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Abstract

Notes taken while reading about HyperNova [1] and CCS[2].
Usually while reading papers I take handwritten notes, this document

contains some of them re-written to LaTeX.
The notes are not complete, don’t include all the steps neither all the

proofs.
Thanks to George Kadianakis for clarifications, and the authors Sri-

nath Setty and Abhiram Kothapalli for answers on chats and twitter.
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1 CCS

1.1 R1CS to CCS overview

R1CS instance SR1CS = (m,n,N, l, A,B,C)
where m,n are such that A ∈ Fm×n, and l such that the public inputs
x ∈ Fl. Also z = (w, 1, x) ∈ Fn, thus w ∈ Fn−l−1.

CCS instance SCCS = (m,n,N, l, t, q, d,M, S, c)
where we have the same parameters than in SR1CS , but additionally:
t = |M |, q = |c| = |S|, d= max degree in each variable.

R1CS-to-CCS parameters n = n, m = m, N = N, l = l, t = 3, q = 2, d =
2, M = {A,B,C}, S = {{0, 1}, {2}}, c = {1,−1}
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The CCS relation check:

q−1∑
i=0

ci · ⃝j∈SiMj · z == 0

where z = (w, 1, x) ∈ Fn.
In our R1CS-to-CCS parameters is equivalent to

c0 · ((M0z) ◦ (M1z)) + c1 · (M2z) == 0

=⇒1 · ((Az) ◦ (Bz)) + (−1) · (Cz) == 0

=⇒((Az) ◦ (Bz))− (Cz) == 0

which is equivalent to the R1CS relation: Az ◦Bz == Cz
An example of the conversion from R1CS to CCS implemented in SageMath

can be found at
https://github.com/arnaucube/math/blob/master/r1cs-ccs.sage.

Similar relations between Plonkish and AIR arithmetizations to CCS are
shown in the CCS paper [2], but for now with the R1CS we have enough to see
the CCS generalization idea and to use it for the HyperNova scheme.

1.2 Committed CCS

RCCCS instance: (C, x), where C is a commitment to a multilinear polynomial
in s′ − 1 variables.

Sat if:

i. Commit(pp, w̃) = C

ii.
∑q

i=1 ci ·
(∏

j∈Si

(∑
y∈{0,1}log m M̃j(x, y) · z̃(y)

))
where z̃(y) = ˜(w, 1, x)(x) ∀x ∈ {0, 1}s′

1.3 Linearized Committed CCS

RLCCCS instance: (C, u, x, r, v1, . . . , vt), where C is a commitment to a multi-
linear polynomial in s′ − 1 variables, and u ∈ F, x ∈ Fl, r ∈ Fs, vi ∈ F ∀i ∈ [t].

Sat if:

i. Commit(pp, w̃) = C

ii. ∀i ∈ [t], vi =
∑

y∈{0,1}s′ M̃i(r, y) · z̃(y)

where z̃(y) = ˜(w, u, x)(x) ∀x ∈ {0, 1}s′
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2 Multifolding Scheme for CCS

Recall sum-check protocol notation: C ← ⟨P, V (r)⟩(g, l, d, T ) means

T =
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xl∈{0,1}

g(x1, x2, . . . , xl)

where g is a l-variate polynomial, with degree at most d in each variable, and
T is the claimed value.

Let s = logm, s′ = log n.

1. V → P : γ ∈R F, β ∈R Fs

2. V : r′x ∈R Fs

3. V ↔ P : sum-check protocol:

c← ⟨P, V (r′x)⟩(g, s, d+ 1,
∑
j∈[t]

γj · vj︸ ︷︷ ︸
T

)

(in fact, T = (
∑

j∈[t] γ
j · vj)+γt+1 ·Q(x)︸ ︷︷ ︸

=0

) =
∑

j∈[t] γ
j · vj)

where:

g(x) :=

∑
j∈[t]

γj · Lj(x)


︸ ︷︷ ︸

LCCCS check

+ γt+1 ·Q(x)︸ ︷︷ ︸
CCCS check

for LCCCS: Lj(x) := ẽq(rx, x) ·


∑

y∈{0,1}s′

M̃j(x, y) · z̃1(y)

︸ ︷︷ ︸
this is the check from LCCCS



for CCCS: Q(x) :=ẽq(β, x) ·


q∑

i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)


︸ ︷︷ ︸

this is the check from CCCS


Notice that

vj =
∑

y∈{0,1}s′

M̃j(r, y) · z̃(y) =
∑

x∈{0,1}s

Lj(x)
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4. P → V : ((σ1, . . . , σt), (θ1, . . . , θt)), where ∀j ∈ [t],

σj =
∑

y∈{0,1}s′

M̃j(r
′
x, y) · z̃1(y)

θj =
∑

y∈{0,1}s′

M̃j(r
′
x, y) · z̃2(y)

where σj , θj are the checks from LCCCS and CCCS respectively with
x = r′x.

5. V: e1 ← ẽq(rx, r
′
x), e2 ← ẽq(β, r′x)

check:

c =

∑
j∈[t]

γj · e1 · σj

+ γt+1 · e2 ·

 q∑
i=1

ci ·
∏
j∈Si

θj


which should be equivalent to the g(x) computed by V, P in the sum-check
protocol.

6. V → P : ρ ∈R F

7. V, P : output the folded LCCCS instance (C ′, u′, x′, r′x, v
′
1, . . . , v

′
t), where

∀i ∈ [t]:

C ′ ← C1 + ρ · C2

u′ ← u+ ρ · 1
x′ ← x1 + ρ · x2
v′i ← σi + ρ · θi

8. P : output folded witness and the folded r′w (random value used for the
witness commitment C):

w̃′ ← w̃1 + ρ · w̃2

r′w ← rw1
+ ρ · rw2

Multifolding flow:
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Prover Verifier

γ, β, r′x
γ ∈ F, β ∈ Fs

r′x ∈ Fs

c, πSCsum-check prove

sum-check verify

{σj}, {θj}compute {σj}, {θj} ∀j ∈ [t]

verify c with {σj}, {θj} relation

ρ ρ ∈R F

fold LCCCS instance fold LCCCS instance

fold w̃

Recall that we are folding 2 instances:

LCCCS: (C, u, x1, rx, v1, . . . , vt)

CCCS: (C, x2)

Now, to see the verifier check from step 5, observe that in LCCCS, since w̃
satisfies,

Lj(x) := ẽq(rx, x) ·

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃1(y)


vj =

∑
y∈{0,1}s′

M̃j(rx, y) · z̃1(y))

=
∑

x∈{0,1}s

ẽq(rx, y) · (
∑

y∈{0,1}s′

M̃j(x, y) · z̃1(y))

=
∑

x∈{0,1}s

Lj(x)

Observe also that in CCCS, since w̃ satisfies,
we have that

G(X) =
∑

x∈{0,1}s

ẽq(X,x) · q(x)

is multilinear, and can be seen as a Lagrange polynomial where coefficients are
evaluations of q(x) on the hypercube.
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Q(x) :=ẽq(β, x) ·


q(x)︷ ︸︸ ︷

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)




0 =

q∑
i=1

ci
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(β, y) · z̃2(y)


=

∑
x∈{0,1}s

ẽq(β, x) ·

 q∑
i=1

ci
∏
j∈Si

(
∑

y∈{0,1}s′

M̃j(x, y) · z̃2(y))


=

∑
x∈{0,1}s

Q(x) = G(β)

For an honest prover, all these coefficients are zero, thus G(X) must neces-
sarily be the zero polynomial. Thus G(β) = 0 for β ∈R Fs.

We can now see that

σj =
∑

y∈{0,1}s′

M̃j(r
′
x, y) · z̃1(y), θj =

∑
y∈{0,1}s′

M̃j(r
′
x, y) · z̃2(y)

e1 ← ẽq(rx, r
′
x), e2 ← ẽq(β, r′x)

so the Verifier’s check:

c =

∑
j∈[t]

γj · e1 · σj︸ ︷︷ ︸
Lj(r′x)

+ γt+1 · e2 ·

 q∑
i=1

ci ·
∏
j∈Si

θj


︸ ︷︷ ︸

Q(r′x)

=

∑
j∈[t]

γj · Lj(r
′
x)

+ γt+1 ·Q(r′x)

= g(r′x)

(Recall, g(x) :=

∑
j∈[t]

γj · Lj(x)

+ γt+1 ·Q(x))

Outputted LCCCS: (C ′, u′, x′, r′x, v
′
1, . . . , v

′
t)
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Note: notice that this past equation is related to Spartan paper [3], lemmas 4.2 and
4.3, where instead of

q(x) =

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)


for our R1CS example, we can restrict it to just M0,M1,M2, which would be

=

 ∑
y∈{0,1}s

M̃0(x, y) · z̃(y)

 ·
 ∑

y∈{0,1}s
M̃1(x, y) · z̃(y)

− ∑
y∈{0,1}s

M̃2(x, y) · z̃(y)

and we can see that q(x) is the same equation F̃io(x) that we had in Spartan:

F̃io(x) =

 ∑
y∈{0,1}s

Ã(x, y) · z̃(y)

·
 ∑

y∈{0,1}s
B̃(x, y) · z̃(y)

− ∑
y∈{0,1}s

C̃(x, y)·z̃(y)

where
Qio(t) =

∑
x∈{0,1}s

F̃io(x) · ẽq(t, x) = 0

and V checks Qio(τ) = 0 for τ ∈R Fs, which in HyperNova is G(β) = 0 for β ∈R Fs.
Qio(·) is a zero-polynomial (G(·) in HyperNova), it evaluates to zero for all points

in its domain iff F̃io(·) evaluates to zero at all points in the s-dimensional boolean
hypercube.

Spartan←→ HyperNova

τ ←→ β

F̃io(x)←→ q(x)

Qio(τ)←→ G(β)

So, in HyperNova

0 =
∑

x∈{0,1}s
Q(x) =

∑
x∈{0,1}s

ẽq(β, x) · q(x)

2.1 Multifolding for multiple instances

The multifolding of multiple LCCCS & CCCS instances is not shown in the
HyperNova paper, but Srinath Setty gave an overview in the PSE HyperNova
presentation. This section unfolds it.

We’re going to do this example with parameters LCCCS: µ = 2, CCCS:
ν = 2, which means that we have 2 LCCCS instances and 2 CCCS instances.

Assume we have 4 z vectors, z1, z2 for the two LCCCS instances, and z3, z4
for the two CCCS instances, where z1, z3 are the vectors that we already had in
the example with µ = 1, ν = 1, and z2, z4 are the extra ones that we’re adding
now.

In step 3 of the multifolding with more than one LCCCS and more than one
CCCS instances, we have:
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g(x) :=

∑
j∈[t]

γj · L1,j(x) + γt+j · L2,j(x)

+ γ2t+1 ·Q1(x) + γ2t+2 ·Q2(x)

L1,j(x) := ẽq(r1,x, x) ·

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃1(y)


L2,j(x) := ẽq(r2,x, x) ·

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)


Q1(x) := ẽq(β, x) ·

 q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃3(y)


Q2(x) := ẽq(β, x) ·

 q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃4(y)


A generic definition of g(x) for µ > 1 ν > 1, would be

g(x) :=

∑
i∈[µ]

∑
j∈[t]

γi·t+j · Li,j(x)

+

∑
i∈[ν]

γµ·t+i ·Qi(x)


Recall, the original g(x) definition was

g(x) :=

∑
j∈[t]

γj · Lj(x)

+ γt+1 ·Q(x)

In step 4, P → V : ({σ1,j}, {σ2,j}, {θ1,j}, {θ2,j}), where ∀j ∈ [t],

σ1,j =
∑

y∈{0,1}s′

M̃j(r
′
x, y) · z̃1(y)

σ2,j =
∑

y∈{0,1}s′

M̃j(r
′
x, y) · z̃2(y)

θ1,j =
∑

y∈{0,1}s′

M̃j(r
′
x, y) · z̃3(y)

θ2,j =
∑

y∈{0,1}s′

M̃j(r
′
x, y) · z̃4(y)
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so in a generic way,
P → V : ({σi,j}, {θk,j}), where ∀ j ∈ [t], ∀ i ∈ [µ], ∀ k ∈ [ν] where

σi,j =
∑

y∈{0,1}s′

M̃j(r
′
x, y) · z̃i(y)

θk,j =
∑

y∈{0,1}s′

M̃j(r
′
x, y) · z̃µ+k(y)

And in step 5, V checks

c =

∑
j∈[t]

γj · e1 · σ1,j +γt+j · e2 · σ2,j


+ γ2t+1 · e3 ·

 q∑
i=1

ci ·
∏
j∈Si

θj

+ γ2t+2 · e4 ·

 q∑
i=1

ci ·
∏
j∈Si

θj


where e1 ← ẽq(r1,x, r

′
x), e2 ← ẽq(r2,x, r

′
x), e3, e4 ← ẽq(β, r′x).

A generic definition of the check would be

c =
∑
i∈[µ]

∑
j∈[t]

γi·t+j · ei · σi,j

 +
∑
k∈[ν]

γµ·t+k · ek ·

 q∑
i=1

ci ·
∏
j∈Si

θk,j


where the original check was

c =
(∑

j∈[t] γ
j · e1 · σj

)
+ γt+1 · e2 ·

(∑q
i=1 ci ·

∏
j∈Si

θj

)
And for the step 7,

C ′ ← C1 + ρ · C2 + ρ2C3 + ρ3C4 + . . . =
∑

i∈[µ+ν]

ρi · Ci

u′ ←
∑
i∈[µ]

ρi · ui +
∑
i∈[ν]

ρµ+i−1 · 1

x′ ←
∑

i∈[µ+ν]

ρi · xi

v′i ←
∑
i∈[µ]

ρi · σi +
∑
i∈[ν]

ρµ+i−1 · θi
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and step 8,

w̃′ ←
∑

i∈[µ+ν]

ρi · w̃i

r′w ←
∑

i∈[µ+ν]

ρi · rwi

Note that over all the multifolding for µ > 1 and ν > 1, we can easily
parallelize most of the computation.

A Appendix: Some details

This appendix contains some notes on things that don’t specifically appear in the
paper, but that would be needed in a practical implementation of the scheme.

A.1 Matrix and Vector to Sparse Multilinear Extension

Let M ∈ Fm×n be a matrix. We want to compute its MLE

M̃(x1, . . . , xl) =
∑

e∈{0,1}l

M(e) · ẽq(x, e)

We can view the matrix M ∈ Fm×n as a function with the following signa-
ture:

M(·) : {0, 1}s × {0, 1}s
′
→ F

where s = ⌈logm⌉, s′ = ⌈log n⌉.
An entry in M can be accessed with a (s+ s′)-bit identifier.
eg.:

M =

(
1 2 3
4 5 6

)
∈ F3×2

m = 3, n = 2, s = ⌈log 3⌉ = 2, s′ = ⌈log 2⌉ = 1
So, M(x, y) = x, where x ∈ {0, 1}s, y ∈ {0, 1}s′ , x ∈ F

M =

(
M(00, 0) M(01, 0) M(10, 0)
M(00, 1) M(01, 1) M(10, 1)

)
∈ F3×2

This logic can be defined as follows:
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Algorithm 1 Generating a Sparse Multilinear Polynomial from a matrix

set empty vector v ∈ (index: Z, x : Fs×s′)
for i to m do

for j to n do
if Mi,j ̸= 0 then

v.append({index : i · n+ j, x : Mi,j})
end if

end for
end for
return v ▷ v represents the evaluations of the polynomial

Once we have the polynomial, its MLE comes from

M̃(x1, . . . , xs+s′) =
∑

e∈{0,1}s+s′

M(e) · ẽq(x, e)

M(X) ∈ F[X1, . . . , Xs]

Multilinear extensions of vectors Given a vector u ∈ Fm, the polynomial ũ
is the MLE of u, and is obtained by viewing u as a function mapping (s = logm)

u(x) : {0, 1}s → F

ũ(x, e) is the multilinear extension of the function u(x)

ũ(x1, . . . , xs) =
∑

e∈{0,1}s

u(e) · ẽq(x, e)
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