZVVWtOVIinJGvNLl9bP7fLlemwaNqytOD91qh5jTpyIVWVlZFhjjHXv5cXfokX1uDJ3rl6Gql+/G8X5dev2qzwJCakqPGpUDxE2nynzWdqw4aBK26FDLRE2n9tSy35S56mr9Y69FK7vKz4+RZ2X45l8ZvmEjNOFWKFy5ayJ52fOXDnucLzskxHrdT/LutW6Ph/yGTTHpZBCWrd461EVh3xGk5N1pPnc5q6bw//v3t3hrE5l/MloI6cKcm1mAK+T+gJ4iQC8Gj4BvEQAXiIAb86BVQI8gBfAyz0DwKsh2EkEyZm9V68CLc7mwhYssDmpJxMCeJ1UH8AL4LV+7VuWLwAvgJf7AYAXwMsKwMJLBAuvGy28ffo4STQOZv/hBwczujcbgPcqeg98dCxt33WQCvkUIl8fH6peJZru7t2Rune8SeUC8AJ4AbzW4wCXBrg0wKWBCC4NRHBpIPKIS0P//u4lSHm1777zzHXtvCqA9xrA2/+2dtSjcwtKTEqhdZt20psTv6Z7+namBwZYvjwAXgAvgBfAywrAh1f7GOceVuHSoH1v4cMLlwZ+Plziw3vXXXYiYAElnzWrgApybTEAXhuBVybbsGUXPfLCBPpj3kQKDQkC8BKAF8AL4AXwWjPrYOGFhZf7ASy8HrLwDhrkWmLMr/SZMz1zXTuvCuC1E3g5ecf+T9Mbzw2m5o1rA3gBvKIHwYcXLg2w8AJ4eSyASwOAl/uBR1wa7r/fTgQsoOTTpxdQQa4tBsDrAPD2HvwyDb+3J3Vq3QTAC+AF8GY/Q/DhhQ8vLLwAXlh4rQHRI8A7ZIhriTG/0j/Ty/p5pgK2XRXA6wDw3th1GH3yzghqVK86gBfAC+AF8AoFYOGFhRcWXmswgEuDh4B36FDbyK+gU336aUGX6JLyALx2Au/ytVvopbem0cp5H1JggD+AF8AL4AXwAnix8YR6k8ClAcDrMQvvI4+4BBSvWeikSddM4g0JALw2Am9Kajqt3bidxoz7kh69/3bq39PaxQerNGDSGvcD+PDChxcWXlh4YeGFhVcihUdcGh5/3DNcOXGiZ65r51UBvNcAXrkOLyerFF2KBt/Zjbp3wjq8hK2FCVsLE2FrYWwtzGMjthbG1sLYWpjI41sLjxhhJwIWUPLx4wuoINcWA+B1Ul9YeGHhhYXXeogwaQ2T1jBpDZPWeCyAD6+HfHiffdZJonEw+3vvOZjRvdkAvE7qDeAF8AJ4AbysAFwa4NIAlwa4NHjUpeH5550kGgezv/22gxndmw3A66TeAF4AL4AXwAvgxcYT8lWCSWuw8HJf8IgP76hRThKNg9nfeMPBjO7NBuB1Um8AL4AXwAvgBfACeAG8+9XbFC4NHgLeV191kmgczD5mjIMZ3ZsNwOuk3s88850qYdCgFiIcHh6s4qRfI0cUKxai4v38fEU4MrKwiktPz1JhOev/xImLKi40NFCFAwP9RDgsTF/LZ6qxFl6DBvrOmje/+l126GCd9/fX6ebP12EZ36uXjqtcWYfzmqFp7rwSEKDTVqhghVu1ckz5NWt0Prn23+HDOm7VKh0+ftwKN2mi407qySU0bZqOT062wh076rg6da6s46JFOi4yUodbWG1PH3yg4558Mu97/O03K97X6gPiKFZMhxs1ssLGEjNxb76vzvv6+ohwfHyKigsN1RoXLhyk4s+cSRDh0t9/peL239pfhbOyLl1RR3OP98xM63yZMkVVOv/Y8yqcXrS4Cp87lyjCwcFGe9Nldf78+SQRln2bw9WyYtX53RRu3I/V1zMy9DPh52fdNx8+Plb40iVd/1KldB3PnInPTmeBGB/ms+jvr7UvWtR6Ls+etfLwERUVpsIJCZbOGRn6WqZGUUUtvQ8c0c+qj4++bqWtq1VZlP2sxWZZzy8f5n2lpWWIuKAg/SzKscK8B1NDM62pfWJiqijLvFcTRC5nN016eqaqi9nOvpet+80qpHWXfY/jjx/XbSf73IULVhvzIccoDl+8aD1fR47ovrN5s35uQ0J0nzl/3upH8+dvVmW99dYdKty6dQ0RnjPnLxUXEKD1vDfsjIg/0zJ7XCOioUNnqLRdutRT4SZNKorw8OF6a9SAAN03Zs2y1jUtv/8flafXxJ0qPGaMNSb+9ddBFSefOY4w26lp00pXpI2JOafyyb5cuXKUiktMTFNhqdfDD1srBPFhtldWln7WZH3M9srI0O3cvn1tkf+XX7apstav18BqjiGyTW+9Vev2889aj5tuqirKMNszM1M/t6NH9xTnzX7asIa+x6/n6bLatLHa1jyi/1qh/9usmQinRZVScWaflv0sKUnrlpKSrtKa/SQ62hq7Tp+OU+dDQvQ7Vr5vS24ynt/WrXVdihQRYfP5Cdi7W51PqaLvJfiSVYfMQP2+Np/7K27a0YjXXnM0p3P5XnnFufxuyg3gdVJoAC8RAXiJALwE4AXwAniJALxEAF4ijwDvm286STQOZn/xRQczujcbgNdJvQG8AF7RhQC8AF5YeAnAC+AVlkxYeD0DvO+84yTROJh95EgHM7o3G4D3KnpnZmVR/Q6Dyfw8KZN/MX4kNW1QkwC8AF4Ar/VUwMILCy+AF8AL4LXGQ49YeMeNcy9Byqs9/bRnrmvnVQG8NgDvsrnjqVSU9lU0swB4AbwAXgAvKwAfXoKFl32Hs/3muU/Ah5cIPrxEbvPhNeeQ2AmDTiXPb76KU4UWfGYAL4CX5EQaTFrDpDV+HDBpDZPWuB9g0hoRJq3pHzGYtEZE3j5p7aOPCp4SbSnxscdsSeXxNABeAC+Al/sAVmlQTwKAF8AL4LUeBwAvgPc/tUrDlCmegcrhwz1zXTuvCuC1AXj9/fWSN5yc3RsWz3pX5IRLA1wa4NIAlwa4NFhLs8GHFy4N3A8wac1DPrxTp9qJgAWU/KGHCqgg1xYD4LUBeOHDm70mKNbhJcI6vIR1eHO6fWAdXtYDwCtfJfDhBfByX/DIpLXPP3ctMeZX+uDBnrmunVcF8AJ44dIAl4YcTwFcGuDSAJcGuDTIQQEbT/yHNp6YoTdYsZMFnUt+773O5XdTbgAvgBfAC+AF8GKnNdEHsNMaEXZa0xZ7000Fk9b+A5PWvv7aTeiY6zIDB3rmunZeFcBrA/DmtQ7vYw/0pocG9oAPL+uHndaw8QTW4cWyZPDhFW8TuDTApcFjLg2zZ9uJgAWUfMCAAirItcUAeJ3UF5PWALyiC2GnNWw8gZ3WMGkNwCuGQ0xa85AP79y5ThKNg9n79nUwo3uzAXid1BvAC+AF8FoPEXZaw05rWKUBFl4ArzUeemTS2rx5ThKNg9l793Ywo3uzAXid1BvAC+AF8AJ4WQHstIZlyeDSYI0FsPB6CHjNVYScZBu7st92m13JPZUYwOuk8gBeAC+AF8AL4MWyZPJVAh9eAK/HLLw//+wk0TiYvVs3BzO6NxuA10m9Bw7UCz3ffnsjUVqRIsGqVHPGb/HioSr+0qXLIhwertMGBweo8+fPJ4rw6dPxedbQ399XxMu/HC5RIkyljYtLUeGzZ60yzLTmZhoNG5YX50NTrWvy8cuG4yosZ25XqBCh4i5cSFbhHTuOqXCRItaLr379aBWXlWXdKx+HDp0Vf5OS0lVcSooOS73kup6cKDlZn4+KKqLyVatWUoTT07NU3IYNB1Q4IqKwCDeqVlzFrdpyUoVr1CilwnJiovwszydOn45T5319fUS4SpUSKi4pKU2F4+MtveU1Obx37yl13mwbqWdgoN7Q5MQJ/Tk8MNBa99jU4NQpfT4jw7pfHx+rTla4kAqbGl28aLVT7dpl1PktW46ocFbWJRFOT89UcaGhgSosLTVmmWFhus/GxJxTaeX9+PnpepllnTxp6Sn7Pofr1NH1WrduvypLPivmPSYmpqrzcum0y7prUenSRdX548cviHBQkH6mzH7m52c9P3yEhVl9VmrF4eLFrb7DR2qq1f/MflysWIg6L9v20CGthWwjTlQ7Ql8rPth6RmV/4XBmptUGfKSlWe1gamjeY1pahjhfqJBub7OfXLign2H5LKamWnn4iI1NUmGprdl3zPaS7WTmN/vs7t26f8uuaLZt2bLFjGtZ9d25U48rDRtWUOfnzNmownKcatmyqoozr9W6dXURv2/f6TzzDx/eTsSbz2dMjDXu8FG1qjVu8CGf6x9/3Kri6tUrp8KynXv1ssZ2PsaO/VGFK1WKEuH4eN03f/99pzp/zz0tVFiOybJ+fOKOOyap8ykpVjuZ7wS50xvHL136r0orAx13L1dxC8q1VGHZpxct0vfVoUMtdV72jbZta6o4sy5SFz4p27xPnyYqrdlnSpUKF/ErV+5W581xsEED6/1ijjHmuzAkRD+jsq+bY2+jRhVVufK5Mt+LCQn6XSfbPCFBj83mdX199XMjx/KjR62xgg/zuYqIsN7XZcrofizfyxwvxxDzmTPv6+JFXa/gYGtMN9/B5rvkioZ1NGLxYkdzOpevSxfn8rspN4DXSaEBvEQAXg0wAN6csAbgBfDyECsBCcBLBODlH5Ta+APgdRJCzOxLlxZgYXYU1bGjHYk9lxTA66T2AF4AL3chWHi1JQgWXiJYeIlg4SWChZcIFl4it1l4V6xwkmgczN7O+qri7QeA9xottH7TThryzHs5Phlzln492tHLT91DAF4AL4DXeojg0gCXBrg0EMGlIadrF4DXjcC72tgVzp30efPN7ryaw9cC8NoAvGPGz6DFs97NMyWAF8AL4AXwsgLw4c3pnw0LLyy8/FwAeN0IvOvWOQyDTmWU69A7VYjrMwN4AbyESWvaxxCT1ogwaQ2T1nhYxKQ1Ikxaw6S1/9SktQ0bXE+NeV2hWTPPXNfOqwJ4AbwAXmNSDYAXwMtDAlZpAPByPwDwugWdDQAAIABJREFUAnj/U8D79992ImABJW/cuIAKcm0xAF4bgPeh596nYuF6OSzO8vB9vWhAz/bw4SW4NMClAS4NcGmw+gB8eOHDy/0Ay5LxMoceWJZsq16GzrXomKv0Bg3cejlHLwbgtQF4X3l/On07+eUcKUNDgik4KADAC+AV/QKrNGDSGnx4Abw8FmDSGoCX+4FHgHf7dkdZ0Ll89eo5l99NuQG8NgAvJq1ZC/pj4wlsPMH9ABtP6E/drAc2nmAfeFh45asEwAvg9Rjw7trlJnTMdZlaelMTz1TAtqsCeAG88OGFDy92WsNOa2IkxE5rRNhpTe9Ax30CO639h3Za27vXNvIr6FTVrd0Pvf0A8AJ4AbwAXgAvgBfAm/0uAPACeLkr/Ce3Fj540DPMWbmyZ65r51UBvHYKljs51uHFpDXuE/DhhQ8vfHjhw8tjAVwa4NLgMZeGw4edJBoHs1eo4GBG92YD8DqpN4AXwAvgtR4i7LSGndawSgOA17KOFlZvVmw84caNJ44dc5JoHMxerpyDGd2bDcDrpN4AXgAvgBfAywrAwgsLLyy81lgA4PXQKg2nTjlJNA5mL1XKwYzuzQbgdVJvAC+AF8AL4AXwWn0AFl5YeAG81rPgkWXJzp51kmgczB4V5WBG92YD8Dqp9wsvfK9KGDSohQibM50vX76szhcuHKTCGRlZIhwWpuOSktKM2hQS4cOH9WfSoCB/db5QIet8kSI6v1weiePPn09QaePjU0U4NTVDxfn4WPn5aBAXYwUiI1XcgSDdgf38fEV8hVRdF6pRQ6X9888DKuzv7yfCdeqUUXG+vtlrFhHRhQtJIj4uLlmdz8y8pMJSL3l/hiAiWLJkmIqK2LfDCmfo+zpYtqY6HxlpfVYL+2yKirtw31AVLlYsVIULHcy+hypVVNzx47EqLF/kZcvqGbvSb5cTpadnirTFi+syjx3T+c37iI4uLv5rtoepgZ+fpVdo/AWV7VShEBWW10hIsNrVksDqT3yY9xUba+ldauZUdf7kwAdVODHR6nNmG0nXBI6XbV8yULcRGUvfpDTQO+zIrh6SeFHfbokSV1wrM1PXtej879T50137qLC0EJkaJSbq+/XJXgcrMNDqm3yEh+jn49R53b/kefNZ1BXkbm9tKnP2rH5mzH4mnx8i/SwX89X3QPPmifxJfe9UxZrgV+Q1Yw1vuXxPp066CllGWRUrWvGbN+vz8fE6LCeHlC+v45Yv12Hj02J6RWsiiTEE0dmzuiypoa+vHguiovTzJbUPCLCeaT780nUbHD6rF9YPCrLSmP04MFC3R+SKX60C+vZVZX366UoVjorSG/vIMn74YZM6P2RIaxXu1KmOCI8aZenOh9lej9Wxnp81AdHq/MyZ61S4bVs9RrRvby2n9M0369X5GTPWGvmsZ6Vq1ZIq7qef/lHhfv2aqrAMvPbaIhVn9vUnnrDa3Cw/Lk5rKPtncHCAyn/smB4DDh8+L+LbtNH1L1/eGkv4OHUqToXls/LSSz1U3HPPzVHhXr0aifCqVXpWv3mtokX1eCN3mytXTl/L1LNHD2vTge+++0uVX6KEbs/77msl4lu31u+MI0ese+HDHCc7Th8r4lI+m67OBz/2sAqr9061ajquVy8dzg6Z40Zycro6b773iq6xnpvk9p3zPK/et4MH6/KHDNHhgOx2amRpKY4//lDBzFa6z/rt2mnFu3q92gu6v1whiisjiuu+4crLOFs2gNdJBQG8RABeAC8/RgBeAC+AlwjAy2tTA3g9Arzmj2Mn2cau7GH6hzLnW71hO73/yWw6e+4i1a1Zid584UGKLB5uV5GuSAzgdVJVAC+Al7sQLLwAXlh4YeHlsQDAC+DlfuAR4E2yvui5/QjVXzYTEpOpy93P0aQ3nxSwO2n6Ajp09CRNGPOo26uV+4IA3qs0QXxiMk387AdatuZvir2YQBHFwqnDzY3oyQfvoJBgy5UAwAvgBfBaDxEsvLDwwsIL4OWxABZeDwFvmukW6Ua+DAxUF1uy8i/64edVNPW9Z0QcA/DNtz9Of/08hQICtJuTG2unLgXgzUf1zKwsGvjIGxRWJJRGDO1HFaNL0fGTZ+m9KbOJqBB98s4IAG+2dnBpgIUXwAsfXmHVMvzx4cPLemj/bPjwwofX5T68mdZcErcfftrP/9OZP9L52Dh68fGBqhqtb3+cvpr4ouAoTx4A3nzUX7r6b3rjg5m05Nv3KND4VZKSmk5JySnKHwUWXlh4YeGFhZcVgEsDgJf7AVwaYOEVP/48MWnNnKHqTrLMnkTPl/xg2veUlXWJnh7WT9Wg84BnaOIbj1PNqsZkW3fWL/taAN58RJ/4+Q90ITaBRj9z31WbBcAL4AXwAngBvFilQb4oALwAXk8Bb34r0biaLc1VlaZ+/SOdOXeRRj05SF22Vc/HaNbkUVS+rF7txNV1yqt8AG8+qr/y3hfCivv4YGupJJ51+NLb01TqL8aPpKqVysKHlwC8AF4AL4AXwAvgxbJknl6WjC2rnjjMZS1/X7WJZn7/m3Bh4OP02VjqOnAkbfhlCvn56mUkPVFPAG8+qk+aPp9OnrlAb4y01uBLT88gnsTGx6DHxooZh2yeh4UXwAvgBfACeAG8AF4Ar6eB1/ShdydQyrXjxTiYnEqd73yGxr36MDWpX4PenPgNpaSk0Vsv6vXf3Vk381oA3nyU37BlFz316sf0++xxFBqiN3fg5PxrZfzoRwC82dph0homrXFXwCoNWKUBk9bgw8tjAVZp8IwPr7kBkTuh0t8/p+V23aYd9PZHs+jchThqULcqvfn8g1Q03NoIypMHgPcq6g8bOV78WnnpiYFUpUIZOn0ulr6au4R+Xb6B5n/xhnB5gIUXFl5YeGHhhYUXFl5YeGHh9bSFV64H726oNHdjdPe17bkegPcqaiWnpNHHX8yjJSs3imU2eB3eNi0a0LBBt1GJyKIiJ4AXwAvgBfACeAG8AF4Ar6eBNy3NM8uSmdvR2wOg7k4L4HVScQAvgBfAC+AF8AJ4AbwAXk8Db2pqhpNE41j2oCDPbihha60BvLYqlU86AC+AF8AL4AXwAngBvABeTwNvSkq6k0TjWPbg4ADHMro5F4DXScEBvABeAC+AF8AL4AXwAng9DbzJyZ4B3pAQAK+TKPnfyA7gBfACeAG8AF4AL4AXwOtp4E1KSvMIOIWGBnrkuvZeFBZeexXLlf7OOz9RMQMGNBPhyEi9/EaRInpJM9PsL38RmXHmLinyl9qxY7GqfHNfdhlZuLAu37xuXJy1ZjAfx49fFH/zc2hv1aqaOB8aqn+lrVmzT+WXMzBLl7Ym6vFh7CRIq1fvVfHyfho1qqDizKVSzp5NEPHnzll/+bh06bIK+/j4iHBAgF7mxMxfokSYSlu5ctQVdfn778PqfPnyESJcu3YZFffPP0dUuFixUBWWTvfmJ6G9e0+r835+Vn2qVLGuyYe8Fw7L8+aDv3fvKZW2eHF9rejo4iLex6eQOh8fn6rCwcGWP5RZ1vHjuh9Ijcy1D81ZsiVLao3OnUsUZVVNPaPK31momArLPmH2vbwGr4gI3afNsFkv6T8mtcjdjufPW3Uxjzp1yqr/bthwUIVlv/b11RqZ/Vc+V5cu6YXWzfZMSLD0NPuWmd9cKL1o0RCR1qxfuXJao8REqyxzyS1To6hwa7CPOR6v6m+2bYXdm/Qtt28vwqcv6OfTuAWSz3jhwvoFYlpt5I5G5gLzZlrzfmVa875NH7+8xhNzDJF96sKFJFX/6KLaV2/H4TgVL69lLk9ktofsM+vW7Vd5zJezaSFav/6ASLN2rR6Dxo61NgDiIyqqiPhr9vOvv16vzt9+eyMRNuv98MNfqfN9+jRR4Vq1rLHh22//VHFxcSkq/P77/UU4ItK6Jh+vjVmowgMH3iTCixdvV3GmBvL545OlS4eLNOYY9u67v+pyX+slwidPal2bN6+izsu0bdrUUHEtW1ZV4bJldZ+VkXPmbFTn4+P1fTVtWknEb96sx8sjR86rtHLs5Ag5HpljVGys7hMjR3YV+T77bJXKb7Znhw61RbzZXmb/jYk5q/LJtr14Ude1wvrf1XlqZLVtZmV93+Y4LPu3+f4zn1tzR7Dy5a1x+MwZ/dz6+1s/3PiQz4I5dpurIMhnzexn5rNo9iP5fjF3/jX10DfoXCgx0TPAa963c3fg2twAXif1BfASgBfAK54iAC+AF8BLBOAlAvASeQJ45Q99J7HG7uymYc/uzG7MAOB1UmwAL4CXuxAsvABeWHhzwh4svPwlS3/VgIVXf3mChTenxdtJDFHZTSt+QZVpSzlhYcG2JPN4GgDvVZpg4KNjqf9t7ahH5xYq1e79R+jeJ96iDT9PEXEAXgAvgNd6PGDhhYUXFl5YeHksgIXXMxZe06rsTroMDwfwulNvl1wLwGvJCh9ebcGFDy8RfHhz+lfDh5d9+i1fawAvgBfAa703PeHScPGinhvgEijKp1A5D8Kd13TkWrDwwsJLmLRGhElreuIgJq0RYdKa/qGLSWuYtMavSUxaI/L2SWvmZEJHgNDRPKb7kqNluCMfgBfAC+AlAC9WacAqDTwUYpWGnJY5rNKAVRr+S6s0mD9O3QGQ8hqmRu68rr3XAvBeA3j3xRyjwAC9FE9mVhaxwz18eLVwWJYMk9bgw4tlyeDSYI2JWKUBPryecmnIa+lHe6HQkfSmm5sj+d2VB8B7DeDt2qE5dW6j123cH3OcnnjlIwCvXh4Vy5JhlQbxFGHSGiatwYcXwMtjASatecaH11zf3l0QaX0Z0utUu/O69l4LwAuXBrg0wKWB4NIAlwa4NFgvA2w8QYSNJ/6bG0+Ym3DYC4POpJcbhjhThjvyAngBvABeAC+AFzutiZEQPrwAXu4HAN7/JvCau8a5AyDlNczdA915XXuvBeAF8AJ4AbwAXgAvgDf7XQALL4DX/PH3X5q0dvq0dquyFwadSe+KbZKdqU9+eQG8TqqKjSew8QR3Iey0Bh9e7LSGdXh5LMCkNfjw5naNkcteXtarP5IrIPHUqTgnicax7KVKhTuW0c25ALxOCg7gBfACeK2HCJPWMGkNk9YAvDwWYNKaZyatnTx50UmicSx76dJFHcvo5lwAXicFB/ACeAG8AF5WABZeWHhh4bXGAgCvZ4D3xAnPAG+ZMgBeJ1Hyv5EdwAvgBfACeAG82FpYvrHg0gDg9ZRLw/HjsR4Bp7Jli3nkuvZeFBZeexXLlf6BB75QMb17NxbhwoUDVZy5x3RYWLCK580r+DB9X9LSMtX55OR0ET527IKKk/vVm7+gpW8Qx5lr4cXF6T21pSO7j49ePNfX10eVe8MN0SIcePqEilu6N0GFZblVqpRQcaZz/JYth1W83Ja2ZctqKs68bkzMWRFvLp+SmWlpwYdMa95XVpZ2fDL1qlQpUuQxt3vcvFnXRerdqIxuj41HU9S16tUrp8JyD/KUFEt3PvbtO63C4eEhIlylSpSRR5eVmJgq4s0tFuW9cnx4uG776OgIkdaMO3pUt7Nsm7CwIHUt85e7fKHKPsSJgoICVNoiRXQ+udVktcPb1fntJWuqsLxWWlqGijP7aWZmlogvU0YPaMHBeiMWs14ZGVZa6c+c+x6lf5lZ7zoVtWVg0y6rb/AhnyGzn5r5ZPylS7pvlC9fXOU/fPi8CJv9SD5THG9CiVw03ezTpUtrn7SEBKttzecvIMBPXatkqPUsHTpnpeNDasHhamcPqHi64QYRPplgacXHpUu6/8tyzfxmXWVdTF3MraDj43WflOWbaU0fP3mtQsaa2uYC8vJZMDU2yzpw4Iy6Bx8fSwOzjUwfRXk/hw+fU3nOnNFjjLklqmynwoV1P46O1m3bpk11UcbUqatUWbKfcsStt9YT8ea9mM/6uXOJKp8cu37+eZuKa9myqgrLCUsVKlhjDR/jxi1WYanHpk2HVFyfPtZ7gI9nn71VhRcs2CzC5n2fPq19LuXYVb16KZVn4MCbVLhatZIivHTpThVn3uOhQ1af5+Off46Kv+YYNHnyIHV+x47jItxm2usqruOp+ipcs2ZpFZbvpWnT7lNxGzfGqPCSJTtEeObMdSquV69GKty8eRURNpeuqlpVv0tkXTmNfO7M/t/YGL8pyhp/T55NUuUnJ6ddUVc5HvMJs0+qhERUsaLVpqdOaVekvJ6F6BKhKtvJC/r5CgqyxkFzdzOzz5vtLJ9h81l2hd+ryQvmvbo6XK6cfj5dfS1nygfwOqMeEQF4iQC8RABeDXkAXgAvD6sAXgAv9wMAr/6B7WrgNQ0nTqKNXdnNH6R2ZXRzYgCvk4IDeAG83IUAvABeWHhh4eWxABZeIlh4c1ry3WXhPXJEW/mdRBu7spvrNtuV0c2JAbx2Cn7k+GnqNuh52r58usgJ4AXwAnithwguDXBpgEsDgJfHAgCvZ4DXdBmyE22cSm66/DhVkIszA3jtFBjAawkGH16iixfhwwsfXiL48LLvPXx45asEFl4AL/cFT/jwHjqkfeTtRBunkkt/aKcKcUNmAK+dIgN4AbyyywB4iQC8AF5+HgC8mLSGSWs5/dY9AbzmJEU70cap5JUq6cncThXk4swAXjsFBvACeAG8WKUBqzQQYZUGIqzSQIRVGvSKEZ5epeHgQb1yip1o41TyypX1qhtOFeTizABeOwUG8AJ4AbwAXgAvgJfHAQAvgNebliUzf4TaiTZOJTeXLHWqIBdnBvDaKTCAF8AL4AXwAngBvABeaySEhdd7LLz79+u14+1EG6eSV61qrRHt7QeA184WAvACeAG8AF4AL4AXwAvgZQW8ycJrbpZkJ9o4lVxuiuJUIW7IDOC1U2QAL4AXwAvgBfACeAG8AF5vA969e0/ZSTQFk9zcHbBgSnRNKQBeO3UF8AJ4AbwAXgAvgBfAC+D1NuDds+eknURTMMlr1NBbURdMia4pBcDrpK7YeAIbT3AXwk5r2HgCO61hpzUeC7AOL9bh5X7giWXJdu/2DPDWrAngdRIl/xvZAbwAXgCv9axipzXstIad1gC8PBZgpzXPAO+uXSc8Ak61apXxyHXtvSgsvPYqlis9gBfAC+AF8LICsPDCwgsLrzUWAHg9A7z//nvcSaJxLHvt2mUdy+jmXABeJwUH8AJ4AbwAXgAvthaWrxK4NAB4PeXSsHOnZ4C3Th0Ar5Mo+d/IPmrUPFXR7t3ri3DVqnrXkcjIIle/kcOH1fm4onp7vsuXreiYGL03dqFCuig5aSYtLVNFVq6s88fG6rUBjx2LFWmSk9NU2kuXsi9ARA0bVhDxgYF+6vzWrUdUWG4bWqlSpIpLSNCfb83FrgtlV7JChQiV1iz34sVkER8Xl6LOp6fre5D18vPzVecDAnQ4KkrrKRe7Nu9lw4aDKl9YWLAI33hjJRW3aVOMCoeHh6hwkSJBIhwfr+/rxAlLNz7kfZUuXdSI0+2RlGRpGxlZWEVK3c38HC5XrphII6/J4czMS1foUaJEmIo7ePCsChcvHirCmZlZKq5wYav+fIScPKrCZ8Osvhg1+nkdN/ptFb6c3dFMDYOC9KQ0f39L+9ALxg4+0dH6xg9qvS8WL2VdPyRAnZcL83OE2eYyQfFf5qu0h2/ucsX9yOeAT8i6mtolJ6drXeJ0HdPLWnXMytL9PCVFpzXrFX7Bmtl8OkT32ZLpcarctBLWfcnngMP+5ww9NmwQ55M7dzXuWz+sgX37aL26ZN/j0KE6zlf3b3m/hQ7rrWqphLGL0Zns6xbV/ZDM8IoVutx27axwRoaKOx+vxwA5hphuCEXPGz6ARaxn7VKkHld89u5RZZ0prj9jyufVx0fft6lxkV3bRL4t/nq9zj/+0GU1blxRlbt8+S4RXrbsXxU3e/ZwFZbjyapVe1Xc7bc3UmHZJ8wxatiwGer8LbfUVWF53fnzN6u4L79co8KbN48W4WLF9Fjx0kt6zB80qIU4/+uv1v3xERGhx4DDh8+reLn96vnziSrOHGc7daot4rt3b6DOz5nzlwrv2GHBzE03VVVx5rParFllFb906U4RDgkJVHFly1rjDh9xcdY4fO6crsuaNVrP/v1vNMqy2qFZsyoqbty4xSrcu3djETbfA6b2X3/Q20obpMco2qb1WpleXJUlJz9duqTHw7KfTVTnqWlTK9y5s4q7mKifaznGyDkVnMgcW+V4xvHyHXX6dHyeehYtarV5yPy5+vodOuhw9rOYVsNqNz7Md11qqn7ugrLfYcYwT35+1o/Egjy2bz9WkMXZXFa9euVsTuvJhLDwOqk+gDfnQAfgBfACeHkHLgAvgJcIwEsE4CVyF/Bu26aNHU6ijV3Zb7jBMILYldO9iQG8TuoN4AXwcheChZcIFl5YeGHhhYWXx0NYeIk8YeH95x/PAG/9+gBeJ1HS89kzs7KofofBtGzueCoVZX12WfTbWpr85UL6+uOXKLJ4OAF4AbwAXutZBfACeAG8AF4ArzUeegJ4TRcZdxJUgwbl3Xk5h68FC+9VpMsNvH9u/pdeeHMqzfjwBSpf1vJFA/ACeAG8AF5WAD687OcMH1748MLC6yng3bJFz71xmAodyNiwIYDXAdm8K4sJvPEJyTT0uffpo7FPUN0aehIUgBfAC+AF8AJ4rYl3AF5YeGHh9ZyFd/NmPQnenTTVqJE18d3bD6+y8O49eIw++mIexRw5SalpeualFHHpd+PcqqcE3m8nv0wjxkymMc/cTy2b6hm+sPBazYFVGuDDy/0ALg1waQDwAngBvJ4D3r//NlZ3cSMtmausuPGydl/Kq4C3z5BXqGqlstS0fk0KDNBLI8m76tHZWgLGXYcE3ugyJSglNY2eHT6Aune6KcflYeEF8HKHwKQ1AC9cGmDh5bEALg1waeB+4Akf3k2bPAO8TZroZQXdxWeOXMergLfLXc/R4lnvOnIfLskjgXfK209RRLFwGvL0uzRj4otUvbJecw7AC+AF8FqPHyy8sPDCwgvghYXXcxbejRv1OvMugaJ8Cm3aVLt5uvO69l7Lq4D3rodfp8/Hj6TgIL1wvb03VJDpc09a+3bBMvpq7hKa8+loKlLYWpQawAvgBfACeFkBWHhh4YWF1xoLsCyZZyy8f/2lNwIqSBa6Vlk33qg3PblWWk+e9yrgXbJyI83/dRX17d6OSkQVI3NnMRbJnCzmDtHyWpbsmdemUGpqOn009nGx+xaAF8AL4AXwAngxaU2+k+DSAODlvuAJlwZzp1F3MJK8hrnLnzuva++1vAp467S976r137nyS3vvz6n0eQFvckoq9X1oNN3WuSUNHdQDwItJa6KPwYcXLg2w8MLCCwsvLLwSOjwBvH/+ecAp5nE0c/PmettpR8twRz6vAt6k5FSSe7LndfN5TWRzh0hXuwYsvLDwAnhh4YWFFxZeWHjPqFclXBo8Y+Fdv36/R5DoppuqeuS69l7Uq4CXK5+RmUUbt+6iE6fOU1p6htjgoXmjWuTv72fvvbklPYAXwAvgBfACeAG8AF4Ab2Cg5hRPWHjXrfMM8LZoAeC1Gzj3xxynYSPH0bkLcVQispjIf+ZcLEVGFBW7m5UtFWl3ma7OAOAF8AJ4AbwAXgAvgBfA62ngXbt2n6uRJ8/yW7as5pHr2ntRr7Lw3vvEW1SrWgV6fHBvCgkOEvfCbg4Tps6lE6fP0eS3nrL3/lyeHsAL4AXwAngBvABeAC+A19PAu2aNZ4C3VSsAr92w2bz7w/THvA+v2HQiJTWdOvR7itYtmmR3ma7O8Oyzc9Ql+vZtKsJBQfqzRmhooDpftqxlteYjLS1D/A0Pt5Y3E8fp0zpcsqQInzoVp+J4VQh5+PtbL5isrEsqLsr6jSCOCxk+RrHxIuzre2V+jq+UEWul3bpV5fmnht5go0gRq+DK29ep8wntb1Fhc3eX4GBrSblmjY29tf20HufOJWTfqlUn6x4uq3BAgHVfQUF645H09Cx1PiIiVIdPXrnI9g7SGoeEWHWpvHG5yrOvUVsVrhZpLH9XzMonJ59xOCbmnEobHGzVp2JF/ZXh8mVd7/j4VHE+IEDf66FDOn/hwroflC9fXKT1WbRIlZ/Y8VYVln0jIitZxR1L13rIshIT09R5s58VS7c05uO8n6VXxMT3VNzxh5409Lbqm56eqeKKF9cap6VZ8UWDdH+iXbtU2pSadVQ4KcnaHVH2TQ7LNuDw8ePZ/UzlIKp4fI/6355IPfFB9rmcK7Xo/ivbw6x3icxEVda5gDARDgvTD8X580nqvNm/ihWznsGTJy+q86VLFFHhhGTrWTWfNV9frUeRzRvE+bgGN6o8sg05osTMafqOu3cX4eRovW6lWW5mpvU8+/vr8s15DbJ/mteXz5woN1n3CRlv9sn4+BRVF1mGqaG5wgBduGDdl2+wyhMeqNtgV4xuT/ksZGbqZ9V8VuR1d+w4rsoy+29cnK6XHCPM/OY9tmlTXZTxzTd/qrIOHz6vwkOHWs94eLiu97lzum/I54/TnDhhtfnkyStU/nHj+qvwtm3HRLhOnTIq7qWXflDhevWsNdn37tVj94kTWpd339VlrVmzV6QtXbqoyj9rlr4HGVmunB7D7ryzmUpr5pORZnsvXLjF0MNqO7NtzbJkn6v50Rsqzxulu6hwRoZux23bjor4efMeVefNd9H3328U8TNm6PdD69ZWG/Fx881WOCxMt0ft2lrPffu0diWynzuzP5Rf+5sqiypaGxykNGis4kx/YdnP5HicWwNzbKpUKUqUIfsAh/389HMXGVlYnI8spHd9TS+i247IGv8vXNDjSokS1rjDh+zHHJYgbD7L5pitb9C50OrVVh9z9yHb2N3Xtfd6XmXhbd/3Kfp28itUMko/8HxDp8/G0oDhY2jF9x/Ye38uTw/gJQLwEgF4+ccCgFcOOADenD8OAbxEAF4Ar6uBd9UqbUBwOfwYF2jduoY7L+fwtbwKeMd+OJP++fc7G6ExAAAgAElEQVQADR14m9himK0G+2KO0SdfLaKaVcvT2OeHOHyjrsoI4AXwct8C8AJ4YeElgoWXLYaw8MLC6xkL7x9/eAZ427QB8NrNmOy6MO6T72jeL6vECg18BAT4U7cOzenFx+9Wfr12F+xkhoGPjqX+t7WjHp1bXFESgBfAC+C1HgtYeOHSAOAF8PJYAOD1DPCuXLnbSdpxLHvbtjUdy+jmXF5l4ZX3zpZdXqkhPSNTrNbg72f5dXrqAPDChxc+vPDhhQ8vEXx4ieDDS2KXUXnAh9d7fHhXrNDzK9zJS+3a1XLn5Ry+lseB95t5S6njzY2F3y6Hr3bc3bujwzfqTEYAL4AXwAvgBfACePk9AuAF8Fo84X2T1pYv9wzwtm8P4LWJMXsPfplee+4BqlujEnH4ase8z1+3qcyCTgTgBfACeAG8AF4AL4DXervCwuudwLts2b8FjT82ldehQ22b0nk6kcctvLYIwC4O7Bvmqd3WALwAXgAvgBfAC+AF8AJ4NbN4n4V36dKdtiBVgafp2FEvT1nghRdggV4FvB37P01Lvxt3xe3FJSTRrXc9R+t+9Mw6vABeAC+AF8AL4AXwAngBvN4MvL//7hng7dQJwGszl6/duIPWbdxBX//wOw3s0+mKfEdPnqENm3fRhp+n2FxmQSYE8AJ4AbwAXgAvgBfAC+D1ZuD97bcdBYk+NpfVuXNdm9N6MqFXWHgPHDpOP/6+nj7/9mdqe1ODK/QICgqgHp1aUOvm9T2iFYAXwAvgBfACeAG8AF4ArzcD75IlngHeW24B8NoNpx9/MZ8efeD2PPNt3r6PGtXzzH7NDLxbd+4nc5vTwXd2oycfvIOwDi/W4eUOi40nsA4vNp7AxhM8FmDjCazDy/3AE1sLL1683W7uKogMXbrUK4hiXF6GV1h4zbtMT8+gY6fOEf+Vx5lzsTRi9CTatHiqywWx9wIAXgAvgNd6arDxBDaewMYTAF4eC7DxhGeA99dft9mLMAWS/tZbb7CpHOa6hp0fzLEAQfuWDWn86Edsyu9sIq8C3nWbdtDToydTfGJyjvvy8/UVu5y9MXKws/db4PkBvABeAC+AlxWAhRcWXlh4rbEAwOsZ4P3lF88Ab9eutgEvbyjW8/6XaO3CjwucxWwp0KuA9/YHRlHPLq2o1y2tqMe9L9AvX79D//x7gL5buJyefXgAlS9b0pZ7cmsaAC+AF8AL4AXwWks0wcILCy+A1xoPPeHS8PPP/7iVf+TFunWzbX5VzJGTNPz5CbR41rseqadXAS+buv/6eYowd7fq+RitWfiREGXXvsP09sezaMaHL3hEpKtdFMAL4AXwAngBvABe+Z6ADy8svJ4C3p9+2uoRRure/crFBvKqyLZ/D9BjoyZS5Qqlad/B41SjajS9/OQ9VDG6lFvq7VXA26b3EzTzoxeFJbdjvxH09aRRVCqqOPHs6ObdH6aNv37iFlEcvYicIRkSEqCKCAjwU+HIyMIqnJaWKcJRUUVUXEZG1hXhI0fOqzgfH71/eUhIoIj39dVxFSpEqrTnzyeqcEJCqgjLlQY4fPGidhtp0KC8OB+wXf86XJ2s61WkiLVKQ9265VSZp07FqfC//x5XYT8/XxFu0qSiivP3t+L4OH06Xvw1f/2mpen7lnU079Xc1ads2aKGnrqOMnL79mPqvMxX99AWFbe1nP700qBimIpPD7HaJjZW63Ls2AV1PjDQX4SrVdNfGRITLV3NfMWKhai4s2cTVNic4R8dXVzEhwVpXWKTtM+6rENEhO4vhw6dU2UFBVl1SUpKU3Hh4cEqXKxYqAofPWrdQ/2LB1XcX8HRKizbxtTY7L+yT5YsqbWS17fqkK7Kkm1auLDVN/mQunH45Emrz5htW7++rsvmzYevuEfTYhgcrJ+rS5cuibTmM1OpUpTKv3//GRH+H3tnAZ7F8TTwIS4QwSG4u7sUd4cW12LFXYu7u7tDgaJFi7s7xd1JIEhCnHzP7OV2NyGv5d7kwvefe542y97azcr93rnZWVdXkScgQMiYJwSApEmVcfTunRjTsuy/fAn4od3yIThp0niy+48fe/Ni1fmNEQXtlTGPV3huxV+l2i9yOxTZKN4wgoOV9QEvNzfRt76+/ixO3kCrzjklXqwH6piT+0uGMfUZ5LGpPguWpa4bcvl4CJB6qTKWn0HtF4xLmdKd3woNVfrr3r23PE5uS1iYKFddW+RxmDevWHvKlFE2L69bd5aXJY8z9ZhTeZzJczF5crFuqON35swDvKxGjYrwcJIkylxKmzYJj5s37xAPFyyYnoUfPHjH49TxghHt2pXl8er8+PhR6UO8bt0Sa6c6fgoUEHNCduivyuDy5ac8f0CAmH/qxlm8efr0A5ZGHg/lymXn+VxdlTlatqzYCF6u3CR+P7p3yfLl7fj9kyeV8vF69EiZa+vWneFx5crl4OHKlZVTuOSxlSaNsgbideGCWJvU9VUde3i/RFHxLgkMUcaR3J/yOqiunXIfBAWJeS/P23TplDa8fy/mpzyO1HU0Y0bxXpXbZWurzFX1nYZhtUwMy3Nclbc81zJkEOVyYWgM7N6tD/DWqSOANzAoGB4+FeNafSQPt4QQFBQMa7f+C60bVwOvlElhwaodcPzsddixcpzGJzcve7wC3snzN8I//56BXasnwMwlW+DBk1dQv1ppuHb7Edy+/xR2rRpv3lPplIqAF4CAl4CXgBeAgJeAF19DBLwABLz4w1v5gRHbwLtrl1DuxCUG1a1bkFf3+q0PTF+8+YfqC+fLDs0bVIoUHxIaBkWrd4KDm6ZD8qRCmRVbbY9XwIuDYes/x6B+jbIQEhIKo2esgqu3HrJfAgO7NoPc2cUvvdgSiJZyCXgJeEnDC0DAS8CL6yhpeAl4cRwQ8MYd8O7ceUULwsQ4b716hczK6/3hE3z56g+ZM3ix9Oi1oXD1TnBi+xzwdP/xi61ZhVqQKF4B76NnryFz+tQ/ND8oOARu3X0ChfNls+DRYp40NCwM8ldqD/WqlYYJQzpGKmjUtFWw5Z9jcP3wckDvEfJFwEvAS8BLwItrAml4CXhJw6u8HQl44w54d+zQB3jr1zcPeE+evwGjp6+C1XOGMnPV+au2w5lLt2HTwhExBzYLcsYr4C1SvVO0vnZ9P3+Fyo37weUDceOHF4G3eM0ukNjTDXavngBOjoodIKrf67YZAm/ef4RL+xcT8EYMNLLhFba/BLwEvAS8ysJAGl7S8BLwKnMhrkwatm+/bAH+WS9pgwaFzS5s6fp/YMP2Q4CKzDzZM8LIfm3ZV/y4uOIF8G7efQy27D7GvDHkzKpsApAvn4+fwNHBIc5cWSDwFqneGSqVKQRVfikC1SsoDuVPnLsOOw+chv1HL5CGlzatAW1ao01ruC7QpjWxWtOmNTx1UdnkiBfZ8JKGNy6Bd9s2fYC3YUPzgTcuwNZQHfECeAMCg+HqrfvQdfBM6Nu58Q9tdXJyhLLF80Gq5GJnZ2wKDYG3YJUOMHtMD9i29yTMm9CLVTdo/GKoXLYw9B4xj4CXgJeAl7w0sHWBgJeAl7w0kJcGnAV6e2n4++9LsYlGBsuWPZvo0gAzK40XwKu29eyl21CyiOK2R89LBd4rB5ZCpcZ9Yffqicy9Uo0WA2H/hqlQqGpHAl4CXgJeAl4C3igLNWl4ScOLQ4Lckunjlmzr1ou6oNOvvxbVpV5LK41XwDtx7nqD7Ud/nMP7tLb0+WKUXgXem0dWwoipK5idibubK5w4dwPGD+4Aucu3JeAl4CXgJeAl4CXgZRIgDS9peOODhnfzZn2At3FjAl6LYRNNBeQLnZy/fvcBnr54AzUrlYDR/YXja4sLtyCDDLznr96BJWt3Q6KELvBbnfJQumgeAl4AoIMngICXgJeAl4CXgJcOnuCzQG+Thr/+umAB6VgvaZMmyj6n+H7FKw2vIWGhKwv8b2jPlnEiTxl4v38Ph1qtBuGZNfDPmomAp6uQhpeAFwcibVqjTWs4DsiGVyzLZNJAJg04GsikQR+Thk2bzscJI0WtpGnT4rrUa2mlPwXw4kPVbTOUncAWF5cMvFjflPkbITgkFIb1bsWqJ+Al4CXgVWYiHS1MwCuvyQS8BLwEvMqM0ONo4Y0b9QHeZs0IeK3GpncfPofOA6fD8W2zrVZmbBREB0/QwRPkh5f88OLaQgdPkB9eHAfklozckuE4iCs/vBs2nIsNtDFZZvPmJUymiQ8J4pWGt8KvvX+QCTon/vzFHzq1rAO9OjSKDzIz2AYCXgJeAl4CXgJeZYmkgycIeHEc0ElrcQe869ef1YWRWrQoqUu9llYar4B37+Ef1fGODvaQIW0KfvaypQ8Yl+kJeAl4CXgJeAl4CXjV9w5peAl441LDu26dPsDbsiUBb1yyZryoi4CXgJeAl4CXgJeAl4A3B38nk4Y37jS8a9ee0YWFWrUqpUu9llYarzS86IlhxuLN8OL1e3bOctQL/eLGt6t166W8SR07lmPhxIkT8jg7OxsednKy52FnZyWcMKETj5Pt/gICgln88+cfon1kGxulXBcXB34/cWJXHpaPt/z06RuL//IlkN+3txftqlA6sxLvIMq6cuUZT4ueKfDKkCGJ1NYwHj59+gEPOzjYsnDhwhl4XGjodx5W3Zn5+wfxuODgUB4OD1eCstzCwkT+FCncedps2VKwsJoHwxcvPub3kyd3Y+EcCb7wuKeO4hmcncXzJkigJAkMFOPu5Utfnk9tT9q04rS/jx8VueKFfqLxkoFX9s3p4eHC06ZK5cHCISFChmp+jFfl7ebmzPPIGyDs7RUZq23GsDoeMCyPg48f/Vna7O9FH930yMjLRS8keMmbjWS5qAlVTwT4b3t7O57f11cpXylDKcvRUdyX26WmldudMfwrz3/9q5gfCRM6sni5b0NCxDhxcFDqkO/Lz+3j4xdRbsSAYn0kxpEqY7nP3r0T48TLy5O36+tXZd4kkBqeNKmY4+oclPtITpvm0nFeFqROzcJfcuTlcfIzqJHy+JfvBwUp49PGJmLAsmkr5C3PlW/flDVETuvtLeSt5pPzyDJU5SWPTbmuhw/f82dQ2yu3VU6bOrUybx9FuLDC8LVrL3h+da5ihKurMi/HjdvN748fL8zZKqZWnn3/UzFX5bZ0716J3b937y3PP3jwFh6uWTMfDxctqsyFGTMO8Di5rE2b/mDx8njYv/8mT1u8uLJ23rr1kseVLy9gr2/fTTy+aVPFddPRo3d53IULT3i4SBFlzXR3F/Ne7UNFXs/Z/dKls/I8efJ48XCGDEl5+MSJeyycLp1Y7/btu8Hvt2lThoW3bBF+W1+//sTvp0ihrJ14jRxZj/09efI+j5s9+18eVrV7sg/Y/PnT8vsqDKW2U8YjXh/txLvq+nUxDnLnVuaHvDZ6Hd3D80GuXEo4f34e5xcgvz+U+f75szjeWX0nYXxYmFgPUqVSxqSPjzwnxBqUKJGyBiXYvJnXFVC3AQ87OSnj9NMnsQbK73NfX/F+UNczeS7J67t4QG2hNWv0Ad7WrQl4Le65yk36QeM65SFfrszgIL1U1YIK5c1mcZmxnYGAF4CAl4AX5xkB70e+3BDwRgZxAl4AAl4C3tgG3tWrT8c28kRbfps2pXWp19JK45WGNy5dj1kqKEPpCXgJeHFskIaXgJc0vJE17qThBSANLwBpeIWZV2wD76pVp6yFNhaV07at8sUgvl/xCniHTV4ODWv+AoXyik82egqwZffxEBAYBFuWjOafBb/4fYMqTfrB+T0LWdMIeAl4CXiVWUoaXtLwkkkDAJk0oMUBmTToYdKwcqU+wNuuHQGvxayK/nbb9p4EXimTQmIPt0g2iljYkqn9LS5TSwYE3rfvP0CnVnWZqQVeBLyKRIOCyIaXbHgByIZX2NGThpc0vLg2EvAS8OI40AN4V6w4qQV5Ypz399/LxjhvXGaMVxpeNGlIktgN8ubIBOiOLOrVrZ0wGI8LISHwNqhRFuYs/5sdK5wooQsBb4TgCXgBCHgJeHE60KY1scmUNLwEvDgnSMOrD/AuX34iLtDohzrat/9Fl3otrTReAW/Vpv3hwMapkXZDW/pA1kyPwNu3c2PYe/gc25k+qFszAl4CXj7ECHgJeAl4lelAXhrISwN5aYjsdUkPDe+yZfoAb4cOBLwWs2fH/tNg0p+dIImncIlicSFWzKAA72+QOb0X1GkzBFbNHgJJE7uTDS+ZNLBRRsBLwEvAS8CLEiC3ZAAEvPoD79KlkgtEK7KQqaJUl6ym0ul9P15peJdt2APb9p6ACqULQvKkniA8TSpiav1btTiVlwq86A5t/bZ/4cS5GzB1RBcCXgJeAt6ImUg2vGTSQBpeAl4cAwS8+gPvkiXH4pSR1Mo6dVL2OMX3K14B768dR4KdneJUP7pr08IRcSpPGXhDw8Kg4e/DoXPrujBmxmry0kCb1kjDyzZm0METZMNLJg2k4SXgRTjR++CJxYv1Ad7OnQl44xROY6MyGXix/NMXb8HYmWvA9/NXAl4CXgJeAl627BDwEvAS8BLwxgfgXbToaGygkMky//ijgsk08SFBvNLwxgeByG2ICrx4r9vQWXDp+j0CXgJeAl4CXgLeiAWTNq3RpjUyadBfw7twoT7A26ULAW9849dYaQ8dPEEHT+DAopPW6OAJ8sNLfnhxLSA/vOSWDMeBHl4aFiw4EiucY6rQrl0rmkoSL+6ThldjNxDwEvAS8CqTiE5ao5PWyA8vAS+uBeSHVx/gnT//sEaiiVn2bt0qxSxjHOci4NUocAJeAl4CXgJelABpeEnDSxpeZS0g4NUHeOfN0wd4u3cn4NWIkj9HdgJeAl4CXgJeAl4bNghIw0saXgJeZT3Uw6Rh7txDuoBTjx6VdanX0kpJw2upxKKkHzNmF48ZMKA6Czs7O/C4z58DeNjeXrhcc3S0Y/G2jx+JEv/7T4Q/RnwebdfO/Bbu3MnTfq9Tl4cfPXrPwv7+QTwuJCSMh4vmSq6Ew0TclYe+/H6KFMpBIJ6erjwuKCiEhy9ceMLDtrbKi69UqSw8LizsOw9/+ODHwj4+yl+8QkJCedjJSTlSWn5xBgWJ+0mTJuRps6b3VJptq8gSr4sXRVsSJ1bam+37J37/XgIPHs6cOZnUxnAWdrRX2o/X9ZuveFjdlJMuXRIep9rtKs+gyE7u++fPxSduV1cxJlKnVtrg8MGbl/U9RUoetgmO6KezZ3kcVJA2BahjI3Ficf/ZMxFetkyEBw5UwmWls86vXRP3QyL60V46yvuRNCYzZ1bS7t8v8hw4IMLS+PyeJy+Lt/FWxhu7Toqz3YPr1mdRoaFiPLjMncmTfuvRh4cdHJS5YvfiuSgroej770mSKnXZSN66lywRaUuVUsLOziJOfRaMUWWI4TNnlDS1a4u08vOWKcPiw13F+E+QQKp30SJ2P7Bte5FfCjn17Cb+VV5x3xPerBmPSxAk5iX4RcwLN+nwndevedoQr7QsbB8i5dkl1iCoJvkqV8t9+lTUX6JEtG3kkRMnivvp0inhkiVFnDR2fH6pwuNVd5Lq/McbiU4Ke8LPpZXx++qVWFcuXRJz9evXwB/aderUAx7XqlVEfwJAsWIZWfykSXv5fTn/rFmKbI8cucPvb99+hYdz5/bi4cBAZfyfOnWfx7m6OvJwxozKGvHrr0V43Natl3hYXdPVcvDGtWtizP72W1GeNnt2ZY5v2XKRx8nyCAtT1qBkyRLx+/L7I2NGZcw/ePCO38+aNQUPy+u7mkZeLzNliljnAaBBg0IsX9Kkoi61fIyX32sfPypjsnLl3Lyuo0eFbFVTpoMHb/P7Xl5inf3ll+wsPleu1Px+qlTuUh+I9T1NGmVNl58Luknzp0rEmKtRg+cPsxNr15cvyvtWltu3b8E8rbxeZM6syOPt28/8frj04vHwcGHxbqclV1+VJbC7epXdD8hbgOd3Pneah4NLizVXXS/sv4n3HrgLGfBMGgNz5vyrsYSYZe/ZU6wFMSshbnIR8GqUMwEvAAEvAS9OIwJeAl4CXgJeXAsIeAH0AN7Zs/UB3l69CHg1ouTPkZ2Al4AXRyppeAl4ScMLQMBLwEvAq7CLHsA7a9ZBXcCpd++qutRraaWk4TUiMTxdLX+l9mBvH2F+YGMDGdOlgv5/NIEShXOxnAS8BLwEvMokIg0vaXgJeAl4CXj1A96ZMyVzM0tpUEP6Pn0kUyoN5cR2VgJeM4D38JYZkDJZYkAAPnDsIoyevgoObJwKnu6JCHiBgJeAl4AXJUAaXtLw4jggG14yadBLwztjhj7A27cvAW9sw3qsl69qeFXgVSts8Psw6NG+EVQsXZCAl4CXDQsyaSANLwEvAS8Br/KWJBtefUwapk+XNhfHOiGJCvr1Uzbsx/eLNLwWaHjVpPXa/cnMGsoWz0fAS8BLwBsxMcikgUwayKSBNLwEvMqCqIcN77Rp+gBv//4EvPEd9k22L6qGNyQ0DA4evwgT5qyD/eunQKKELgS8BLwEvAS8TAKk4SUNL2l4ScOrgoUewDt16j6TXBMbCQYMEG7iYqN8a5VJGl4zNLzyprWsGb1gcI8WUCC34meWNq2RDS+OAzJpIJMGAl4CXgJeAl49gXfKFOGb2lqQaE45AwfWNCeZ7mkIeM0A3qg2vHIWAl4CXgJeZUaQSQOZNJBJA5k04FpANrz6mDRMnqwP8A4aRMCrO81rbYChTWsEvAB00hqeGCZOpiMNLwEvaXhJw0saXtLw6qnhnTRpj1bsiVH+wYNrxShfXGciDS9peIGOFsZTleloYT4V6GjhyEcp09HCYpWko4WBjhYGoKOFASAeHi08ceI/cc2QrL4hQ6Rj2XVpgXmVEvCaJyeDqcikgUwayKSBTBpQAqThJQ0vaXhJw6unhnfCBH2Ad+hQAl6NKPlzZCfgJeAl4CXgJeC1ZYOAbHjJhhfHAdnw6mPDO378bl3A6c8/6+hSr6WVkobXUolFSU/AS8BLwEvAS8BLwKu+GuikNQJeHAt6uCUbN26XRqKJWfZhw+rGLGMc5yLg1ShwAl4CXgJeAl4CXgJeAt7b/G1KGl59gHfsWH2Ad/hwAl6NKPlzZB8wYDNvaPXqeVg4WbJEPM7d3YWH3dyceDhRImcWtjt/Vjxo6dIiHBDAwi98lL94hYcrG6uUKwH7v62t8hcvL4dQHv7imJCHnz37wMKqJ4GoZRXO56WkvXeP5/nPJjEPq58ps2dPyeP8/AJ5+Nq1Fzxsb6+8+HLkSMXj5HZ//ark8/b+yu9//y4/lxItP1eCBOIZkyQRz5U2WYRsv3zhZd14G8TDqowzXj0hZFG4HA8nTSrKcr12icV/yJGf33/50vcHGaRK5c7jwsK+S3UpfSvL+OlTH37fwcGOh1OmVMpIlEiMh+Bg0XefPyt9ntJFPPdjH/FcHh7Kc3/7FvxD/RjhHiRk651AGWfJ5k0Tz9WxNw+rAUnEII/ZkBClXZ6eriLPxYsiXKgQD3t//MbC8rOq4wHj371T+snGRjxX+kfXef57Xrl4WH1GtX68EelzeYTsQkNFH6h5MK06zuSxI8vL3t5Gqkt5trdvP/O4VI7CA4efg3L/+3dRl/yMTlcUefhky8vzq5sgMSLFktlCXpUrs/DXPAV5nDw/1OdxdXXk9+V61bkiP7eTkz1P6xgs1gsIjJijyZKJ+iPWFYwItlXyyXLxuHpepL1xQwn36iXiGjUS4b//FuHoQgcOiNhq1Vj4v/9e87jz5x/zcJo0njx844aynhw69B+Pmz27BQ+nSOHGws+eifklryeVSqRn9z+KKQOdO6/m+Rs0EGO2aNGMEY+4gd+X164ZM5r+IIM2n0Q/jxnTgN3fskXMCTs7ZQ3EK1Ei0Y9ubspclOW9b99NnrZXryosLPf3gwfv+f0zZx6ycLNmxXlckiRiXqZK5cHjDxy4xcJ2dmKcy+tsvnxp2X0fH7FWHD8u1n95Lt2//46lLVUqMy//1q1XPFyjhiKPlStP8bh06ZLwcPv2v7BwypRKv+Hl8FmsrcduK+8nvAoWVPpOfr94bRF9B8WVZw8pUozn+fxZWXfw+vjRn/1V5z+GAwND+H1HRzFX0qdX2ijPe2dncV9d85K8e87zQ3qlfexyUdbhj76i/sSe4n3v+0nEOzk5sLTyXHdxUeKseY0Zs9OaxZld1ogR9cxOq2dC0vBqlD4BL9qsEfCq8ErAS8CLSwoBLwAQ8BLwAgABL0BcAe+oUfoA76hRBLwaUfLnyE7AS8CLI5WAF4A0vKThjbRqE/AS8BLwsikRV8A7cuQOXcBp9Oj6utRraaWk4TUisS9+32DOsr/h0MnL8OnzV0iZPAnUr14GOrSoBXa2ymcrAl4CXgJeZRIR8BLwEvCiGQGZNJBJA4AeJg0jRmy3lAGtkl417bFKYbFYCAGvAeGGhIZBy27jwMM9IfTt3BjSpEoGdx48gzEz10DR/NlheJ/WBLwRsiOTBtLwEvCSDe8PSylpeEnDSxreONXwDh+uD/COHavYssf3i4DXQA/tOXwOpi/6C/avnwIODsKQ/cXr91C37Z+wfflYyJA2JWl4gTS8pOElDS9KgDatRVlMCXgJeAl44xR4hw3bpgtzjhvXUJd6La2UgNeAxEZNW8V2hauaXDlZy+7joWalEtC8QSUCXgJeNjTIhpdMGgh4CXhRAmTSAEAmDfqYNPz5pwnPKZYSopnpx4+XvLeYmUePZAS8BqTed9R8yJYpLfzR+kf/cn1HLYCsmbygS+t6BLwEvAS8EXOIbHjJhjfSckoaXtLwkoY3TjW8Q4fqA7wTJhDw6gHwVqtz0rwNgD5Ao9PwtuoxARrWLAsNapQl4CXgJeAl4GUSIA0vaXhJw6uMAdLw6qPhHTJkq9UYyJKCJk781ZLkuqUlDa8B0R84dhEmzVsPBzZMjWTD+87bF2q0GAg7Vo6DdF4pCHgJeAl4CWFgnowAACAASURBVHgJeKNbR0nDSxpe0vDGqYZ38OAtusDkpEm/6VKvpZUS8BqQGJ5K0+SP0ZAymScM7dkSUqVIAs9evoNB4xZBzmwZYGTfNiwnuSWjTWs4DsiGl2x4ScNLGl7S8JKGV50FerglGzRIH+CdPJmA11L4jnfp/fwDYMKcdXD41BUIDgmFFEk9mSlDh+a1+fGoBLwEvAS8ytQlG16y4Y20iJOGlzS8pOGNUw3vwIGbdeGoKVMa61KvpZWShtdMiTVsPxw6tqgNNSqKc8xJw6sIj/zwkoaXgJdseH9YSgl4CXgJeOMUeGUFnJloY5VkU6cS8FpFkPGlkGUb9sCRU1dg1azBkWx6ScNLwEsaXtLwogTIpIFMGsikgUwa9DRp6N//L12Qadq0JrrUa2mlpOE1U2KBQcEwcNwiuHj1LnT/vSG0aFiZ5STgJeAl4CXgJeCNZiElDS9peEnDG6ca3n79NplJNNZNNn16U+sWGEulEfBqFCwBLwEvAS8BLwEvAa8qATp4gtyS4VjQY9Na3776AO+MGQS8GlHy58gun2xSo0Y+1ug8ebx44z1C/MWDvHkjwnnyKOHwcB4XEBzGw+glAq/nzz/yuLCw7zxsY5OAhUNDRZ40aRLz++/ff+Hh168/sXBwcCiPS5BAyY9X/vxp2V83N2ced+XKMx62t7dl4WTJEvE4f/8gHn748J2U1o6Fc+RIJdXFg+Dj48f+8fnzNx4ZGCjaBaA8t/zScHQURzunTOnG82XIkDTiuYQM5HYnSeLK7hfIK/rjxu3XPL+HhwsPu7o6srCvr2jXixdC9g4OigxSpHDneYKCQng4NFTpG7UcDL99+/kHGWJE2rRKP8lpAwKCJXkpfSPfl/vTzc3ph+dWvUTgjURCXODjp8g26dK5vPx3v3f7od3h0jhUy8dEgYHKMya3Fc8Kvr48P6RPz8Of/JU0Tk6iAXhaoXqpfa6ObVbutXP8/sNMBXhYfR5pmEJIiOhnd3el79T2sWd0FmP663elv+T65THr6KiMU7zcvir9HJA4GY9zvnpJPGOpUiKsho4eFXHbIo7znCtkHClDZeVrELuqVlX+tm79Y5nsIZQxDdeuiftFiojwvXtKOEkSEff1qwgfOSLCah1S334OEDJU+1y6DZ524j4EK2My0FXMOSdJLu8z5+Z1qX3u7OzA49R1g0W0bMn+vJwkZHT69AOetkmTYjy8atUpFj5//jGPW7hQyOvdO2Vte/bMh9/Pli0lD6t9K8/fgQPF7vVGjQrztMWLZ2LhNWvO8Di5XUd3R8wVSVs96qYYO82bK3s6Tp9+yPP7+QWKPpBC7u7K+irLaNcu0c9r13b8Id+ePdd53OHD/7Fw8eKZeVzKlGI9Klo0I4/ftesqC6vzBMO2tmJ+qGvfly+irSdP3uf5R4+uz8Oq7NT3BN7Yu1e0q02b0izt5cvinfHunVj7Zs1qrpS1e7d4vvz5efjmZ7FG5M2srI2+QeK96DlqqMj3yy9KuGhRHvfVMzkPq+uo/FzyOm1vL/ouUyZlvr948YHnl987SZIkZPEu55TxyK7SyrOyK0yZK99AWWvwkvvW31+s6c7Oypoor2HyOikK1Rbq02ejtgJimHvmzGYxzBm32UjDq1HeBLwABLz4w4OAl4CXgJeAF4CAF4CAF0AP4O3de4NGoolZdv6jJmbZ4ywXAa9GURPwEvDiECLgBSDgJeAl4CXgxfWQgFcf4O3VSx/gnT07QouvkadiOzsBrxEJt+w+Hm7eeQwJIswHHB3sIV/OzDC0ZwvImE75ZE/AS8BLwKtMIgJeAl4CXgJeAl5lPdRDw9uz5/rYZsZoy58zp4Uu9VpaKQGvCeBtUrcC1Kmq2PChp4YFq3bAuSv/webFowh4I2RHJg2k4SXgBQCy4Y1kw0g2vJFfLmTDSza8sW3D26PHOksZ0Crp585VbPTj+0XAawHwYtLnr95B7dZD4Pqh5YAbv0jDSxpe0vCShpdJgICXgBdIw0saXv00vN276wO88+YR8MZ32DfZPjRpkDW83wKCYPayrXDnwTNYM0fZOUrAS8BLwEvAS8Cr7EInkwYCXgJe/YC3W7e1JrkmNhLMn98qNoq1epmk4TWh4UW4VV2V+PkHQLXyxWBw9+aQPKkHAW+E7MikgUwacCiQDS/Z8BLwEvAS8OoHvF276gO8CxaYD7yhYWEwa+lWWLlpH5zaORc83RV3p0HBITBy2ko4feEmODs5QofmtaBx3QpWhV4CXgtMGpp0Hg2/1SkPv9Yux3ORhpc0vKThJQ0vaXhJw6u+FMgtGXlpwLGgx6a1Ll3WWBUQzS1M9pNtKk+PP2dDjizpYNHaXXBi+xwOvPNXboeHT1/BxKGd4IPvF2jRbRwsmdofsmVKY6pIs+8T8FoAvLhZbdC4xbBv/WRwcVac/xPwEvAS8BLwEvAS8BLw0sETeh888ccfq82GP2smXLSojdnF3X34nAFv3ortIgFv3TZDYeyg9pA/l3KwypT5G8HVxQm6tWtgdtmmEhLwWgC8mLRj/2mQJ0dG6NWhEQFvhOzIpIFMGnAokEkDmTSQSQOZNOBaQH549dHwdu6sD/AuXmw+8KrIFRV481dqzwDY3U05IfWvnUfg0o17MHV4F1Mca/Z9Al4Lgfe/+0+hVY8J8M/aSZAqeWLS8AJpeEnDSxpe0vCShpc0vKTh1VvD26nTKrPhz5oJlyxpy4tD961omhD18nBLCGlSiePbZeANCQ2DApXbw+UDS8DJUTmefOeB03DoxCWYO76X1ZpKwKtRlGTSQMBLwEvAS8BLwEvAS8CrN/B27LhSI9HELPvSpe14xtdvfWD64s0/FFQ4X3Zo3qASj49Ow3ts2yxu07txx2G4dushTB7WOWaNiiYXAa9GURLwEvAS8BLwEvAS8BLwEvDqDbwdOugDvMuWCeA1F6miAm/9dsNgSM8WULxgTlbEiKkrmEa4U8s65hZpMh0Br0kRGU9AwEvAS8BLwEvAS8BLwEvAqzfwtm+/QiPRxCz78uW/W5wxKvAuWrMLrt1+ALPG9ICXr72hTe+JsGH+cEifJoXFZRvKQMCrUZQEvAS8BLwEvAS8BLwEvAS8egPv778v10g0Mcu+YkV7szJ++uwH5X/tzdKGhISCvb0dCx/6azq4JXSBkdNWwcnzN5h3hq5t60O9aqXNKtfcRAS85krKQLqBA4WtStu2ZViqlCndeerv38N52NFR6Vy8bG1t2F8XERW5BhvlvrdvAI+3s1Pi8MJjjfGSz6t33bOT3w+sK1x5qH4hvb2/8vvqQMOILCf3KPHPn/P73l378nCyZIpjaNi4kceF/taEh1+8+CDiQ7+zcNZXd8TzPHrEw2FtlU8ffn5BPO71a1+pXbYsLJ85niiR4gIOL0dH5cWKV7KT/yoBZ2ce965QqR/SeqxYxOM+thX2QIkTK7tB2XXzJvvzPXcekfajPw+HhSnPlSJZQpEnoo8wwtdXSSu39fNnue+U58LL/d0LJZAt2w/lY4SNjdK3CZ6JF0hAitQ8LV9UfYXcwNNTtOvAAREuX14JV5AceJ85I+5HhAICgkX5n0R/BngkZfHO0tiCly9F/t7K4sWut2+Vv1/FOINz58T9VtE4J2/Rgt//snAZD7s9vqeEvbxE/mRiwwOvw0HZ4MCu3bt5MKSeMv7l+REYGMLvy3MxgY8Pi/9gI8ZRki/ePG1o2vQsHBQk8rsG+ol6jx5V7tepx+O+K8OFXc4D+oh/qH3eSPHywi47aREIDVXi/MXYg48fRdoCBZSwn1T/6dPifj3RBgiIGH/2Ys68//iNp3V1dRT5IkKuTx6IuJQpWTjUQxpboIxNvO7fj+hvaT1Txy7e9/QU80uda0+fKrLG68yZhzwsz8WaNfOx+HbtxMu7a9eKPG3Rt7dYeJN/ch736ZN4rj/Kp2Lx/mkz8vtjxuzi4YoVlU+meJUpk5X9/euvCzzuyBGxdg0dWpvF5wp4w+8H5lbah5da75s3n3kcvsjV68KFJzzcvbtiv7h79zUe5+8v1sF3776weHmNS5JEyPDSpafsfpEiGXj+PHnE/JDfNWfPKmtujhyKLPC6elWsJz1+L8nidvwbMc+kdwrG37nzmufLnz8tC+fKJeqaMmUvv9+ihVLWzJkHeVzSpGKd7N+/OovP/Pw2v/8hX1EefvxYzLWiRZU+k98PCTuKDVFQooSSL6foQ8ienZcFEXMZChcWcYZCv0doJVcY0IoeOaLkXCVtBBs9WpT2WpFRcNHiPM7h9EkeDi37Cw/b+UQ8ozq/8U4a6/mXVSuS54xpAVgvxcqV5gGv9WqMWUkEvDGTG89FwAtAwEvAyyYEAS9fFwh4CXhxMBDwAhDwAsQV8LZtK5QGGtHGouyrVnWwKL1eiQl4NUqegJeAF4cQaXgJeEnDK75O4JwgDS8BL44DAt64A942bfQB3tWrCXg1omT8yP7wySuYunAToP/d7+HhkDZVMujV4VcoWSQ3ayABLwEvAW/EXCUNL2l4I8xxCHiVoUAaXgJeHAdxpeFt3XqpLuC0Zk1HXeq1tFLS8JqQWM2Wg6DVr1WhSd2KgGazB49fhD8nLYPDm2eyE0EIeAl4CXgJeFECpOElDS+OA7LhBSAbXgA9bHhbtVpiKQNaJf3atZ2sUk5sF0LAa0TC6ukfx7fNhqSJxUa0J8/fQDqvFGzjGQEvAS8BLwEvAa+yoZY2rRHw4jgg4NUHeFu21Ad4160j4I1tWI+T8rsOmQneHz5Dm9+qQfFCOSFZEo9I9RLwEvAS8BLwEvAS8KovBtLwEvDiWNBDw9uixeI44aKolaxfb73T0GLzAUjDa0K6QcEhsGX3MWbKcOPOY8iULhV0blUXqpVX3KoQ8BLwEvAS8BLwEvAS8JJbMr3dkjVvLlxwxiY4Ri17w4Y/4rK6GNdFwGuB6AKDguHQicswavpKWDFjEOTLlZmAFwh4CXgJeAl4CXgJeAl49QbeZs30Ad6NGwl4LUDJ+Jn0zbsPcPfRc6hQqmCkBnYaMA0qlSkETepVJOAl4GVjg9ySkVsy2rRGNry4FpBJA5k06GXS0KTJQl1g6q+/uuhSr6WVkobXiMRwc1qTP0bDuEEdGODihoyL1+5B7xFzYcXMQZAjSzoCXgJeAl51DpFbMr6a0MET5IcXBwO5JSO3ZDgO4sotWePGCyxlQKuk37y5q1XKie1CCHhNSPjspdswf9UOePzsNSSwScD88HZsUQcqlS3EcpINL5k0kIaXTBrIpIFMGsikgUwa9DZp+O03fYB3yxYC3tiG9XhRPgEvAS8BLwEvAS8BLwEvAa/ewPvrr/N14aKtW7vpUq+llZKG11KJRUlPwEvAS8BLwEvAS8BLwEvAqzfwNmo0TyPRxCz73393j1nGOM5FwKtR4AS8BLwEvAS8BLwEvAS8BLx6A2/DhvoA77ZtBLwaUfLnyE7AS8BLwEvAS8BLwEvAS8CrN/A2aDBXF3Davr2HLvVaWilpeC2VWJT0ffps5DEtWpRk4ZQp3XhcWFg4Dzs42PGws7M9C3u4iLigcOWlgZetbQL29+nTDzzO0VGkVY/wtLOz5fdTpBD1fvjgx+N9fJTwly8BPC409DsPl8wacWzyrl087nrhKjycKJETC6dOLU6Zk8t6/vwjTxscHMrCRYtm5HH2Z0/zsHdOxcWb3D4/v0B+PzxCXN+/C7m5uDjw+3I4c6qEqrD4/Zv3vXk4YUJHFs54XdR/N0dxfj99+iQ8rPZNYGAIj3vxQjyXWlbChIos8ApXGwsAnz8rsnV3dxHP6v1FkqEzD8vHbqqRISFhQl72Sp/aR/yNKi9XV+W5HBxE34eEiP50fPaYl+XvlZ6FXcuX4XGfD5344bm/fQuS5CaeMSAgmMV7PLjN78OjRyLcsCEPh9kq4xOP3ObX4cM8GFSmnIiPCDmO+JPH+Q0fI7VBecZIl+z6wE8Z04EOQq5O50Q/+xUpwe47O4ux4+8vnjFBAmV+4ZXow1v2962TJ49L6abMT7z8wxU5y2PSyUnct79+ld3/nDU3zyOn9ZwyVjyGZ0QdAwf++HwYc/y4El9OktXlyzxtSL4CLCzL2ObmDX4/OKdog/qMdnaiP96+/czTqmPexkbc9/z0TrQrTRoWDk0gxpk85h8/FnNNzfRd6iMPDzEXHB0Veb1+/YmXf/ToHR5W1xiMyJAhKYtfujRCFgDQrl1ZnrayxzcWHrTlCY9Lk0b0XZcuFSPixRqyYcM5njZDhmQ8nCNHShZevvwkj3vyxIeHBwyozsLyWnH2rBj/9+8rY+fTJ6VNeMl9nymTqKtq1Tzs/v79N3na0qWz8PDEiXtYOFOm5Dwua9YUPKyureqcxBuZM4u0adMm5ml3777GwvI6W6iQshbglTu3F/urvhswLPeHPFeSJk3E0nZ3fsrzD30k3gU5c6Zi8evXyzIWa2vHjuXZfTUdLyQicP68kGfOnKlZbFiYWM+8ls4WWQpGuAitV4/HyWNSXb99fUV/yGXJdad1VN5V78LFeievqe7uytpiM3myyDZkiAifOsXCAYWL8TjnA3t5OLB6LR7m64W/v8jv6hpVFJr/Xb++PsC7YwcBr+bO+xkKIOAFIOAl4GUvKQJevmQR8AIQ8CK8EvAS8ALEFfDWqzdHF2zaubOnLvVaWilpeC2VWJT0BLwEvDgkSMNLwEsaXtRuCs0cAS8BL66NBLxxB7x160racI1sY0n2Xbt6WZJct7QEvCZEX6BKBwgLUz43o9ZGNSXIkSU9bFkyCgh4CXgJeJVJRBpeMmkg4CWTBlwLMmQgkwY9TBrq1NEHeHfvJuDVjeJjo+Lnr95B3bZ/wrV/l0UqnoCXgJeAl4CXjQGy4SUNL9nwssWAgBdAD+CtXXtWbOCPyTL/+ae3yTTxIQFpeM3sBQJe2rSGQ4U2rQHQpjXpEyVuLqRNa3wVJQ0vaXgJeJXpoAfw1qo100yisW6yPXv6WLfAWCqNgNdMwRLwEvAS8EZMFvLSIDahEPBGWkEJeAl4CXj1A96aNfUB3r17CXjNRMmfIxkBLwEvAS8Br7pakVsyAHJLBkBuyYS7MXJLBqC3W7IaNWboAlT79vXVpV5LKyUNr5kSI+Al4CXgJeAl4BW+bQl4CXhxPpAf3vjjh7d69elmEo11k+3f38+6BcZSaQS8ZgqWgJeAl4CXgJeAl4CXDp4AoIMnACAeHjxRrZo+wHvgAAGvmSj5cyQj4CXgJeAl4CXgJeAl4CXgZetAPATeqlWn6QJUBw/216VeSyslDa+ZEiPgJeAl4CXgJeAl4CXgJeCNr8BbpYo+wPvvvwS8ZqLkz52M/PCSH14cwXTSGh08QX546aQ1XAvkY6XpaGE6aQ3HRFwdLVy58lRdgOrQoQG61GtppaThtVRiUdIT8BLwEvAqk4JOWqOT1sgtGQEvrgV08IQ+fngrVZqikWhilv3w4YExyxjHuQh4NQqcgJeAl4CXgJeNATppjU5aIw0vWwwIePUB3ooV9QHeI0cIeDWi5M+RnYCXgJeAl4CXgFcZA6ThJQ0vAa8yF/Q4aa1Chcm6gNPRo4N0qdfSSknDa6nEoqQfMmQrj2nevAQLBweH8jh3dxcednKyk8IOLJw0oYgDW1t+3z/4Owu/fOnL4xIkSMDDDg5KWldXRx6XzD6Mhz8nEPFqGS4uSp14BQWF8HCOEB8lfOMGj7uaq6z0DM4snCljUh4XECjyX7jwhMc7O9uzcLFimXgchIi03p8CWfyrV9E/l42N8oyOjkIuoaGKLPBKmzYxDyfyeaOEg4N53O3QhD+0O83xfTzuccmqPJzp9jke/l6rNgvbgNiUc/X6yx/KypgxGY/7+jVACivPlTy5G4979Og9D8v9xJ/h9m1+Pzhrdh5Wn9fly0ce9yZc6QO8VBkHB4v+9vQU48zeXowjbls8cgjP/27IGB5Wh1RIiChLbqtqj5g44BPPA0+f8nBQkeI87OenyMDFRYw9ecy/fq2UIY/j1OeO8PzPi5SX5CXGqhop51PjbG3FnHD/7zrP75M1LwvL4yhQGrOOjso4xcstgTI+vZXmsytZskQ8/PWrckOWkVyu65UL7P777AVEAdI4Sr5xpYgvrsjrW75CUlrjQRdpifjop7TVwUFEyvP62zcxF8LDlbEsj4f377/wytQy1DmHN5K7i74LDLf54bltbZU4vGQ/vHZ2Sry89qVK5cHTfvsWxMJv3nzmcf/995qHvb2/8rA6roODxbpRqFB6fr906awsvHTpCR735YuYi336iDmuJpAPCvHwEHPl6tXnLMnRo3d4WfIczps3DYvPkEGsfWvWnP6hw+SNbCVLZub3W7cuzcPPn39gYfUvhuUxtXz5SXY/a9YUPE/TpmJ+hYSI94qawNlZzBPZdvjAgZssyceP/rys6dOb8vDDh8ralGX1XB7X5H5qHk6RQqxj6hqy+u5Sfv+f4Uukst6x8OrVQi4VK+bk96tWzcPC8niQ1/E7d8Q48PLyZGnlZ81y+ZiQd27FbCggczYe5+enjC281HEgz4OgICE3eb1Q+1Qek3Z2Yu308FDW3OR3r/Hyw0qX4WHbcOW95PtVzDnP9y/4/U8p0vKw2k/qnMQb8pgUD6gtVL78JG0FxDD3sWODY5gzbrMR8GqUNwEvAAEvgApFBLwEvMqSIn44EfACEPAK0CXgjay4IODVCCFS9nLl9AHe48cJeK3Xi/G4JAJeAl4cngS8AKThJQ0vaXgBSMMLQBpeAD00vL/8MlEXWjpxQnxB1KUBZlZKGl4jgmrRbRzUqVoKmtarGCnV5l1HYfe/Z2Dt3D+BgJeAl4BXmR4EvAS8BLwEvLgWEPDqA7xly04wE/2sm+zkyaHWLTCWSiPgNSLYLf8cg+17T8KGBcMjpWrVYzzUr14WGtX6hYAXCHgJeAl4UQJkw0s2vDgOSMNLwIvjQA8Nb5ky+gDvqVMEvLHE6HFXrJ9/AJRr2Au2rxgH6bySs4pfvfWBem2HwvFtc8DVxYmAl4CXjQsyaSANLwEvAS8Br/J+Jg2vPsBbuvT4uAMkqabTp//UpV5LKyUNrwmJDRy7CDKkSwVd29RjKRev3Q2Pn7+GyX92Zv8mkwbS8BLwkoaXNLzkpUF9lZCGl4BXLw1vqVL6AO+ZMwS8lsJ3vEx/5tItGDtzLexbr/i3q916CAzr1QpKFM5FwBvRY+SlgTS8OBTIhpdseMmGl0waSMOrvBj1MGkoWXKcLhx19uwwXeq1tFLS8JqQGPo2rNKkH8wc3Q1sbG2g9/C5cHDTdFB9V5KGlzS8pOElDS9peEnDSxpe8sOrtx/eEiXGWsqAVkl/7lzkfU5WKTQWCiHgNUOos5ZuhYDAILC1sQEnJwfo2b4Rz0XAS8BLwEvAS8BLwEvAS8CrN/AWL64P8J4/T8BrBkr+HEmevXwHHftPBRsbG1gytR+k8xIn4RDwEvAS8BLwEvAS8BLwEvDqDbzFiolTNOOSri5cGBGX1cW4LtLwmim6lt3HAx7Dir535YuAl4CXgJeAl4CXgJeAl4BXb+AtWnS0mURj3WQXL460boGxVBoBr0bBEvAS8BLwEvAS8BLwEvAS8OoNvEWK6AO8ly4R8GpEyZ8jOwEvAS8BLwEvAS8BLwEvAa/ewFu48ChdwOnyZX3qtfRhScNrqcSipCfgJeAl4CXgJeAl4CXgJeDVG3gLFdJH03rlij6aZUvxjYDXUokR8DIJBASGcEmQH17yw4uDgfzwkh9e8sNLfnhxLaCT1vTxw1uwoD7Ae/UqAa9GlPw5sjdsOI83tH79Qizs7GzP4xInduVhBwc7Hg4NDWNhd3cXHmdrq2hJZHh4+dI32vz29rYs3tFRlJk8uRtPGxAQ/ENYrv/TpwB+P3/+NCycJk1iHvf335d5OEOGJCycKpUHj/vwwY+Hv3wRZfn4KPH58qXl9z09xTPevPmSxat+jDHs7y/aChDO7idNmija8t3cnHl83rxKu/39g3jcqVMPeFjth0qVlENC8Nqz5zoPZ82akoc9PJQ2Pn3qw+Pkl7dalqurI7+fAHcxRlyqPLJmFR48btx4IclAjINkyZRnk8fJmzefeVonJ2X8yDJSjy7G+E+fvrH7oaHfeR51PGBE8uRCdu/efWFp8uRRZIXXpUtPeDgkRBmH8tiTn1G9nzKlO88jt1stn98EAHmc2doKGXl7K2NDEhvkyJEq2nap8wL9YKuX2hb8t4uLA4uW+0ge/+/fK88ty0XOL88bFxelTz9+9Od1pU0r5oIK8vKckudKqlSKbF68+MjzBwSIH4T584u54Our9N23b2LMhoWJZ1TnktwHgdKPS7WC799F38vyDg8XZalp5fmh1i/3l9z38vwKC1PGhvws7u5i/t2791YuhoXlMZs6tVgv0J0jXvLYU/swah3XryvzZu7cFrz8tWvP8LDaxm/fxLrx+LE3v1+kSAYWfvJEzOX9+2/w+2XKZONh9XkuXXrK4+Qx16hRYRafPn1Sfn/SpD08nC2bsobIc0Jua9WqeXhaBwdlzU6SRMzPjRvP8ftVquRm4YQJxRpTvnwOfn/hwqMsXKeO+GElp339+hNPq44DWRkh923RohlZWi8v0Uf9+v3F8xcvnomHr159xsKlS2flcfKYUtu9ceP5H/oII9ST5woUSMfvy2Nafn9kyKDIWV6HS5TIzPOpfe7rK+aquh5ios+flXeRn5+YX3Jd6toqP7ssN3m9SJIkIStLbZNSbiBvi7r+yvUnSuQUrYzU+SzPT/kdyTNpDBQooI+3hGvX9PEOYam4SMNrqcSipCfgBSDgBSDgFRODgDcyJBLwAvNfjhcBLwEvjgMC3shKIY0YwrPnz68P8F6/TsBrrT6M1+UQ8BLw4gAl4CXgJQ0vaXhxFpCGF0DWJpOGFyCuNLx58+pzAMTNm/oceGEpHJKGV5LYp89+UKZ+Dzi6dSYkS6J8SrnqRgAAIABJREFU6rl84z607jkBjm+bDUkTK58uz1+9A4PGLYZjf88CAl4CXgLeyMsOaXhJw4sjgkwaAMikgUwacC7EFfDmyTPMUga0Svpbt8ZZpZzYLoSAN4qEf+s0Ctr8Vg1qVynJ7ixYtQPWbz8EQ3u2hFqVSrC4Ocv/hrfvP8KEIR0JeIGAl4CXgBclQBpe0vCShldZC0jDG3lvSVwBb+7c+gDv7dsEvLEN67FS/swlW+CD7xcYN6g9Kx+1uwXzZIVPX/xgdP92LK5Ft3HQrH4lBsWk4SXgJeAl4CXgVcYAbVojkwYCXmUuyBv74gp4c+WKfBJsrEBSNIX+99/4uKpKUz2k4Y0ivnNX/oNhk5fDob+mQ2BQMFRq3Be2LhkNv/edDPvWT4FvAYFQqk43OLR5BjNxIOAl4CXgJeAl4CXgVWcB2fCShlcv4M2Zc6gmIIxp5jt3JsQ0a5zmI+CNIu6QkFAoUbsrbF8xDl698YbVW/bDosn9oEaLgbBy1mB48PglzFi8md3Hi4CXgJeAl4CXgJeAl4CX3JLp7ZYsRw59gPfuXQLeOCV3a1bWeeB0qFS2MLx+6wNuiVzg96Y1YfiUFVC0QHa4//glhH8PhwFdmxLwRgid3JKRlwZ5/tGmNdq0huOBNq3RpjUcB+SlIe42rWXPPsSaKGR2WffuTTQ7rZ4JScMbjfRXbd4Pdx8+h1dvfGBgt2aQN0dG2H3wDFy8fhcePHkF3drWhzLF8hLwEvDy0UNuycREIuAl4CXgVeYDeWkg4MVxEFc2vNmyDdaFJ+/fn6RLvZZWSsAbjcQePHkJ3YfOZja8R7bMZKdQvfX+CO37TgHvD5/g+LY54BzhSJ1MGsikgUwayKSBTBrIpIFMGsikQW+ThqxZ9QHeBw8IeC2F73iVvlzDXpArWwZYOKkPb1f15gMhVYrEsHKmGFQEvAS8BLwEvAS8BLwEvAS8egNvliyDdOGohw8n61KvpZWShtdSiUVJT8BLwEvAS8BLwEvAS8BLwKs38GbOrA/wPnpEwKsRJX+O7AS8BLwEvAS8BLwEvAS8BLx6A2+mTAN1AafHj6foUq+llZKG11KJkYaXSUDdpIVh8tJAXhrkaUGb1mjTGo4H8tJAm9ZwHJCXhrjbtJYx4wCNRBOz7E+eTI1ZxjjORcCrUeCk4SXgJQ0vaXhJw0saXtLwkoZXbw1vhgz6AO/TpwS8GlHy58hev/5c3tCmTYuxsIuLI49LlEiEnSI8O+BNR0c7liZxYleeVj6W08fHj8W/f/8lWkHY29uyeHd3Z34/SZJEPIwHaKiXt/dXFrS3V+pUrnAeKlYskxI+eJDHnXLJyMNJkyZk4aRJRfnOzvb8/rFj93hYbU+RIhmktoTx8NOnPizs5xcUbVvRIwZeHh4u/P7Hj/48nC5dYh5On0JpV7CNeK6zZx/x+3nzpmHhxA9v87jLtsl5OFu2lDwcGqq0Ua7r3Tshe1VrmTFjUp5HlStGfPsWzOK9vDz5/evXn/Nw2rRJeDhZMkWOwcGij3x9xTM6OSmyVfs4qrzev1f6085OkVXUsFo+xqvl5siRSsjg8jMeDgoKYeFwMRzAxcWB3//+Xbkhlyn3zfPnH3haefyqkao7Hvz327eqPEVluXJ58fznzom+c3Nz+kEGqozxhnDzw7NDsmTKeMBLlZEsQ7WP8b6NjZCdq6vyvGFhol0eHmJeBQQoMgoJEeM4d27RbsfLF9j9u4nFnAkN/c7bkidxAh7+mkgZv/I4SyBuQ2CgUpcsy6AgMU7U/giXOszZWfSXnFZ99oAAZWzi5ev7jYe/f1faqM45Wa5yG9Q2YZzc93fuvOFlqe2V250ihRu/r47pq1fFnPj997L8/rx5h3lYXfPUPHgjbVox79UxI69By5ad4PkbNSrMwvL8XbPmNL9fpkw2Hk6Z0p2FX7z4yOM+fRIyqlAhJ4uv7n2V3x96R6xNBQqkY/Hfvon17Nq1FzytvD6r46x169L8fseOq3g4V67ULCz315xB5fn9IfPOsrBaJ4abNFHeOXidPv2Qh7NlS8HCU6bs5XFZs4r1LksWZR10cxPjfNy43T/kx4jkyZV+lPv+7dvPPG3btmVYOE0asfbxmwBw7ZrS5+p7BMOOjuL9Ia8t6nri7a28//AqXDg9D4eFKWNW7iP5a6O6RsjzS5638vhMl05Zk1+//sTLl+97eirv5lSplDGClzx/7O2VNUSuK2FCZd3Cy88vkIfVuSjPNXkN4Qk1BtKn76+xhJhlf/ZsWswyxnEu0vBqFDgBLwABLwEvTiMCXgJeAl4EPAJe+bVKwCuUF7ENvOnS9dNINDHL/vz59JhljONcBLwaBU7AS8CLQ4g0vAS8pOGNPAZIwxv5CxxpeMUXGNLwAsSGhjdtWn2A98ULAl6NKKl/9rVbD8KeQ2dh48IRkCDiuyN+SmzZfTzUqFgcWjaqAgS8BLwEvMpcJQ0vaXhJw0sa3qhvbtLwxp2GN02avrqA08uXM3Sp19JKScNrRGJoL/RrxxHQ+rdq0KCGYm+GRwyv/GsfbFkymtm+EfAS8BLwEvCiBEjDSxpeHAdk0hD5pUrAG3fA6+UlDsqyFAa1pH/1aqaW7HGWl4DXhKiv3LwPfUbOhz1rJzENVq1Wg2HGqG5QME9WlpOAl4CXgJeAl4BX2XlHGl4CXtLwKhLQY9Na6tT6AO/r1wS8cUbtsV3RkAlLwcM9ITjY28EH3y8wblB7XiUBLwEvAS8BLwEvAa/6UiANL2l49QLe2Gahn7180vCa0YMIufXa/slMGHasHAee7sI9FwEvAS8BLwEvAS8BLwEvuSXT2y2ZGTjzP52EgNfM7h87cw3Y2trC0J4tIuUg4CXgJeAl4CXgJeAl4CXgJeA1E6h0SkbAa6bgJ85dD3a2tjCga1MCXgCggycA6OAJADp4AoAOnhC2u2TDSza8ZMOrnw2vmTjzP5uMgNfMrifgpZPWcKjQSWuRT1wi4CXgxXlBJ63RSWt00hoAaXjNBCqdkhHwmil4Al4CXgJeZbLQ0cKRncaThpeAl44WpqOFcW0k4DUTqHRKRsCrUfBkw0s2vGTDSza8ZMNLNrxkw0s2vAS8GoEqlrMT8GoUMAEvAS8BLwEvAS8BLwEvAS8Br0agiuXsBLwaBUzAS8BLwEvAS8BLwEvAS8BLwKsRqGI5OwGvRgET8BLwEvAS8BLwEvAS8BLwEvBqBKpYzk7AG8sCpuJJAiQBkgBJgCRAEiAJkAT0lQABr77yp9pJAiQBkgBJgCRAEiAJkARiWQIEvLEsYCqeJEASIAmQBEgCJAGSAElAXwkQ8Oorf6qdJEASIAmQBEgCJAGSAEkgliVAwBvLAqbiSQIkAZIASYAkQBIgCZAE9JUAAa++8qfaSQIkAZIASYAkQBIgCZAEYlkCBLyxLGAqniRAEiAJkARIAiQBkgBJQF8JEPBaIP/QsDCTqe1sbY2m0VqG1vzGGhcW9h027jgMLRtVMZhMa/1a82PDtJbxs+dXO+fpi7fg6GAPqVIk4f0VEhoG9nbGx6A1ZNi0yxhoUL0M1KhUAtwSupicF1ETaM2vlvfe5xPcuvcE3vv4gnsiVyiSPzskS+JhVnv0HgdqI7/4fYNrtx7Ax09fwd3NFQrkzgKe7onMegY9x4DcQC39oOczaB0D1phLWtugd36t7xRryBDL0DKOtM5Fa61nZk16ShRjCRDwWiC6vBXbRZvaJoEN2NnZQmBQMNw+tspoibnLtzVZo7EytOY3VPmVmw9g3Kw14GBvB5sWjTTYRq31a82PDdPaD1rboHd+lMHZS7eh5/C5MHlYZ6hYuiAEBYdA31Hz4diZa5A+TQqYM7YnZMnoFWv9uPfweTh08jJcuHoHihXMCQ1qlIFSRfKAra2NyfGNCbTmDw8PhykLNrEfaKlTJIGUyRKDz8fP8OzlO/aDrX+XJpAggXIYgqErPvTjwjU7Yem6fxjgpkyeGD74foG37z9A8waVYUDXpkafQe8xgHLV2g9an8HYWoBjEedFbK+nerchPozj6OaYue8UzKv1GbSOI2yDlrmodT0za9GkRJolQMCrQYQhIaFw8sJN2H/kPFy9/RAK58sGk4Z2MloiLo7//jXdaBp8eRu63np/5LeqNx8I+zdMiZQU4679u8zsp8IX7PRFf8Hpi7egV4dG0KBGWaMv2ajtj9qGKk36wc0jKw3WrzV/dAVb2g9a+0DrMxSo0uGHfpOfy5w+bNl9PAO76hWKsazrt/0L2/aehEWT+zIQRfBdPKVfrI+j4OAQKFW3G/xSogDcvvcEqpQrAvWrlTEK23KjYpp/ybrdsGP/KZg2ogvkypaBF3nv0QvoNXwuNK1fEdo2rm50HmidS3J+rKhum6Gwa/WESPPT2FzctPMILF67C6YO78I00+p1+95T6DNyHjRvWNnoM2gdA1rnAbZXaz9ofYboOvj793DYuuc4zF+5HaqWKwJ/9mpl9noUXUJj67Ghgi1pg9ZxJOf3/fQVOvafBluXjY7UNHPfKTEZx1FlYOk7BfNrnYtax5HWuajKIKbrmdkvbEqoSQIEvBaKDxeyS9fvwZ7DZ+Ho6auQN2cmqF25JFQoXRCcHB1MloYvGWNAaLIAKQGCU9QXanRxcpkT567n/wwNDYMDxy5C7SoloVvb+pDIjE/TUdsftT5Tz6c1v9p4Lf1gqo2m+kDrM5jqI1P3sX0la3eFUzvncY1q654T4Lfa5aFO1VKAsinXsCec3DHX1KOw+zEZR3LBxWt1gfN7FoKffwD8e+IS095+CwiE9fOHmVV/TPKXb9Qb5o7ryeZf1Au1PeNmr4U9ayeZVb81ZIBlqM+hVmqqH+u2/RMGdGkCZYvn+6GdZy7dgglz1sM/ayYafAatY0DrPMCGae0Hrc8QVTgXrt6FSfPWQ2JPNxjSvTlkzmD4KwfmtYYMtLYhan5Lx5GcH79yNGw/HE5sn2P22Ndav9Z3StT6Y7IeaR1HWueiNdfDGHccZTQpAQJekyISCaYu2MS0Z14pk0K18kWhWvli4OGe0IISrLvAFq7WCc7tWchtNtGWq1iNP+DKwaUG24TPoF5o73ng2AWm1e3Usja4ODuZfBatsKc1PzZQaz9ofclpfQbst8ObZ0Q7dvCFVaf1EDj7zwKjfVG6Xnc4tWMu08bjZ1t8Sf67aRqzX8XPzGXq94DTO+eZ7E9MEJNxFN0CHxAYDEdOX4F9h8/DyzfesGPlOLPqV1/w5uS/eecx7Dl8DlAjc+XAUrCx+dFsAcG7TL3ucO3QcrPqt4YMsN9qtBgIF/ct5nWaAl68f2bXfHBxdmR95v8tEBK6OrP8GC5dt5vRZ9A6BrTMA2v1g9ZnUIX96q0PWxfuPXoOA7o0hYplCpnV91pkELWCmLYhKrBaOo6sCbwxGcda3ylR5RiT9UjrONI6F625Hpo1cClRjCRAwGuB2MbOXANnLt2GHFnSQvUKxaFcyfxmaXXlKqy5wDbpPBpaN64GtSqVYFUgCKzctA+2Lo38OcvYI+JGmRmLNwNqlPp2asy0vcYurbCnNT+2TWs/aO0Drc/Qvu8UKFMsL7RrWuMHUWP/Xbh2FxZO6mO0H5r+MRr6/dEEihbIwfp92fp/YPsKBTDxRwyWY8wWWy5cyzjCH1klanWBquWKMnte1FbWrVYaCubJatbMsiT/gtU7YfXm/VCzUgn2jPs3TI12w9yjZ6+hXe9JFmm5YioDBFOU9bpt/wKa1qCJEf7oQHBo8Pswo1p2NAXZt24K26gWVTOHm8BQU3dqp2EtvdYxENN5YM1+0PoM3wKCmFnF1n+OQ5vG1ZgJiL29nVljDxPFVAZyBVrboP7Aiek4sgbwahnHUYVt6Tslav6YzEWt40jrXFSfwZL1zOxBSgmtJgECXgtFiQP63OX/YO/hc3D28m0oXigXA86SRXKDKQ8NWBXaypYumsfCWqNPjpsCug2ZCcmTeYJNggRMqzZ7bA+2ecjS6+qtBwwknZ0cjX6KjvqCiGrDa+oFojW/vLDEtB+09oHWZ0Dt2O99J0PjuhWgbtXSbNMVaiV3HjgNyzfuheXTB0C+XJmNduHhk1dg+NTlkC9nJrh84z6MG9SefXF48vwN/NpxJMwd39PscRCTcYT1Hz51GU5duAl5cmSEetXKQIVSBcDBwd6soReT/KXqdIMtS0ezLyzDp6wA3JM2un+7SDbnaM7Rf8wCpikdM+B3s9qCiWIigzVbDsDidbshb45MbIPZ9n0nAfsW+3Tf0fOQIqknjB/cwWAbevw5G0oUzg0tGlb+AXhnLd0Kj5+/ZpsPDV1ax0BM54E1+0HrM6BJBXoq6diiNiT2SATh4T9Kq1JZw9remMpArkVrG7SOI8yvXv4BgbBi4z7o8XuDSIJo/Vs1g+NIa/2GCjb3nRI1f0zmotZxZI25qGU9NHuhooSaJEDAq0F8+Cn5+NnrTNv03/2n7OU1sm8bDSUCDJu8nMGLudfnr/5w9eYDQJdi+XNnhqSJ3c3N+kM6LGPD9kPQ6teqBstAbUqnlnUM3r947S7TOhq6tOaPrtyY9gP+qq9YuhD0/6OJRaYp1ngG3Jg0Z/nfcP7qHaYZRNME1Ir26fQbFMprnnb07sPncP32Q8iRNT3kjwBk7MOvft8seh6UqaXjCKG6XrXSUKtySQYall4xyT9w7CKYMvwPVtXnL/7Qqsd4ZsNcpVxRSOrpBqgVxbloa2sLy2cMhCSebhY1y1IZoAZ3YNdm7McuXrhhBbWf1/97CNkzp4MevzcEVxfDZkI3/nsEHfpPhZoVSzCzlNMXbzKt9IvX76FFt3GwevYQyJguldFn0DIG0DyrctnCP5SP9tcIjobabu1+0PIMCCqmrrnjexlMElMZyAVqbYPWcaR3/cbkb847Jbr8ls5FLEPLONI6F2Oynpkat3Tf+hIg4LVApoZcp6AdIb5kEVxMuSXDT0fGXoKm7P4+ffazGGbkR9SaH7VYlcoW/uFT8jtvXwZtyZOa9oGK5hOJPdwgR5Z0vGlo/4byy5A2pckesUY/YCW/NOgJ3X9vCKv+2gedW9VlAGfJ1WPYHAYMluaT68AvBn5+AWxMWPIpVi3jwZOX8OLVe0BfrolcXSB7lrSQJlUysx9Da35DFeE4QdvwmF7m5EfA3HnwNNtEin543RK6QulieaFhzbJmfW3BtqEpgfoj8c27D6yscAiHovlzRPJvHN1zoDY5OhtiS54ZNYyPnr5iWZydHdnGQ7zwR4upTaRa57KhtQZduyFErZo9xKwfM1r6QeszWCLr6NJaSwZa2mGNcaRn/dboQ61laM2P8tNzLmrpP8prvgQIeM2XleYDD7AqhDWEm5xZ00OlMoWgRsXikRzlmwJeQ/fvPHgGC1btgJljuht92WvNj+1PlTwxDOvdGsqXKsClh5q1kdNWMbdscnxU8aKd2pqtB2Di0E5QolAufvvk+ZswaPwiGNGnDXe1ZahrtDpaV8tF4EWNGrrRmbJgI3j7fIIRfduYBd1YBm6UKFUkN3z4+MWifOivedGaXcyjQub0qdlGSIQMBJxErs7sL9r4GrtQC4jutz598WMHLjx9+Y6ZN6DzddQKonyxnwxdWvObmjamxrE18iPkv37rw54XP2vjhZu/TPnfVeteu/UgbNh+GPatnwwHj1+CYZOXMS075sfPsROHdDS6+QnH4cnzN6BCqYKs3v1HLzAbf7ZpsFhek+PYlAxM3dc6lwtUbg8rZg6Ktpqjp6+xDWBLpvY31QxN97U+g1YNrTVkoLUNP3t+rX2IA0hrGVrzaxrEVmi/1vopv3kSIOA1T04slTV+RSLs4KfXh09fwclz1+HEuRtQpnheZiaAtommQMHYffQ7GRAUzD7RG7qskR/dPXUdMhO6tK4X6aWOtlcjp66A3UZcKVVu0g9WzBgE6bySsyZOXbiJ7arGC32oov/Rvesmm+wVLVpi389fWflR/aaiTfDcFduYm7mubeubbIMKzNiWyfM3QrVyRZktoSlN7ZAJS+Hjpy8wdmB7phFHe00sI1umtMyWF1+At44a9mWMDWvceRQ0q1+Ja1HPXVHsykf1awcr/9rHQGzVrMEGn0FrfvyEh749c2ZNxzT+srbe2AtMbZDW/EfPXIWBYxezH48Iuwsm9obxs9fBxet3IXN6L5j0Z6cf2hRVGGXq9YCNC4dD2tTJAd0Sob1t3hwZWTI8vW3I+CVGx/LQiUuZhhihEMfNwWMXoV71Mkzru2PfKTY3jI0jlEF0G0zx0yz2pyk/wlrnMv54NeW2a9eq8Ubngd7PoFVDaw0ZaG3D/9f8OHDMeSeZWi/MKUPrXNB7HJt82VACq0iAgNcCMcbGr0i03du29wSs2XIQalYqDss37DHqiggXaGOfUfHzmKmThbTkV2WA0N6m10QY1rsV34SHdZeo3QUu7F1kUKqyj0l0Q1WkeifmwxU3GaG9F9rV4r+NXVq1xAiqeOFuYkP2p+b4sVSBF8vCfkTbXvTNPLh7CyhW0LAdMz7job+mczdw+EOqbe9J3I2XqR89WF+J2l3h7O75XJuJWsUqTfuzctHdXMnaXeDS/iUGxag1PwK1+sPtxLnr7IS+9s1rQY0KxZldraln0Jof7R5xUxr64cVPkQPHLYJubRtAzYrF2WbSdX//a9IPMPruPLxlJnMLVrv1ECZ/deMpfqYvXa8HXNxnfCyjezkcu9WaDWD1qeYR+NWgcadRcHjLDIt/fGJf9hw2B6pVKMZ+fBm6tK4FpvrInKXRUBlx9gwatdRWkYHWNvzk+bWOQxxnWsvQml/vcWzOXKM02iVAwGuBDLX+ijRWFcLfio174OCJS7BzpWGtCrbh6NaZRluNx5QauqyRXz3sAj+fdxowjZ1qhZ4h8NAB3LS2Zs5Qg/U36jCCbYqrU6UU4Cflw6euMG0veiw4fPIy3Ljz2KhmEgu2lpZYBlYLhgHTBuL19MUbyJA28qaiT5+/MhMJYz86yjXsxbTYqi03apzrtxsGx7cpG3DMeQnjyULonqtJ3QosD242RB+4K2cOZt4CVm8+YNQPrtb8UeWFmzaXbdjDvEQM6t4c/hg0w6IT/yzNj75K960XpwwivMq+i6M7hTBqm0dNWwWv3/mwzWU47tA8ok3j6vDV/xv78eLvHwjzJhje8IT9uGHBcPZlBt0iLZ7an5mX4GWOP+U8FdpB8YI5ox16/t8CAN2ryX59oybUOpfxR4Pqys6S8S+n1fsZtGporSEDrW342fNrHYfqmqfne03vcRzT+Uf5LJMAAa8F8tL6K9KCqowCqyVHB0f3krRmfjwScsr8jcytE244QxvYTEZ2luOmoF4j5rJd9pnSp4bVswfDnOXb4PjZa5AhjZLf1MY1a2iJsX7U8GZMJzbJobkJfh43ZQP6+PkbJlb0ErB2rgK/US9jMkDQevP+A/zerCbY2tjA4rW7mWmD6sLKHOBFGBo0bjE8fPKSVY3gPX1UV2YTPHjCEmj9a9VIR+5GbZ/W/IYGKH6OnzRvA/vhY2oDZ3RlmJu/VqvB7IcR+rx9/uod1Gs3DJZNG8CO90Z7dvR28veyMUanHGrCV27ay34gvHjtzdKiZhKhFY9IRj/HbkZOH9y44zD7ItOsQWUICgpm7uEa1CzLzFLw3i/F80O/PxobbEP+Su251wlDifCAG0OXOePEGmuOsTL0fgZryADXArTHlr16mLsWqLBmzTXV0j7TKgO988cHGeo9ji3tc0ofMwkQ8FogN2v8krWgumiTyrvKY1KW1vzWsGNG0wXUguLn35jscteqJUbfsf1GL4DhvVtHOmgD/eDOXf43zJvQ26T9J8r+2JlrRjfoGeofdFS/YPUOOHH2OoSEhrINTr07/sY1vuu3HWK+Wc25cONWWFgYGNPqGytHa35DZWsdJ6by42azhat3MKi///gF/NmrFQNtBM/gkFCYNqIrlC1ufOOf3Hb8woJaVbS/VrW05sgff+jt2H8S7j96AV/9A5hpRzqvFAyYjZkjWOMlr3Uua7VbjA/PoFVDa421QGsbfvb8WschjiOtZWjNrxX6tdZvzlpDabRLgIDXAhlqnRQWVGUwqXqqD2qy8FQr9UI/grgRDl1BGdNQat1ZrtXDgNYdyfi8WrXE+IJBf7e/lMjPxIcboHCnPV4IvVt2H4N186LX3GIarTLEMhA00V4U7Udj4pbIGnI0Nh5N+YPWexxi29EMAsd8gdxZGGSiWzvU9qZMnsSo6z/1uWNbhugJAzfEGbrQswkeFqLlQm8S+46chyfP30JAYBA4OTmwLyV48p0xO3JjsGqu/S2WofUZcONfo1rlmGZevnDT4Nv3H6P1ExxVXlo0tFrXArktqzbvZ+tI+jQpLO5SreuB1vxqg9EdHv6XMKGL0a8bUR8Qge/AsYvMhzTL7+rMlAbRubC0WDhg2j89uvtcuv4fZgZUtlheZiKH7wk8tTJrRi+o8ksRo9VqHcfWeCfERC6UxzIJEPBaIK/48CsOQQR93g7p2SKS6QB+Ch4xdQWULpoXenVoZPCptO4s1+phQOuOZPXBtGiJccPWuX8WsKLYgR2V28O1Q8sYgOLLHk0mjG280ypDdMHWd9R8WDqtP4O1PyctY9DC3JJF/LdxwXCjI1OrHLX6g9Z7HKJw0LNF1oxpmFkDvui+fQtk8sOXLZoimDr1TasMTS0d5vxAxkMecNMd2sPjjwhnJwdInyYlc3dnyg8vAhaeklW/ehl20AXmRU31s5dvYdvek/BbnfLQvllNg83UareIBWv1y42nFqJ3Ejx9En+Eqj/Wr9y8z8xS8AS/zq0MH3SjVUOrdS2QhYt25DgWq1csDh2b1zLprUXNq3U90JoflRgzl2yB3f+eYaZmzK+8jQ37Atew5i/QsWUdsLezNTiOcAMqmlehAsbdLSHgJlY8jAXLunzjHkwd3sXkjy+t6xGaceFcwjb8e/wS+6GJR50q2IDhAAAUXklEQVSXKJwLrt1+xMZX746/Gp2yuJ48evqanZ6aLVMaZpqE71U0sTN1oJPWd4KptYTuW0cCBLzWkWOclYIbrXDDE77U8cJzx/9aPJKFo25+iq5RCHNadpZr9TBgDb+XpoRtSjuJ3gzmje8F2TOnZdA0YsoK6NCiNjStV5Et1tMWbQZj7pi0yhDdoeHGLvWIaXxhbfnnKAzp0RL8/L/Bbx1HGvXUgc+vVY5a/UHrPQ5XbNrLPDEsmdIfsmT0ArSLRk29k6MD23SGL1tTNsRaZYi26ymSJ4acWdIzDSV6p5AvU8CLbvD6j1nI7MgRWFE7GxgYDE9fvmV2yJP/7GzUH3Ol3/qyLxGpUiT5YUp4f/gEzbqOZV47DF1a7RaxXK1+uVFGF/cuggFjF7HnGNStGW8u/rBv2mU0HN06y+AzaNXQal0L5IbhnDi4aRrzsY17Eob2bGn01Ek1r9b1QGt+NO/CI+U7tazNgHXj9sPsC0mponmYy0QPt4QwdqDhY7orN+4L8yf2YespXm/ef2Q+rZdPH8hOkhwzYzWgK0tjl9b1CDep/rN2IlNa4A9H/PFxbNssZuqF/27UYXikTa5R24KbVLf8cxwK5s4C124/hF4df4XJ8zaAp0cieO/tCyP7tTXqV1vrO8HUO43uW0cCBLzWkWOclYLn2ONufrQ1RDtYXGTxpYYvC/yVXLVZfzi9c57B9mjdWa7Vw4DWHcn4YFq1AZt2HmEaDVygHz97Awsn92UL9PNX79mCOX1kF27uEJ0gtcpQ3nSH5ePnsIq/9mGHYDCYrdLBpIcDrXLU6g9a73FY4dfesG7eMOYhAS/cSDh25mrmpSKuZDh90WZ4/8EXHj55Bbh5s1alktC2cTVIHdEmU/2I3j4Gd2/GPJxEvdA2ePSMVUY9tuA4RJBQf/zKZaC2CyHAmHs9U+0zZ1HDMrT45VbbgOYofwyeAYXzZYeubeqxqhFUKjfpC2d2zTfYFK0aWq1rQVTgVeWNXxwQ9PDUQ/Qz7uGe0OAzaF0PrJH/9K553CUffuWq2XIwO5AFvxiUa9jT6Bcv9Gd99O9ZXAuMLv1qtR4C/26axtw1lqnX3ai3ERSM1vVI9sqCX+3QPSa+B/ErD5qM1Wo1yCjwoteXjQtGsH5Cby3VWwyETQtHsD0CaKbRdfBMoz65tb4TzJlrlEa7BAh4tcswTkv4Y9B0SJksCdSoVJzZmuKvb7TjQyf3qK3EexOHdjTYJq07y7V6GLDGS1arNgCFg5+qVPtPfCnhIonHG+MnSfw0bOzSKsOG7YdDn06N+aaqI6evss1yqosoc2RkThpLBqal/qD1Hof4peHk9rlcq4rtR43nqZ1zzQZea8oQNap7Dp8D3HCImxB7tm8IFX7tY/SHC/5oOLFjTrQnI+KPoF/q94Qzuw3DHm7SQ21Um9+qQfYsaNLgyDbt4al9eJohmkaM6NPa4DDQarco/7CIqV9uuQ8QcLsNnQmODg7MpAO/fHi6JzTqycIaGlotawHKYNystUzGUY/DRnA8fu46s602poTQuh5ozV+z5SBmdpA7ewb2HLgfZOS0lWw9wsOAcK4b07IPGLsQwsOBHYSTIAHAur8PgYODHTt1c8KcdWw8Lp7Sz5LliIGyJf7pOw+cztpfvmQBduIh2oC7ujhDuZL5Ab+k4I/CcYPaG2xDVDeGqCHGuaea2ER1gxi1IK3vBIuEQ4ljLAEC3hiLTp+M+Llo4tx18ODxK2afNKxXKzh4/CIcQ7deaVOyl5+Ls5PRxmnZWa7Vw4DWHcnW0AZYo+e0yPDspdvQe+Q8pmHGz+C37j5hXgVwccbLHP/A1pBjdHIw1x+03uOwY/9pkD9XZujcui57yc5fuYO9qJfPGGg28MaGDFFTuXn3UVi79V94+cbb6Il5XQbPhLSpk7FTFmUbQbQdXL5xL9y+98To0b6ouUIPEWh7iV8qEKwQenHTFG6Ga1KvgtFjxlFQ1rSDjolf7qieIhD08Yf81Qg3h22bVDe6nllDQyvvzXjz7gPb7BQO4VA0f45ozUWizpu/dh5hUdMXb4Z+naN3Q9ekXkWDy47W9UBr/iOnrsDQScsgV9b0DPBu3n3MYLVimUKA/YN+0+tVK22w/The8Vh7PB0wFLWrhXIy39Zog44gWLNiCXB3U/xTW3qZux6hVnbCnPXw4MlLZkaCP/TwBwiaVKCrxnZNa7INwoYufE48oRTfqYdPXoFxs9cwgMdNdyhfNJdCEw1jl5Z3gqVyofQxkwABb8zkRrnikQQs1QbEh6ajOcql63chJCQMihTIzo7ppct8CeBnxv6jF8Kdh8/AJkEC5od41pju3IczbgqcMaqb+QVaOSXaEOPLtmo5w7vD0fXapPkb2JHEqIFCWMVPu7jjvlyJ/OwUQ1ObZeRmo0bxnY8v07alTOZp0p+0Veygo5jfWOqX25TYTXm6wPxaNLR4+A26uMPP9wePX2KmTQXzZGWywy9nE4d0ZOBnzoX2rqY2RhkqR+t6oDU/Qv/124+YeRVupE2RzJM1Fccj2sVbclk6DtWyreVpwpK2qmkvXL0LvUfMhYCgYEiVPDEsnNQX5iz/G85fuQOZM6RmNszoCcbYpcVbSEzaTHkslwABr+UyoxzxVALmagPiafOpWTGQAB4eglpV9QUdgyJ0z4LtR3Ma5lbM0YHZJZvyMIGNRqCevXQrO+0NNVt9R86H1+8+sF32qZIngZmju0HmDF4Gn88adtCm/CVrFa45ZieopU7s4RbJdzbKE+Vq6hAbtD/duHA429WPNtV4+EveHBlZs/Gz+JDxS4zabqrPp0VTHtsyjGpqEV2faJGh1nGI7dHqacIaPqUR9r0/fIbkSTx+2IBqahxr9RZiqny6bx0JEPBaR45UCkmAJEASsEgCWn0Zo13hwG7NmO/X1j0nMDMG1Y4SP/Wjqztjx3xbww5aqy9jrZ4uVm7ax+yVJw7tBCUK5eLyR4AaNH4RjOjTxujuerTVPLxlJvvcXbv1EHYcN25cxQs3X5Wu1wMu7ltktF+1asoNQT166kBTgZljups0TTHWQFM/GrTKUOs4xLZr9TRh6Bkt8SltTIamPP9o9RZi0cJBiWMsAQLeGIuOMpIESAIkgZhLQKsv46I1OsO5fxYybVTlJv3Yrnh1kw1uwkSgPb9nocEGWsMOWqsvY62eLvC5V8wYBOm8lAM+pi7cxLwi4IUbrvqMnMfcOBq6cBPu63c+zOb0xp3HbId+m8bVmWs7dFXl7x8I8yb0MtrJWjXlxoB0/srt7DM72pcaulC7iSZRObMqBz3ggQ/yZQp4tcpQ6zjEtmr1NKHVp7RWzz9avYXEfBWhnJZIgIDXEmlRWpIASYAkYCUJaPVl3L7vFOb/t2OL2jBlwUYokj8HVCtflB2e8teuo2zz19/LxhhsrTXsoLX6MpYbFxNPFzIooUlTkeqdGOSjTbQ50B8SGgYrN+1lG5xevPZmzUH54fHSeDx0vz+amDxxTKumHL3OGDtiHTcnGvMpjQc/oJcM9DqDfsTxeOv2zWtBjQrF2Y8hU8CrVYZaxyHKXKunCa0+pbV6/rGGt5D/a+/Og6us7jCOP4QtFFkSCCJUsLRVqqXjACKbIBosQlhTNkPZEiEwl7AlJBCikpDSEAQCCKaA7MtkKEiJbGUrWIQBHEBLkRaoVoEKRXZkTeccxgxMQ5LLvS+X3HzfP8l733PO55xxHs+c9/d66T8rPCYfAQIvywMBBBDwgYCntYzNhxkS0+bob4ePq/aT1e3LW+bs7uUrV+0b8ualvR8+BpDf8Dw5B+1pPei8+uVOpYvwqLdsFYH2rZvKvIC2+eNP7W6v+bTs5h377K7t/Kl3ajMXdJnAbOxMjXMTeAt7ebpTbgLp1hVT8m3OfEChsJf55PacpR/p+Fcn7QduouMn51sez1NDb6xDTytNFBTqC7LztA6wN6qFFNRH/u65AIHXc0OegAACCLgt4Gkt4x8aNIHjyLF/6+Klq7b+qXmb/Oc/qVlglQa3O5zHDzwNGvn1oTCVLkwJsaFvTbdf1qtTu4YWZCRo2tyV9ktnT5k6xCP6FPjimqcOnu6UO2Vo/gfI1Gres/9wvjvE3jL0dB16UmnCGzWl714HD1L5x5NqIZ6uQX5fOAECb+GcuAsBBBDwqoA3ahl7tUMP8DAnahm72w1zdMGEJVPCLb+jAe4+1937H3Sn/O46wO62WZj7C1MF4lExLMx4HuY9VP55mNrOt0Xgdd6YFhBAAAEEEEAAAQR8KEDg9SE+TSOAAAIIIIAAAgg4L0Dgdd6YFhBAAAEEEEAAAQR8KEDg9SE+TSOAAAIIIIAAAgg4L0Dgdd6YFhBAAAEEEEAAAQR8KEDg9SE+TSOAAAIIIIAAAgg4L0Dgdd6YFhBAAAEEEEAAAQR8KEDg9SE+TSOAAAIIIIAAAgg4L0Dgdd6YFhBAAAEEEEAAAQR8KEDg9SE+TSOAAAIIIIAAAgg4L0Dgdd6YFhBAAAEEEEAAAQR8KEDg9SE+TSOAAAIIIIAAAgg4L0Dgdd6YFhBAAAEEEEAAAQR8KEDg9SE+TSOAAAIIIIAAAgg4L0Dgdd6YFhBAoAgLdIlMUni7loroEqoJ05foP6e/09RkV54javWbYYob1FNtX32xCI+YriOAAAL+J0Dg9b85ZUQIIOBFgc+/OK6Q4Mp6PCTIrcB79F/f6NTp79TshV96sTc8CgEEEEDgQQQIvA+ixm8QQKBYCrizw5sx54+6fv2G4gb3KJZWDBoBBBB4lAQIvI/SbNAXBBB4KALx4zNVudJjGj0kwrY3e0m2ps5eoe2rpqlKUEXl5OSoWQeXpiS7lDZjaZ5HGm7cvGV3fNdv2a0yZUprcN9Oen/hasVG99CxL08oc/GfFFAiQCFVK+v1Vi/q08+OaMl7Y3PHt/fAF4qKTbdt9nKlKiy0sfYdPKLjX51UjqRxsX3VtOGd3eGvT55WasZiHTj0T926dVuvtXxBY2J6qVxgmYfiRSMIIIBAURcg8Bb1GaT/CCDgtsDKtdu1fPUWZWW+Y38bHf+uvjl5RjFR4WrdoqH+cfxrdR84TruyZ6rHoOQ8A++SlX/W7CUf6YMp8aoeEqz0mcu0esNfNT4+yp7hHZKYoVo1H7c7vEe/PKEOfcZo/dKJerJGNdumCcunvj2rjJQhMueEz1+4rAXTRuvHT4Ro1bodSs1YZMNwYNmy6tQvUY0bPKvhA7rp+2vXlJD6B1UNrqTUhCi3x84PEEAAgeIoQOAtjrPOmBEo5gInTp1Rm4hR2pU9S2XLlNZLnYdoQER7nTp9VgmuN2wY3rRjn+ZMirNhNK+X1voO+73q1a2jkdHdrKYJrM06ujRxbPT/BV7zdxOgWzZ9XoP7dLT3v9p1hEbHRCj0pQa2jQa/elqJQ39r/3bz1i01bjfIPqtSxcfUf3iadq+dpcCyd3Z0Dx46qt4xv9OedZkqXbpUMZ9Nho8AAggULEDgLdiIOxBAwA8FXusRq5T4SJX/UaDGT12kcbH9lDRxrt31jUuZpWd+WktRb7S7b+B9PWKU+nRrox4dX8nVadE5RgmuiDwD77IPN2vRio1auzhNn/39mAbETbI7uCawmsDbsU1z9en669xnmf7179nWBvKxaXPznIENy9LtjjAXAggggED+AgReVggCCBRLgaSJH6hm9aoKDCyj02fOaWR0dzXv6NKmrHcV1nu0po8fqueeeeq+gdfs0A7oFabudwXeRm2j9c7IfnkG3vMXL6tll6FaPCNRG7bu0aXLV/T2yL7W3gTedqFNFNmzbe5chHYboTcjwlSxQnklT16gT7JnFst5YtAIIICANwQIvN5Q5BkIIFDkBLI3faI1G3eqVKmSCm/bQq80r29fImvzciNNzszSx6tnKCCgxH0Drznb2+j5uhox8M6RhjNnz9tAm540KM/Aa+4Z/vYMe6537ZbdSkscoPr1ns4NvPV+UcfuMpvr+2vX1ThssKaOcymkSmV1G/iONmVN1hPVgu3fr1y9Zu8JrlyhyLnTYQQQQMAXAgReX6jTJgII+FzABNRO/cYqRznKXjhBQZUq6L15q7Rh2x7VqV0j9+MS9zvDO3P+h8pas02zJ8WqWpUgpc9arvVbdys5LtIG3tjkWbpx46Y9NlGhfDmVKFFC23buV3xqpt213bgs3f6buUwb5y5csgG37s9qac6ytZq3fJ098mAqMZjzv9VCgpQS118lSwbYF95OfvtfzZuS4HNHOoAAAggUBQECb1GYJfqIAAKOCJjKCaYE2ZqFE+zzd+79XG/GTlLS8N65Z3PvF3ivXb+hlCkLtXnHPluWzNW/sxZmbdDA3h0UFtpE23cdUFzK+yoZEKC/rMywZ3XNy2itwoepa/uXFRMZnjsm04Z5ee3AoaPas/+wgoMqavyoSFuZwVymLJk5Z7z3wGHbVuP6z9qyZKZSAxcCCCCAQMECBN6CjbgDAQQQ8IrA2XMX1br7SK2en3rPy2Z3h2qvNMRDEEAAAQTuESDwsiAQQAABhwVu387RhYuXbRWIcoFlNTEp+p4WCbwOTwCPRwCBYi9A4C32SwAABBBwWmDH7oNyjclQk4bPKS1xoCpVLE/gdRqd5yOAAAJ3CRB4WQ4IIIAAAggggAACfi1A4PXr6WVwCCCAAAIIIIAAAgRe1gACCCCAAAIIIICAXwsQeP16ehkcAggggAACCCCAAIGXNYAAAggggAACCCDg1wIEXr+eXgaHAAIIIIAAAgggQOBlDSCAAAIIIIAAAgj4tQCB16+nl8EhgAACCCCAAAIIEHhZAwgggAACCCCAAAJ+LUDg9evpZXAIIIAAAggggAACBF7WAAIIIIAAAggggIBfCxB4/Xp6GRwCCCCAAAIIIIAAgZc1gAACCCCAAAIIIODXAgRev55eBocAAggggAACCCBA4GUNIIAAAggggAACCPi1AIHXr6eXwSGAAAIIIIAAAgj8D3+AQGjhqODMAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "create_heatmap(fitness_prot22k_esm1v_1_wide,\n", " title='Predicted mutation effects from esm1v_t33_650M_UR90S_1',\n", " plot_interactive=False)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 517 }, "id": "ts0TPD4jBJXG", "outputId": "0f45a2b1-b025-47ce-9aa3-9685cfbbfd40" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAH0CAYAAADfWf7fAAAgAElEQVR4XuydB3QWxdfGbxJSSSOkEFrovQsWEFApKggoFvwrNhB7A7EXsGGjKKjYFbugIBYUFUEEG4hU6Z1AQhrpPXznzmZKGm9L3jfJ9+w5nAyzM7Ozz8zO/t67d2a8Tp48eZJwQAEoAAWgABSAAlAACkCBeqqAF4C3nrYsbgsKQAEoAAWgABSAAlBAKADgRUeAAlAACkABKAAFoAAUqNcKAHjrdfPi5qAAFIACUAAKQAEoAAUAvOgDUAAKQAEoAAWgABSAAvVaAQBvvW5e3BwUgAJQAApAASgABaAAgBd9AApAASgABaAAFIACUKBeKwDgrdfNi5uDAlAACkABKAAFoAAUAPCiD0ABKAAFoAAUgAJQAArUawUAvPW6eXFzUAAKQAEoAAWgABSAAgBe9AEoAAWgABSAAlAACkCBeq0AgLdeNy9uDgpAASgABaAAFIACUADAiz4ABaAAFIACUAAKQAEoUK8VAPDW6+bFzUEBKAAFoAAUgAJQAAoAeNEHoAAUgAJQAApAASgABeq1AgDeet28uDkoAAWgABSAAlAACkABAC/6ABSAAlAACkABKAAFoEC9VgDAW6+bFzcHBaAAFIACUAAKQAEoAOBFH4ACUAAKQAEoAAWgABSo1woAeOt18+LmoAAUgAJQAApAASgABQC86ANQAApAASgABaAAFIAC9VoBAG+9bl7cHBSAAlAACkABKAAFoACAF30ACkABKAAFoAAUgAJQoF4rAOCt182Lm4MCUAAKQAEoAAWgABQA8KIPQAEoAAWgABSAAlAACtRrBQC89bp5cXNQAApAASgABaAAFIACAF70ASgABaAAFIACUAAKQIF6rQCAt143L24OCkABKAAFoAAUgAJQAMCLPgAFoAAUgAJQAApAAShQrxUA8Nbr5sXNQQEoAAWgABSAAlAACgB40QegABSAAlAACkABKAAF6rUCAN563by4OSgABaAAFIACUAAKQAEAL/oAFIACUAAKQAEoAAWgQL1WAMBbr5sXNwcFoAAUgAJQAApAASgA4EUfgAJQAApAASgABaAAFKjXCgB463Xz4uagABSAAlAACkABKAAFALzoA1AACkABKAAFoAAUgAL1WgEAb71uXtwcFIACUAAKQAEoAAWgQK0D3sdeeJcWL1tdpmV8fLwpOrIRnTegD90x4RIKDQ6qsZa785GXKT4hmRa/85S4xgVX3U99urenGQ9NqrFrnqrgM0beShdfcDY9dOfVHrl+dV7U01pWdi/pGdk0Zfqr9O/W3XR67070+vP30lNzPqDvVvxJhYVF9M/yN6tTgmopq7I6V0vB9aQQbrd57y6mdz/7niZceSFNufkKt91ZcXEJfbBoOX21fA0djj9O/n6+1LdnR5p88xXUpmWsqsfOvYfptfe/Ev0uIzObmsVG0eWjzqHrLj+fvLy8HKpvfkEhvfreEvr6x98pPTObWrdoQjeNH0UXnHu6KmfouHvpWGJKhXI7tm2hxjo++d+uAzTrjYW0adsekfa0Hh3pvluvpHatm6m8/BwfPnqcHr7rarp67LBK63rLA7Pot7+2iHrcfeOldt8Pa/f8q5/S9x8/Ty2bxVTI982Pv9ODM96kT157jHp2aUsJSak05PIpFdL5+jag5rFRdFqPDnTHDZdQVONwlYb7xxsffkOLv19NqWkZQvvrrriArhh1Tply7NGCM/z6xyb6ZMnPtGPPIUpLz6QAfz/q2LYljRt9Ll007Cy7791MmJyaTo8+/7bQkMekgWd0d6ocZIICUEArUCuBd8n3v9G7sx9QtczJzaNN/+0VL5LWLWPp89enEUNwTRzlgZfBJzIijM7o3dmuy/ELp/+o22nd969TUGCAXXlOlcjTwOvs/VSWz1EtXRbPjgI+WbKCnnn5Q3r+kZupZ9e2lJ9fSGNueISuuWw4XXLhQGIgqK7j59/+ES/aRW9Od6nI8nVu0TTapfLqU+Z9h47RfU/Op6LiYtp/6Bhdf8UFNQa8lfVx/rH05bLVArJ6d2svgGzu219SUVExffXe0xQSHEQHjyTSFTdPpw5tmtOE/40Q48SK3/6hjxf/TPff/j8BvY4c9zz+Cm3ctoem3jpOQN7SH9bQwm9W0fsvPUj9enUSRZ110W103tl9aMz5Z5cpOijIn7p1bC3iGIi57/fq2o6uumSoiFuw6AfavS+evvlgBjUKCxFxDLxJKSeoZbNoWvLu0xWqejz5BA25YjL5NmggQNIdwMvP6ujhA1Rd8gsK6L9dB+ndz5ZRbHRjWvjGNPLz8xXn+Qfub39tpsk3XUGd27ekb376gz5f+gs9ed8EunTkIIe04HfVo8+/I4wS55/Tjxo3CqOUtHTi+B9/XX/KHwVVtfGq3zeKMmOiGgmIBvA68jQgLRSoWoFaCbxf/fAbbfnlvQq1/ujLn+jZeR/X6ABQHngd7Tz8i5ytG/UFeJ29H2fzOaq3q+nZyvbq+1/R1pXvCcvauo076Pp7nqN35zxg948ce+sw+42F9Mc//7kMvOXrbO/1/z+ke/zFd0U78heRMy+6ja69bHiNAW/5Pp6XX0DDxt1LV4w+l+6cMFbJLdPNe+ZuOm9Ab3rr42/pnU+X0YqFs6lhkP5RfOWtT4qvCl++/aTdTfXP5l107V0zlMVTZmSA69m1HXVq11JE9RgygSZPupxuuPLCKsueMfdj+m7FH/Tz57MpMMBPpGOoH3L5ZLr+igvF1zUJvHHNY2jN31vos9enUfdOFjDL482PvhHAV1BQRKPPH+AW4GW9b7l2dIV7+2Hl33TvE6/RMw/eKKCUAfLSGx+nR++5hv538RCVnsfsHXsO0y+L5pC3txfZq8WI8Q9Qk6gIMV6UP/hdQl5eNO/pu+xuT044+vpH6Mox51HXjq3oqtueqtH3nUMVQ2IoUMcVqFPAu23nAWEZmTblOvFS4Zfb1h37aeJVI+nZuR/TeWf3Fr/ST548KT4xLV72Gx08kkD+/n406IyedO8tVwhrrTxW/LaB5ry1iI4cPU5NohvTxKtG0Oo/Np3SpSEzK4defvtL+mn1esrKzqU2cU3ppvEX0bBBfcVnxdcWLFXlDzqzJ81/brLd9eG8/KLil0zHNi3ogTuuolsfnH1Klwa2mt7/1Ov06WuP0czXPxcDOn9S40+NbK2YPvN92rBlFzVo4CNePlNvGSfqdyg+kS68+gF67uGbaNTw/qrO/DJ+6a0vaMOPb9HbH39b6f2wxf2lt1iDdZSSliEsP2wBv/eWccIqUZUO5V0aMrJyaM4bC+mXtf+KT4FczuCzetLkmy5X1iSu/6b/9tADt19Fs99cKKxjDAlszbln0mWnfPw47Zw3F9Hm7XspLT1LfOpli9pFQ63PjOPveEZ8UpZHk+gISjieWqbMbavet7v9DhxOoJnzP6e/N24nb29v6tG5jYAtho7r7n6W1m/aqcrmdmD4WL5qHb376TLaf/iYuA5/wZj4vxF0/jn6c7RZofJ15s/lLzx6C513+WTRll/9sIb+2bKLvv/oeYqNaUwrf/9XWJV37T0sirGsiiNp+OC+4v9sqTvn0nvo2Ycn0e/rt9Gav7YQW8fO6d+LHp98nWj/H1b+Rdk5eXTmaV3oqfsmUlhowyp1l31jzd+b6WhiinjeLj7/bLr52tHk28BH5OO2nv3GIuI0aScyKSw0mAae0UN8OueyXakTWyn5vvnoNezGCsDLrg4MZKu+fJkaNwpV95F6IpPOufRuuuWa0XTb9RfbHNar6uOVZfx9/VaaNHUmvfbsZNG/qzquvv1pKiwqooVv2P8FgL9O/LVhO329YMYp2iSf+l14sxo3q0rI8NajS1vRj8zjlgdmU+qJDFUvfo4Z3H9cvZ4Gnt6dpt17fZn0PK7wWPztT3/Q2BGDPAq8iUlp4tm47boxdPsNl9DS5Wvp4Wffou8/fkFYqOUh4/nHBj+v9mox7Mqp1Kp5E3pr5lSbfcbeBLIP81dNAK+9qiEdFLCtQJ0CXvlr/c0Xp9KAft2EryV//mnaJJJuvmYUsdWBP+/yC37uO1/SXRMvFT5UPIA8OecD8vbyokVvPSFevHv2x9PYGx+jwWf1EuDEvnf8Mtz8317xIqzKh/eGyc/R4aNJ9Mjd48Wnsm9++p3e//wH4jr16d6B3vv8ewF8P302k0JDGlJww0C76rPw65X0xOwFYlAePby/qDPDGgMs+/ZV5cPLwMSf6NjPmGE/rnkTeuG1T+nDL34Ulhf+RMr1kp/epHb2AG9JyclK7+ehGW/RL2s3CDcA9u3jT5hPzVlADYMC6aNXHqHcvIJK85nAy3DHL3iGosenXEed2rYQ98oaxEZH0KfzHxeWuqdf+lBozJ9Zp0+9gZpENRI/ZPjHDltO+DNtZQdD1cU3PCrAmctn8Fq24k/Rxi8+diuNGHIG8Y+XNz76ht777Htas3QeFRYW09Yd++jOR+eKsnt3by/y29OfGPwvmfAotW/TnG69dozw3Zz7zmLatms/ff3+DPH/KdNfE58735l9PwUG+BMD8mWTptGkqy9SPzq++/kPev2Dr8UPGIaP8kf5Ojfw8aHComIaePGdAmb5hxfDY4e2Lejvf3eIrw2XX3QOXXPZMGFt4r7KPvISvlins8fcKZ6hxydfS2ef3p1WrNlAdz82j1q1aCJcOy67aLD4ocF15c/tp/qhMfHeF4h/mE6/93oB/Bu37aUnZr9PI847Q4ERl71r32F6YuoEatqksfB1nTH3I2oWGymsWdVVp8qAl++DYeaxydcKK5o8Pv1qhehrP3zyghhDbB1V9XGZjy21OXn5tHPPYXr6pQ/EOLBg7sMK+mU6/oHAP8aWLPuN3v7kW5o17XYaMrDyPl1ZnfgHEP/I7N+3Gy1YtJwSjqeIduMfWmf26SKyyB8Q/LxW5VPK41+vYRMF7HP/NY/nXvmEFn2zSvmz83PM4M6uGB8v/ol+XTxXWYT5Rx3/uGNwvOm+mXTpyMEeBV75Y0NaeBd9u0oYAVYsmi0ss/JYu26rqO/s6bfR0IF97daCteGxduSQM+nKi88Tzyw/k9VxAHirQ0WUAQW0ArUWeP/96W1Vy7y8AmGlmzbzfQEKXzK0+jYQLyh+UckJDJyBJ3CcPeYOGnhGTzF4yWPL9n3Enwwl7Lw4/zMxUK384iVl6WGL7bmXTaYWTaMqBd4NW3bTNXc+Qy89eYcAC3kwfHXr1EZMemB4YkurdGmwtz5sueaXpOkT99e/22nC5Odp/KXDbAKvHNC5Ttt3HxRwcu3l59MDt/9PVJNfaD2HTqS7Jo4VE0nsAV6GtPL3w2UdO55K+fkF4sUqD37x8WfAv76bL17uleUzgZdhjH88cBuZ1kxpaZFtKtv4uw+fU9djWO49fJLwz6wKvhgaGW6/fv8ZattKT7hhAOQfLFweH9JSx5ZcPmS93pvzoJjEZm/7MRS/+v6SMv2Jfwg8O+8jGn/pcDF55tYH5xBPRpE+vAyePEnz589nKask14Et8mzplT6T5Qes8nWWgMg/AvkHjTwYPBimlr73tJoIxdqxBY6tW5xW5uXPvdyH5HH6iFsE+Jmf1/nTOftBvj3zvkrHUK73NXfOqACT/Pmef7zx5+LoyHAxyeisvl3p6QcmqnKOJiSLLxud28dVW50qA16+II8D/BWEfVzlwc81/8D6YO7Ddr8fKuvjMvOLr31G7y/8QfyXteUfyOV9+hl2+114i0jD8MU/6BydnHTh1feLPspWRrai+3h7Cwhl/9EP5z0sfuyyX/Ooax8S9di9/4jwbQ4PC6GzTusijAL8Y5DHPp4v8OAdV4kfOeYh+9vGn98RwC6B9+qxQ0Vf4nZkH1o+2HrKP1zZYDDokrvcBrxsKOAvbfIoKCikrTsO0LSZ74of4Ms+ep6CAv3FVxZ+LsqPO9xH2eWIjQbsi2uvFvxj8+W3v6BPl6wgdmnha7AryVmndRVfkvjHiLMHgNdZ5ZAPClSuQK0E3vKrNMiqMzTw4Cpn7zIMLfxmJW386R3hd8XHlh376cpbnhCrKow5X09i4HM8iF02cjDdd9uVdPP9s4QVtfynQPbf5FnTlVl42YLywquf0qovXyoz69eUtvxL0N76MMCNvXCggAV5MKT2Hn6j8DWzZeH9/I1pavIJrzIx/Mqp9MTUG4R1Th7i/i8aLD4duwK8DEkLFi4XEz8Y4PgzrLBo5ebTj5/NpGZNIm0CL08mmfX6wgpaSguc9LHjNmbrdPnVEvhlOmTgaeIzbWUHf4bdd/CoqI95yDb8e9nrwjXCFvDa2353PPwy7Tt0VLxYqzrKAy/PdL/ipunUKDxEWGEZAnmSnK1Z+lUBL/tYmta5086/iUYN60/Tp5b95MwuMMJ9Yek8BZfSxULWnWf1n9a9Az3/6M3qdtgnMTE5rcpP7rJNywO8/AH26ox7hKsE++HzBC1+Ps8d0JtO7925zMorEsJdrVNVwMuT/tiizM8xwx7/gBt6xRR66v4J4hO8vcepgJefwSPHkgRccjr+EcgTcU13EP6CsnHbbjqRkU0r1/5LS5evoUfvubbCagGnqg+3E49XfC8SqHncGHnNg+KL1xsv3Ct+ALPlvVPblnTV2KHintkK/9qCr8QkK/4Bxs9vVZD3yrtLaP4HS2nTineE9VICL49JbGHmRSU+nPeIcHsZPPYuunPipeJLgDuBtzKN+Dnq37er0FS6L7Dml980jdidava028SXELbuPjfvY+HKxu+NIWf3sVsLeV3+8fLnP/8JoF6/eafQl38cPDb5OjURzt5+JdMBeB1VDOmhwKkVqJXAy5PW+JO2PHiQ5WVlTJ87PscwtOyXP+n3r19Vaf9Yv41unPqiGJi9SiFYnuRB/cLzzqCZj98qPqfzzGkGRfO47aE5wo+zMuCVA/+pJqSVfwnaU59nH76Jeg2dKHw6pY+trBP73vFL2Bbw8gzw9q2bi2wSeMv755rA7yzw8gtj7MTHKCn1BD1y1zViYoW/v69wF2CAtRd42Q+afSnX//Cm+hzKdWeAHjz2buHHe+NVIyttY04ngPfsPhX8B6Vu0teVvwSYx8mSk2IG/7cfPCusqLaA15724/7E1k+2JJ1qBYbywMv1YugVXxp+30hs5WQLKM9sP9XyVFUB78N3jSe2uvHB99hzSOV9it1G2Nf33x/fUsBr5uX8DFJspWIIlAcDb0JSWpX3KNu0vOacn5896XvPfYjdVL5evlb4G5eUlIhP8mxd5K8GEnhdrVNVwHsiPUv0MfaRv+qSIWIm/6vvfUWrl8wtM4nM1svjVMBr5uWVGhgSb/zfSDXxq7Ky2UWL2+W3r+YJS6E9B7vR+Pn6VhjHHnnubfrjn23Cql7Vwf7d/EONXR1GDDmTeg6dIH4wlfdh5h8obIRY9/0boigTeL/49leaNvM9+uaDZ2nD5l305JwF4poM1c4Ar/xSVP7LjLwH6ZrFfs489shlycaNOY/GjrCszHzwxE6e38HuROFhwWUk4PFx6pPzhfsaH/wFiH18eXIb/0DgvmivFlVpy+Pr5Gmv0t4D8fTzwtll5o7Y066cBsBrr1JIBwXsU6DWAm9lqzSUv6XKgFdObGMr5qBKJojwi4Q/HzIUH09Kq2Dh5U+bbKmoDHjlclDlLVhmvcq/BO2tD8MJW19NCy9DAlt+GWKqH3iPE38OLQ/F7AbA7gA8aa0yl4atO/fTuJufKLOEj3jBLFgq4NFe4JU6lbeWSwuvhKPK2pivZwt4+YfL7v3x4gVW2cFWaL4/W8Brb/tNnvaKsOqUtyib164MeM3z/JL8fOlK8Sm8vHXeTGcP8HL6vhfcRBcNrdzCy+4yvy5+udrgkq/H/sHsKsRuAWy1Ln80Dg+tMOGNPwOztZldAAoLC2n5pzMpIytb+BXXFPByvRj0MrNzaMHLD4lZ++1aNStjzbZn+Cz/rPOPNbbyscWaf7iYB1uQ2e2J3aE4TUFhIfGkVvOQMGf+eLVVD/bfZ7Ar3+94rdqNW/cIn+SqDgmLPJl3wpUjhNsDWzxnTdOuYJyXfVszs3OFXzkfJvCyKwT/eLh+3AXCuslfTdg/XD6jjvrwynkar8y4m87t37tC1eWPKu67DNXyHsqv0sDxo659mM7p31O4sVV2sGWfrdP8PpCTf2W59mrBP1LZGFPZjzxehpD91XlCG0O0oweA11HFkB4KnFqBege87Ls1YMyd4td+eUjce/CoWPydP3Wx1eKzr34RL31pAWDL0nmXTxGz+SsDXukHbPqssbw8qPH6l+wqIV+C8pO5vfVhqynXy/SZ5Al5tz/8kl0+vI5aeNnKNWDMHRWggl0B2FWhPPDK+5F+zHKJJb5/tiaOvu5hMbFp+acvCi3K6yBflHITD7mcUnlfOvnS/+KtJ4Q/p7PAy6tNMBiWt66wXy1bpMNCrJUGbAGvve0nfQDl/XPZvEHEhCnP08T/jRST5Bh4eQIR3xsf/OMhMzNHuDKYB88qP6d/bzGJrLLDXuBl/+/ktAzhxywPtq5ecNV91KFNC2KoqC5rKpfPa8Hyl5O5T7G7iZ54xZ97WQtePYEB6dc/N9HZ/bqXgd8vv1stJiKylZXdk2oaeHmyJ1v02M+VvwY4AyXl+7j0lZUrAkjN5bq07MvNPvV8Xf6MzpBqbqLDlneeHLb261dU/7T1Aivv887p2a+UJ+Z17dBKALZYPuyrX+ipByaU8Qv/9uc/6IGn3yD5LPOPFW4H/kHPLhh8MMTzSgR8Tzy5Uj7HPGlNjq9cBvdlfv4ZltkHlg9nLLy8WsaQK6ZQ3x4dK6x8wM/OmOsfEV9mPn71UXGNqoCXz0lrsdkf2e1q+aq/xeSytnFNlbz8hYYP6cNtjxasK7vGlV/iTBYqjQdVWatttS2A15ZCOA8FHFOg3gEv3z5PIGKfsyk3XS6sKOxjyi8Stp7xZCj+FCYtd7y8Dk/2YPcGHqAOHk4QqytUtUoD+8KxT9yjd18rfOTYpYItW3JxcDkRiS2nDGy8ioE99ZG+pfxJ8fxz+9HRhBR65b0ldODwsRpxaWCdzv/ffcJK8vrzUyggwF8sWM/X5BeLBN7y98OTMPiFxIvq80x8tvzwqhAtYqPEYvcvPHaL2BHv+1/+FBOyTB3KL0vGE5ziE5KENbNd6+ZihQT+rMu6Scuss8ArV2lg3717Jl0uVn7Ysfew+KHDi83zS5APW8Brb3/i1RMuuPp+4b98942XiU/S8xcsFda3r957Rlj82OrGP2LefOFeahwRJl68/CmdIYitgvyDh5fq4sl/c564Qy0dVv6Rthd45Qx1Xo2AJzAWFRWJ9V/ZnWDByzyhqX21Ai/Xk7+c8Gdcts526dCKjienEbsC8bJr331o+TfzWrVdOsTRLdeOEZN6OA1beLNz82jpe8+4VCf+IcU+rHxMmvoiDT+nL11+0bni/23iYtWnZf4hM2js3eLHGa+csWKhtf6qI0dlzzp/Kv959XoxpjC0McC98eHXwnWF741Xw+Bd1sbd8oRYmeTGqy+i0OCGwv2AV2lgf33Wzt6D4XbczdOFZrx0X0R4KH345Y/06x8bha81L7HFvsRsxea5D7yajeXDu1+0S4tm0fTpa4+LjXwYbkdf/7DwI+d1d4uLi+nNj7+lpOQTtPT9ZxQEmxZerqd0+2F4ZwOC3ODBGeDl8uSXNN40gyfa8XjMfYrXYecJegylvCKJLeDlH3dX3f6UcBWSrg0cd/ENj4i8bKDgH76Lvv1VPBMfvPyQWhnFHi14Auidj8yl1X9tEj74Z5/RncJDg8WPOzYafP71SgH/5S3mp2pb/rrI7yY+9h6MFz/4ecWN7p3aiDjeHIe/TOGAAlDAcQXqJfCyDLx6A8+c5c/EQUEBYsIGv4TMHdPYwsHwwHDJL15++bAVl/+xxZSPytaOnf36Qlqx5h/h+sDWBl7wXK7awDPNb75vJm3ffUgMTtJiYKs+PBDzbF9+iTJEsj8uW1B41vOgM3tU+RKUy5I5auHle2MLAgMmT6zhHaB4K9K2rZqKZXukb21l97P6z00CUI4kJFPTmMbiJXrBOafTdfc8R9t3HRATNYYOOq2CDuW1ZEjkmdFyHV5+EQ8f3E/MHJc+jM4CL98fQwavDsCfkHmJKP50yfW6/fpLlN+wPcBrb3/il/KL8z8nhi4GiG6dWgufbLn4P/sMsl8fA9b14y4UyzXx9rds1eaXso+Pj/BhZb9SOeu9skfaXuDlvAzYr3+wlHbuOyKW5WMIvf2Gi9WSVdVp4eXrsQWNfzj+uGqdACh2bejXq6P4EcBwKV7kB+Jp9puLxBrI2dl51DgilM7o3YXuuvFS8cPElTqxGwf7Uld2lP8yw76n7IPKvuLsM+7oUdmzwW5I7JLC5fJcAL5/3smMJxTKfsDX4ZUMXnprEfEXEwb05k2jxCS+ay4dXunn8VPVjaF61uufizWXWX8G6QfvvFos5ScPvh73m83b9xF/3YmKDKehA/lZuFg8+/Lg5Rp5a19ecYPXkua1l/kHmWw7OSaaFl4eu/hHDLuQmZNInQVevgZv1vHhF8vFqhKpaZkC0vv36ybGWv5RKY9TWXg5za59R+iySY8L8JSuDezDy+u28+Qy/uHDzyn/KOYfgOZhjxb8dYvbmtcc5nfNiYwssZIQW48vGtafrhh9jkPLlEmXsaraW7qMOdpXkR4KQAGiWge8aBQoAAWgABSAAlAACkABKFCdCgB4q1NNlAUFoAAUgAJQAApAAShQ6xQA8Na6JkGFoAAU8JQCPNnx7U++s3l53kiCt7euiaM21KE676u+3Y+j2rB7CE9YtXVceO4ZFdbMtpUH56EAFLBfAQCv/VohJRSAAvVcAd6QgH3LbR2NwoIr7JxmK4+952tDHeytqz3p6tv92HPPZhqeaMf+7LYOnrdQ1e6KtvLiPBSAArYVAPDa1ggpoAAUgAJQAApAASgABeqwAgDeOtx4qDoUgAJQAApAASgABZlcWSsAACAASURBVKCAbQUAvLY1QgooAAWgABSAAlAACkCBOqwAgLcONx6qDgWgABSAAlAACkABKGBbAQCvbY2QAgpAASgABaAAFIACUKAOKwDgrcONh6pDASgABaAAFIACUAAK2FYAwGtbI6SAAlAACkABKAAFoAAUqMMKAHjrcOOh6lAACkABKAAFoAAUgAK2FQDw2tYIKaAAFIACUAAKQAEoAAXqsAIA3jrceKg6FIACUAAKQAEoAAWggG0FALy2NUIKKAAFoAAUgAJQAApAgTqsAIC3Djceqg4FoAAUgAJQAApAAShgWwEAr22NkAIKQAEoAAWgABSAAlCgDisA4K3DjYeqQwEoAAWgABSAAlAACthWAMBrWyOkgAJQAApAASgABaAAFKjDCgB463DjoepQAApAASgABaAAFIACthUA8NrWCCmgABSAAlAACkABKAAF6rACAN463HioOhSAAlAACkABKAAFoIBtBQC8tjVCCigABaAAFIACUAAKQIE6rACAtw43HqoOBaAAFIACUAAKQAEoYFsBAK9tjZACCkABKAAFoAAUgAJQoA4rAOCtw42HqkMBKAAFoAAUgAJQAArYVgDAa1sjpIACUAAKQAEoAAWgABSowwoAeOtw46HqUAAKQAEoAAWgABSAArYVAPDa1ggpoAAUgAJQAApAASgABeqwAgDeOtx4qDoUgAJQAApAASgABaCAbQUAvLY1QgooAAWgABSAAlAACkCBOqwAgLcONx6qDgWgABSAAlAACkABKGBbAQCvbY2QAgpAASgABaAAFIACUKAOKwDgrcONh6pDASgABaAAFIACUAAK2FYAwGtbI6SAAlAACkABKAAFoAAUqMMKAHjrcOOh6lAACkABKAAFoAAUgAK2FQDw2tYIKaAAFIACUAAKQAEoAAXqsAIA3jrceKg6FIACUAAKQAEoAAWggG0FALy2NUIKKAAFoAAUgAJQAApAgTqsAIC3Djceqg4FoAAUgAJQAApAAShgWwEAr22NkAIKQAEoAAWgABSAAlCgDisA4K3DjYeqQwEoAAWgABSAAlAACthWAMBrWyOkgAJQAApAASgABaAAFKjDCgB463DjoepQAApAASgABaAAFIACthUA8NrWCCmgABSAAlAACkABKAAF6rACAN463HioOhSAAlAACkABKAAFoIBtBQC8tjVCCigABaAAFIACUAAKQIE6rACAtw43HqoOBaAAFIACUAAKQAEoYFsBAK9tjZACCkABKAAFoAAUgAJQoA4rAOCtw42HqkMBKAAFoAAUgAJQAArYVgDAa1ujU6a4+OK56vxXX90lwllZeSouKytfhb28zKKs/8R46bQUH68SFHXvIcJHj57QcUUlKuzj4y3CAQG+Ki7m8C4VzuzYTYWPHbPKyMsrUnEhIf4q3Hr9qgr3mDZ0hBFn1bXR4T06rodVPz62btX1lnHdohqo88WRUSqckpIlwgkJ6SouMNBPhX19fUQ4I8PQhU6q823bRqtww68XW2EfKw8f27ufXaHcVks+VHGHL7tOhVsUZ6jwybg4EfY6cEDfV7auV0hIgIiPi2uszlN2tgofTS8U4aZNw1Xc3r3HjfvSerTcs9GK79RJnc+L0BoF7C/Veft2db7gotEq7Jdl1bsoNEzFNci2dBXH33/r8LBhVrhzZ13Wpi26rAZWP8rIKlBxoaHWvfJRUFAs/vq997Yuc80aHX7wQR3u2tUKbyy9Pw4fOqTO5w2/UIRlG3PYp4uuF+3cqcuS+QJ0XSgkRJ8PDLTCKSk67okndHhu6XOZmKjjwnXbkL/u//TmmyJN1lXXqrTB6/7QGgwYKMJ5eVYb81Gmz85/VcSlXXOjOu/vr9s7qI9+Vki2x+OP63qZdTl40IqPjdXnV6/W4bFjrXBqqo47rvuZ+SxQmzZWmpUrVdrcAYNUuLjYeq58fa0+wIf/Z5/ocq8rfVYKdN8w2zM+UD8Lsk0LCvQYExys287Pz9IjKEg/U7R8ubpW1oDBKlxSOsyF7t6m69Kliw5/+qkVPv10FZfXrqMKB3z2sRW+/noVZ9aryBhHVX0uuECl3T9fjxetvXOs+KQkff2GDVX4QKD13LZqqMeogzlaz7hA6/kRR2am9ffii3XcFv0sqsjcXH3+999V+OR5Q0TYK+GYPj99ugoXvzZfpy2tTkpK6TWJKCoqVJ339i59GX32mb7smEtV2HyveBWV9vtly9T5/Av0+8F/3V9WfGPdH4ra6/ZokFs6Thr9KM1b941G8fv1/USVjoPJyTpu796Keo0fr+IKmzY37tu68ZQUPTYXF+v3phmOKx2HT5x2lspfUqLbMaJRkBU/caK+/n336fCq0vfmrbfquHvu0eGXXtLhHTuscESEjovW7zIdiVBNKgDgdVFdAC+Al7sQgJeIALxqNAHwEgF4iQC8RABeIgLwukha1ZMdwOuijgBeAC+At/QhAvACeGHhJVh4iWDhJSJYeF2kq+rPDuC1U9Orb3+acnLzaMm7T5fJAeAF8AJ4AbysAFwa2AUGLg0AXgCvGBEBvHbSlfuSAXjt0HrP/nia+fpn5O3tTTeNH0W9urZTuQC8AF4AL4AXwGv50QN4CRZenl8AH14Arx1s5e4kAF47FH9x/mfUrlUz8vPzpfWbdtK0KXriE4AXwAvgBfACeAG88lUCCy+AFxZeO8DKA0kAvDZE51mdI8Y/QF++/ST5+PjQqGsfpGUfPS/glw8AL4AXwAvgBfACeAG8WKWBsEqDBzDW/ksCeG1otfrPTbR0+VqaNe02kfKhGW/RuQN60/DBfQG8pdphWTKs0iC6AiatqdEEqzRglQbuDFilAas0iEEBqzTYT6U1mBLAa0PcKdNfJYZetu7yUVxcTGf06UKvzrDW24OFFxZeWHhh4YWFFxZeWHhh4YWFtwZptRqKBvCeQsSMrBwacfUDtPKLOeTray2cXlRcTOddNpm+eu8ZiggPAfBi4wnRL7AOLyy8WKUBk9Z4LIAPL3x4xUsBqzRUA6JWbxEA3lPo+dnSX2jdxh3KnUEmZbeGrh1b0fhLhwF4AbwAXvlgwKUBLg1YlgzAi1UarHHAE8DrrXf5q15UtFGa3B7RrRd1/GIA3lNoduWtT9K1l51PI4acUSbVit820Osffk2L3pwO4AXwAngBvEIBWHhh4YWF1xoMsCyZh4DX15pM7/ajUG+77vZrO3BBAK8DYlWWFD688OHlfgGXBrg0AHgBvABeAK/iBE9YeAMDXSQaJ7Pn5jqZ0b3ZALwu6g3gBfACeEsfIrg0qNEEqzRglQbuDFilAas0iEHBXas0BAe7SDROZs/KcjKje7MBeF3UG8AL4AXwAnhZAVh4YeGFhRcWXo9aeMPCXCQaJ7OnpzuZ0b3ZALwu6g3gBfACeAG8AF4sSyZfJVilAT68oi94wqUhIsJFonEye2qqkxndmw3A66LeTZtOViXcc89wEW7fPkbFZWbmqbCXl75YgwbWCyI8PEhFNmvWSIXj460OlJ6ufWPMsmS+kpKTKk/btlEqfPCg7oAZGVYZmZm6rIgI/elj8OCOFVT46699Kq5BA2vmZ+fOTVXckSO6/F27ElV8UVGxCPfr11rFeRszR2W+xMQMdd68B17nmI+T+rbK1K1xY13vAQPai3N5eQUqza+/7lRh2Q5me/z++15D73AVluUeOJBstEFahTp26NCkwr1yxPHj1v2Y7ZmUVPlnnt69W4q0vIufPMy2DQkJENFBQX7q/LFj+he07EeFhZZWfBQV6bKaN9f9KC0tW5w/44y2Ku3KldsNTa1OafaNsDDtB5afXyTOd+wYq/KEhlr148PcdMTPz+rTAQG63o0a6f69Z89xcd5s72HDuqiyli3brMIREQ1FWD4nHE5OzlTn5TXMZ6pjR902O3YkGPcoNdJ6+fpadeVD1vHwYd3eZllHj54Q6fLy9MSMpk1134mLs9Yf3bz5sCpTrtvNEYP6t1HxqRn5Irx/f5KKM/v6ydL/mPUz21lql5+v6xIaqtsrK0uPN35+1lKKPj565nZSktZQlmW2h9Sd83mVinviRI6qa2Skfv5ke/JJb2+rHwUG6kkzZtvFxISK8+ZY0KaNHq8OHUpR15D5WrTQ/djsZ3KcDAjQ18rOtnTlIzvbGg+SkvQYY96XWYfcXCutOV5t2qTbsUkTy2JmalC2nx0T52Uf4PChQ3pslLpwvByHO3XSz1Jysh4jCkpXuJC6c552x/eo+0po01WEzf5gamyOJyEh/iJtfLzVd/lo1Mh6pviQ47T5ztm1Sz8zpp6yf5ltf/y47kdSW/NZzMnRY7J815gayn7OdYmKClH1Skuz+lpAgNV3+TDvUY6N8fH6WTXHRnnfCQm67eUYxmWZdZRj4ubNh9S1zEB0tNVnW7c236u6n8rx2ayLqac5XoWEWM+ofL9xuF07zQmVVsCZyOhoZ3K5nue4NbbX9gPA62ILAXiJALwAXn6MALwAXgAvgJfHAgBv2R/obgPeWP1jykW0cSz7MeuHX20/ALwuthCAF8DLXQgWXgAvLLyw8PJYAAsvgJf7gUcsvM2bu0g0TmY/csTJjO7NBuC1ofdvf22m1xYspR17DlGgvx/17dWRpt4yjlo2sz5HAHgBvABe6yGChRcWXlh4Abyw8FrjoUeANy7OvQQpr3bwoGeu6+BVAbynEGzV7xvpvqfm0/23/4+GDjxN+E4tWPQDfb18LX374XMUFtIQwEsAXgAvgJcVgIUXFl5YeK2xAC4NHgLetnquhoMs6FryvXpujGsF1WxuAO8p9L30xsdp5NAzacKVI8qk+vK71TT4rJ4UGREG4AXwir4BlwZYeAG8AF4AL4BXwoJHLLwdOtQsMVZV+q5dnrmug1cF8FYhWFZ2Lp0x8lb68bOZ1KxJZJWywqUBFl4ALyy8sPBilQb5koAPLyy83Bc8ArydOzuIgNWUfLu58k81lVkDxQB4qxD12PFUGnrFFNrw41vk71f1/tQAXgAvgBfAC+AF8AJ49csULg0eAt5u3WoAE+0ocutWOxJ5PgmAt4o2KCoupj7DJ9E3C56luOZVr5cH4AXwAngBvABeAC+AF8Dr8XV4e/XyDFVu3OiZ6zp4VQDvKQS75s5n6PTenenOCWPLpHr1vSV0/jmnU7vWzeDDCx9e0TfgwwsfXvjwwoeXxwK4NMClwWMuDaed5iACVlPyf/6ppoJqthgA7yn0XbdxB910/yyactPlNGLImSLlgoU/0A8r/6bF7zxFwQ0DAbwAXgBv6TOEZcmwLBmWJQPw8nAAlwYPuTScfnrNEmNVpf/9t2eu6+BVAbw2BFvz9xZ65b0ltHPvYQoK9KcBfbvRvbeMo5goa9tLuDTApQEWXrg0wKUBLg1waYBLg8ddGs46y0EErKbkf/xRTQXVbDEAXhf1BfACeAG8AF4AL4AXwAvg9TjwDhzoItE4mf2335zM6N5sAF4X9QbwAngBvABeAC+AF8AL4PU48J5zjotE42T2VauczOjebABeF/UG8AJ4AbwAXgAvgBfAC+D1OPAOGeIi0TiZfcUKJzO6NxuA10W9AbwAXgAvgBfAC+AF8AJ4PQ68w4e7SDROZv/xRyczujcbgNdFvc8662lVwvTpF4tw586xKs5cosbHx1vFy9nMERENVVyTJmEqfORImghnZuapuLy8wgr5w8KCVFzcjvX6bs4/X4Vzc618JSUlKs6sS0D3Llb84ME6/9tvV1Tm5pt1XJiua9pD01X8yZMnRThi2RKdtnt3He7ZU4SPH89UcQEBDVS4qMiqo1k/WSbHh4fr+6XbbrPyrVun73X1WkMjPyts/ur9+GNdF9PvKCPDip84UZ1PSclSYS8v64UecXiPzh8QoMNyS8dly1TckZ56AkFQkL+Kj/j5Oyvcu7fO3769CpeUWBp6b9BLvaS07qTOy35QXKzb09tb962oqBCVNjU1W4RjN/+p4nbE9VDh/PwiEZZ/OWy2h6xLu3bRKk9weooKJ/gEq3BWVr4ImzP1AwL0pi1Hj57Q91sa6p59RMVtC2mpwmYZMjIrSz8LMs4sv2XLxir/gQPJIiz7E4dLm1DEy/bksOxThw7p++rQoYkq6+hR61n09dX91OyfLVpEiPP79h1XeUJCAlW4+dJP9H3ffrsIp6VZ7cJHcbHV3nzk5RWIv35++lq+vj7qfEaGpUFhYbGKCwvT19IXIpJ6mRolJpb2cyIKCrKeD3NcMV/Y8h7NvlFUpK8bH2/pwoe8hpm2USM9tnl7W8+PvCaHo6NDVf7Dh1NVOM6rVJsmug2oUI99tLb0Ge/XT+VJLNAaxaz4VsSnXjBGnd+/P0mFmzYNV2EfHytfeLjW8Kuv/lXnzz/fWsjf1Dg312ojPpKSrHGsYUP9fDfesUmdz+rZV4WD/SwN6L77VNy/19+rwnJ87tGjhYozn3GprewjnCjmXqs/iWPBAhXMzrOe64IC6y8f5tjplVk6/prLSZWOzSJxoNGn9u2zCuhS+p4govTSfsjRYetK2+OMM9S1DqRYYwEf/v7WGBBLOfp8vh4X4uL0Tqb5+VY7B+Tp54Pi41U+Sk8X4bw+uu1PnNDlyoTm2G1qKMczTterlzXe7NyZYNRVP3eyzRt986U6XzL+GhX2PmmNv5k5um+GpOiyToTrMVP2D7PvhIZW/tzqm3UiNGKEE5mqIYvx3quG0mqsCACvi9ICeIkAvEQE4CUAL4AXwEsE4CUC8BJ5BHhHjXKRaJzM/s03TmZ0bzYAr4t6A3gBvKILAXgBvLDwlvlSAAsvESy8sPDy68FtFt6Lra/Mbj+++srtl3TmggDeU6g2/o5naMv2feTl7UU+3t7UoW0LunrsULpoqP5UDeAF8AJ4rYcIFl5YeGHhhYWXxwJYeD1k4b30Umc40PU8X2q3D9cLq7kSALw2gHfc6HNp1PD+lJWdS7+v30Yz5n5E114+nCZcafnKAHgBvABeAC8rAB/esr7gsPDCwsvPBXx43WjhHTeu5mjxVCV//rlnruvgVQG8dgKvTPbXv9vp9ofm0K+L51LDoAAAL0/AwaQ1uDTAwgvgLTf5EcAL4AXwWuTgNpeGq65yEAGrKfknxsTcaiqyJooB8DoIvJx86Lh76en7J9KZp3UB8AJ4rR4EH164NMCHFz68BJcGuDRYrwSPTFq7Rq8iURPAWGWZH37o1ss5ezEArxPAO3biY3TrdWNo2KC+AF4AL4C39BmCDy98eOHDC+AF8HoQeK+/3lkWdC3f+++7lt9NuQG8TgDv6SNuodefn0J9uncA8AJ4AbwAXqEAfHjhw8v9AMuSYdKaxyy8N97oJnQsd5nK1u33TE1OeVUAr4PA+8vaf+mRZ9+iVYtfJn8/XwAvgBfAC+AF8JZuMAILL4AXFl4PWnjNzaHcCZxvvOHOqzl9LQCvncCbm1dAa9dtoSdmvU933HAJjRtznsiJVRowaU10BPjwwocXPrzw4YWFVwyHWJbMQz68cvdRp5HQyYyvvVYmIxsGZ7+xkJJSTlCndi3piak3UKsWxs6JTl7G1WwAXhvAK9fh5WStWzShif8bSRcNwzq8hK2FeT9V3XsAvABeAC+AF8AL4C19K3hk0tqdd7rKhM7lnzdP5UtISqUx1z9C85+bQr26tqN57y6mjdt203tzHnSu7GrMBeB1UUxYeGHhhYXXeogwaQ2T1uDSAJcGWHg96NIwebKLRONk9jlzygDvpm176PxzThdx23cfpNsemkMrv3jJycKrLxuA10UtAbwAXgAvgJcVwKQ1TFrjfoBJa3Bp4H7gEQvv1KkuEo2T2WfOrDLjO58uo/92HaBZ025zsvDqywbgdVFLAC+AF8AL4AXw+opOAAsvgBcWXg9aeB94wEWicTL7889XmnHN31voydkL6IN5D1OTqAgnC6++bABeF7UE8AJ4AbwAXgAvgFe+SmDhhYXXYxbehx92kWiczD5jRoWM3/78B81fsJTmPzeZWjaLcbLg6s0G4HVRz0GDnlUlTJ9+sQi3aROl4tLSclQ4MNB6KfDh5eUl/sbGhqk4X98GKpyamiXCJ07o/MXFJ9X5gAArbUiInjgV+90X+m66dtXhs/Qku0pv99xzregTJ/TpF1/U4cBAK2zGNW2qz5eboSlOPGg4qIeH67Tt2lnhyy6rtCo2I80FrmfNspLv2aOz5eaqcEmJpZe3j7c+f1JrSOZSKuvXW2nuvlun7datYnWWLtVxGzfq8LRpVvipp3TcY49VfjsvlfoyBQXp8z166PCZZ1phY/DKfOjxCmVlZOh7DQz0U+cjwkvbi4iSU63+Ezlf+1jtvvKmCmVJ/1uRNjJYnc/JKRDhDh30DFuvY0fV+dxGuq8nJFj9JyjIX53399d9+vDhVBHv7W31fT66Hv1PhXe00HoHBVn3U1BQbNRVt523t9GmpSni4hqrtAcPpoiwj9H2BQVFFe6bI5o3tywPu3cnqvPt2+sBWt5XXp7OHxqqn7tmwVZdth/NVvn9/PR9t/32U33d664T4ZRifd6sVGGhdb++vj4q2gxnZuaVaqjv39dXh8PCdJ9KSbHGEKmluG5pHIfleFJcXKKu1bFtpK5OgdX2JQG6P5ltd+iQpTEf0dGh4m98fJqKi4nRY1tmptVXg4O1biGZVn8Q+U7qa8hxMFpHEe3cqeu1Zo0VvuQSFZffpJkK+y+xxsGsi6zx2KqXHttatNCWJjlGBGfpev+4OVnlGz6odLwyrx8drcstse4nKipExZnPUsQJ3acoovS6o0ertH/PXKDCHTpYfc5sL78cqw35yAtoKP4GfLlQa2Fa1t56S8Xn9ugtwsnJOn+LGP1cU2amLqM0lB+s28s/O0OfTyy9h06dVFxOrtU3RH3/+t0KdOmi4o4U6vGoUSOrTzYs0XmSrG4sjqgwPV6QfK63bNEJQrS2VFqX/L5nqPNmn5bPuBknnynOYI4b3bs3F2Xs2aPbyNRe9tWYH40xf+xYXa+GVnvkGloEblinzmf17KvCwV7W2JHrrXUxeUAX6mLo8YrvCRdLtC/7k0+WSffLmg00953F9Pas+ygyQvcr+wqruVQAXhe1BfASEYCXCMBLAF4AL4BXT97kVwuAlwjAS+Q24H3iCReJxsns8v1HROmZ2XTJhEfpw3mPULMmxg9oJ4uuzmwAXhfVBPACeEUXAvACeGHhhYXXWK0EwGu9XAG8bgTep592kWiczP7ooyrjku9/o0eff4fML9Z8ctUXL1F4mPGVwclLuZINwHsK9YqKi6nnkIllPsHK5O/OfoD69epEAF4AL4DXeipg4YWFFxZeWHh5LIBLA5FHXBqe1S6WroChw3kfesjhLJ7IAOC1A3hXLJpd5QxDAC+AF8AL4GUF4MMLH17uB/DhBfCKfuAJH15zno07ifK++9x5NaevBeAF8BJh0hoRJq2pJwGT1ogwaU3MGBR9ApPWqOykOUxaI0xa41l4tXDS2uzZTsOgSxmnTHEpu7syA3gBvABe7gMAXgAvVmkgrNJAhFUaiLBKg15RpE6t0vDyy+5ix7LXMVc38kwN7LoqgNcO4C3vfM0LKP/wyQsiJ1wa4NIAlwa4NMClAcuSyVcJXBrg0uAxl4ZXXrEL/Ko90R13VHuRNVEggNcO4IUPL9bhVd0E6/AS1uElwjq8RFiHlyge6/BiHd7atA7v66/XBCfaLvOWW2ynqQUpALwAXrg0wKWhzEQb+PDCh1cMi/DhJWw8QSQ3eyBsPEFU2zeeMDYfcStfTprk1ss5ezEAL4AXwAvgBfBipzUxEsKHFz683A/gw1tHfXjffddZFnQt34QJruV3U24Arx3Aa26nKZPfOWEs3TR+FHx4WRDstIaNJ7AOL5Ylw9bC4vUAH1748HrMh3eB3qraTQxpXaZ0y3S3XtOJiwF4nRDNzIJJawBe0R+w0xo2nsBOa9hpDcArhkNsPOGhdXg//thFonEy+9VXO5nRvdkAvC7qDeAF8AJ4rYcIO61hpzXstAYLL4DXGg89svHEZ5+5SDROZr/ySiczujcbgNdFvQG8AF4AL4CXFcBOa9hpTYBOVr56q0ScSNRvmIgIKzx6tIr7e6b+BN2hQ4yIDwryU+f9crJUOC/A2ugg4MuFusznn9dhY8JSbo/eIj45WedvEROs02ZmVnjz5QeHqTj48NZRH95Fi1wkGiezX365kxndmw3A66LeAF4AL4AXwAvgxTq88lUC4IVLg/jh44mthRcvdpFonMxurl7hZBHuyAbgdVHlPn2mqxLuvHOoCMfFNVZxBQVFKhwaWrqeLRHllq7d17ZttDofHBygwsnJ1i/whIR0FZeVlWeUFVQaPqnizLLMX/byWseP61/14eG6LoPOamOV8c8/qqzVBY1UOCrKeplJCwSHDx9OVee3bo1X4ZMnrfoMGtRBxRUX6zru3Jkg4lNStOVB5uH4Bg18xHlzomBmpr7vqKgQVe6gQR1FOD+/UMWtXLlDhZs2DRfhnq215eLHPw+r861a6Xby9/cV8ceOnVDn09JyVFheo3PnpirOy8tLhfftOy7CjRtrK0pSktbbx8dbpe3SxSpDXpPDiYm6nWU/8fdvoPIcOZKmwiUlJaUa6TJNDVu1ilRpjx/PEOGuXZupuDVrdquwXE/WvNeAAEsLU9s2bcx+6q/Oy/bkiAYNrPoEBmoLVViY7md79lgaFRUVq/xDzu2kwj/8uE2FIyIsa5Z5ZGZqy5nWRvctczvgXbssy5p5L8XFlm58mG0n62g+a3FxWkPZNqbGZtu1bRslyjxwIEWVb/bf7uG6jhlhVrnm82nWq/TxIR8f3beKinS9Cwst7bKztRbms5yRYY4R1nhS2l1E2Oxnso7e3rofNWokxxVt4crIyFX3Zd734cP6fmW95PNraa/7b3i41Z5mnzbHycREq5/y4edn5YvJSlJxu0v0cyWfD/N8cphlHeXjxAnruY2N1c99wzRd1uGTTV0M8gAAIABJREFU+h7l8376kY0q//GzrXGcj7AwK6255rD5fEm4bZSZrPKsS9T923zu5LNo5t+y5YjKJ9s5JsYab/mQYxiH5Tgox3OzfhxOT9ftFL1ni8i/N6a9KqtxY/1M5edb7yXzWlu36roEBelnXPb7Jk20nqmp2n0nJMTqZ2bby/7A8XKMMdtYjhV83nzW5T2Y70LzuQv4z7qvxGbt1H0dOKDbVm4SZY695vvBfBf169dalLFrl/VO4sO8VnS01Q5me5ljhBxbzHdGixalVnwiOnpUj+nBwZaeZvmdOsWq61Zb4Ouvq60ohwoyvlo4lM/NiQG8LgoO4CUC8BIBeAG8AN6y0APgLftDE8Crf9QAeIlqBHi/+85FonEy+8iRTmZ0bzYAr4t6A3gBvNyFALwAXgAvgJfHAlh4iWDh9ZCF94cfXCQaJ7NfcIGTGd2bDcBrQ+8/1m+jG6e+WOYTO2e5YtS59NjkawnAC+AF8FoPEVwa4NIAlwYAL48FAF4PAe9PP7mXIOXVhg3zzHUdvCqA1w7gfWL2AvrhkxcqTQngBfACeAG8rAAsvLDwwsJrjQUAXg8B78qVDiJgNSU/99xqKqhmiwHwAngJk9b0BDJMWis70UtO+MCktbITTjBpjSeuYtIaJq0RYdKanujs8Ulrq1fXLDFWVfqgQZ65roNXBfACeAG8xooJAF4ALw8JWKUBqzRwP8AqDfqHHlZpKLtqUq1cpWHtWgcRsJqSDxhQTQXVbDEAXjuA96b7Z1KjML0cFme57fqL6cox58GHl+DSAJcGuDTApcFaigs+vPDhhUuDNR56ZFmyP/+sWWKsqvQzz/TMdR28KoDXDuB9fOZ79Olrj5VJ2TAokAID/AC8AF7RL7BKAyatwYcXwMtjAVZpgA+vx4B3/XoHEbCakvftW00F1WwxAF47gBeT1rDxBDaewMYT2Hii7GYp8OHV2whj4wlsPMEo4XEf3n//rVlirKr03tZW1rX9APACeOHDCx9ewk5rZf3z4MMLH15+NcCHFz68dWqntc2bPcOcPXp45roOXhXAC+AF8AJ4AbzltvEG8AJ4AbzWyxFbC+ttxmv91sLb9PbsDrKga8m7dnUtv5tyA3hdFBrr8GLSGnx4rYcIG09g4wlMWoMPL48FWIfXQ5PWdu50kWiczN6xo5MZ3ZsNwOui3gBeAC+AF8DLCmDSGiatcT/ApDUAL/cDj6zSsGePi0TjZPZ27ZzM6N5sAF4X9QbwAngBvABeAC+WJZOvEgAvgNdjwLt/v4tE42T21q2dzOjebABeF/UG8AJ4AbwAXgAvgBfA66PepnBp8JCF99AhF4nGyewtWzqZ0b3ZALwu6n366U+pEt5663oR7tixiYrbvz9JhRs29Ffh3NwCEY6M1BtayJ1bLICy8qWlZas8+flFKhwcHCDCYWGBKs687tGjervD9PRckaagQOcPDPRT+Tr/8b0VDrWWH+Pj2IChFZSJTTB+PRqfMHYn5Ki08hpd20SouDyvBiqcmZknwomJ6SrO29u7wrXMuvr56fyRkcEqbfQ/pbvKZGSouJ29BqtweHiQCMe8NkvFxd90jwo3axqur1v6KSg9urmKS0rS5RYXnxTxHTrEGPdqveSFXscsvePiGqu4Q4dSVdh8AbTLOiriC7t2V+dlG3FEw4ZW2wR6W9fk42iK1YZ8+PhYehUV6esXFOhwTIxux5SULJG2xXcLVf69w8aqcF5eoQiXlOhrBQb6qvO+vpb2cSFeKo6MmcCZp+kFx4uLS0QaObOdw15GNqmR2d4xc2aoco/d/aAKh4Za/drUzdSoMn/hiDzdp46UWPnN65v+pWb/atHM6gfxx3T+ZlbXEUdKiaWHWZcmYfr5oXfeEeczr7tR5fEyLhw8TutNckeiq67SF2is+wyFlI4HGzfq8wkJOix95UyLyq5d+vzevSqcNfA8EQ4O0CByMF6PC7LPmM9Xy5b6uZXPqi6cKNRPN+juw1ov2V5y+T7OI+M4HB5U+gz7Gbq98IKu6213mZex6r3pHxWX1qWXCjdq1FCEc3OtvstHcnKmCkdHWxru3Jmo4mQ/5wgfH30PcvyNe3O2SrtswDgV7tGjhVWXYD12m2Ou2c6V1cUc02W/D/r+G1X+zm56h6qSEuv5iY3V45J81jn+ZOkjKt8dHBez5W+t0Wn9tUahpfX10W1vPuM5Odb7x3zWZRzHm8+Kr6813sjrczgxUY+NzX2sMZ1iY9X15bjDEbKfxUbqhyo5PV+ljSyyxihxyHdQcrKO27pVh+WkrPbtddzFF+twaUhu+cz/NcdJU8+Qt+eL1Hm33qHym+OF2j78sst0+ZMm6XB6af8fOVLHLVmiwievvlqXK5/RmvZ1PWq9W9x+NG3q9ks6c0EArzOqGXkAvEQAXgAvPxIAXgAvgLcsfAN4Abw8Nnq5C3gT9Y88F9HGsewx2hDkWEb3pgbwuqg3gBfAy10IFl4ALyy8RABeAC+Ph7DwEnnEwmtaxl1kG4eyR+ql2xzK5+bEAN5TCJ6RlUNz3/6SVqz5h9JOZFLjRmE0ZGAfumfSZRQUaLkUAHgBvABe6yGChRcWXgAvgBfAa42HHgHetDQ3I2Tp5Ro18sx1HbwqgLcKwYqKi2n87U9TaEhDmnLzFdSqRROKP5ZEL87/jD9Q0OvPTwHwlmoHlwZYeAG88OHlPgDgBfACeD0IvJnal91BFnQtuZx7UFrKb39toZmvf0ZJySeoW6fWNOOhSRQZEebaNaohN4C3ChF//u0fevqlD2n5py+Sv5+exJObV0DZObmq8WDhhYUXFl5YeFkBuDQAeLkfmBPo4MMLH17uE27z4c3RE8irgQ/tLyJIT0jMzMqhC66+n16dcY+A3Vff+4oOHD5Gc57QkwPtL7h6UwJ4q9Bz7jtfUmpaJk2faq28UNUB4AXwAngBvABea1UMWHgBvLDwetDCm69Xv6heVLRRmr9exWT5qr/py+9W05svThWZGIAHXnIX/f3dfPIzjIdurV/pxQC8Vaj++IvvCivuXRMvFSnYRP/Ic2+p1O/OfoDatW4GH14C8AJ4AbwAXgCvfDnAwotJa9wXPOLDW6SXHnUrUDbQS4e+8eE3lJKWTg/fNV5VYdAld9EHcx8WrqGePAC8Vaj/6ntL6NjxVHr6gYkiRUFBIfEkNj6uufMZYZ7v1K4lgBfAK/oEVmnApDW4NMDCy2MBgBfA6yngPWkuluxGsjTXo37prS/EBOZ7b7lC1WD4lVNp7tN3CWby5AHgrUL9v/7dTpOnvUI/fTaLGgZZKzLIY8T4B2j29NsBvKWCYNIagJe7AlZpwCoNcGkA8PJYgGXJPGPhNTcXcSdYenvrzVze/OgbOp58gh695xpVhbPH3EmfvPYotWzm2fV6Abyn6BW3PDCbsnPy6JG7x1PbuKaUmJxGHyxaTt//8hctefdp4fIAH164NMDCaz1EAF4AL4AXwAvgtcZDT7g0yDHYnbDL1zJ3sPtp9Xr68IsfhQsDH4lJacRGwr+WzacGxs5/7q4jXw/AewrVc3Lz6ZV3F9PyVeuETwqvwzu4fy+65ZrRFB1pbf8I4AXwAngBvKwAXBrg0sD9AC4NsPB6CniLiqztqd19yK3e+bpsJBz+v6k0a9pt1LdnR5ox92PKzc2nZx82tmV2dwVLrwfgdVF4AC+AF8AL4AXwYtKafJUAeAG8ngLewsJiF4nGuey+vj5lMv6+fis9N+8TSk5Np17d2tGMBydReFiwc4VXYy4Ar4tiAngBvABeAC+AF8AL4I1Vb1P48HrGpaGgwDOrNPj56VUaXESqGs0O4HVRXgAvgBfAC+AF8AJ4AbwAXlqyRBGFJ3x48/M9A7z+/gBeF1GybmQH8AJ4AbwAXgAvgBfAC+D1NPDm5RV6BJzMHQU9UgE7LwoLr51CVZWsc2drJiIfDz00Uvxt104vvWF+YmjQQPu5BARYv4hiY63Jb3w0bKh3K4mPTxNxyclZ6nx6eq4KBwZa2x2bsyO7dWumzh88mKLC8vOS+TCEhlovKD4GDuxQoay1a3er8/IaLVtGqDjzl+TGjYdUvLe3twj37NnCSKsfwpSUbBEv163lsKlLUZHlg2TONjXDjRtrP6A+feJEWvNzysqVO9R1W7WKFOEuXZqquDVrdqmwqX14uLU1oqnb0aNWG5jXaNmysYoz/aXS0601mhs1aqjOHziQrMLmgNCrl7UWodk3zE+AUVEh4ry5tmFiYoYqS04QMHUxl19s3dq6bz5SUy292/vqvrMhVS8hI9Pl5uo2Cg7W/VCu69ikid4HvUmkvsc9B1LVtWT/Mn/t+/vrbbmPHNFpZab+zfT5Xw/kqbLCwnT/lJFZWXoXIdle5jI8sbG6jsePW3vKexm3araXuYxOdHSoSCufOQ536qRf3ocPW/U217g0NWp+0tJ4V66+Fx9jNnLbdSvUfdGVV4rwoUP6+SwuPqnPkxU2x4ITJ3Tb+flZY4j5/JlpzfuVz63ZT3JyCtS1ZJ8pLtZ+f2Y7BwT4ibRmu7UP04JuTtBlyULluMb/j4qydOVDPtey3TjO91i8On/E2+rzfMi2aRqtn/WEZEtjPiIirP5nPvfZ2bpvyIk7qal67ExK0mH5fHEZUq9W8TtV+WtORqvwmWe2qah3dro6fzjfGsfNMo8ePaHOm76Nsr4xSXq8/DtHb8natGkjkc/UMNJXT0JKLbauFRRktYtIu3yZCtOYMTpcGjpxQm81az6Xsi5yvObkaWlaY7OvR0RY7WD2k2PHtAYtWpS+F44dU9fPaKjfa7I9ZLtxIvO59U5OUvlyQywNAhOO6HvJ1f2fsq065nXvpc6bz63s8wkJun7mRC7ZDzlz797WOHzggH4WzclXsk3l+MBpzTFI6mk+H2bapCRrDBLtFGCNDeaz2KyZda/VeeTmVnwmq7P8qsoKDNR90h3Xc/YaAF5nlSvNB+AlAvASAXiJALwAXgAvEYCXCMBL5AngNX/Quog2DmU3f4Q5lNHNiQG8LgoO4AXwchcC8AJ4YeEta52EhZcIFl627ltWalh4a97Ca37pcBFtHMpufmVyKKObEwN4TyH4+DueoXGjz6VRw/urVDv2HKLr7n6W/vpuvogD8AJ4AbzW4wELLyy8sPDCwstjASy8nrHwZmVptzB3smRwcNndaN15bUeuBeAF8MKHl4jgwwsfXvjwEsGHlwg+vGX91eHDq33Ra7sPb2amZ4A3JATA6wh418q0sPBazYJJa3qCDCatEWHSGhEmrRFh0hoRJq0RYdKanozr6UlrGRnGBD83UpU5Cd6Nl3X4UrDwwsILCy8svIRVGrBKAw+FsPDCwsv9AKs06JU36tIqDXIuicMk6GKGsDC92oiLRdVodgCvDeDdvf8I+ftp37yi4mKxtAh8ePUC11ilAZPW4MOLZcm4D8CHFz688OG1oMITqzSYy9DVKDmWK9xcbtCd13X0WgBeG8A7YsiZNHxwX5Vqz/54uvvxeQBeY0cXAC+AF8AL4AXwWq8JLEuGSWueAl5zLWVHYdCV9Ob6866UU9N5AbxwaYBLA1wa4NKAjSfESAiXBrg0wKXBgoK6uPGEudlKTcOjWb6c2OjOazpzLQAvgBfAC+AF8AJ4Abyl7wKs0gAf3roKvOaOnc4AobN5zB1QnS3DHfkAvABeAC+AF8AL4AXwAnjV2xCT1uqmhTc5WW9n7A6AlNeIjNRbg7vzuo5eC8DrqGLl0mPjCWw8wV0CO61h4wnstIZJazwWwIcXPrzcDzwxac28poto41B26f7hUCYPJAbwuig6gBfAC+C1HiLstIad1rBKA4CXxwLstOYZ4D1+PMNFonEuu7l0m3MluCcXgNdFnQG8AF4AL4CXFYCFFxZeWHitsQDA6xngTUxMd5FonMseExPmXEY35wLwuig4gBfAC+AF8AJ4rT4ACy8svABe61nwhEtDQoJngNdc3cVFpKrR7ABeF+UdPnymKmHSpMEirLZaFDvW6As0bOin/lNcbJ1o2zZKxfn6+qhwSkq2CMfHp6m47Ox8Fa5soee2baPVefPThnzwcnIK1Hlz7+t+/VqLeO/Dh9T53+MLK6Tt3LmpijtwIFmFt22LV+EGDax7OOustiqupESLsH9/kohPTNSfXsz7lplKSkpU/rw8vclF69aRKr5nz5YinJOjdVm7do867+PjJcJDukaouDV7tFN/+/YxKr6oqFiEzQHj4MEUdT4w0Gq7rl21BgUFVh4+Dh2y0pq+TKYvn5dVFXF06dJM/A0K0v3BbC8ZHxISqPLs23dcheW2tub1pe7l6yCXqemwc53Kv6FZD+O+rM/w6el6S0qzb0jtO3ZsovKY7SXvm0/K3doaNPBWac1PXTItb9wij35BOSq8Jk27BMh7N8vKN9Z+Dgiw0ko3Cg53795clbV585EKGhcW6n7k7a3r2LRpuEi7e3eiym/2jWPHToh4sx+bGsi0O3YcU/nldtwc0WnPPyqeRowQ4X0HdN/yMjqHn5/1/JjX0pm1xsXFuu+Z/SgrSz8Lss/6+zdQRRw7pl+Iso5me5gvrsJC6xr5+RXHAo43nw9ZX/O5NftkWJjVl2WdOCx153BlC+Y3ybd05yMxoJEKh4YGWGWl6GciL1I/y3ItUvP5iItrrPKb9/vff0dFfPeE7VrmQYN0OCtLhA9af8QRExOqwjJ/n14tVNyGjYdVuE+fOBWWesX56GftZDPdZ+XYGBionwNzBytZb3Mcj47Wk4VMwJLPSkGBOXbqd01WVp6oV+jSL1T9dp0xTIXN/isjzfeLzM/nZNubecz3XvDqFaKI433PVuWb/SDEW/fl1NLuK/sLZ5D9kMMB2zaLMg5FWe8sPsy+I/u6aeksKtLjjRnu0cPS/tAhvTVwZc9C61a67xww3gmyjua7rFUr/X4y35ENG/qLa5nPtdkn1c24GJBjlYvFOJw9NtYaQ2v7AeB1sYUAvEQAXgAvP0YAXgAvgJcIwFvW0APgJXIX8JoGMhfRxqHszZrpH6QOZXRzYgCvi4IDeAG8lpUAFl4AL4AXwAvg5fEQFl4iT1h4jxzRX4RdRBuHsjdvDuB1SLC6kvhQfCKNvOZB2vLLe6LKAF4AL4DXenoBvABeAC+AF8BrjYeeAN7Dh7V7hjuZynTjdOd1Hb0WLLwOKgbgrfgww6UBFl4ALxF8eNlHUftLwoeXCD68RHBpcJ9LgzmnwkG0cSl5y5baz9mlgmo4M4DXQYEBvABe2WUwaU2DPoAXwMt9AMALCy8svJ6z8JoTSR1EG5eS18QEPJcqVEVmAK+DqgJ4AbwAXr2aCFZpIMIqDXr2OYAXwAvg9Rzwmm4UDqKNS8nN1SlcKqiGMwN4HRQYwAvgBfACeLEsGZYl43EAy5JhWbLatCyZXNrOQaxxOXnr1nrJO5cLq8ECALwOigvgBfACeAG8AF4AL4DXGgmxDq9eU97T6/Du22etc+/uo00bAK+7NXfL9QC8AF4AL4AXwAvgBfACeFmB2mTh3btXb8biFiAqvYi5KYk7r+votWDhdVAxAC+AF8AL4AXwAngBvADe2ga8e/Z4BnjbtdO7vDqIVG5NDuB1UG4AL4AXwAvgBfACeAG8AN7aBrzm9ugOoo1Lyc2t2F0qqIYzA3hdFBgbT2DjCe5C2GkNG09gHV4sS8ZjAbYWxk5r3A88sfHErl0JLhKNc9k7dGjiXEY35wLwuig4gBfAC+C1HiLstIad1rAsGYCXxwJsLewZ4N250zPA27Gj/cD7y9p/afYbCykp5QR1ateSnph6A7VqYX9+V5ANwOuKethaWKiHndZg4QXwYuMJ7gMAXgAvgLei21/Dhv4iUq5oweGa2KzB/MrkIto4lL1Tp1i70ickpdKY6x+h+c9NoV5d29G8dxfTxm276b05D9qV39VEAF4XFYSFF8ALCy8svKwAXBoAvHBpsMYCWHg9Y+Hdvv2oi0TjXPbOnZvalZGBd9O2PXT+OaeL9Nt3H6TbHppDK794ya78riYC8Lqo4Pjxb6oSbr31PBHu37+tivPy8jr1Fb7+Wp8/7TQVPnIyUISPHUtXcTk5BSosJ834+TVQcaYfTVpatoo/eDBZhLOzdf7gYOsXJx9yv/fAQD8Vt3XrkQr3EBkZouJyc3VZ5meUwsJikaZtW70un4+Pt8qXmZknwvHxaSquqKhEhQsKikS4QQM9McrbW2vYunWkStulS7PStLr81at3GeVadTl/SCcV98vq3SocFaXvp1GjoNJ6nVDnjx3TYal3TEyoOh8REazCcjmY2NhwFWfuQmZ2g06drMEhMNBXpc3Pt+6bD2klCw+36sSH6Q/WuLF1XbNvmZaDZs10HeLjrXuI++ojVdb+0VersI+Ppa3ZRg0aaD1lOzTOMNZ3bN1a5aesLBVOtpqWzD4ZEhKgzqekZIqw2d5NnnxI3+P9T6qwtIgUFVltaOlyUoVlXy0u1n0nylenzfGznp+8vIq6crz5Qo46sEOkPRjdRpUfl6FfHLntOop4b2+ti39JodbgkUdE+MTjT6s4c1Jbw/7W4C6Oyy6z7uWRR1WUeY9+J0vv4Yh+/qhVK51/0yYrHKmfA2rZUp//7jsdHjnSCqemqrgT3ro9srKsBisu1rrGxepnIjPf0tbUPSxHPxP7cvXYI/tRUZEuq2FDPZ6EhlrtYbZXyC/LVb2SBwxRYdn/o6m0Q3G+xvp+ffbttdKajdihg77vVatE+FCb7iouKcnqe3yY42SIX+nYUqDHs+9W71NpR/ZsLMKFMdqCZd5Daqo1zsbGhqk8CQl6zJb9mE/K/hM86zmVdsOo61VYznQ3b8scIzIyckXayIZad5o5U9/3hReqcGqbzla9S8djDsdE67allBQrrZ9uo+N5epwNCdHvh8Dc0mc8U2uYGNBIXSumsHQd2iQ9RiS3aKfOBwRY41zwf5t1XRsY95Cfr+O7l7bZ6tUV4zjmp59EfMn1N6jzR4/qd4nU7vhxvTau2b+JdP+UVslDh/TzIesqdI60xtnwH7/VdRk1Soe3bRPhnC49VFxQkNZTvuv4pBwHzXHe39/QQJfqUkhuhOJSIU5k7tLFPuAtX/Q7ny6j/3YdoFnTbnPiqo5nAfA6rlmZHABeIgAvEYCXCMAL4AXwEgF4iQC8RJ4AXtO90EW0cSh7166W8YmPvPwC2nMgvkL+8NBgah6rDWFr/t5CT85eQB/Me5iaREU4dD1nEwN4nVWuNB+AF8DLXQHAC+CFhZet97DwAngBvPxO8ATwml9mXUQbh7J369ZcpT+akEyz3lhYIf9pPTrSVZdYX3K+/fkPmr9gKc1/bjK1bBbj0LVcSQzgPYV6RcXF1HPIRFqxaLb6BfL1j2vptfeX0kevPEKREWEE4AXwAnithwgWXlh4Abyw8IqxAC4NHgHeLVsMVyhXyNDBvN27a+C1lfWXNRto7juL6e1Z9wmGcucB4HUAeP/c8B89NONNWvDyQ+pXCYAXwAvgBfCyArDwwsLL/QAWXgCvpyy8mzcfdic/qmv16NHCruumZ2bTJRMepQ/nPULNmhjzEOzK7XoiAK+dwJuRmUM33z+T5j1zN3XrqCftAHgBvABeAC+A15rwBAsvgBcWXms89IRLw6ZNh1ynQidK6NnTmDh7ivxLvv+NHn3+HfL1LTthb9UXL1F4mJ4E7kQV7MpSq4B3174jYl22/YeOCcfn8sfPn8+y66aqK5F0afj0tcdoyhOviQWSB/TrVqZ4AC+AF8AL4AXwAnjliwEWXlh4PQW8Gzd6Bnh79bIPeKuLzZwtp1YB76U3Pk7tWjejfj07kb+fXrJJ3tyo4f2dvU+n8kngbdE0mnLz8um+W6+ki4adBeAVu2phWTIsS0aEZcmICMuSEZYlw7JkhGXJyNPLkv3770GnWMfVTL17x7lahFvy1yrgveCq++mHT15wy43bcxEJvDyTsHGjMLrx3hdowdyHqUMb7aANCy8svLDwwsILCy8svLDwYh1eTwPvhg0H7EGbak/Tp4+xVni1l159BdYq4L3qtqfondkPUGCAXry5+m7V8ZLKr9Lw6Vcr6INFy2nhG9MpJNjaFADAC+AF8AJ4AbwAXgAvgNfTwPvPP54B3tNOA/A6TJjLV62jJd+vpssvOpeioxpR+U3KzMliDhfuRIbKliWb+uR8yssroHnP3CV2ugLwAngBvABeAC+AF8AL4PU08K5fv98J0nE9S9++xu6brhdXYyXUKgtv13P0NouV3fG2Ve/XmBCVFVwZ8Obk5tHlN02n0cMH0M3XjALwEoAXwAvgBfACeAG8AF5PA++6dZ4B3n79ALwOw2l2Th41aOBTZb7KJrI5fJFqzgALL4AXwAvgBfACeAG8AF5PA+9ff+2rZsKxr7gzzmhjX0IPp6pVFl7WorComNZt3E5HE1Iov6BQbPBwZp/OFdZt87Bu6vIAXgAvgBfAC+AF8AJ4AbyeBt4//9zrETQ688y2HrmuoxetVcC7Z3883fLALEpOTafoyEbiXo4np1Fk43Cxu5knduawJSiAF8AL4AXwAngBvABeAK+ngfePPzwDvGedBeC1xYoVzl9397PUuX0c3TVxLAUFBojz7OYw581FdDQxmV57drLDZdZ0BgAvgBfAC+AF8AJ4AbwAXk8D7++/76lp5Km0/P7923nkuo5etFZZeM+86Db6dfHLFTadyM0roCFXTKbfv37V0fur8fTXXPOWusakSYNEODo6VMWdPHlShcPCrKXM+CgsLBZ/4+Ia6zpu367DnTuL8NGjJ1RcXl6hCoeGWj8IcnN1XIv0o+p8SqxeJiQtLVvEJydnqfONG+tt/Npnxlvxq1er83suukqF5UPc9IfFKi573NUqvHNnQoX7Pa1ztL6XIH3fiYkZIj4+Pk2d9/HxrpC/QQMdZ95jkyZ6gfcWW/608gXre9kcrp3nvb2tMrpt/U2Vv637QBVu1Urv5d2woX9rgl0TAAAgAElEQVSFepnayzp26hSr8gcE6M1Rdu9OFPEhIVa7WHpnqnBxse4HPXpY6zj7bPhHnU9t26VCuUHpKSruGAWqsKyruXWlr6/2fY8u0u2cGmDpFfGyXt/64IQ7VVnBwVZ9MzLyVFyjRrq9ZJ9rEmz41u/YodJmdOiqwidO5IiwqYvZ5/fvt16IxiNBnXeUtiERbWrTV5UVHm7VwdvbAik+CgqKKmhgxrUkq5/zcbSB9Qya7ZGebtWPD39/3XZRUSEi7uBBrXdctNYgId3aZKW4uETl9/PTW2NGbf/Xuma7Huq8We8mzzyq4unGG0X4RFx7FWf2/5ISq5+Y+c0xpKDAGjeKiqy/fAQFWX2XD1MP+dwGGbt4pufqfLLcoiJ9X5GRxvaee6yXZ3pUM1V+2PEjKnwkUI9dst5yXONEERENVVp5PixM9+MGO3U/ymmt9QgMtNrG64MPVP68cXo8CjhWWoddu7SuA/VzTWnW2JLXWI9BAYeMyTxGBzwR00KkDf/EmBB922263DVrRDinz+la79TjKnzU29Kr6SF9Lzsb6bG3o49+FjNjrOc+5O35Kn/WJH0t+ayZGvnm5+q6GOOcilysx+TiMReraJ/9li9nmbYr1mUVhljjgu9bb6g8yVdco8K8ApE8pFyRRwyY6tVL1+vwYSvc2HiXJSfr869a7+3iGc/q+hljPi1cqNMOst6htN9oL3O5ptJ3VP7dU1SexMR0FZZzgMzd7vLz9bhhPjd9+1rttG+fBnXZTzk+NtbSKDJPl58XGaOu5e9vPVjHjunzTf30tY4V6gdPjtnm2Ge2sxbAtdDatbtdK8DJ3AMG6OfXySLckq1WAe95l0+mT197nGKiLHcGeSQmpdGVtz5BK794yS2iOHIRAG9ZC698iQJ4Abz8HAF4iQC8RABeIgAvgLemgXfNGs8A79lnA3gd4UaR9pmXP6RN/+2lm8ePFlsMMzzt3n+EXv/ga+rUriU986BlHalNB4AXwMv9ERZeIlh4YeGFhZcIFl7xeUu/pmHhJXdZeH/7zfjq4UZQGjiwgxuv5vylapWFl10XZr3+OS1etlqs0MCHn58vjRxyJj1819XKr9f523Uu5/g7nqFxo8+lUcP7VygAwAvgBfBajwWAF8AL4AXwisEAwEuecGlYvXqnc5DjYq5Bgzq6WIJ7stcq4JW3zJZdXqmhoLBIrNbge4q1ed0hE4DX2uoZPrxE8OElIvjwEnx4ieDDSwQfXiKCD6/CEE/78P76q2eAd/BgAK9dLPrx4p9p6MDThN8uh091XD12qF1lVnciAC+AF5PWMGkNk9aIMGmNKAiT1ogwaY1q46S1Vav05Mnq5qBTlXfOOZ3ceTmnr+VxC+/YiY/Rk/dPoG4dWxOHT3Usfucpp2/UlYwAXgAvgBfAC+AF8PJ7BMBLAF6x0kvtW6Vh5UpjpSdXoMfBvOeea60qVdsPjwOvPQKxiwMvJ+Lra6yvY0/GakoD4AXwAngBvABeAC+At/SlCgtvrQTeX37xDPCedx6A12HcHDruXvr581kV8qVnZtOFV91Pv3/jmXV4AbwAXgAvgBfAC+AF8AJ4JaDURgvvihX/Ocxd1ZFhyBC9jnx1lFdTZdQKC+/adVvp93Vb6aMvf6Lxlw6rcK+Hjx2nvzZsp7++0wt215QglZUL4AXwAngBvABeAC+AF8Bbm4H35589A7xDhwJ47WbSvQfi6Zuf/qB3Pv2OzjnL2MGltISAAD8aNaw/DTqzp91lVmdCAC+AF8AL4AXwAngBvADe2gy8P/20rTrRx+6yhg3TO27anckDCWuFhVfe9yvvLqE7JlxSqQwbtuymPt09s5sHA+/GbXvI3OFw4v9G0j2TLiOsw4t1eLnDYuMJrMOLrYX1lun8TGBrYSJsLUxE2HjCbRtP/PjjVg9gJNHw4d08cl1HL1qrgJcrX1BQSEcSksVfeRxPTqMp01+l9T+86ej91Xh6AC+AF8BrPWbYeAIbT2DjCWw88X/snQV0FcfXwC9xDyQkEALBi1txa4sUt9ICpbgX1+JQKO7uXrRYobi1eKFQnBb3hAAhJIR4At+5M9mZjb289/YlS7//3XM4TGbH9o7s7929c4ctBnTwhC4HTxw6pA/w1q1LwGsybJ69eAMGj1sMb99FJMprY23NTjmbOKyLyWWmdwYCXgJeAl4CXpQAaXhJw4vjgI4WJuDFcaDHSWsHD15Pb+RJsfx69UroUq+plX5UGt6vOo+GpvWqQbO61aBxhxGwf8M0uPrPffhl9+/wQ69vwc83m6nPl+7pCXgJeAl4CXgJeD+wQUAaXgJe0vDy9VAP4D1w4Fq6M09KFdSvL79u6dIAIyv9qIC3TJ1u8Ne+JczfbrWmfeH07gXsMf69+ximLtwE6+aNMPKxMi4ZAS8BLwEvAS8BLwGv8tYhDS9pePUC3v379QHeBg0IeE2mzs+b94f1C0YyTW7tloNgw6LRkN3LA3B3dKVGveDCgaUml5mRGbZuvcCqy5bNTVQbExMnwpkzO4lwWFgUC+fL5yXi4uLei/Dbt5Es7O//RnU/XoRdXR1Z2M5OHsZRvLivuP/8eYgIBweHs3BUlLSLVuerWDEfu+/w/JnIc+6FbIuzsz2LL1o0h7gfGBgqwtev+4uwspO9UiVeJl5WVplEOCCAt+v5c5nfxsYqhbQyj1pr9MknUsufK5eHyKcEzpy5J+IiIqJZ+Es/KaM/g2W4WDH5PB/4+xqePg0W+R88eCXCDg62LFylSgERFx7Oy8fr3r2X7H9134eH8z7GS+kDDJcsmYvFKWVi+NWrMJFW6acsWZxF3KNHQSJsa8s9JkRHy7GleJHAeF/fzCLtkyevWbiyHGZw+IFst6Mjfy61jO3sVB4ZgPdDgQLeyepP+lxBQe9YGnX+rFldRb7Hj3lb1OOhWjW5EfWPP+SxmM7O3DOIek6o8ymFqttdrJgc/1euPGFJ3NwcRP2xsXJM40E2yqWMI2XjIcbnyZNV3FfGOh6Ao1z29lxueH3ySXb2/z//BIg4ddpqOWXaaB/exlu3AkVa9fhX+lY9V9Wbv1684OPE2lrOD1FQkjEVERHDbrm4SBm8eCHnnTJX37+Xz+XnJ+eUIi+1rNRrmDLmsQ6lLHVaV1dZrzLWlbUE8+TMKetSzzvleXLn9kzWB/x5+Hrk4eEi7qvnotIGZTzytHIuqceMIo8yheQEeRDI10u8PD15HS9fvhVxOXLI+XXjBl/7KmaXc+b3+9Ik79NPc4t8ytpX1EOud09i+DjHS9m3oh7z6jXg3Tu+njg6yjze3vJdo35XZErYYa1ep9XrgrJ25POV+S9ck+NXXYfSt4UK8XGOl7q/lDGh7nv1M+Ty5rJ/+lLKVd0H6md484anUY8z9VzwsuFr3q0Xcm1V8mB8fDwfy0FBcj1V1yUeAABKlMjJ/lTWJQwrcsOwpydvd+HCPiKbWp7u7vx9rpZ7yZK8TLzU78WU1jO1PNXt0hLet++qluxm523YUB8PWqY2+KPS8E5btBn2HjkLv62bDHOWb4O7D/2hWd2qcOXmfbh55xH8tnaSqc+XoekJeOWLj4AXgIAXgIAXgIBX/rgj4AUg4E38A5uA13KYsnfvFcsVZkJJjRoldydrQvYMS/pRAS/+kty+9zg0q18dYmPjYPzstXD5xj3wzZ4VhvZqDcUK5ckwwZhTEQEvAS9peEnDi2sHaXgBSMMLQBpeANLwAmSUhnfPHn2At3FjAl6TmfH+4wDIn1t+ZlYKiI6JhRu3HkLZkp+YXKY5GeLi46FUrS7QtG5VmDyiW6Iixs1cC9v2Hoerx1YBeo9QXwS8BLwEvAS8BLx8VSTgJeDFcUDAm3HA+9tvl81BHs15mjQpo7mMjCjgo9LwlqvXPUVfu29Cw6B2y8Hw96GM8cOLwFuxQU/wyOIGe9ZNBgd7bjMVGxcPTTqMgOcvg+HiwWUEvAkjlGx4yYYXhwLZ8JINL9nwApANb2LbewLejAPe3bsvZQQ3JqujadNPdanX1Eo/CuDduuc4bNtznHljKFJQGvkrDxMUHAL2dnZwcNN0U5/PrPQIvOXq9YBa1T6FLz8rB/VqVGDlnDx3FXYfOgMH//iLNLy0aQ1o01rizXgEvAS8BLwEvPiupE1r+mxa27VLH+Bt1oyA12jYjIyKgcs37kCv4XNgUI+WyfI5ONhD9Yolwcc7+a58oysxISECb5kvu8K8n/rCzv2nYOHk/iz3sEnLoHb1sjBg7EICXgJeAt4k3icIeAl4CXgJeAl4OWzo4aVh586/TSAdyyVt3rysyYX9dfkWdBo4Ffb8PAXy+UlPGCYXZEKGj0LDq7T3z4s3oXK5YiY0P32SKsB76dAKqNVyEOxZNwXQDVH9NkPh4KYZ8GmdbgS8BLwEvAS8bAEit2TklozckqFWV7r6Iw2vPsC7Y8fF9IGiNEr9+utyJtWLLvha95oAr16HwNp5I/43gXfKgo2pCg0n05iB7U0SqrmJFeC9/vsaGDtjNRQvlBfc3Zzh5LlrMGl4Vyj2RUcCXgJeAl4CXgLehEWW/PCSH14CXvSxrq8f3u3b9QHeb74xDXgXrfkV0K354ZMXYe5Pff43gRdNBdQXuvYJePEaHj19Dg1qVYLxQzqZy7Am5VMD7/nL/8Ly9XvA1cUJWjT+AqqWL07ACwB08AT62aWDJ9QHapBJA5k0kEkDmTSQSYN+Jg3btvHDrzL6atGivNFVPnoaCP3HLoCty8ZBi+7j/neBNzWJnTp/DfDfyH5tjRaqloRq4MVTiBq2G4ZnsMDen6cAnmhFGl4CXhxfBLy0aY1MGvhKSxpe0vCShld/Da/iGlUL/5iTt2VLCbxR0TFw75E8fVUpL7ObC+T08YLOA6dBtzaNmPlqk46jCHhTEniTDiPZCWwZcamBF+ubvmgzxMTGwegB7Vj1BLwEvAS8fCaShpdseAl46WhhrtUlG169TRp++eWvjECkZHW0asU9WeEVEBgEs5ZtTZambMlC4ORoD7hXa9roHuw+AW8K3XXr3hPoMXQWnNg5T5fONLZSOniCDp6ggyfo4AlcL+ikNTp4AscBnbRGB0/gOMiok9a2bDlvLK5YNN2331Y0qry+o+fDpet3wNrKiqUPefuOmYtOGtYVvqiS/qe1fVReGmp8MyCZ0PCUtdC34dC9bWPo3/Vro4SqVyICXgJeAl4CXgJevgLTSWsEvDgO6OCJjAPezZv1Ad7WrY0D3qRs9j+t4d1/LHln2dvZQp5c2SB/Hl+9ONboegl4CXgJeAl4CXgJeJWXBml4CXgzUsO7adM5o3nFkgm/+66SWcX9TwOvWRL7iDIR8BLwEvAS8BLwEvAS8L4Xb2bS8Gachnfjxj91IaI2bSrrUq+plX5UJg3oiWH2sq3wNOAloClD0gv94n5sV9Gio0STJk3iJhdlyviJuLCwKBFGjw/KZWfHd/X6+GRWxdmI8JMnr1lYcfWE4bCwSHHf0dGOhe3sZJ4CBbKJ+0FBYSKsbCyKjpYyVfJjoirZMvG0efKIPNf/eS7CVlb8ft68XiIuKkqWde3aUxEfHR3HwqVLSxlEREj3XW/eRLD7ardmiiwwPjaWL5Tv38sFU9kBjvHe3m6irvLl87KwdZSUy4mLz8R9NzcHFi6TzVY+12tZrpeXq4hH7xt4+fu/EXHPn4eKsI0Nv+/n5yni1HaaoaG8DVmzuoj7t28HijAeXKJcJUpwX40hIeEiTv2MTk72LN7BQT0egkVape8yZUroNwCIieFyxytXLnki4atXfBwUCZN9dMlGjhPlGWJj5YYTZ2deP15KuQULyjz29rJd/v4hIq0yTtRjUj3OFNkqssSMhS8cFfmvlaohworNm7pd6jHn6urI0qo3yuTMmUXkf/QoiIXVc87WVu6kRx+QyqX8SLl//6WIK1ZMflFS5qKDg+xD9ed6T0/e5w8fvhL5HRz4/MTLZ+1iWVklrgl5U1pu8oiPl41RZKPIMukzKP2hbr8ydjGtOp8y39X98fy57C9l/KjLyp7dXbYVeLtCQ+Ua5uoqx8aDB/J5lWdQz2V1vZ6ezqwsZWxj2CPkhajriY1cB318eBtsI96J+28zSXkqZajnjDLOMYMyDm7elDvF1XNZPU6UPs2SxUnUdeTIPyJcu3ZRFlYfpJDVWq59D0P4vHF0lGNDLUP1mMiWjT+X06N7ovzL0XK9UGSXM6ecv+rxq/S9ui633w+JsqLrNxJhZc21sZFjXr1euLgk9OPt2yJPpF8+EU7Rvdxz+U54Fs/XVibvNwlrbj6ZPzBMrkfK+PSyihF5wh3kcztbyTX5XTxfZ11i+XuCXQHS3Z8Sjv2iphwbb+X6r6xNAQFynKtlIAsFyJePv8+U+c37UY6zzJn5mLDdsklkC2vWQoRdI/j7Ichajp2sCWsBxvur2uDmxtcr9Xrm4cHnhCWvDRv0Ad62bQl4Te7H2q0GQ8vGX0DJovnBzla+VJWCPi3xicllpncGAl4AAl6EAgJeAl4CXgJeAAJeAAJefYB3/fqz6Y08KZbfrl0VXeo1tdKPSsObka7HTBVUaukJeAl4cWwQ8ErtIml4UTtPGl7S8CbW+pOGlzS86a3h/fnnM5ZCG5PKad++qknp9Ur8UQHv6GmroHmDz+DTEgX1kkeietv2mQSRUdGwbfl48anw7bsI+LLVYDi/bwlLS8BLwEvAy6cNaXhJw0saXtLw4lpAGl59NLzr1ukDvB06EPCaDK3ob7fjgKngmz0reGR2A5WJIitr+YwhJpepJQMCb+DL19C9XRNmaoEXAS+XKNnwJva1ShpeAl6y4U28YZE0vKThxXcF2fACZJQN79q1p7Ugj9l5O3asZnbejMz4UWl40aTB08MNShTOB+iOLOnVu9NXGSkbQOD9qn51mL9qBztWGB0kE/AS8CqDkDat4SY/2rRGm9bQOwvf4EYaXtLwkoaXvyH02LS2Zs2pDGUkpbJOnarrUq+plX5UwFvn2yFwaPMMUO8mNfWBLJkegXdQj5aw/9g5sLW1gWG9WxPwJgiYNLyk4WWLOgEvEPAS8JKXBkC3B+L1SyYN+gDv6tX6AG/nzgS8JrNntyEzYeqo7uCZRbqeMrkQC2bgwNsC8uf2hcYdRsDaeSMgq4c72fCSSQMbZaThJeDFcUDAS8BLwEvAi2uB3m7JVq06aUECMr6oLl0+Mz6xjik/Kg3vyk37YOf+k1CjahnwzpoFpJdRLqH2LepmqKgU4EV3aBt3HoGT567BjLE9CXgJeAl4E2YiaXgJeHEokEkD+eElDa/+wLtypT7A27UrAa/JcPpNtx8hNSfRWNiWJWNNLlNLBjXwxsXHQ/POY6BH+ybw0+x15KWBDp4gDS+ZNLDlhTS8BLyk4SUN78eg4V2x4oQW5DE7b7dun5udNyMzflQa3ox8cGPqUgMvpj9z4QZMmPMzvAkNI+Al4CXgJeAl4E1YSEnDSxpe0vDqr+Fdvvy4MWhj8TTdu3MvVh/7RcBroIeSAi8m7T1yLly8epuAl4CXgJeAl4CXgJdJgDS8pOH9GDS8y5bpA7w9ehDwfuywb5H20cETdPAEDiTyw0t+eMkPL7klw7WAjhamgydwHOjhlmzp0j8swjWmFvL99zVMzaJLetLwahQ7AS8BLwEvn0R00hqdtEZ+eAl4cS0gt2T6AO+SJb9rJBrzsvfsWdO8jBmci4BXo8AJeAl4CXgJeFECpOElDS9pePlaQMCrD/AuXqwP8PbqRcCrESX/G9kJeAl4CXgJeAl46aQ15Y1FJg0EvHqZNCxadEwXcOrdu5Yu9ZpaKWl4TZVYkvT16s0WMfv2DWBh5exwDAcHh4v76hPkrKx4tHtokCzxyBEZ9vPj4S+/NL6FixfLtN9/L8KPn75h4Zcv34o45fMzRpTN6cjjX74U959m9hVhJyc7FvYMlfdDPbOL+zdvBiQrt2TJXCIuJiZOhMPColj4wQP5+VctLwD+4gwLi1bJTT5W3rxe4o9C8cE8nCOHiDt/OyFOdcxpmTzyIJMrj8NEWnVZyiES0dGyrXfuBIq0Dg58F3bBgtlE3Pv3vK14PX/Oj9j18HARca9eSXl/kEmheHEuW/Vzq+u1t04o4uhR+eD16smw0k/e3jLulZQnzJol45Vx8PXXMu7vv2U4PGF8OjvLuPv3ZTh/fh7esUPGbd8uwz/8IMLRxUqysL2d8gAA8LvUOLwtX0XmSwi59e4u4sKXrhRhZROQVWSkzGNjI8P29snKggkTZFzDhjzspjrEpkABef/JExnes4eHe/eWcStWyHDHjiwc/V56Bre3V7Vl5Eh2P+6niSKP+lAS24rlZVlNm/JwQh4MxltJeVkH8X587yX71ipUHt8c7+bO7lvHy3EKwXLMQ9assq6QhHwXLsi4+vWTy00do+pPUPq+bVuZ4tdfRfh1A3nUu+JOUr3GuTmqxoFtghcDtdwPHRJlRbfvJMJxcfEs7Pz3eRlXpaoIK3W9eCHnV3i4XC/y5uUyOH36ripPwoILACEhckw5OPB+zJzZSaS9du2ZCCtlOTryNRAvHx/eB/ziY+L163cixsvLVYRzeDiIcOQHLg9bWymXc+fkXAsK4mtTqVJy7VT2BmC8r28Wdv/dO/ms3t6yrpTi1c+aJXPCOo+FvHjB27Vzp3yUXr1kOECu6R98fFi84okDwyEh8r3m7s5lpz59MzIyRpQVF/eehd3dZf3qd1FeH/kMHxLmdaLTVjdulO2KSxj3330n4sJjePl4Keusvz9/5+EVG8vHE17qNbukF++HZ/FyLVHaivHKDxeHA3tl/cr8xZg/uL1sRGV5ypjT74dlu2rId7fyvlU/l/JOkYVrDy1YoHpnaC/O6BL69q1tdFo9ExLwapQ+AS8AAS8BL04jAl4CXgJeAAJeAAJegHAdgHf+fH2At18/Al6NKPnfyE7AS8CLI5U0vAS8pOEFIOAl4MX1kIBXH+CdN0/1lTgDEap/fxO+RGdgu5JWRRpeA8LH09VK1eoCtrb8s5e1lRXk9fOBId+3gkpli7I4Al4CXgJePolIw0saXgJeAl4CXr4e6qHhnTtXmlRkJFcOGFAnI6szuy4CXiOA99i22ZDdywMQgA8dvwDjZ62FQ5tnQBZ3VwJeIOAl4CXgRQmQhpc0vDgOyKSBNLx6Ae+cOfoA78CBBLxmU/jHklHR8CrAq7Trq86joW+Xr6Fm1TIEvAS8bFiQSQNpeAl4CXgJePlbkkwa9NHwzp4tN4JmJEcNGlQ3I6szuy7S8Jqg4VWSNu00ipk1VK9YkoCXgJeAN2FikEkDmTSQSQNpeAl49TNpmDXroNkwqCXj4MEqL0JaCkrnvAS8JgBvbFw8HD5xASbP3wAHN04HVxcnAl4CXgJeAl4mAdLwkoaXNLyk4VWQQg8b3pkz9QHeIUMIeNOZ1dO/+JQ2rRXM6wvD+7aB0sW4T0/atEY2vGTSwOciaXhJw0saXtLwkoZXPw3vjBkH0h+MUqjhhx/S8O+tS6uSV0oaXhM0vCklJeAl4CXgJeAlDS934k/AS8BLwKsf8E6frg/wDh1KwPuRML35zUht05q6RAJeAl4CXgJeAl4CXuW9QF4aaNMajgU9TBqmTdtvPvBoyDlsWAMNuTMuK2l4ScNLRwuzIyn52b90tDAA0NHCAHS0MNDRwgB0tDAAHS383zlaeOrUfRlHj6qahg9POMpdl9qNr5SA13hZpZiSNLyk4SUNL2l4ScNLGl7S8MaKdyS5JdNHwztlij7AO2IEAa9GlPxvZCfgJeAl4CXgJeAl4CXgJeB1+l0e/KCHScPkySptdAYi1MiRjTKwNvOrIg2v+bJjOQl4CXgJeAl4CXgJeAl4CXj1Bt5Jk/ZoJBrzso8a1di8jBmci4BXo8AJeAl4CXgJeAl4CXgJeAl49QbeiRP1Ad7Ro40H3ucvXsOIKSvgxq0HkCuHN0wZ2R0KF/DTSGLGZSfgNU5OqaZq0GCOuNe7dy0WLljQW8Ql7IVifzs52Yl4e3sbFvZ+dEuWXaGCCL99G8nCgYGhIi4sLEqEbWz4C0YpB8OFbSPE/RBPHxF+8uQ1C6tdBllbW4n7RV3iePjyZRH3vMLnyZ4hR47MKbblzp1AER8f/56FixbNIeLev+cbwvAKDeXP5e//RsSp2xUTk9AWcTdxu9VtyOeQsMAGyvr//uAhclpZ8Wcs8+aeiLviwf0n45Url0zreec6i3uQTd4PCAgRaR0cbFlYXb+Li4O4r8jY09NZxPn7y/yZMskHKlKEy0bdd+q+jYmJZ/fVu70fPw4SBSjjKCIiRsTZ2/P24eVjHS3CrzI58rKWzRNxD9v0EGFlHKnl7uEhnyEqiveHj4+7fIALF0T4fdlyIvz8OR+r9vZ8bOLl5GQvwo8e8WdQj71CJ34T929WlZ/FFDlGRcmXqGwAgNJGta1gtmyyjco4s7GR4zw8XMpF3QbPmDBWtP972Z++Lx+J6kLzFWbh2Fg5Np2d5XM5btvC7r+s10zVRNnh3v27y/i2bVk4tFpNEadsmMQIKyuez9ZWylAZDxivHkdKAer54xr9TtYVlbBe5MypFp0IK7KNjeXjDS/XDWtk2rdveXjYMBlXqJAM376dYrkicto0eV8pY8cOGffypQgHt2ovwnFxvD3etrJd4OQk8507x8MlSoi4cHs5Zp2f8b574phV3H/5kvcxXn5+ct57x3F5KRuzMHzs2D8ibe3axXj4nUquqrY8eMTXVvX8UK/Zrq5yTClz1HX4YFH+1e7DRThPHt5edd87Osp3RmgoX98z/3tVymKenNcwZYqID3LlZanHubu7lKFVFF+HPzjy9QGv4OBwEVbXa2fHx6LNvbvi/msvOaY8g/x5vKqsN66eIq2yBtgHPBVxsTkl4Ng+eiCfJ18+Hj59WsZlyybDd+7wdjeWgKWsOxivrGNBQbK/lHcSy6d6IRcv7svKevIkWCkjPnAAACAASURBVJRvZ8ffy3hlycLl5fmY18ku9fhPKOtlhHy/eQOXK14vPsi+d3Hh60V8vEzr5ibvywq0hSZMkOuptpJMyz1mTBOjM7TrOxlqVi0Dbb+pA3uPnIULV27B5BHdjM6vJSEBrxbpAQABLwABLy6a/MVHwEvAy5cUAl4g4AUCXvmjl4A3/YH3p592ayQa87KPHdvUqIzPnr+C9v0mw9FfZosf90ZltFAiAl6NgiTgJeDFIUTAC0AaXtLwJlpOCXgJeFVfeQh40x94x4/XB3h//NE44D126hJs2HmYmTKcvXgT/HJ4w+iB7SGfn/wirRHJDGYn4DUgnrfvImD+yh1w9NTfEBIaBtm9PaFZvWrQtU1DsLHmn3kIeAl4CXj5JCLgJeAl4E1shkYaXtLw4pzIKJOGceN2pScvplr2uHFy7YuKjoF7jxLMXFQ5Mru5MPOFCXN+hsVTB0LFMkVg3bZDsOvAadi1Rh7Lnp4PQMCbinRj4+Khbe+JkNndBQb1aAk5fbzg37uP4ac5P0P5UoVgzEBuc0bAS8BLwEvAixIgG94kiylpeEnDSxpeNikyCnh//PHX9OTFVMseP/4rcS8gMAhmLduaLG3ZkoXAO2tmWLJuN+xY+RO7j/bVZet2g+M75jHWSu+LgDcVCe87dg5mLf0FDm6cDnZ2ckPQ04CX0KTjKPh11QTIkys7AS8Q8BLwEvAS8KawkBLwEvAS8GYo8I4dqw/w/vSTBF5D0Hrr3hPoM2oeHP1llgDeT+t0g9O7F4Cri2pjajqRLwFvKoIdN3Mt2+GqaHLVydr2mQQNalWC776qRcBLwMuGBtnwkkkDaXhJw4sSIC8NAOSlQR8vDWPG7EwnVDRc7IQJzY2u96vOo6F9i7rMPHTDjiOw58hZ2LpsnNH5tSQk4E1FeoPGLYJP8uWC79snd7cxaNxiKJjPF3q2b0rAS8BLwJswh8iGl2x4Ey2npOElDS9peDNUwzt6tMrtnxYyNDHvxIlfG53jif9LQL5Cjw0F8vjChKGdIS9tWjNafumScOrCTczvZkoaXvQj17xBdfiqfnUCXgJeAl4CXiYB0vCShpc0vHwMkIZXHw3vqFH6AO+kScYDb7oAm5GFkoY3FUEdOn4Bpi7cCIc2zUhkw/vi1Ruo32Yo21Xo55uNgJeAl4CXgJeAN6V1lDS8pOElDW+GanhHjtxuJPpZNtnkyd9YtsB0Ko2ANxXB4ulgrb4fD9m9ssDIfm3BJ5snPH72AoZNXApFPskDPw7qwHKSlwbatIbjgGx4yYaXNLyk4SUNL2l4lVmgx0lrw4frA7xTpxLwphOjZ1yx78IjYfL8DXDs9CWIiY2DbFmzMFOGrt81EqeEEPAS8BLw8jlJNrxkw5todSYNL2l4ScOboRreYcO2ZRwgqWqaNq2FLvWaWilpeI2UWPMuY6Bbm0ZQv2bFRDkIeAl4CXgJeFECpOElDS9peEnDq6eGd+jQ5P5vjUQcTcmmT2+pKX9GZSbgNVLSKzftg99PX4K1c4cnsukl4CXgJeAl4CXgTWEhJQ0vaXhJw5uhGt4fftAHeGfMIOA1EiX/G8nwuLyhE5fChcu3oE/n5tCmeW3WcAJeAl4CXgJeAl4CXkUC5IeXvDTgWNDDhnfIkF90AaqZM1vpUq+plZKG11SJJUlPwEvAS8BLwEvAS8BLwOsoBgG5JdMHeAcP3qKRaMzLPmvWt+ZlzOBcBLwaBd6mzTJRwoABdVi4/Kd+Ii7ug6zA5sRxGf95DRa2uXpZJnB1FeEgDx8WDggIEXFhYVEi7ODAjzu2ssok4goUyCbCT58Gi/Dz57yMqKhYEefmJhen8uXzsniH+Bhx/+q91yJsY2PNwh4e8qzr0NAIcf/+/ZfyueLes3DBgrIt6jaGhPB86ueKi4tPll+pM+kz+vhkFmmLFs3Bwra2vH14/fnnvWQyqly5gIg7c+auCHt5SXm7u3N5+Pu/Eff9/aXs7ex4Hb6+WcR9R0c7EX70KIiFPT2ljIKCwsT9D6pxULy4b7J2h4dHi7SZM/MjFtFTiHIFB4eLsDyXncsaLzwVULnUMlLk7bF+pXyub9qLcKZMfPzgmebK5eQkn0spN/Pdm+I+vHghw+XLi3CEK5eNMjYxbBUi5RkYI/tJyZR94QyR/0n3gapndEiQgWxXZKQcv4oMAOT4zxIi2/XOi4+NhMdj4dhYOc6U58Z492sX2f03xcuK+rPsU51Y1LatfF4ltGePjFuwgIcPH06eDmO8vWV8s4SNbf37yzhfPh7YpQyUf/+VcVWqyPClSzzs6Zk8D8YcOybjGzTg4RA5juMKFhL3lfXESg4dcH8dKPPb8XEQm42vRXjZrl8n87f4ToRtbHgharmqxwEcOcLTRstxDitWyLp27xZhpZ9s9++V95s2leETJ3jYy0vG2dvLcILsXlX8XMSpta4lSuSUaR8/5mFV/lN334r71WOf8XDBgjJPZrkGPX/Hx2eWLPJY1IgIuY6q4zNFRvIyhgwRZd3qN0aECxeWchaRr+U6HOPqzqLtriSMAfxDLcP2cl5HluN7TRL1R6C/fIZnCc+VP7+IC3fzEGFnZ5U8b9zg8Ur7ASCiWCmR1unk7zwcI587tn5DcV+sz7/9JutX953SFrWcr16VaX1UclHGfx3+rsUrJF9hEVaeV732xsTEifvqdbhoXr5ePXoh11b1uypLFmd23/XEUdmWSpVk2J/LM/KTIiLOMUzOtXBn3l94Ke8K9bvOzs5GlmWh0KBB+gDv7NkEvBbqwo+7GAJeAAJeAAJeAAJeAl4CXgACXgACXgA9gHfgwM26ANOcOa11qdfUSknDa6rEkqQn4CXgZVoC0vAS8JKGlzS8qP0kDS8BL+gDvAMGbNJINOZlnztXfu0xr4SMyUXAa0DObftMguv/PoBMCWYD9na2ULJIfhjZr404+5mAl4CXgJdPItLwkoaXNLwEvLgWkIZXH+Dt318f4J03j4A3Y5A9HWtB4G3VpAY0rsNt6NBTw+K1u+DcpX9g67JxLI6Al4CXgJeAl0mANLyk4SUNL5sKBLz6AG+/fhvTkYhSL3r+/Da61GtqpaThTUPDqwZeTPrE/wU0aj8Crh5dxRZ3Al4CXgJeAl4CXtq0prxKyKSBgBfHgh42vH37bjCVAS2SfsGCFDb2WqRkyxZCwGsC8EZERsO8ldvh37uP4ef5I0nDmyA72rRGNrxk0kAaXhwDZNJAJg2k4eUvRj2At08ffYB34UICXsuiuQ6loUkDwq3iIutdeCTU/aICDO/zHXhn5a5pSMNLGl7S8JKGlzS8pOElDS+5JdPbLVnv3ut1ICWARYva6VKvqZWShtcEDW+rHuOhReMv4JtG0r8jAS8BLwEvAS8BLwEvAS8Br97A26uXPsC7eDEBr6nw/dGlT7ppDTerDZu4DA5snAZOjtwxPgEvAS8BLwEvAS8BLwEvAa/ewNuz58+6cNSSJfLQE10aYGSlpOE1QcOLSbsNmQnFC+eF/l2/JuBNkB3Z8JINLw4FcktGbsnIhpdseHEtIC8N+tjwfv+9PAnRSAa0SLKlSztYpJz0LoSA10Tg/efOI2jXdzLsXT8VfLw9SMMLpOElDS9peEnDSxpe0vCShldvDW+PHvoA77JlBLzpDesfRflk0kDAS8BLwEvAS8BLwEvAqzfwdu++VhcuWr68oy71mlopaXhNlViS9AS8BLwEvAS8BLwEvAS8BLx6A2+3bms0Eo152Ves6GRexgzORcCrUeAEvAS8BLwEvAS8BLwEvAS8egNv1676AO/KlQS8GlHyv5GdgJeAl4CXgJeAl4CXgJeAV2/g7dJltS7gtGpVZ13qNbVS0vCaKrEk6Rs1mitixo1rxsLFivmKuLCwSBGOjY0XYeUwC29vVxGX6eFDEY7IzssIDo4QcR8+fBBhBwdbFrayyiTiPE8eEeGo+o1EODg4nIVfv36XrH6MKHJ2P4+/eFHcj5m3QITt7Gx4eL308RfV4ltx/9mzYNXzRrNwmXePRRxcvizC8b37sHBgYKiIe/eO58ErPJyH1cdzOjgk1A8A2bK5i7S5bpzn4ceyrvB28pdmaCiXfY7Du0Sep7WayPy5PGQbT5zg9ZavrHqWKFUbeTiXKo+QCwAEBISw+66u3F0dXra21iKsfh6PC6d5fN264n5cnGpsvA7i8Q8eiPux5SokL/f5c9l+Hx8Z/lnlmqZ+fR7/xRfi/ocbN0U4U8LwiYyMFXGO92/Lduf7hIWd5s+W5b9+LcMzZsjw06c8HJTQfgzv3CnvT5ggw0rIy0vExQe+EGHry5d42EHKE4oXl/nfvuXhcD622bV8uQwPHcrDjo4yTp1W3cbr11ma4Co1RFqPc3w84BVdqw77PyYmTsS5Rsu5BJs2sfh3nXuI++oxa1NFjikoWpSnGT1atsvJSYb9/XnYls9vdj16JMOVE8qylmMLEtrPEtWQzwD37/N8zs4i/ytrGVbWEPU4tr+YMKcwh4sLyxdeoLDI7/xBjpM7AVL2yjqk9tKQObOUvZsbD6vXK+uVK0S5sZ27irCYN7vkvI1vLOet9fVrLO2HUqVEnqAg2R9eLny9ePRCtu/tWzmXXVzsRT5PT/6M7rf5GMDrZBQ/VAivsmVzcxGq1iAIlWvXswg+gRwdZX95vkyYB+itoACfP3iJ55o5U8QFfCef282Nj3V7e1mWbaxcGyMz8Xh1XaCaf3EDB4ty4+Pfs3BqxxzDnTs8bYyEVMiRQ+QHD9XaeD5hTMTKvn9bsqxI63b/Fg+7y7U5xCO7uK88j+N1+R4ILyb7zvnRPVlvsWI8fOqUjPvrLxl+9oyHGzeWcXnzyrDyDq1ZU8alFlLWkxs3Uk6hjL/p0+X9WbNk+BJfoz706iXiMi1aJO/37i3DtxPWVBv5LoMCBdJuo4kpOndeZWIOyyRfvbqLZQpK51IIeDUKmIAXgICXgJdNIwJesZoQ8AIQ8BLw4oQg4AWADALeTp30Ad41awh4NaLkfyM7AS8BL45U0vAS8JKGF4A0vACk4QUgDS8A6KDh7dhxpS7gtHat/FKhSwOMrJQ0vGkI6t5Df5ixZAug/933Hz5ALh8v6N/1G6hcjn96IeAl4CXgTZhEpOElDa9iIwOk4cXBQCYNpOFli0IGaXg7dJBmQkYyoEWSrVvXzSLlpHchBLxpSLhB22HQ7ps60KpJTcC1/PCJCzBq6ko4tnUOuLs5E/ACAS8BLwEvSoA0vKThxXFAGl7S8LIVUQcNb7t2+gDv+vUEvOkN6+lefmxcPJSu3QVO7JwHWT2kQf7DJ8/BzzcbWFtbEfAS8LJxSCYNZNJAwEvAS8DLX8tk0qAP8LZtq9q4m+6EJCvYsKF7BtZmflWk4U1Ddr1GzIFXr0OhQ4u6UPHTIuDlKXfwkkkDFx5tWiPgZQOBTBrEakKb1sikAQcDmTSQSQNbFDLIpEHtJtV8LDQ958aN0kON6bkzLgcBbxqyjo6JhW17jjNThmv/PoB8fj7Qo10TqPtFeZaTbHgJeEnDmzCJCHgJeMmGl0waSMPL1wEdTBq++25ZxtGjqqZNmwh4dRF8elYaFR0DR0/+DeNmrYHVs4dByaL5CXhJw8uGHJk0kIaXTBrIpAHXArLhJZMGvYC3deul6YlAqZa9efP3Rtd78I+/YPHaXRATGwe+Pllh3OCOkCuHt9H5tSQkDa8B6T1/8Rpu3X8CNaqUSZSq+w8zoVa1T6FV05oEvAS8BLzK7CANL2l4ScNLwEsaXt00vN9+qw/wbtliHPC+ePUGmnYaBdtXjIecPl6wdutBOHXuGqyanXBQkBaaNSIvAa8BIeHmtFbfj4eJw7oywMVTgi5cuQ0Dxi6A1XOGQeECfgS8BLwEvAS8TAKk4SUNL2l4+WJAm9b0MWlo1WqJEdhn+SS//NLTqEIvXr0NE+b+DLvXTGLp7z58Bl0GTYeTv843Kr/WRAS8aUjwz4s3YdHaXfDgcQBkssrE/PB2a9MYalX/lOUkG16y4cVxQCYNZNJAwEvAS8BLwCuQQgcb3pYtF2tlQrPyb90qj1c2VEDYuwho2G44LJ02CIoUzA3L1u+Bh0+fw7RRGWMDTMBrVvfKTAS8BLwEvAnzgUwaxMJAXhrISwMOBvLSQF4a2KKQQV4aWrTQB3i3bZPAi3ud7j3yT0ZWmd1cmBnD3iN/wsipK8DZ0QEcHe1h3bwRZMOrkUMzLDsBLwEvAS8BL0qANLyk4SUNL2l49dTwfvPNogxjH3VF27f3Fn8GBAbBrGVbk7WjbMlCUK5UIeg9ci6smzsccmTPCoeOX4D5q3bAnnVTmMloel+k4dUoYQJeAl4CXgJeAl7+sspEm9Zo0xrZ8PIFUQeThq+/XqiRaMzLvmNHH6My/rztENy49RCmj5Gb3PBwr4ObZ0B2Lw+jytCSiIBXi/TIhpdJjw6eIBteNhDIpEGsJmTSQCYNOBjIpIFMGtiikEEmDc2b6wO8O3caB7xnL96AH2euhW3LxkFmdxfAv4f8tIRtWrOxttZIY2lnJ+BNW0YGUzRoMEfcHzSoDguXLp1bxEVERItwfPwHEbaxsWJhHx95ZLENyPsx73nSx49fp1g/HmuMl1qjkjdvVpH21aswEX7yhJcREhIh4mxtbUT4sxJePHzzpoi7l71gsrQ5cshT5gIC3oj7Dx8GiXBMTDwLV6qUT8Q5O9snS+vvL/OrnyEmJo6ljYqKFXlSe8aiOZx4GntZ/sWbL0S+Dx+4PMs7vBNxF6JcRLhgwWwi7ORkx8LK5rOkYTs7Li91f1lZ8T7A68WLUPa/h4eziAsNjUzWFowoVsyXxYeFRYn78fEJHQ4Arq4OLF6pE8OBgbx8vNzdHdn/6vqjo6W83J4+EGnf5S7Awi61PxdxwfuPibC9PX+u8HA5Tt3dE+TK2sifIetfp0QeePJEPleP5JsN1P0FmzaJtLEtWrGw+lkdKvEDXPCKOHtehJ2cZJ8qkXFxUkY27/k4if4g+8B+/VqRP7x1OxZWy/D9ezm/1G1wOvUHSxtQoqLIn+ONtEELzZk3od0yv3pM22//hd0Prt9M5Le1lYu3a7OGUnZ5eVmwcqWMU4dOnOB/fS77Cy5fFik+lC6dLF+m13KNiHR2E/eVZ7d+K8fOixjZLuUTovpZnG7dkOUnjO+3+QqJOEdHPk/wuns3+VxT972Dg61ImyULH1Pq/nC+eE7cf1umQjLZOd64KuLiPy0rwtYBCX2TPbuIC4vi6w5eSr3qOaMeO8qYx7RK2POeXPtOxWQRZZUp45dM3mp5KeuzOk793I6OUgZKQTazZ4kygzpL20flnaCsW5hIPRdDQ/n6bW8vy3TavkWUFdu6jQgrffvsmVxn1WuX3aOENcJfjvPYap+J/NHRfH7hpTxbpm5dRdzraXNF2DMioQ5nufa9jJNtVNYr+9Bg2Z+e8l1l/TxAxEdl5Wuyw51/pdyDZT64eJHHDxkinztW9r0iuxcv3ibrN4xQrwG5711haYLLVBJpVR8oIIttwnwfPVqWNVc+N2zhso9q9rW477ButQhHtOskwsr7BaLlOqt+b6XYWDMiv/pqgRm5tGf59de+RheyfMMe+PUAf5+4ujjB0F6tmalDRlwEvBqlTMALQMBLwKueRgS8AAS8EjxxbBDwyhlCwAsQT8CbSFGjEUNE9mbNMsa9V9L27trVz1KPkK7lEPBqFC8BLwEvDiHS8MqJRMBLwIujgTS8AKThlV+kSMOLn6TSV8PbtKk+wLt7NwGvRpT8OLKX/rIrxMfzTyb4OUT5VFS4QG7YtnwcEPAS8BLwJp6rBLwEvAS8fE4Q8BLw4jjIKJOGJk3m6QJOv/3WX5d6Ta2UNLxGSuyJ/wto0nEUXDmS2PaOgJeAl4CXgBclQDa8ifcUkIaXgBfnBdnwZhzwNm6ssjE2km0skWzPngGWKCbdyyDgNVLEBLwAtGmNNq2x6UKb1sRGHhQHbVoDUDYL0aa1xKYcpOEl4M1IDa/aTaqRaGORZHv3EvBaRJAfSyEEvAS8OBbJSwMBL44D8tJAXhpwHJCXBgDy0vDxeGlo2FB6jcpIdtq3b2BGVmd2XaThNVJ0BLwEvAS8CZOFNLwEvOSWjE0GAl4C3o/JLZnaxNJItLFIsv37CXgtIsiPpRACXgJeAl4CXmU9Ig0vaXgJePlsIA3vx6PhrV9/ti7IdODAIF3qNbVS0vAaKTECXgJeAl4CXgJeOniCDp4AoIMnAD7Ggyfq1ZOHmhiJNhZJdvDgYIuUk96FEPAaKWECXgJeAl4CXgJeAl4CXgJetg58hCet1a2rD/AeOkTAayRK/jeSEfAS8BLwEvAS8BLwEvAS8H6swFunzkxdgOrwYXnUsy4NMLJS0vAaKajUkpEfXvLDi2ODTlqTM4QOnqCDJ3A0kB9e8sOL44D88GacH94vv5yhkWjMy37kyA/mZczgXAS8GgVOwEvAS8CbeBIR8BLwEvDyOUF+eAl4cRxk1ElrtWvrA7xHjxLwakTJ/0Z2Al4CXgJeAl6UAJ20RietJQV9Al4C3owE3lq1pusCTseODdWlXlMrJQ2vqRJLkp6Al4CXgJeAl4D3AxsEdNIanbSG4+BlnK1YFMikIeM0vDVqTNNINOZl/+OPYeZlzOBcBLwaBd68+UJRwtCh9VnYw8NFxMXGxomwvb1cBDJl4tH582aVLXj6VISDXXn8ixdvRVxERLQIOzryzSP29jYiLr+Xgwg/D38vwq9ehbFwVFSsiLO1lfnKhD7g8W/eiPt3ilVOVleut89FXFT+T0T44sVHImxnZ83CFSrkE3HKsaMY8fx5KIv395d12dryPHhZW1ux/2NipNxiY+PlM+b3FmGvm3/zsLOziLtkLe/b2PCySl47Ie7/W7amCBexjRDh9/nys3BIiIy7dUs+r4uLPbtfrJivyBMZGSPCz57x5/H1zSLiHj4MEmEr3hR2FS+ekwdU/R2W2UvcV2TgFPhMxD21zSzCSt+rx5aLi+x7V1cZVp4n80+jRX7/wWNE2MaGy149tsTnNwCIi+PjyDeej6Gk7Y4oU15EBweHs7A6v7otipN+a+uEwQ8Aeff9IvLfqdNChN3c5DMokUpb8G8rK16G8j+Gs9+6LJuYv2SytsTHyzkhHwbA25aPr4BI2S71MdrKHFSPSfWYzX7/Bsv/LHdRlVxlh2efNk5W14I/Y0jR0iIukQlIQqwydvFPOzs5V9+84TJWxkjS++qy4uL4c6n7IzCQzz/1ZaUanDm9nMStiHguD/W64ebmKO7fvRsowsrapp4TTk58zqjbkGhshAWL+6HOcnwrz+B29x9xP+yTYiLs+iFh3t29K+Lel/lUhJU2vH0bKeKyZXMXYfWYefSIz9E8x3aL+zHtOoiw3YN7LBzqk1vEuTvLdfzeo9csvkCmd+L+rVgpw8Jx/D5eEfn4mum0fo2Ii+3cVYSVuaruw6x2csxG2vI5kehHxY2r8rmLlRJhpc/evYsScblyeYgwRCbIZsoUEfesuzw8QD2+lXeV979yfsVUrpqCPOX8iYqSa6PL7ZssbXjh4iKPuny7m9flMySkcYyS8gRr+X6A48dZ2rAadUQeZd3BiPfv+Q8vZZ5gWP3+eP9eyrNUKT+WVhkDUjg85OnJ3+PZ7sn2RZerIJLZJ7xfXr7mcxIv70D5Lnzlk1fEK+tZTIx8l6nXxqR1m/v3F1/oA7zHjxPwmttn/6l8BLwABLwABLwABLwEvAS8AAS8+COJgFcP4P3886m68NOJE8N1qdfUSknDa6rEkqQn4CXgxSFBwEvASxpeAAJeAl5cDwl4AfQA3s8+kxp7jWhjUvaTJ0eYlF6vxAS8BiTfpvdEaFynCnzbVH4Gx+Rbf/sD9hw5C+sXjAICXgJeAl4+iUjDSxpeAl4CXgJevh7qAbzVq+sDvKdOEfDqBfEWq3fb3uPw6/5TsGmxtHnEwtv1nQTN6lWHrxt+RsALBLwEvAS8bAyQDS9peIGAl4BXP+CtVm2yxfjHlIJOnx5pSnLd0pKG14Do34VHwufN+8OvqyeCny/fDOUfGARNO46EEzvng7OTAwEvAS8bF2TSQBpeAl4yacC1gGx4yaRBLw1v1aqTdIHJM2dG6VKvqZUS8KYhsaETlkIePx/o1aEpS7ls/R548CQApo3qwf4mkwbS8BLwkoaXNLzccwGZNBDwkoZXPw1vlSr6AO/ZswS8psL3R5n+7MUbMGHOejiwkbv7aNR+BIzu3w4qleX2egS8BLwEvAS8BLwEvMoLjDS8pOHVS8NbufJEXTjqzz+l20tdGmBkpaThTUNQ6Nfvy1aDYc743mBlbQUDxiyAw1tmCf+fBLwEvAS8BLwEvAS8BLzkh1dvP7yVKukDvOfOEfAaydwff7K5K7ZDZFQ0WFtZgYODHfTr8rVoNAEvAS8BLwEvAS8BLwEvAa/ewFux4gRdgOr8+cQb+3VphBGVkobXCCE9fvYCug2ZAXgi0fIZg8HPNxsBL520lshekTat0aY12rRGNrz4YiCTBjJp0MukoUKFn4wgGssn+euvsZYvNB1KJOA1Uqht+0wCPGIRfe+qL9LwkoaXNLyk4SUNL2l4ScNLGl69Nbzly+sDvBcuEPAaiZL/7WQEvAS8BLwEvAS8BLwEvAS8egNvuXLjdQGqixd/1KVeUyslDa+pEkuSnoCXgJeAl4CXgJeAl4CXgFdv4C1bdpxGojEv+99/61Ovqa0l4DVVYgS8TAJRZMNLNrwAEFGmvJgRdLQwHS1MfnjJhpe9H6JixLrgcvsmC4cXLi7ibG2tRdju5nURjkxI4xj1Tr5prWVaOH6cxYfVqJNs3cEI9KqE15s34eJ+bGy8CL9//16ES5XyY+FHj4JSpABPTxcWn+2ebF90uQoirb2NFQu/fC3r0ht4P/1UH/C8dEmfek3FNwJeUyVGwEvAmzAG1C932rRGm9Zo0xptWsOlAvj6ogAAIABJREFUgTatEfDiOHjlk1fQgpubAwvHxEj4dnXlcZa8ypTRx7Tg8mV9TClMlR0Br6kSS5I+X76hIqZXr5osXKRIDhH37l2UCFtZyU8+yi/RvHm9UrwfFsbzPXnyWtyPi5OTxd3dicXb2dmI+35+Hqp6o0U4Pp7/qg0MDBVxmXAHXsJVrx7/5e3m5ijijh79R4SzZ3dn4WzZ3ESc0r6kbXzyJJilqVWriEj74QP/1Y3X7duB7P/wcNk+9SKgyMXHh9eJV2hopAh7eDiLcJXK+Vk47J0s6/Bhrk3Ay8XFnv1ft67ULOzY8be4nzdvVhH28nJl4fv3X4k4tZYiIoJrLPz8PMV99YJ148YzFq/u+7t3X4i0ynNhRLlyeVh8TEycuK+WpxKpzvPqVZhIq+SztuYahqRlqcfUs2e8P0qVyiXSnjp1V4SdnbmM1JoPdbmKJsbHJ7PI4+DAP1/j9fq11MRER8eyOBcXuZCrywoIeMPuq+O++KKwKOvgwRvJ6lDGLt5Q/8BQ2qUuy9c3i8iv/ACxkiIClXJH+NHGDMqY8vfn7ePy4tofvJ4+5TKMiJDjLGdOOdcKFODHjt+//1LkUfdthQr5RLzSz+q5GBXF5aaWjXqtCA+X2jJFHra28sHUc9neXq4HAHyOq9uiaOExPj6eryeZMsmy1HNc6Wf12FRe3JhPrRlT2qDuL/X8sLHhWjpHRzl2Chf2Ec995w5fF/BSxk+uXFLGV68+Vd3nYzZbNrlGqJ9LWXPVdaGHHeUKDY0QYUW2lXNIuV3m3c2uHDn4mFKPDWU9VMugiq98rqN3pcavevWCoqwbN/xZuFChlJ/bzo7LyNZWtiV/fvl+CAgIYffVMnZ2lnNNrdV0dLRjadXvD19fOYeVNVe95itrBeZT952yDnl78zUSL/X4zZyZv4uU8Yah7Nnlu0Jpt1rTqg7L/HKOK+3HstTvj6xZeRvUa6u63co4DAmRfZx43ZCyLVEiJytLPW9Vryrw9OTvGvU4DQqS67C9Pe/zFy/eCrlkyaLIIrGWWUlrk6AVxgwlS8o1WRSgMVC6tD6bx65c0WeznKniIuA1VWJJ0hPwJl5UCXjljx0C3sRwS8ALQMBLwEvAC0DAmz7AW6qUPsB79SoBr0aU/G9kJ+Al4MWRShpeANLwkoaXNLwApOElDS++E9Qa94zS8JYsqc8BENeuGX/gRVx8POBhXmu2HIDTuxdAFneutY+OiYUfZ66BM39dB0cHe+j6XUNo2aSGRUGQNLwqcYaEvoNqzfrCH9vngJcn//zz97U70L7fZDixcx5k9eCf0M5f/heGTVwGx3fMBQJeAl4CXj6JCHgJeAl4CXhxLSCTBn2At0QJfY74vX7d+CON+46aB4UL+MHS9b/ByV/nC+BdtOZXuPfIH6aM7A6v37yFNr0nwvIZQ+CTfNz0xBIXAW8SKbboPg46tKgLjb6szO4sXrsLNv56FEb2awsNa1VicfNX7YDAl8EweUQ3At4kdmJk0kAmDWTDm9hulmx4AciGF78CkQ2v8rolk4b0MWkoXlwf4L1xw3jgvXXvCQPeEjU7JQLeJh1GwoRhXaBUUb43Z/qizeDs5AC9O31lCdZlZRDwJhHlnOXb2K+LicO6sDuo3S1TvCCEvH0H44d0YnH4y6N1s1oMiknDSxpe0vCShhclQJvWEm+ook1rALRpDYA2rQFklElDsWKJT4K1GCmmUdDNm5NMriop8Jaq1YUBsLsb3yz4y+7f4eK12zBjTE+Ty04tAwFvEsmcu/QPjJ62Co7+MguiomOgVstBsH35eOg8aBoc2DgdIiKjoErj3nB062xm4kDAS8BLwEvAS8DLPUKQSQOZNOA4IJMGfUwaihbVB3j/+UcCL3ITmiYkvTK7uUBOH+l1RA28sXHxULp2F/j70HJwsOceRnYfOgNHT16EBZP6E/BaTAJJCoqNjYNKjXrBr6sngv/zV7Bu20FYOm0w1G8zFNbMHQ53HzyD2cu2svt4EfAS8BLwEvAS8BLwKq8S2rRGwItjQY9Na0WKjEwvNDJY7r//Thb3AwKDYNayrcnSly1ZCL77qpaIT0nDe3znXGHTu3nXMbhy4x5MG93DYs9EGt4URNlj6CyoVb0sYMe5uTpB528bwJjpq6F86UJw58Ez+PD+A/zQ61sC3gTZqX09kg0v2fCSDS/Z8OLSQCYNZNKA44BMGjLOpKFw4REWg0NTCrp1a4opyVnapMDbrNNoGNGvDVQsw334j52xmmmEu7dtbHLZqWUg4E1BMmu3HgQ0rPZ/HgRDe7eGEoXzwp7DZ+HC1Vtw96E/9O7YDKpVKEHAS8ArRg+5JSMvDWTDSyYNuCCQhpc0vHppeD/5RB/gvXNHO/Au/fk3uHLzLsz9qS88C3gFHQZMgU2LxkDunNkIeC0mgRQKuvvwGfQZOY/Z8P6+bQ47GSrwVTB0GTQdXr0OgRM754OjA7czIZMGMmnAcUDAS8BLwEvAS8DLX6hkw6uPSUPBgsPTE41SLfvu3alG1YuuX7/4ZgBLi+ajyqmCuGfKzcUJfpy5Fk6dv8a8M/Tq2Aya1q1qVLnGJiINbyqS+rx5fyj6SR5YMnWgSFHvu6Hgk80D1syRg4qAl4CXgJdPEfLDS354adMaaXgJePl6qIcNb4ECw4xlP4umu3dvmkXLS6/CCHg1SpaAl4CXgJeAFyVAGl7S8JKGlzS8ClLoAbz58+sDvPfvE/BqRMn/RnYCXgJeAl4CXgJe8tKgvLHIhpdMGvTS8Kp5JCMJ6sGD6RlZndl1kYbXbNHxjAS8BLwEvAS8BLwEvAS8fAzgRTa8+pg05M37g0aiMS/7w4czzMuYwbkIeDUKnICXgJeAl4CXgJeAl4CXgDdLFidBFHqYNOTJow/wPnpEwKsRJf8b2QsVkm5A+vWrzRpdoIB0oxEXFy8exMpKLgh2djYsPm9eefIIeoNQrsDAUBZ8/pz/j1dERLQIZ8nCj9+zsZF58uf3TnGyRUfHsfg3byJU+eXErFKlAI8/elTcP2GbS4SzZXNj4axZXUXc+/fvRfjChYeq+A8sXLMm96WHl/rcdMXO0d//jbivfm5l16ZaVurn9vR0EfmUdqs3yhw58o+4X6dOMRa2fhcm4g6ffybCBQpIednZWbP4p0+Dxf2wMClvZUNWwYKyb9XP9fjxa5bPz89D5L97V25icnd3EPFFinBfveHhMSIuOPidCHt5cTlnyiTHi1I+xittUd9XJQU/P09RlrLoFirkI+LOnLmbTPbqZ1H3h1KH+rnc3BxFfrXdqtJnVlZyTLq5yedW/HEq7efjpKgo69gx2XeKD1d134aHy/5wcLBl+dR15c4tn/vRoyB2Xz0/1GnV8lKe59UrOU4KFcou2vXixVsWjonh8wgvDw8+//D65BOe9u7dFyJOXX5xX5k23I7PO0UWGI6Lk3NJaa+tLR+PeL1+HZ6sXHV/OTlxjzFJ26j4Q1avQepnVOpVyyhrVjm/XF15P4eGqtcN+SyKjDGNssbY2/N1DS93dzlOnJzsWZzSbxjOmTOLSOvvH5LsGXNc/VPE3f+krAgrz+XtLdej4GApo9DQSJZWWWMxrF6v4uP5GoXXq1e8bytc/0PEBdT/WoSVOtTrcPbs7uJ+UBAfMz5vZd9fiZTPrX4XvH7N57ivr3zu69efirLU5SqRPnby/RFqw8dOSmMX4xOt76F87Xlmw9duvJT+xLAyr1xceL/gpV77lKNwMV4ZH+r+VGSM97NnTRgTNrLvRaGqsaEeswCyD9R+u0NC+FjLbC2fG1xlP8Ply+x+oE8+UYX6XaLMG3V/RUXFirQfPsh6S5f2Y/H3778S99XjxNuby0699gUG8vGCl7Mzn3fKuxrDXl5S3uo1XT2flfwlS8p3rFpeWsK5cw/Rkt3svI8fzzQ7b0ZmJA2vRmkT8AIQ8AIQ8CJ8ckAn4E0MJQS8AAS8+MOFgFe+bgl40wN4/fwGayQa87I/eTLLvIwZnIuAV6PACXgJeHEIEfAS8JKGF0+UIg0vaXgTv1QV7T9peBPLJT2AN1cufYD36VMCXo0oqX/29dsPw76jf8LmJWPF52X8JNK2zySoX7MitP36SyDgJeAl4OVzlTS8ZNJAwAtAwEvAixLQw6QhZ85BuoDTs2ezdanX1EpJw2tAYmjn9E23sdC+RV34qn51lhKPGF7zywHYtnw8O4GNgJeAl4CXgBclQBpe0vDiOCDgJeDVC3h9feVBWabCoJb0/v5ztGTPsLwEvGmI+tL1OzDwx0Wwb/1UpsFq2G44zB7XG8oUL8hyEvAS8BLwEvAS8PINfaThJeBN+kolkwaAjNq0liOHPsAbEEDAm2HUnt4VjZi8AjK7u4CdrQ28fvMWJg7rIqok4CXgJeAl4CXgJeBVXgqk4SUNr14a3vRmof96+aThNaIHEXKbdhzFTBh2rZkIWdylmxQCXgJeAl4CXgJeAl4CXnJLprdbMiNw5n86CQGvkd0/Yc7PYG1tDSP7tUmUg4CXgJeAl4CXgJeAl4CXgJeA10ig0ikZAa+Rgp+yYCPYWFvDD72+JeBN4sid/PCSWzKcFOSlgbw0kA0v2fCSDS+XgB5eGozEmf/ZZAS8RnY9AS+dtIZDhU5aA6CT1uikNZwLdNIaAJ20RietfUwnrRmJM/+zyQh4jex6Al4CXgJePlkIeAl4CXj5XCDgJeAl4DUSoj6CZAS8GjuBbHjJhpdseMmGl2x4yYaXbHjJhpdseDUCVTpnJ+DVKGACXgJeAl4CXgJeAl4CXgJeAl6NQJXO2Ql4NQqYgJeAl4CXgJeAl4CXgJeAl4BXI1Clc3YCXo0CJuAl4CXgJeAl4CXgJeAl4CXg1QhU6ZydgDedBUzFkwRIAiQBkgBJgCRAEiAJ6CsBAl595U+1kwRIAiQBkgBJgCRAEiAJpLMECHjTWcBUPEmAJEASIAmQBEgCJAGSgL4SIODVV/5UO0mAJEASIAmQBEgCJAGSQDpLgIA3nQVMxZMESAIkAZIASYAkQBIgCegrAQJefeVPtZMESAIkAZIASYAkQBIgCaSzBAh401nAVDxJgCRAEiAJkARIAiQBkoC+EiDgNUH+cfHxaaa2sbY2mEZrGVrzG2pcfPx72LzrGLT9+stUk2mtX2t+bJjWMv7r+ZXOefQ0EOztbMEnm6for9i4eLC1MTwGLSHDb3v+BF/Vqwb1a1UCNxenNOdF0gRa8yvlvQwKgRu3H8LLoDfg7uoM5UoVAi/PzEa1R+9xoDTy7bsIuHLjLgSHhIG7mzOULlYAsri7GvUMeo4BdQO19IOez6B1DFhiLmltg975tb5TLCFDLEPLONI6Fy21nhk16SmR2RIg4DVBdCVqdkoxtVUmK7CxsYao6Bi4eXytwRKLfdExzRoNlaE1f2qVX7p+FybO/RnsbG1gy9IfU22j1vq15seGae0HrW3QOz/K4M+LN6HfmAUwbXQPqFm1DETHxMKgcYvg+NkrkDtnNpg/oR8UyOubbv24/9h5OHrqb/jr8r9QoUwR+Kp+NahSrjhYW1ulOb4xgdb8Hz58gOmLt7AfaDmyeUJ2Lw8ICg6Fx89esB9sQ3q2gkyZMn30c3HJz7thxYa9DHCze3vA6zdvIfDla/juq9rwQ69vDT6D3mMAhau1H7Q+g6G1AMcizov0Xk/1bsPHsB6lNNGMfadgXq3PoHUcYRu0zEWt65lRiyYl0iwBAl4NIoyNjYNTf12Hg7+fh8s370HZkp/A1JHdDZaIi+ORX2YZTIMv79SuwFfB4la974bCwU3TEyXFuCtHVhr9VPiCnbX0Fzhz4Qb07/o1fFW/usGXbNL2J23Dl60Gw/Xf16Rav9b8KRVsaj9o7QOtz1D6y67J+k39XMb0Yds+kxjY1atRgWXduPMI7Nx/CpZOG8RAFMF32fTB6T6OYmJioUqT3vBZpdJw8/ZD+PLzctCsbjWDsK1ulLn5l2/YA7sOnoaZY3tC0U/yiCJv338K/ccsgG+b1YSOLesZnAda55I6P1bUpMNI+G3d5ETz09Bc3LL7d1i2/jeYMaYn00wr183bj2Dgjwvhu+a1DT6D1jGgdR5ge7X2g9ZnSKmD37//ANv3nYBFa36FOp+Xg1H92xm9HqWU0NB6nFrBprRB6zhS538TEgbdhsyE7SvHJ2qase8Uc8ZxUhmY+k7B/FrnotZxpHUuKjIwdz0z+oVNCTVJgIDXRPHhQnbx6m3Yd+xP+OPMZShRJB80ql0ZalQtAw72dmmWhi8ZQ0CYZgGqBAhOSV+oKcWpy5yyYKP4My4uHg4dvwCNvqwMvTs2A1cjPk0nbX/S+tJ6Pq35lcZr6Ye02phWH2h9hrT6KK372L7KjXrB6d0LhUa1fb/J0KLRF9C4ThVA2XzevB+c2rUgrUdh980ZR+qCKzbsCef3LYF34ZFw5ORFpr2NiIyCjYtGG1W/Ofm/+HoALJjYj82/pBdqeybOWw/71k81qn5LyADLUJ5DqTStfmzScRT80LMVVK9YMlk7z168AZPnb4S9P09J9Rm0jgGt8wAbprUftD5DUuH8dfkWTF24ETyyuMGIPt9B/jypf+XAvJaQgdY2JM1v6jhS58evHM27jIGTv843euxrrV/rOyVp/easR1rHkda5aMn10OyOo4xpSoCAN00RyQQzFm9h2jPf7Fmh7hfloe4XFSCzu4sJJVh2gS1btzuc27dE2GyiLVeF+t/DpcMrUm0TPoNyob3noeN/Ma1u97aNwMnRIc1n0Qp7WvNjA7X2g9aXnNZnwH47tnV2imMHX1iN24+AP/cuNtgXVZv2gdO7FjBtPH62xZfkkS0zmf0qfmau1qwvnNm9MM3+xATmjKOUFvjIqBj4/cwlOHDsPDx7/gp2rZloVP3KC96Y/Nf/fQD7jp0D1MhcOrQCrKySmy0geFdr2geuHF1lVP2WkAH2W/02Q+HCgWWizrSAF++f/W0RODnasz4Lj4gCF2dHlh/DVZv0NvgMWseAlnlgqX7Q+gyKsP0Dg9i6cPv+E/ih57dQs9qnRvW9FhkkrcDcNiQFVlPHkSWB15xxrPWdklSO5qxHWseR1rloyfXQqIFLicySAAGvCWKbMOdnOHvxJhQukAvq1agIn1cuZZRWV12FJRfYVj3GQ/uWdaFhrUqsCgSBNVsOwPYViT9nGXpE3Cgze9lWQI3SoO4tmbbX0KUV9rTmx7Zp7QetfaD1GboMmg7VKpSATt/WTyZq7L+/rtyCJVMHGuyHb78fD4O/bwXlSxdm/b5y4174dTUHTPwRg+UYssVWF65lHOGPrEoNe0Kdz8sze17UVjapWxXKFC9o1MwyJf/idbth3daD0KBWJfaMBzfNSHHD3P3HAdBpwFSTtFzmygDBFGW9YecRQNMaNDHCHx0IDl91Hm1Qy46mIAc2TGcb1ZJq5nATGGrqTu9OXUuvdQyYOw8s2Q9anyEiMpqZVWzfewI6tKzLTEBsbW2MGnuYyFwZqCvQ2gblB46548gSwKtlHCcVtqnvlKT5zZmLWseR1rmoPIMp65nRg5QSWkwCBLwmihIH9Lm//4H9x87Bn3/fhIqfFmXAWblcMUjLQwNWhbayVcsXN7HWlJPjpoDeI+aAt1cWsMqUiWnV5k3oyzYPmXpdvnGXgaSjg73BT9FJXxBJbXjTeoFoza9eWMztB619oPUZUDvWedA0aNmkBjSpU5VtukKt5O5DZ2DV5v2watYPULJofoNdeOzUJRgzYxWULJIP/r52ByYO68K+ODx88hy+6fYjLJjUz+hxYM44wvqPnf4bTv91HYoXzgtN61aDGlVKg52drVFDz5z8VRr3hm0rxrMvLGOmrwbckzZ+SKdENudozjHkp8VMU/rTD52NagsmMkcGP287BMs27IEShfOxDWa/HjgF2LfYpwf+OA/ZsmaBScO7ptqGvqPmQaWyxaBN89rJgHfuiu3w4EkA23yY2qV1DJg7DyzZD1qfAU0q0FNJtzaNwCOzK3z4kFxataqnru01VwbqWrS2Qes4wvzKFR4ZBas3H4C+nb9KJIj2LeqmOo601p9awca+U5LmN2cuah1HlpiLWtZDoxcqSqhJAgS8GsSHn5JP/HmVaZv+ufOIvbx+HNRBQ4kAo6etYvBi7BUaFg6Xr98FdClWqlh+yOrhbmzWZOmwjE2/HoV239RJtQzUpnRv2zjV+xeu3GJax9QurflTKtfcfsBf9TWrfgpDvm9lkmmKJZ4BNybNX7UDzl/+l2kG0TQBtaIDu7eAT0sYpx29de8JXL15DwoXzA2lEgAZ+zDsXYRJz4MyNXUcIVQ3rVsVGtauzEDD1Muc/EMnLIXpY75nVYW+DYd2fScxG+YvPy8PWbO4AWpFcS5aW1vDqtlDwTOLm0nNMlUGqMEd2qs1+7GLF25YQe3n1X/uQaH8ftC3c3NwdkrdTOjaP/eh65AZ0KBmJWaWcubCdaaVfhrwEtr0ngjr5o2AvH4+Bp9ByxhA86za1csmKx/trxEcU2u7pftByzMgqKR1LZjUP9Uk5spAXaDWNmgdR3rXb0j+xrxTUspv6lzEMrSMI61z0Zz1LK1xS/ctLwECXhNkmprrFLQjxJcsgktabsnw05Ghl2Badn8hoe9Mhhn1I2rNj1qsWtXLJvuU/OLVGwZt3lnT9oGK5hMemd2gcAE/0TS0f0P55cmVPc0esUQ/YCWffdUP+nRuDmt/OQA92jVhAGfK1Xf0fAYMpuZT14FfDN69i2RjwpRPsUoZdx8+g6f+LwF9ubo6O0GhArkgp4+X0Y+hNX9qFeE4Qdtwcy9j8iNg7j58hm0iRT+8bi7OULVCCWjeoLpRX1uwbWhKoPxIfP7iNSvrA3yA8qUKJ/JvnNJzoDY5JRtiU54ZNYz3H/mzLI6O9mzjIV74oyWtTaRa53Jqaw26dkOIWjtvhFE/ZrT0g9ZnMEXWKaW1lAy0tMMS40jP+i3Rh1rL0Jof5afnXNTSf5TXeAkQ8BovK80HHmBVCGsIN0UK5oZa1T6F+jUrJnKUnxbwpnb/37uPYfHaXTDnpz4GX/Za82P7fbw9YPSA9vBFldJCeqhZ+3HmWuaWTR2fVLxop/bz9kMwZWR3qPRpUXH71PnrMGzSUhg7sINwtZVa12h1tK6Ui8CLGjV0ozN98WZ4FRQCYwd1MAq6sQzcKFGlXDF4HfzWpHzor3npz78xjwr5c+dgGyERMhBwXJ0d2f9o42voQi0gut8KefuOHbjw6NkLZt6AztdRK4jyxX5K7dKaP61pk9Y4tkR+hPyAwCD2vPhZGy/c/JWW/12l7vXbD8OmX4/BgY3T4PCJizB62kqmZcf8+Dl2yohuBjc/4Tg8df4a1KhShtV78I+/mI0/2zRYoUSa4zgtGaR1X+tcLl27C6yeMyzFav44c4VtAFs+Y0hazdB0X+szaNXQWkIGWtvwX8+vtQ9xAGktQ2t+TYPYAu3XWj/lN04CBLzGyYmlssSvSIQd/PR675E/nDp3FU6euwbVKpZgZgJom5gWKBi6j34nI6Nj2Cf61C5L5Ed3T71GzIGe7Zsmeqmj7dWPM1bDHgOulGq3GgyrZw8DP19v1sQZS7awXdV4oQ9V9D+6f8O0NHtFi5b4TWgYKz+p31S0CV6weidzM9erY7M026AAM7Zl2qLNUPfz8syWMC1N7YjJKyA45C1MGNqFacTRXhPL+CRfLmbLiy/AG3+k7ssYG9ayxzho3ayW0KKeu8TtyscN7gRrfjnAQGzt3OGpPoPW/PgJD317FinoxzT+am29oReY0iCt+f84exmGTljGfjwi7C6eMgAmzdsAF67egvy5fWHqqO7J2pRUGNWa9oXNS8ZArhzegG6J0N62ROG8LBme3jZi0nKDY3nklBVMQ4xQiOPm8PEL0LReNab13XXgNJsbhsYRyiClDab4aRb7My0/wlrnMv54Tctt129rJxmcB3o/g1YNrSVkoLUN/1/z48Ax5p2U1nphTBla54Le4zjNlw0lsIgECHhNEGN6/IpE272d+0/Cz9sOQ4NaFWHVpn0GXRHhAm3oMyp+HkvrZCEt+RUZILR36D8FRg9oJzbhYd2VGvWEv/YvTVWqah+T6IaqXL3uzIcrbjJCey+0q8W/DV1atcQIqnjhbuLU7E+N8WOpAC+Whf2Itr3om3l4nzZQoUzqdsz4jEd/mSXcwOEPqY4Dpgo3Xmn96MH6KjXqBX/uWSS0mahV/PLbIaxcdDdXuVFPuHhweapi1JofgVr54Xby3FV2Ql+X7xpC/RoVmV1tWs+gNT/aPeKmNPTDi58ih05cCr07fgUNalZkm0k37DiSph9g9N15bNsc5hasUfsRTP7KxlP8TF+1aV+4cMDwWEb3cjh267b+gdWnmEfgV4OW3cfBsW2zTf7xiX3Zb/R8qFujAvvxldqldS1Iq4+MWRpTKyPDnkGjltoiMtDahv94fq3jEMeZ1jK05td7HBsz1yiNdgkQ8JogQ62/Ig1VhfC3evM+OHzyIuxek7pWBdvwx/Y5BluNx5Smdlkiv3LYBX4+7/7DTHaqFXqGwEMHcNPaz/NHplr/113Hsk1xjb+sAvhJ+djpS0zbix4Ljp36G679+8CgZhILtpSWWA2sJgwDpg3E69HT55AnV+JNRSGhYcxEwtCPjs+b92dabMWWGzXOzTqNhhM7+QYcY17CeLIQuudq1aQGy4ObDdEH7po5w5m3gHVbDxn0g6s1f1J54abNlZv2MS8Rw/p8B98Pm23SiX+m5kdfpQc2ylMGEV7VvotTOoUwaZvHzVwLAS+C2OYyHHdoHtGhZT0IC49gP17Cw6Ng4eTUNzxhP25aPIZ9mUG3SMtmDGHmJXgZ40+5eI1OULFMkRSHXnhEJKB7NbVf36QJtc5l/NGguLIzZfyr0+r9DFo1tJaQgdY2/Nfzax2Hypqn53tN73Fs7vyjfKZJgIDXBHlp/RVpQlUGgdWUo4Oog/TXAAAZXElEQVRTeklaMj8eCTl90Wbm1gk3nKENbD4DO8txU1D/sQvYLvt8uXPAunnDYf6qnXDizyuQJyfPn9bGNUtoibF+1PDm9ZOb5NDcBD+Pp2UD+uDJcyZW9BKwfgGH36SXIRkgaD1/+Ro6t24A1lZWsGz9HmbaoLiwMgZ4EYaGTVwG9x4+Y1UjeM8a14vZBA+fvBzaf1Mn0ZG7SdunNX9qAxQ/x09duIn98ElrA2dKZRibv2G74eyHEfq8feL/App2Gg0rZ/7AjvdGe3b0drJj5U8Gpxxqwtds2c9+IDwNeMXSomYSoRWPSEY/x24GTh/cvOsY+yLT+qvaEB0dw9zDfdWgOjNLwXufVSwFg79vmWobStXqIrxOpJYID7hJ7TJmnFhizTFUht7PYAkZ4FqA9thqrx7GrgUKrFlyTTW1z7TKQO/8H4MM9R7HpvY5pTdPAgS8JsjNEr9kTaguxaTqXeXmlKU1vyXsmNF0AbWg+PnXnF3uWrXE6Dt28PjFMGZA+0QHbaAf3AWrdsDCyQPStP9E2R8/e8XgBr3U+gcd1S9etwtO/nkVYuPi2AanAd1aCI3vxp1HmW9WYy7cuBUfHw+GtPqGytGaP7WytY6TtPLjZrMl63YxqL/z4CmM6t+OgTaCZ0xsHMwc2wuqVzS88U/ddvzCglpVtL9WtLTGyB9/6O06eAru3H8KYeGRzLTDzzcbA2ZD5giWeMlrncta7RY/hmfQqqG1xFqgtQ3/9fxaxyGOI61laM2vFfq11m/MWkNptEuAgNcEGWqdFCZUlWpS5VQf1GThqVbKhX4EcSMcuoIypKHUurNcq4cBrTuS8Xm1aonxBYP+bj+rVIqJDzdA4U57vBB6t+05DhsWpqy5xTRaZYhlIGiivSjaj5rjlsgScjQ0HtPyB633OMS2oxkEjvnSxQowyES3dqjtze7tadD1n/Lc6S1D9ISBG+JSu9CzCR4WouVCbxIHfj8PD58EQmRUNDg42LEvJXjynSE7ckOwaqz9LZah9Rlw49/XDT9nmnn1hZsGA18Gp+gnOKm8tGhota4F6ras3XqQrSO5c2YzuUu1rgda8ysNRnd4+M/Fxcng142kD4jAd+j4BeZDmuV3dmRKg5RcWJosHEjbPz26+1yxcS8zA6peoQQzkcP3BJ5aWTCvL3z5WTmD1Wodx5Z4J5gjF8pjmgQIeE2Q18fwKw5BBH3ejujXJpHpAH4KHjtjNVQtXwL6d/061afSurNcq4cBrTuSlQfToiXGDVvn9i5mRbEDO2p3gStHVzIAxZc9mkwY2ninVYbogm3QuEWwYuYQBmujpq5k0MLckiX827x4jMGRqVWOWv1B6z0OUTjo2aJg3pzMrAFfdBERUUx++LJFU4S0Tn3TKsO0lg5jfiDjIQ+46Q7t4fFHhKODHeTOmZ25u0vLDy8CFp6S1axeNXbQBeZFTfXjZ4Gwc/8paNH4C+jSukGqzdRqt4gFa/XLjacWoncSPH0Sf4QqP9YvXb/DzFLwBL8e7VI/6EarhlbrWqAWLtqR41isV7MidPuuYZreWpS8WtcDrflRiTFn+TbYc+QsMzVjfuWtrNgXuOYNPoNubRuDrY11quMIN6CieRUqYNzdXAA3seJhLFjW39duw4wxPdP88aV1PUIzLpxL2IYjJy6yH5p41HmlskXhys37bHwN6PaNwSmL68n9RwHs9NRP8uVkpkn4XkUTu7QOdNL6TkhrLaH7lpEAAa9l5JhhpeBGK9zwhC91vPDc8V+W/cjCSTc/pdQohDktO8u1ehiwhN/LtISdlnYSvRksnNQfCuXPxaBp7PTV0LVNI/i2aU22WM9cuhUMuWPSKkN0h4Ybu5QjpvGFtW3vHzCib1t4Fx4BLbr9aNBTBz6/Vjlq9Qet9zhcvWU/88SwfPoQKJDXF9AuGjX1DvZ2bNMZvmzTsiHWKkO0Xc/m7QFFCuRmGkr0TqG+0gJedIM35KclzI4cgRW1s1FRMfDoWSCzQ542qodBf8y1WgxiXyJ8snkmmxKvXodA614TmNeO1C6tdotYrla/3CijC/uXwg8TlrLnGNa7tWgu/rD/tud4+GP73FSfQauGVutaoG4YzonDW2YyH9u4J2Fkv7YGT51U8mpdD7TmR/MuPFK+e9tGDFg3/3qMfSGpUr44c5mY2c0FJgxN/Zju2i0HwaIpA9l6itfzl8HMp/WqWUPZSZI/zV4H6MrS0KV1PcJNqnvXT2FKC/zhiD8+ju+cy0y98O+vu45JtMk1aVtwk+q2vSegTLECcOXmPejf7RuYtnATZMnsCi9fvYEfB3c06Fdb6zshrXca3beMBAh4LSPHDCsFz7HH3fxoa4h2sLjI4ksNXxb4K7lO6yFwZvfCVNujdWe5Vg8DWnck44Np1QZs2f0702jgAv3g8XNYMm0QW6Cf+L9kC+asH3sKc4eUBKlVhupNd1g+fg6r+c1AdggGg9kvu6bp4UCrHLX6g9Z7HNb4ZgBsWDiaeUjACzcSTpizjnmpyCgZzlq6FV6+fgP3HvoDbt5sWKsydGxZF3IktCmtfkRvH8P7tGYeTpJeaBs8fvZagx5bcBwiSCg/ftVloLYLIcCQe7202mfMooZlaPHLrbQBzVG+Hz4bypYsBL06NGVVI6jUbjUIzv62KNWmaNXQal0LkgKvIm/84oCgh6ceop/xzO4uqT6D1vXAEvnP/LZQuOTDr1wN2g5nB7LgF4PPm/cz+MUL/Vn/sWOu0AKjS7+G7UfAkS0zmbvGak37GPQ2goLRuh6pvbLgVzt0j4nvQfzKgyZjDdsNMwi86PVl8+KxrJ/QW0u9NkNhy5KxbI8Ammn0Gj7HoE9ure8EY+YapdEuAQJe7TLM0BK+HzYLsnt5Qv1aFZmtKf76Rjs+dHKP2kq8N2Vkt1TbpHVnuVYPA5Z4yWrVBqBw8FOVYv+JLyVcJPF4Y/wkiZ+GDV1aZdi8yxgY2L2l2FT1+5nLbLOc4iLKGBkZk8aUgWmqP2i9xyF+aTj16wKhVcX2o8bz9O4FRgOvJWWIGtV9x84BbjjETYj9ujSHGt8MNPjDBX80nNw1P8WTEfFH0GfN+sHZPanDHm7SQ21UhxZ1oVABNGmwZ5v28NQ+PM0QTSPGDmyf6jDQareo/mFhrl9udR8g4PYeOQfs7eyYSQd++cji7mLQk4UlNLRa1gKUwcS565mMkx6HjeB44txVZlttSAmhdT3Qmr9B22HM7KBYoTzsOXA/yI8z17D1CA8DwrluSMv+w4Ql8OEDsINwMmUC2LDjKNjZ2bBTNyfP38DG4/+1d+/xPZZ9HMA/JkzCNm05PA7xKCkPj6iJGlI5LKs8Ga2cho1m2MEwc5jNYWMzp1lIOU17RCIip9JTPA5FyTqwp5JDQ0lLjNbre3m212i/43X//Oy3z/2n3fd9Xff7vv1+3991f6/vlZEUacvHkQqUbalPHzJqpup/+zYt1IqHkgNe5fbK8GvTHPImRX4UJsQEm+zDjWUMZYRY/u8VptjcWAbxxhPpfifYhMOd7RZgwGs3nXMOlNdFU+csx9fHflD5SeOGv4Qt7+/FTinrVbem+vK7vbK72c7pzCzXrTCgOyPZiNEAI+6cjuHH+w5jxIS5aoRZXoN/np2jqgrIh7Ns1tQHNsKxJAdr60E7+zkcFDUDzZs2Qkif7upLdt6St9QX9eKUUVYHvI4wlJHKrPU7sGz1ezh+MtfsinlDRqeibm1vtcpi8RxByR1cnLkRh7/MMbu0r4xcSYUIyb2UNxUSWEnQK5OmZDJcYEAHs8uMC5SRedD21OW+sVKEBPryQ/6T/5c57BfY2eznmREjtMXnZpw8fVZNdipAAVo3b1JiusiN/2/eWLdd/dPMjCxEhpRchi4woKPJjx3dzwPd47d/eABjpy1C08b1VYD3WfYxFax2bNcScn+kbnrAU21N9l+eV1nWXlYHvCKjqy3vU7WtJQddAsGuHX1Rvdq1+tS2btZ+Hsmo7JTZK/B1znGVRiI/9OQHiKRUSKnG/r26qgnCpja5TlmhVL5Tt+06gIS0pSqAl0l34ivpUpKiYW7T+U6w1YX72yfAgNc+Nx51CwnYOhpwK3Rd0lH2HcxGfv5VtGpxr1qml5v1AvKaMWpSOo588y3cypVTdYhnxYcV1XCWSYEpE1+2/oQG7yk5xPJl+6Sf6dnhUnpt2ryVakliGYGSYFVe7cqMez/f5moVQ0uTZYp3W0YUT5/5SY221fT2tFhP2pA86BvSb2yty22J3VKlCzleZ4RWFr+REnfy+n7L+/tUatM/H2is7OTN2dQxg1TgZ80m+a6WJkaZOo/u54Hu8RL0Hzx8VKVXyUTau7w9VVfleZS8eFs2W5/DwnMbVWnClr4W7vvfT7IxYvwcXLx0GbV8vJA+LQKzF7+JPQeOoFGD2iqHWSrBmNt0qoXY02ceY7sAA17bzXjELSpg7WjALdp9dssOAVk8REZVC7+g7TiF0w+R/ks6jSorVqmiyku2VGFCOi0BddrC1Wq1NxnZipgwDydOn1Wz7Gv51EDqpJfRqEEdk9dnRB60pXrJurjWpJ3IKLWXR7XrameLp7haWsRG8k8z0+PUrH7JqZbFX5o1uVt1W16Lj0l8xWzuZuH16YyUO9rwxlSLku6JjqHucyj90a00YURNaQn2c8+eh08Nj79MQLX0HOtWC7F0fv7dGAEGvMY48iwUoAAFbBLQrWUseYWjXu6tar/2CZ+i0hgK8yjlVb+UujO3zLcRedC6tYx1K10sWbVJ5StPHTsYvi2bFvlLABWTuADjR/Y1O7tecjW3/TtVve727zNGLcctE1dlk8lXbQOGYe+mBWbvq+5IuamgXip1SKpAanyYxdQUcx209KNB11D3OZS+61aaMHWNttSUNmdoqfKPbrUQmz44uLPdAgx47abjgRSgAAXsF9CtZdy6Swh2b0hXo1GdAiPVrPjCSTYyCVMC2j3vpJvsoBF50Lq1jHUrXch1v5oSg3p1ri3wkZy+SlVFkE0mXI2cMFeVcTS1ySTcE6fPqJzTQ0eOqRn6fXt2VqXtpFRVXt7vmDtluNmbrDtSbi4gnbdkrXrNLvmlpjYZ3ZSUqPsaX1voQRZ8KL5ZCnh1DXWfQ+mrbqUJ3ZrSupV/dKuF2P8pwiNtEWDAa4sW96UABShgkIBuLePgiCRV/3dQkD+S5meiVfMmeKp9a7V4yhtv71CTv95cFG+yt0bkQevWMi7eOXsqXRQPlCSlqVXnwSrIl5xoa4L+/CtXsWTVRjXB6fsTuao74ifLS8vy0JGhgRZXHNMdKZeqM+aWWJfJieZqSsvCD1IlQ6rOSB1xWd46+IVu6NLhYfVjyFLAq2uo+xyKuW6lCd2a0rqVf4yoFmLQxwpPY0aAAS8fDwpQgAJOENCtZSwLM8ROX4TD2TmoX7emmrwlubt5v11UM+Rl0l7hYgDmLk8nD1q3HnRJ/bKl0kWPgeNVFYGnn3gEMgFt24cH1GivLC27bdd+NWr72qxrtZktbRIwi53UOJeA19pNd6RcAtIdq1PNNicLKFi7yZLbi1a+g5zvTqoFbkJjUsyWx9M1NOI51K00YSmot2SnWwfYiGohlvrIv+sLMODVN+QZKEABCtgsoFvLuLBBCTi+OvY9Lvx6UdU/ldnkje+uY7FKg80dLuEA3UDDXB+sqXQhJcSGj5+jVtZrWL82Xk8bjdmL16iVzhpIHeKIvhYnruk66I6UO8pQfgBJrea9n2abHSE2ylD3OdSpNGFETeniz4E9lX90qoXoPoM83joBBrzWOXEvClCAAoYKGFHL2NAO2XEyR9QytrUbkrogwZKUcDOXGmDreW3d396R8uJ1gG1t05r9rakCcasYWnM9N3MfVv65mdqOb4sBr+ON2QIFKEABClCAAhSggBMFGPA6EZ9NU4ACFKAABShAAQo4XoABr+ON2QIFKEABClCAAhSggBMFGPA6EZ9NU4ACFKAABShAAQo4XoABr+ON2QIFKEABClCAAhSggBMFGPA6EZ9NU4ACFKAABShAAQo4XoABr+ON2QIFKEABClCAAhSggBMFGPA6EZ9NU4ACFKAABShAAQo4XoABr+ON2QIFKEABClCAAhSggBMFGPA6EZ9NU4ACFKAABShAAQo4XoABr+ON2QIFKEABClCAAhSggBMFGPA6EZ9NU4ACFKAABShAAQo4XoABr+ON2QIFKEABClCAAhSggBMFGPA6EZ9NU4ACFKAABShAAQo4XoABr+ON2QIFKFCKBZ4LjkOPbn4Ieq4Tps5ZgdO5P2FWfFiJV9ThXyMQPaQ3uj7+cCm+YnadAhSggOsJMOB1vXvKK6IABQwU+PzLHHh7eeAub0+bAt6j//sBp3J/QtvWDxjYG56KAhSgAAXsEWDAa48aj6EABcqkgC0jvGmL3sTly/mIHtqrTFrxoilAAQrcSgIMeG+lu8G+UIACN0UgJiEDHtXvwJhhQaq9hSs2YNbC1fhg7WzU8KyGgoICtO0ehtT4MEyfu7LElIb8K1fViO+72/egYsUKGNrvGSxYug5Rob1w7NsTyFj+NtzKucH7Tg906fAwDnz2FVbMG1d0ffsOfomBUcmqzRfDEuHfyRf7D32FnO9OogDApKh+eKTVtdHh4ydzkZi2HAe/+AZXr/6BJ/1aY2z4i6jsXvGmeLERClCAAqVdgAFvab+D7D8FKGCzwJqNH2DVuu3Iypiojg2NmYkfTp5B+MAeeOKxVvg65zgCQyZh94b56DUkvsSAd8Wa97BwxTt4NTUGNb29kDw/E+s2/wcJMQNVDu+w2DTUq3OXGuE9+u0JdO87Fu+uTELd2j6qTQmWT/14DmmTh0HyhM//kofXZ4/B32p5Y+2mXUhMW6aCYfdKlfBM/1j4PtgUIwf3xO+XLmF04iu406s6EkcPtPnaeQAFKECBsijAgLcs3nVeMwXKuMCJU2fQOWgUdm9IR6WKFfDos8MwOOhpnMo9h9FhL6hgeOuu/Vg0I1oFoyVNWus3YhqaNWmIyNCeSlMC1rYBYUgaF/qXgFf+LgG03yMtMLRvgNr/8ecjMCY8CJ0efVC18eA/7kHs8JfU365cvQrfbkPUuapXuwMDRk7Hno3pcK90bUT30BdH0Sd8CvZuykCFCreV8bvJy6cABShgWYABr2Uj7kEBCrigwJO9ojA5JhhVbndHwqxlmBTVH3FJi9Wob/TkdNzbqB4GvtDNZMDbJWgU+vbsjF4BHYt0Hns2HKPDgkoMeDPf2oZlq7dg4/Lp+OzIMQyOnqFGcCVglYA3oHM79H3+qaJzSf8G9O6qAvJx0xeXeAc2ZyarEWFuFKAABShgXoABL58QClCgTArEJb2KOjXvhLt7ReSe+RmRoYFoFxCGrVkz4d9nDOYkDMf99zYwGfDKCO3gF/0RWCzgfahrKCZG9i8x4D1/IQ9+zw3H8rmx2LxjL37N+w0TIvspewl4u3Vqg+DeXYvuRaeeERgU5I9qVasgPuV1fLxhfpm8T7xoClCAAkYIMOA1QpHnoAAFSp3Ahq0fY/2Wj3DbbeXRo+tj6NiupZpE1rn9Q0jJyMKH6+bCza2cyYBXcnsfatEEESHXUhrOnDuvAtrkuCElBryyz8gJc1Ve78btezA9djBaNrunKOBtdl9DNcos2++XLsPXfyhmTQqDdw0P9AyZiK1ZKajl46X+/tvFS2ofL4+qpc6dHaYABSjgDAEGvM5QZ5sUoIDTBSRAfab/OBSgABuWToVn9aqYt2QtNu/ci4b1axctLmEqh3f+a28ha/1OLJwRBZ8ankhOX4V3d+xBfHSwCnij4tORn39FpU1UrVIZ5cqVw86PPkVMYoYatd2Smaz+TTZp4+dfflUBbpO/18OizI1YsmqTSnmQSgyS/+vj7YnJ0QNQvrybmvB28sezWJI62umO7AAFKECB0iDAgLc03CX2kQIUcIiAVE6QEmTrl05V5/9o3+cYFDUDcSP7FOXmmgp4L13Ox+TUpdi2a78qSxY24FkszdqMkD7d4d+pDT7YfRDRkxegvJsb3l+TpnJ1ZTJahx4j8PzT7REe3KPomqQNmbx28Iuj2PtpNrw8qyFhVLCqzCCblCWTPON9B7NVW74tm6qyZFKpgRsFKEABClgWYMBr2Yh7UIACFDBE4NzPF/BEYCTWvZZ43WSz4kG1IQ3xJBSgAAUocJ0AA14+EBSgAAUcLPDHHwX45UKeqgJR2b0SkuJCr2uRAa+DbwBPTwEKlHkBBrxl/hEgAAUo4GiBXXsOIWxsGtq0uh/TY0NQvVoVBryORuf5KUABChQTYMDLx4ECFKAABShAAQpQwKUFGPC69O3lxVGAAhSgAAUoQAEKMODlM0ABClCAAhSgAAUo4NICDHhd+vby4ihAAQpQgAIUoAAFGPDyGaAABShAAQpQgAIUcGkBBrwufXt5cRSgAAUoQAEKUIACDHj5DFCAAhSgAAUoQAEKuLQAA16Xvr28OApQgAIUoAAFKEABBrx8BihAAQpQgAIUoAAFXFqAAa9L315eHAUoQAEKUIACFKAAA14+AxSgAAUoQAEKUIACLi3AgNelby8vjgIUoAAFKEABClCAAS+fAQpQgAIUoAAFKEABlxZgwOvSt5cXRwEKUIACFKAABSjAgJfPAAUoQAEKUIACFKCASwsw4HXp28uLowAFKEABClCAAhT4EzlMd4YHKKARAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "To do:\n", "\n", "- Predict mutational landscape from models esm_if1_gvp4_t16_142M_UR50,\n", "esm2_t36_3B_UR50D, and esm2_t48_15B_UR50D models.\n", "\n", "- Why the hypothesis are different?\n", "- How the hypothesis from all of these models can be streamlined to reduce experimental testing in protein engineering workflow." ], "metadata": { "id": "h_3223jMt_1K" } }, { "cell_type": "markdown", "source": [ "## Alignment based models" ], "metadata": { "id": "Eix01RR0c2Q8" } }, { "cell_type": "markdown", "source": [ "- Family specific models that learn evolutionary constraints specific to the protein family of interest.\n", "- Search large databases for homologs of protein sequence or domain of interest, align the positions of these homolgs in an multiple sequence alignment (MSA), and then fit statistical sequence models to the MSA.\n", "- Performance of the model is contingent on the availability of sufficiently deep and diverse alignments for training.\n", "- In the realm of zero-shot prediction of mutational landscape competitive models include [GEMME](https://academic.oup.com/mbe/article/36/11/2604/5548199), [DeepSequence](https://www.nature.com/articles/s41592-018-0138-4), and [EVmutation](https://pubmed.ncbi.nlm.nih.gov/28092658/). Explore their performance benchmarks on [ProteinGym](https://proteingym.org/benchmarks)." ], "metadata": { "id": "btAZLcIdc591" } }, { "cell_type": "markdown", "source": [ "To do:\n", "- Include GEMME and EVmutation prediction." ], "metadata": { "id": "-AI8-pYlfnTM" } }, { "cell_type": "markdown", "source": [ "## Inverse folding models" ], "metadata": { "id": "haQYuRz4IwGH" } }, { "cell_type": "markdown", "source": [ "\n", "\n", "..." ], "metadata": { "id": "zswZDo4W9Xju" } }, { "cell_type": "markdown", "source": [ "[Evolutionary velocity with protein language models predicts evolutionary dynamics of diverse proteins](https://pubmed.ncbi.nlm.nih.gov/35120643/)\n", "\n", ">\"The key conceptual advance is that by learning the rules underlying local evolution, we can construct a global evolutionary “vector field” that we show can (1) predict the root (or potentially multiple roots) of observed evolutionary trajectories, (2) order protein sequences in evolutionary time, and (3) identify the mutational strategies that drive these trajectories.\"" ], "metadata": { "id": "Lcz7AMtHAW1r" } }, { "cell_type": "code", "source": [], "metadata": { "id": "qSEWHHAsDDMY" }, "execution_count": null, "outputs": [] } ] }