
Future Generation Computer Systems 76 (2017) 1–17

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A hybrid evolutionary algorithm for task scheduling and data
assignment of data-intensive scientific workflows on clouds
Luan Teylo a, Ubiratam de Paula b, Yuri Frota a, Daniel de Oliveira a,*,
Lúcia M.A. Drummond a

a Institute of Computing, Fluminense Federal University, Niterói, Brazil
b UFRRJ – Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil

h i g h l i g h t s

• A new workflow model that considers tasks and data.
• The mathematical formulation of Task Scheduling and Data Assignment Problem.
• The design of a Hybrid Evolutionary Algorithm (HEA) for scheduling tasks and data.
• An extensive experimental evaluation, based on synthetic and real executions.

a r t i c l e i n f o

Article history:
Received 29 April 2016
Received in revised form 25 March 2017
Accepted 10 May 2017
Available online 18 May 2017

Keywords:
Clouds
Combinatorial optimization
Task scheduling
Data assignment
Hybrid evolutionary algorithm

a b s t r a c t

A growing number of data- and compute-intensive experiments have been modeled as scientific work-
flows in the last decade. Meanwhile, clouds have emerged as a prominent environment to execute this
type ofworkflows. In this scenario, the investigation ofworkflow scheduling strategies, aiming at reducing
its execution times, became a top priority and a very popular research field. However, few work consider
the problem of data file assignment when solving the task scheduling problem. Usually, a workflow is
represented by a graph where nodes represent tasks and the scheduling problem consists in allocating
tasks to machines to be executed at a predefined time aiming at reducing the makespan of the whole
workflow. In this article, we show that the scheduling of scientific workflows can be improved when
both task scheduling and the data file assignment problems are treated together. Thus, we propose a
new workflow representation, where nodes of the workflow graph represent either tasks or data files,
and define the Task Scheduling and Data Assignment Problem (TaSDAP), considering this new model.
We formulated this problem as an integer programming problem. Moreover, a hybrid evolutionary
algorithm for solving it, named HEA-TaSDAP, is also introduced. To evaluate our approach we conducted
two types of experiments: theoretical and practical ones. At first, we compared HEA-TaSDAP with the
solutions produced by the mathematical formulation and by other works from related literature. Then,
we considered real executions in Amazon EC2 cloud using a real scientific workflow use case (SciPhy
for phylogenetic analyses). In all experiments, HEA-TaSDAP outperformed the other classical approaches
from the related literature, such as Min–Min and HEFT.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The recent advances in computer science have allowed for sev-
eral different fields of science to benefit from computational simu-
lations in their experiments. These called in silico experiments [1,2]
are consuming and producing an unprecedented volume of data

* Corresponding author.
E-mail addresses: luanteylo@ic.uff.br (L. Teylo), upaula@ufrrj.br (U. de Paula),

yuri@ic.uff.br (Y. Frota), danielcmo@ic.uff.br (D. de Oliveira), lucia@ic.uff.br
(L.M.A. Drummond).

to be further processed and analyzed, thus being considered as
data-intensive experiments. This huge volume of data is found
in experiments in many areas, for instance, phylogenetic analy-
sis [3], computational fluid dynamics [4], astronomy [5], etc.. Thus,
scientists perform their analyses using complex computational
simulations and increasing volumes of data in their daily duties.

Most of these experiments are represented as a chaining of
scientific programs, where the output of a specific program is the
input of another program. In order to manage the execution of

http://dx.doi.org/10.1016/j.future.2017.05.017
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.05.017
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.05.017&domain=pdf
mailto:luanteylo@ic.uff.br
mailto:upaula@ufrrj.br
mailto:yuri@ic.uff.br
mailto:danielcmo@ic.uff.br
mailto:lucia@ic.uff.br
http://dx.doi.org/10.1016/j.future.2017.05.017

2 L. Teylo et al. / Future Generation Computer Systems 76 (2017) 1–17

these complex experiments, scientific workflows can be a promi-
nent solution. A scientific workflow is an abstraction that struc-
tures the steps of a scientific experiment as a graph of activities
(i.e. scientific program invocations), in which nodes correspond to
data processing activities and edges represent the dataflow among
them [1]. Moreover, scientific workflows are commonly managed
by complex software named Scientific Workflow Management
Systems (SWfMS) that are used to define, execute, andmonitor the
data-intensive experiments. Well-known SWfMS are Swift/T [6],
Pegasus [7], VisTrails [8], Apache Taverna [9] and Kepler [10].

In the same experiment, a scientific workflow is usually re-
executed as many times as needed, varying the input dataset or
the input parameter values to interpret the quality of the result
produced by each execution of the workflow. This situation is
well-known in parallel computing as parameter sweep [11] and
it occurs when the same workflow (and its activities) is executed
using different input data files (or a partition of the input data)
and/or different configurations (different parameter values) until
the exploration finishes (i.e. the analysis of the results is complete).
Thus, since workflow activities commonly process big data, to ex-
plore data parallelism and parameter sweep we consider that each
workflow activity may correspond to several executable tasks.
Each task is considered the smallest unit of processing and may
execute in parallel by consuming a different portion of the input
data. Thus, in the context of this article, a task is the representation
of an atomic execution of an activity, which processes a different
set of parameter values, a data partition or chunk [12]. In addition,
many of the data-intensive workflows are also compute-intensive,
since a single task may execute for several hours or even days.

As the complexity of the scientific workflows grows in terms
of exploration of thousands of huge datasets or several parame-
ters, the performance requirements for such workflows have been
pushing the envelope on the capacity of sequential systems (e.g.
personal computers with a few of processors) for a while already.
If executed sequentially, these data- and compute-intensive work-
flows could execute for several months, which is error-prone and
not desirable due to the competition in science nowadays [13].
Thus, the demand for High Performance Computing (HPC) envi-
ronments allied to parallelism techniques is extreme for these
workflows to produce results in a feasible time for scientists.

TraditionalHPC environments such as clusters, supercomputers
and computational grids were used over the last decade to exe-
cute scientific workflows in parallel. However, in the last decade,
Clouds [14] have emerged as a prominent environment to run
data- and compute-intensive workflows [15]. Cloud computing
is a type of Internet-based computing where virtually unlimited
infrastructure, platform, and software are provided on demand and
as services (i.e., IaaS, PaaS and SaaS, respectively). Clouds follow
a pay-per-use model [16,17] where users only pay for resources
they actually used and for the time they used those resources.
Virtual Machines (VMs) and storage areas are types of resources
provided by clouds. Using clouds scientists are not required to
acquire expensive infrastructure (such as a cluster) to execute
their experiments neither spend much effort to configure a new
infrastructure (as in a grid). To enable a data- and compute-
intensiveworkflow execution in a cloud, the execution of each task
has to be scheduled to a corresponding VM. Then, the scheduling
problem is to decidewhere to execute all tasks. Scheduling tasks to
distributed computing resources is an NP-complete problem [18],
evenwhenwe consider simple scenarios. However, there are some
characteristics of clouds that makes this scheduling process a little
bit more complicated.

First of all, in clouds there are several options of VM types to be
deployed. Each one with different processing and storage capacity,
different bandwidth and financial cost. In addition, some of these
VMsmaynot suitable for HPC (e.g. themicro and nanoVMs in Ama-
zon EC2 cloud). Thus, whenwe are executing workflows in parallel

in the cloud, the deployed virtual cluster is commonly composed
by heterogeneous VMs and this heterogeneity has to be considered
in the scheduling approach. The second problem is data locality
and transfer. Many of existing workflows consume and produce
many GB or even TB of data and this data (or at least a partition of
this data) has to be eventually transferred from one VM to another
during the workflow execution. These data transfers can produce
a huge (and negative) impact in the workflow execution. Let us
consider theMontageworkflow [5] as example. A simple execution
of Montage may produce data files with several GBs. If, during a
workflow execution, this data file is transferred several times from
one VM to another, a considerable portion of the total workflow
execution time will be spent only on data transfer instead of data
processing (which is the focus of the experiment). Thus, when we
are scheduling tasks of a workflow in the cloud we have to try to
avoid unnecessary data transfers, or when the data transfers are
necessary, we have to diminish the impact of data transfer in the
total execution time of the workflow.

To exemplify this issue, let us consider the case where we have
two tasks: task1, which is a short term task (i.e. it is not compute-
intensive) and task2, which is a long term task (i.e. it is a compute-
intensive task and requires high processing capacity to finish in
a feasible time) in a workflow. In this example, task2 consumes
the data produced by task1 (i.e. there is a data dependency). Let us
also consider that task1 was executed in amedium Vm1 of Amazon
EC2 cloud and produces a data file with several GBs. To avoid data
transfers, we face 2 possible scenarios: (i) to schedule task2 to Vm2
(or Vm3) that havemore processing capacity (such as a 2XLargeVM
in Amazon EC2 cloud), which will result in a costly data transfer
from Vm1 to Vm2 (or Vm3) and (ii) to execute task2 in Vm1 where
task1 was executed. The first scenario will imply into a costly data
transfer, but thenwe can assume that task2 will properly execute in
a feasible time. The second scenario does not imply data transfers,
but Vm1 may be not suitable to execute task2, so the time needed
to process task2 in Vm1 can be huge. The scheduling approach
has then to analyze the trade-off between transferring data and
executing task2 in Vm2 (or Vm3); or avoiding data transfer and
executing task2 in Vm1. In addition, when a data transfer is needed
and defined by the scheduling approach, it can be performed by
the SWfMS as a independent task of the workflow and executed
before the task that will consume the data. This way, when the
scheduled time to execute the task comes, all data will be already
placed in the correct VM. Thus, it is clear that data distribution
and task distribution are not independent problems and have to
be analyzed together by the scheduling approach.

Finally, besides the impact of transfer data, we have also to
consider a set of data constraints. These constraints usually define
that some data cannot (or it is not recommended to) bemoved (we
call this as static data files), because it is either too big or for pro-
prietary reasons (e.g. the Brazilian Internet law defines that all data
produced by Brazilian federal universities and research centers
should be stored in data-centers located in Brazil. All data cannot
be moved or copied beyond the Brazilian frontier — actually this
restriction motivated Amazon to create a data-center in the city
of São Paulo). For example, if scientists are running phylogenetic
analysis workflows [3] they commonly access the RefSeq database
(www.ncbi.nlm.nih.gov/refseq/). This database is a static dataset,
since it is unfeasible to transfer the entire dataset to the cloud (due
to the huge volume of data). Thus, this requires that the scheduling
approach ‘‘fixes’’ some tasks to specific VMs that execute as ‘‘near’’
as possible of static data files. Although these constraints ‘‘fix’’
some tasks to specific resources, they do not reduce the complexity
of the workflow scheduling.

The aforementioned scenario leads to the development of
several solutions for the workflow task scheduling problem in
clouds [12,19–24]. However, these solutions do not consider data

http://www.ncbi.nlm.nih.gov/refseq/

L. Teylo et al. / Future Generation Computer Systems 76 (2017) 1–17 3

distribution and task assignment together in the scheduling. Many
of these solutions assume that all data generated is synchronized
to all VMs (using Amazon S3, for instance) and just schedule the
tasks independently of data placement, which can result in huge
overheads. Thus, in this article, in order to reduce the total execu-
tion time of the workflow, we propose a scheduling approach that
takes into account the variety and heterogeneity of VMs in a cloud
virtual cluster (e.g. different bandwidths, transfer rates, and pro-
cessing capacities), the data distribution and data constraints all
together within the same solution, i.e. tasks and data transfers are
scheduled together by the SWfMS. Thus, the scheduler defines the
distribution of tasks and data among the several VMs to minimize
the total execution time and the unnecessary data transfers while
meeting the data constraints of the workflow. In order to validate
this approach, we propose a Hybrid Evolutionary Algorithm (HEA)
for scheduling tasks and data in the cloud named HEA-TaSDAP.

Our proposal assumes that: (i) tasks and data files of the work-
flow are allocated and executed exclusively in the cloud envi-
ronment; (ii) each individual task is executed in a unique virtual
machine sequentially (no preemption is admitted); (iii) the static
scheduling is followed without changes during the workflow ex-
ecution; (iv) the only possible communication between tasks is
through data files (writing and reading operations); (v) there is
enough space to store static and dynamic data files in the cloud en-
vironment, i.e., the total storage capacity of the cloud environment
is greater or equal to the sum of all data files used by theworkflow;
and finally, (vi) static data files are previously allocated in virtual
machines with enough storage to store them.

In this article we also assume that all VMs are deployed before
theworkflow execution. Although clouds traditionally provide On-
Demand VMs, most of the providers also have reserved VMs to be
used. Commonly, reserved VMs present a financial discount and
capacity reservation. In long-running workflow executions that
demand aheavyuse of theVMs, reservedVMs canprovide financial
savings over executing the workflows only On-Demand instances.
This way, this may be a common scenario for scientists that run
their workflows in the cloud. Although this is an assumption of this
article, in future work, we plan to include dynamic provisioning,
when the reserved VMs are not enough to execute the workflow.

Thus, the main contributions of this article are:

I A new workflow model represented by a graph in which
nodes correspond to data processing activities or data files,
and arcs represent reading or writing operations

II The formulation of Task Scheduling and Data Assignment
Problem as a mixed integer programming problem, named
TaSDAP-IP

III The design of a Hybrid Evolutionary Algorithm (HEA) for
scheduling tasks and data in the cloud named HEA-TaSDAP

IV An extensive experimental evaluation, based on synthetic
and real executions in Amazon EC2 cloud using a real sci-
entific workflow use case (SciPhy [3], a bioinformatics sci-
entific workflow for phylogenetic analysis) that shows the
advantages and benefits of the approach, compared with
baseline algorithms.

The rest of the article is organized as follows: Section 2 presents
related work. In Section 3, we describe the new proposed model
and the task scheduling and data assignment problem. In Section 4,
we introduce our HEA-TasDAP, a hybrid evolutionary algorithm
for solving the task scheduling and data assignment problem. Sec-
tion 5 brings the theoretical and practical experimental evaluation
of the performance of our heuristic. Finally, Section 6 concludes the
article and discusses future work.

2. Related work

Over the last decade, a growing number of data- and compute-
intensive experiments has been modeled as scientific workflows.
These experiments belong to several scientific fields and present
different computational requirements and characteristics, such as
total execution times, parallelism level anddata transfer volume. In
this scenario, the investigation of workflow scheduling strategies,
aiming at reducing scientific workflow execution times, became a
top priority and a very popular research area [22]. We can find in
the literature several papers that propose workflow scheduling al-
gorithms. Many of these algorithms are focused on computational
grids, such as [25–29], which makes them not directly applicable
to clouds. However, these algorithms inspired several approaches
focused on clouds, such as [12,19–24]. Although there are several
approaches to schedule workflows in clouds, each one considers
different characteristics and requirements, so the development of
efficientworkflow scheduling algorithms for clouds is still an open,
yet important, problem in this research area.

Juve et al. [30] characterized and profiled several scientific
workflows from different domains of science. In their character-
ization they present the time needed to execute each task of the
workflow and the total amount of files produced and consumed
during aworkflow execution. The size of data files varies from 2GB
(SIPHT workflow) to more than 200 TB (Cybershake workflow). It
is worth mentioning that the Montage workflow produces data
files with several GB and only 30% of CPU time is allocated to
computation (70% of the CPU time is consumed by I/O operations).
Shibata et al. [31] also analyzed the Montage workflow and con-
cluded that 99% of the CPU time (in some scenarios) is allocated to
I/O operations. Shibata et al. claim that scheduling approaches that
are aware of data location are able to reduce the data transfer by
96%. Several papers consider the data location and I/O costs when
scheduling a scientific workflow in a heterogeneous environment.
Following we discuss some of these approaches.

The heterogeneous Earliest-Finish-Time (HEFT) is a well-know
scheduling heuristic proposed by Topcuoglu et al. [32]. HEFT is an
extension of the classical list scheduling algorithm for homoge-
neous systems which includes heterogeneous systems [33]. The
heuristic is able to schedule applicationsmodeled as a DAG and has
two phases: task prioritizing phase, that computes the priorities of
each task (rank-values); and machine selection phase, that selects
a task according to its priority, and schedules it on the machine
thatminimizes its finishing time. In the first phase, tasks are sorted
based on their rank-values. The rank-values are computed accord-
ing to the computation required by each task and its predecessors
tasks. After that, in the second phase, HEFT chooses the biggest
rank-value task and assigns it to themachine that is able to execute
it with the earliest finish time. This step is repeated for each task,
until all tasks are scheduled. HEFT presents acceptable run times
even in huge instances. However, HEFT does not consider data files
during the scheduling process.

The MinMin Task Schedule Heuristic (MinMin-TSH) [34] is a
widely-used scheduling algorithm. This is a task-based greedy
algorithm that allocates each ready-to-run task to amachine based
only on the local information of that task. At each iteration, the
finish time of each task is estimated for each machine. The task
that presents the minimum execution time over all tasks is chosen
to be scheduled first and then it is assigned to the machine whose
expected completion time is the earliest. This step is repeated
until all tasks are scheduled. It is worth noticing that all data files
generated by a task are assigned to the same machine where the
task is executed. According to Blythe et al. [34] the idea behind
this heuristic is that at each iterative step, the makespan has a
small increase, and hopefully resulting in a small makespan for
the whole workflow. However, the MinMin-TSH does not consider

jie

jie

jie

jie

jie

jie

jie

4 L. Teylo et al. / Future Generation Computer Systems 76 (2017) 1–17

the workflow graph (data dependencies) and a specific choice in a
specific iteration may impact other tasks in the future.

Pandey et al. [19] presents a Particle SwarmOptimization (PSO)
based algorithm, whose objective is minimizing the financial costs
of workflow executions in clouds. Similarly to Pandey et al., Ro-
driguez and Buyya [35] also use the PSOmetaheuristic for the same
problem. However, differently from Pandey et al. [19], Rodriguez
and Buyya propose a global scheduling algorithm that explores
the dynamic allocation of VMs, considering possible variations in
the Quality-of-Service (QoS) of the cloud environment. Their goal
is to minimize the total execution time, respecting the deadline
defined by the scientist. Differently from the approach proposed in
this article, Pandey et al. and Rodriguez and Buyya do not consider
the data assignment in the scheduling. Both approaches consider
that a task and all data generated by it, are stored in the same VM.
Moreover, they do not consider any limit in the storage capacity
of a VM, which could lead to unfeasible solutions in some cases,
mainly in data-intensive workflows.

Byun et al. [36] propose the Partitioned balanced time schedul-
ing (PBTS) heuristic, whose objective is to minimize the execution
time, respecting the deadline defined by the scientist. The algo-
rithm constructs the scheduling iteratively based on the financial
cost of using a certain time quantum of a VM in a commercial
cloud. In Amazon EC2, for example, the user pays for time quanta of
60 min. At each interval of time, PBTS defines and allocates a min-
imum number of computational resources (VMs) that is sufficient
to schedule the tasks that are ready to be executed. This algorithm
considers the task execution time and data transfer times and
assumes that the communication between tasks are exclusively
via Amazon S3. In our work we choose a communication based
on direct data transfer which is different from communication via
the shared storage system; this allows exploring the allocation
of files individually on each machine. Besides that, according to
Juve et al. [37], the Amazon S3 performed poorly on workflows
with a large number of small files, with are common in scientific
workflows.

Abrishami, Naghibzadeh and Epema [38] propose the algorithm
IC-PCP (IaaS Cloud Partial Critical Paths). This algorithm constructs
subsets of tasks based on critical paths of the workflow. Each set is
scheduled to one VM, that is chosen based on the financial cost and
the capacity of executing the subset, respecting a given deadline
provided by scientists. The algorithm prefers to choose VMs that
are already in use. However, when it is not possible, the algorithm
deploys the cheapest machine capable of executing the subset
while also respecting the deadline. The search for critical paths
and the whole scheduling process are repeated until there is no
remaining task to be scheduled. Although the task grouping in sub-
sets may reduce the data transfer costs, the locality of data files is
not explicitly explored in this approach. Actually, most of the work
in the related literature neglects the data assignment during the
scheduling which is an important and challenging aspect of scien-
tific workflow scheduling. Usually, these workflows use/transfer a
massive volume of data, which can cause a significant and negative
impact in the total execution time of workflows.

In Szabo et al. [21], the impact of data transfer in the scheduling
of data-intensive scientific workflows is discussed. The authors
argue that since the volume of data transferred between tasks
of workflows have increased a lot, the data and task assignment
problems cannot be treated independently. The authors propose an
evolutionary algorithm that optimizes the task scheduling aiming
at minimizing the data transfer among tasks and the total execu-
tion time of the workflow.

The metaheuristic proposed by Szabo et al. uses a storage and
data transfer model based on Amazon S3. Moreover, the file allo-
cation is driven only by the task assignment, i.e., the output file
is written both in the S3 and in the machine where the task that

generated it is assigned. As a result, only tasks that were allocated
to the same machine can take advantage of that file allocation.
Others tasks have to download the file from the shared storage
S3. In our work the allocation of tasks and files considers, among
other things, the distribution of all tasks and files in the virtual
environment. Although it was our intention to compare the results
of Szabo et al. with ours, the description of the approach given in
Szabo’s paper did not allow us to reproduce the presented results
in terms of quality of solutions (the source code was not available
either). Thus, in order to present a fair comparison in our paper, we
have opted to drop the comparisonwith Szabo’swork and compare
with traditional scheduling approaches such asHEFT [32] andMin–
Min [34].

Yuan et al. [20] use a clustering technique [39] based on a
dependency matrix to identify data files which will be consumed
(i.e. shared) by the same tasks in the workflow. The main idea is
to store these data files in the same data center to reduce data
transfer between different data centers. It is worth noticing that
such approach assigns a task to the data center in which most of
the input data is stored. The scheduling task problem and data
assignment are not deeply treated in this approach, that ignores
the scheduling and data assignment in VMs within the same data
center.

Wang et al. [28] present a solution whose objective is to min-
imize the data transfer of workflows allocated in multiple data
centers. Thiswork defines the initial data locality (i.e. static data) by
using the k-means clustering algorithm [39]. Task replication tech-
niques are used to reducedata transfer,which are generatedduring
the workflow execution (dynamic data), between different data
centers. Besides the intrinsic complexity of replication techniques,
such as maintenance of data consistency, the approach proposed
by Wang et al. does not tackle the data transfer problem within
data centers.

Bryk et al. [22] propose amodel to executeworkflow ensembles
in clouds. They present the File Locality-Aware Scheduling Algo-
rithm, which benefits of data locality to increase the performance
of workflow executions. The algorithm executes a dynamic task
scheduling, in which, at each step, the tasks that are ready to be
executed are scheduled to available VMs. The scheduler prioritizes
some tasks, considering the data locality, aiming at minimizing
data transfer (i.e. it tries to choose a VM ‘‘near’’ to data). The
execution model considers that both storing and data transfer use
a global storage and each VM keeps only data files generated in it
during the workflow execution. Thus, although the file locality is
not defined by the scheduling algorithm, tasks that consume the
same file are preferably allocated in the same VM that contains
such a file, avoiding in these cases data transfer betweenmachines.

Çatalyürek et al. [40] presented an algorithm that treats data file
and task allocation of workflows executed in clouds. The workflow
is modeled as a hypergraph. They propose a partitioning algorithm
whose objective is dividing the workflow in k parts (where k is
the number of virtual machines), each one to be associated with a
different virtualmachine, andminimizing the number of file trans-
fers. Besides that, the partitionmustmeet the balancing previously
defined by the user. Their work does not consider environment
characteristics such as processing and storage capacity and transfer
rates. Only the total size of all transferred files are used to evaluate
the solution quality.

To the best of author’s knowledge, the approach proposed in
this article is the first one that considers both task and data as ver-
tices in the workflow graph. This way, we can consider both prob-
lems together by proposing a model and an algorithm to minimize
the makespan of workflows in cloud environments. Our approach
considers different storage capacity of machines, different tasks
execution times and data transfer times in these heterogeneous
systems. The following section formalizes the problem considered
in this article.

jie

jie

jie

jie

jie

jie

jie

L. Teylo et al. / Future Generation Computer Systems 76 (2017) 1–17 5

3. The Task Scheduling and Data Assignment Problem - TaSDAP

Workflows are abstractions used to model a coherent flow of
several scientific applications, which can be executed locally or
in distributed systems. Each workflow is composed by multiple
steps or activities, which are necessary to produce the outcome
of a specific experiment [2]. Each activity may correspond to sev-
eral executable tasks. Each task is considered the smallest unit of
processing and may execute in parallel by consuming a different
portion of the input data or parameter values. From the scientist’s
point of view, theworkflow is composed by a few activities (i.e. the
scientist only considers the abstract representation of the work-
flow). However, from the execution point of view, each workflow
may be composed by several thousands (or evenmillions) of tasks.
Since the approach proposed in this paper is focused in scheduling
workflow tasks in clouds, we consider the representation of the
workflow from the execution point of view.

Commonly, a workflow is defined by a Directed Acyclic Graph
(DAG) in which each task is represented by a vertex, and each data
file or dependency between tasks is represented by an arc between
the vertices. In this context, workflow-based scheduling aims at
mapping the execution of tasks with dependency constraints on
shared resources (e.g., VMs) [41]. Usually, the scheduling methods,
proposed in related work, consider that all data files are already
placed in somemachines or are synchronized among all machines.
Differently from these approaches, this work proposes a new
workflow model and, based on it, the Task Scheduling and Data
Assignment Problem (TaSDAP) is presented. TaSDAP considers that
determining the machine where the data file generated during
the workflow execution is assigned, is also a crucial step in the
workflow scheduling problem.

In the last decade, scientists started migrating their scientific
experiments to clouds, where computing resources (infrastruc-
ture, platform, and software) are provided to users on demand
via the Internet [42]. Motivated by this scenario, we choose to
tackle the TaSDAP considering the strength and the potential of
cloud environments. The following Sections 3.1 and 3.2 present
the application and architecture models for the TaSDAP and the
proposed mathematical formulation, respectively.

3.1. Application and architecture models

The Task Scheduling and Data Assignment Problem (TaSDAP)
considers a class of parallel applications represented by DAGs
(Directed Acyclic Graphs), and denoted by G = (V , A, a, ω). Dif-
ferently from the current mainstream, data files are no longer
represented as arcs. They are now represented as the set of vertices,
similarly to the tasks. Thus, V = N ∪ D consists of tasks i ∈ N
and data files d ∈ D; A stands for the set of arcs, which gives the
precedence relation between tasks and data files, ai is the amount
of work associated with task i ∈ N , and ωmn represents the cost
associated with arc (m, n) ∈ A. The set of immediate predecessor
tasks of a task i ∈ N is defined as pred(i) = {j ∈ N | ∃d ∈
D, such that (j, d) ∈ A∧ (d, i) ∈ A}. Similarly, the set of immediate
successors is given by succ(i) = {j ∈ N | ∃d ∈ D, such that (i, d) ∈
A∧(d, j) ∈ A}. In the graph, a task is always preceded and succeeded
by a data file as illustrated in Fig. 1a, where task1 reads data files
data1 and data2 as needed for its execution, andwrites data3, which
will be read later by task2, which also writes the data file data4.

The architecturalmodel specifies themain features of the target
architecture. In order to better reproduce the reality of a large-
scale system, let M be the set of all VMs available for execution
or storage. Each VM j ∈ M has a storage capacity cmj and compu-
tational slowdown index csj, which is inversely proportional to the
computational power cpj of VM j, according to Silva et al. [43]. In
other words, csj represents the degree of difference of the process-
ing capacity of the different available VMs and it is an alternative

(a) Application model. (b) Architectural model.

Fig. 1. Problem definition models.

to the representation of the execution time of the tasks through
matrices.

Moreover, a communication delay index cdl estimates the la-
tency cost associated with each link l of the system. We propose
two types of communication delay here. One for the writing cases,
cdwl, and one for the reading cases, cdrl. For supporting our model,
two communication delay matrices are built, each one concerning
one type of delay. Therefore, the execution time of a task i ∈ N on a
VM j ∈ M is given by tij = ai×csj. Furthermore, the communication
time for a task i ∈ N executing on VM j ∈ M , to write data d ∈ D
in VM p ∈ M , where j and p are connected by link l, is given by
←−t djp = ωid× cdwl. Similarly, the communication time for reading
is given by−→t djp = ωdi × cdrl. Fig. 1b illustrates an example of the
architectural model containing three VMs and its characteristics:
(i) the storage capacity cm, (ii) the computational slowdown index
cs, (iii) the communication delay index for write operations (cdw)
and (iv) the communication delay index for read operations (cdr).

For example, to clarify the proposedmodels, consider that a task
i took one hour to be completely executed on a specific VM j, con-
sidered by us as a default VM. This default VM has a computational
power, cpj, expressed in Gflops and we assumed that its slowdown
csj is equal to 1. Let j′ be another VM, with a computational power
cpj′ . The slowdown index csj′ is obtained in relation to the default
VM j as: csj′ =

cpj
cpj′

. So, if the default VMhas cpj = 30Gflops and VM
j′ has cpj′ = 20 Gflops, the slowdown index csj′ will be equal to 1.5
and if task i is executed in j′ its execution timewill be one hour and
thirty minutes. Similarly, consider that the communication time to
write data d in a specific link l, considered by us as a default link,
is one minute. This link l has a certain bandwidth, bwl expressed
in Mbps and we assume that its communication delay index cdwl
is equal to 1. Let be l′ another link, with other bandwidth bwl′ .
The communication delay index cdwl′ is obtained in relation to
the default link l as: cdwl′ =

bwl′
bwl

. Thus, if the default link l has
bwl = 100 Mbps and link l′ has bwl′ = 200 Mbps, the cdwl′ will
be equal to 0.5 and if link l′ is used in this write operation the
communication time for writing will be thirty seconds. Remark
that the communication time for reading is obtained in the same
manner, using index cdrl′ .

Note that when data is read by some VM, we assume that
it is held in main (volatile) memory. Thus, read operations do
not require available storage capacity to store data. Besides that,
since scientific workflows can be modeled using different types
of programs and they are black-box ones, we do not know their
behavior in relation to file consumption and production. Some
programs, for example, have to load all data before processing,
while others can start processing before data is totally loaded.
Similarly, many programs only write data to the disk when they
finish the execution. We have chosen to consider the worst case,
where the input file has to be completely available so that the

jie

jie

jie

jie

jie

6 L. Teylo et al. / Future Generation Computer Systems 76 (2017) 1–17

program starts executing and the output files can only be written
when execution finishes. As future work we intend to tackle the
data replication problem in ourmodel. In this way, read operations
can take advantage of the nearest replica.

3.2. Mathematical formulation

The TaSDAP can be formulated as the mixed integer program-
ming problem, named TaSDAP-IP, as described below. Let us re-
define D = Ds ∪ Dd as the set of all data, where each data d ∈
D has a size W (d) and can be either static (Ds), with an origin
machine O(d) ∈ M , or dynamic, generated during the workflow
execution, (Dd). For each i ∈ N , we consider a set of input data
∆in(i) ⊆ D needed for their execution and a set of output data
∆out (i) ⊆ Dd generated by it. Moreover, we define TM as the
maximum execution time for the workflow and T = {1...TM} as
the set of feasible periods.

In this vein, the TaSDAP is defined as the problem of scheduling
tasks and assigning data on VMs, respecting the available storage
capacity and trying to minimize the makespan. Next, we summa-
rize the data and variables used in the proposed mathematical
formulation and present the TaSDAP-IP.

Data Description

Ds Set of static data.
Dd Set of dynamic data.
D = Ds ∪ Dd Set of data.
O(d) Origin machine of static data d ∈ Ds .
W (d) Size of data d ∈ D.
N Set of tasks.
ai Amount of work of task i ∈ N .
M Set of VMs.
tij Processing time of task i ∈ N in VM j ∈ M .
−→t djp Time spent by VM j ∈ M to read the data d ∈ D stored in

VM p ∈ M
←−t djp Time spent by VM j ∈ M to write the data d ∈ Dd stored in

VM p ∈ M .
∆in(i) ⊆ D Set of data needed for the execution of task i ∈ N .
∆out (i) ⊆ Dd Set of data generated by task i ∈ N .
cmj Storage capacity of the VM j.

Variables Description

xijt Binary variable which indicates whether task i ∈ N begins
its execution in VM j ∈ M at period t ∈ T or not.

−→x idjpt Binary variable which indicates whether task i ∈ N
executing in VM j ∈ M begins to read data d ∈ ∆in(i)
stored in VM p ∈ M at period t ∈ T or not.

←−x djpt Binary variable which indicates whether data d ∈ Dd
begins to write from VM j ∈ M to VM p ∈ M at period
t ∈ T or not.

ydjt Binary variable which indicates whether data d ∈ D is
stored in VM j ∈ M at period t ∈ T or not.

zT Continuous variable which indicates the total time to
execute the workflow (makespan).

The objective function (1) minimizes the application makespan
and it is subject to the following constraints.

min zT (1)

Constraints (2) guarantee that every task must be executed.
Constraints (3) and (4) rule that every read and write operations
must be accomplished, respectively.∑
j∈M

∑
t∈T

xijt = 1, ∀i ∈ N (2)

∑
j,p∈M

∑
t∈T

−→x idjpt = 1, ∀i ∈ N,∀d ∈ ∆in(i) (3)∑
j,p∈M

∑
t∈T

←−x djpt = 1, ∀d ∈ Dd. (4)

Inequalities (5) guarantee that data d ∈ ∆out (i) can only be
written, if task i was executed in the correct time. Furthermore,
constraints (6) rule that data d cannot be written before the pro-
cessing time of the task i (responsible for its writing). Note that
both sets of constraints ((5) and (6)) work together to guarantee a
feasibly time for the writing process.
←−x djpt ≤ xij(t−tij), ∀d ∈ Dd,∀j, p ∈ M,

∀t = (tij + 1) · · · TM such d ∈ ∆out (i) (5)

←−x djpt = 0 ∀d ∈ Dd,∀j, p ∈ M,

1 ≤ t ≤ tij such d ∈ ∆out (i). (6)

Constraints (7) rule that a task can only be executed, if all
necessary reads were concluded in a feasible time.

xijt ≤
∑
p∈M

−→x idjp(t−−→t djp)
, ∀i ∈ N,∀d ∈ ∆in(i),∀j ∈ M,

∀t ∈ T , such (t −−→t djp) ≥ 1. (7)

Inequalities (8) guarantee that only one action (execution, read-
ing or writing) can be accomplished at each period of time in each
VM (e.g. a VM cannot execute a task and write data at the same
time).∑
i∈N

t∑
q=max(1,t−tij+1)

xijq +
∑
d∈Dd

∑
p∈M

t∑
r=max(1,t−←−t djp+1)

←−x djpr

+

∑
i∈N

∑
d∈∆in(i)

∑
p∈M

t∑
r=max(1,t−−→t djp+1)

−→x idjpr ≤ 1,∀j ∈ M,∀t ∈ T .

(8)

Constraints (9) establish that there are no dynamic data at
starting time. On the other hand, constraints (10) guarantee that
all static data are already stored on their origin machines.

ydj1 = 0, ∀d ∈ Dd,∀j ∈ M (9)
ydjt = 1, ∀d ∈ Ds | j ∈ O(d),∀t ∈ T . (10)

Constraints (11) and (12) link the storage variable y with the
write variable←−x and the read variable−→x , guaranteeing a feasible
write and read process, respectively.

ydp(t+1) ≤ ydpt +
∑
j∈M

←−x djp(t−←−t djp)
,

∀d ∈ D,∀p ∈ M,∀t ∈ T , such (t −−→t djp) ≥ 1 (11)∑
j∈M

−→x idjpt ≤ ydpt , ∀i ∈ N,∀d ∈ ∆in(i),∀p ∈ M,∀t ∈ T . (12)

In detail, constraint (12) ensures that data will only be read
if previously stored in a VM, and constraint (11) ensures that
data will only be stored in a VM, if it has been already produced
(written).

The VMs storage capacity are bounded by constraints (13).
Constraints (14) relate the last write operation with the ap-

plication execution time (makespan). Note that in our application

jie

jie

jie

jie

L. Teylo et al. / Future Generation Computer Systems 76 (2017) 1–17 7

model a task always creates data.∑
d∈D

ydjtW (d) ≤ cmj, ∀j ∈ M,∀t ∈ T (13)

←−x djpt · (t +
←−t djp) ≤ zT , ∀d ∈ Dd,∀j, p ∈ M,∀t ∈ T . (14)

Moreover, the following operational constraint (15) must be
satisfied: a task i can only begin any reading process if all data
d ∈ ∆in(i) is already available (i.e., if all data d ∈ (∆in(i) ∩ Dd) is
written). Finally, the remaining constraints are the integrality and
non-negativity constraints.

−→x idjpt · |∆in(i) ∩ Dd| ≤
∑

g∈{∆in(i)∩Dd}

∑
l,o∈M

t−←−t glo∑
u=1

←−x glou,

∀i ∈ N,∀d ∈ ∆in(i),∀j, p ∈ M,∀t ∈ T . (15)

4. HEA-TaSDAP: a hybrid evolutionary algorithm for solving
TaSDAP

Evolutionary Algorithms (EA) [44] are optimization methods
inspired in biology evolution mechanisms observed in nature. In
an EA, each chromosome is an individual of a population which
represents a possible solution to the problem. The search for the
best solution is guided by a fitness function, which gives the
quality of each chromosome. At each iteration of the algorithm,
new individuals are generated through a crossover operation and
the diversification of the population is obtained through the mu-
tation function. In this article, a Hybrid Evolutionary Algorithm
(HEA), called HEA-TaSDAP, which includes EA, local search and a
path relinking method [45], was developed. According to Moscato
et al. [46], differently from traditional EA, HEA explores the avail-
able knowledge on the problem to reach best results.

TheHEA-TaSDAP is presented inAlgorithms1 and2. These algo-
rithms are composed by fivemain procedures: (i) initial population
generation; (ii) crossover; (iii) local search; (iv) mutation; and (v)
path relinking. Each one of these steps are explained next.

Algorithm 1: HEA-TasDaP_Main
Output: The best solution found

1 P ← InitialPopulationGeneration()
2 best ← getBest(P)
3 Elite_set← ∅
4 iteration← 0
5 while iteration ≤ MAX_ITERATION do
6 if shouldDoLocalSearch() then
7 P ← doLocalSearch(P)
8 current_best← getBest(P)
9 if fitness(current_best) better than fitness(best) then

10 best ← current_best
11 if Elite_set ̸= ∅ then
12 best_pr ← doPathRelinking(best, Elite_set)
13 if fitness(best_pr) better than fitness(best) then
14 P ← P \ best ∪ best_pr
15 best ← best_pr
16 if distance(best, Elite_set) ≥ α then
17 Elite_set← Elite_set ∪ best
18 if size(Elite_set) > β then
19 removeFirstInChromosome(Elite_set)
20 P ← doNextPopulation(P) (Algorithm 2)
21 iteration = iteration+ 1
22 return best

Algorithm 2: doNextPopulation
Input: Current Population P
Output: A New Population P ′

1 Children← ∅
2 for i← 1 to n do
3 parent1 ← tournamentSelection(P)
4 parent2 ← tournamentSelection(P)
5 new_chromosome← crossover(parent1, parent2)
6 new_chromosome′ ← mutate(new_chromosome)
7 Children← Children ∪ new_chromosome′
8 ComputeFitness(Children) (Algorithm 3)
9 AllSolutions← Children ∪ P

10 P ′ ← getBest(AllSolutions)
11 while size(P ′) < MAX_POPULATION_SIZE do
12 chromosome← tournamentSelection(AllSolutions)
13 P’← P’ ∪ chromosome
14 AllSolutions← AllSolutions \ chromosome
15 return P ′

4.1. Representation of a chromosome

In TaSDAP, a feasible solution must respect the precedence or-
der among tasks. A task can only be executed when the input data
files are available. It occurs either when all tasks which generated
them have already finished their executions or the data files are
static ones. For example, in Fig. 1a, task2 depends on the data file
generated by task1. So task2 can only be executed after task1.

In this article, a chromosome is composed by two structures,
which represent: (i) task and data assignments and (ii) the execu-
tion order of tasks. This representation was inspired by the ideas
of Szabo et al. [21], and allows both procedures, local search and
calculation of the fitness function, to be simplified, as presented
following in Sections 4.5 and 4.8, respectively. As can be seen in
Fig. 2a, the first structure, that represents the task and data assign-
ments, is a vector where indexes represent tasks and dynamic data
files, and each element represents the VM where the task or the
data file is assigned.

The inclusion of data assignment representation in this vector
is an important difference between our work and the others of
the related literature. This approach allows for the proposedmeta-
heuristic treating not only the task scheduling problem but the
data assignment problem as well, which can reduce the workflow
execution time [31].

The task execution order is represented by a linked list, see
Fig. 2a for an example. In order to define the task execution order,
we associate to each one a height. A task can only execute when all
tasks associated with a smaller height have already finished. Tasks
with same height execute concurrently. The height value is given
by Eqs. (16) and (17), proposed by Tsujimura [47].

height_init(taski)

=

{
0, if pred(taski) = ∅
1+ max

taskj∈pred(taski)
height_init(taskj), otherwise (16)

height(taski)

=

⎧⎨⎩
height_init(taski), if succ(taski) = ∅
rand ∈ [height_init(taski),

min
∀taskk∈succ(taskj)

{height(taskk)} − 1], otherwise.
(17)

At first, Eq. (16) assigns to a task an initial height corresponding
to the order in which it can be executed; it can be zero when it has
no predecessors, or the maximum of the initial heights among all
predecessors plus one. After that, in Eq. (17), a random component
is introduced allowing that such tasks can execute in any order

8 L. Teylo et al. / Future Generation Computer Systems 76 (2017) 1–17

(a) Chromosome representation.

(b) Height of tasks.

Fig. 2. Chromosome encoding.

between the previous calculated height (initial height) and the
minimumof heights among all its successors less one. For example,
in Fig. 2b, task2 can be associated either to height equal 1, its
previous calculated height, or to height equal 2, the height of its
successor less one. Therefore, task2 can run in parallel either with
task1 or task2.

Note that different sequences of tasks can be generated to
encode the task execution order list. This feature is exploited in
the search procedures as it will be seen in Sections 4.3 and 4.5.

4.2. Initial population generation

To generate the initial population two approaches were ap-
plied. The first one uses both MinMin-TSH [34] and HEFT [32] to
generate 80% of the initial population. Since these heuristics are
deterministic and always produce the same solution to the same
input, we applied a random component in each generated solution
to ensure that the population is diverse. Firstly, 40% of solutions
are generated from the solution produced by MinMin-TSH and
we applied a random movement in λ% genes in the task and file
assignment vector, where λ ranges from 5% to 100% (increases in
5% at each new solution). The same approach is used to generate
the other 40% of chromosomes, but at that point the chromosomes
are derived from the solution produced by HEFT. The intuition
behind this approach is that it ensures that initial population has a
satisfactory diversity and presents a good start point for the search
method.

The second approach is used to generate the other 20% of
chromosomes. In that approach, each task and dynamic data file
is assigned to a VM randomly chosen. The execution order of each

(a) Crossover operator in the task and data assignments vector.

(b) Crossover operator in the tasks execution order list.

Fig. 3. Crossover operators.
Source: Adapted from [21].

task is given by (17), that is calculated for each generated chromo-
some. In both approaches, it may happen that a dynamic data file
is assigned to a VM that does not have enough storage capacity to
keep it. When that occurs, a proposed heuristic, named Move-file,
is executed to re-assign the dynamic files so that restriction is not
violated. The heuristic Move-file is presented in Section 4.7.

4.3. Crossover operation and selection phase

The crossover operation combines two individuals among the
best ones to form an offspring. In the Algorithm 2, to generate a
new solution, two chromosomes are chosen from current popu-
lation P using the tournament selection algorithm [48]. Then, a
single-point crossover operator [49] is applied in both structures
that compose these chromosomes. Fig. 3 illustrates this function.
Initially, two points of cut are defined, one for the task and data
assignment vector and other for the list with the order of tasks
execution. In the vector, shown in Fig. 3a, the genes on the left-
hand side of the cut are copied from parent1 to the corresponding
positions of the offspring. The remaining genes, right-hand side of
the cut, are copied from parent2.

Concerning the tasks execution order (Fig. 3b), genes from the
left-hand side of the cut are copied from parent1 to the genes of the
same position of the offspring. The other genes of the offspring are
obtained by checking each gene, in the same order they appear in
parent2, and copying it to the offspring whenever it has not been
inserted in it yet. Thus, the precedence order of tasks is kept in the
offspring.

In the selection phase (Algorithm 2, from line 9 to 14), the
chromosomes for the next population are selected from the set
AllSolutions, which is formedby thenewly generated chromosomes
and the current population P. At first, to ensure that best solution
will always be included in the population, an elitism selection is
applied in line 10, where the best solution is found and add to
next population P’. After that, the remaining solutions are chosen

jie

L. Teylo et al. / Future Generation Computer Systems 76 (2017) 1–17 9

Fig. 4. Mutation operation.
Source: Adapted from [21].

using the tournament selection algorithm and included in P’ as
well. Note that, when a chromosome is selected it is removed from
the AllSolutions set to prevent that the same chromosome is added
more than once to the P’.

4.4. Mutation operation

The mutation operation is responsible for the diversification
of the population. It enlarges the search space trying to escape
from local optima solutions. In this work, the mutation is executed
only in the task and data assignment vector. Our tests showed
that the use of mutation operation in the structure of the tasks
order list does not result in significant gains in terms of quality of
solutions, and, additionally, it increases the computational cost of
the operation.

The mutate operator is call for each new solution generated
by the crossover procedure in the Algorithm 2, on condition that
each gene has a 10% probability of being modified. As can be seen
in Fig. 4, the VM identification Vm is randomly changed. At the
end, the fitness of the chromosome is recalculated and the new
chromosome replaces the old one.

4.5. Local search procedures

After applying the crossover and mutation operators to build
a new population, local search procedures are applied on 15% of
the best solutions with a probability of 50%. These values showed
the best results and were defined based on empirical tests made
to adjust the parameters of the algorithm. How this is done can
be seen in Algorithm 1 line 6, for each iteration the local search
probability is checked and, in the case of it is true, the local search
procedures are executed.

In this work, three local search procedures were defined and
are executed in the following order: (i) swap-vm: swap two ele-
ments in the task and data assignment vector; (ii) swap-position:
swap two elements of the same height in the task order list;
and (iii) move-element: move one task or data file to a different
machine. Each local search procedure is executed until it obtains an
improvement (first-improvement) or until all combinations have
been tested.

Fig. 5 presents the three types of local search used in HEA-
TaSDAP. Fig. 5a presents the execution of swap-vm procedure that,
after testing several swaps, exchanges the elements of position 1
and 10 of the task and data assignment vector. Fig. 5b also tests
several swaps, until exchanging the order of execution of tasks 4
and 5, which have the same height, in the task execution order list.
Finally, in Fig. 5c, a task or data file is moved from VMm2 to m3.

4.6. Path relinking

Path relinking is a heuristic capable of generating intermediate
solutions between two other ones. It starts with an initial solution
and, step by step, inserts elements of a target solution. Its goal is
to visit new solutions in the path from one solution to another

one [50]. So, during the path relinking execution, the distance
between the solutions diminishes gradually.

In the context of TaSDAP, the distance between a chromosome
chr1 and another chr2 is the number of tasks and data files assigned
to different VMs plus the number of swaps necessary to make
their task order lists exactly the same. Fig. 6 shows the distance
of chromosomes chr1 and chr2. The number of tasks or data files
placed in different VMs is five and the number of necessary swaps
is one, so dist(chr1, chr2) = 6.

In this work, the path-relinking procedure is applied to an elite
set whenever a best solution is found. As can be seen in Algorithm
1 (line 11 and 12), if the elite set was not empty, the path-relinking
is applied taking as input the newly found best solution. The elite
set is composed of the best solutions whose distances between
each other are greater than α, where α is calculated as 25% of the
number of tasks and data files. This parameter controls the elite
set diversification and, consequently, the search efficiency. Besides
that, up toβ chromosomes canbe added to the set,whereβ is equal
to half of population size. As showed in lines 18 and19 inAlgorithm
1, when this limit is reached a replacement policy First in First out
(FIFO) is applied to update the elite set.

The path relinking procedure is applied between the new best
solution and each chromosome of the elite set. If during the search
a better solution is found, the best chromosome is replaced and
include in the population, as it might be seen from line 12 to 15.

4.7. Move-file heuristic

When a new chromosome is generated, its feasibility is evalu-
ated. If the data files assigned to a VM would exceed its storage
capacity, the VM is considered overloaded and the heuristicMove-
file is executed.

The heuristicMove-file contains the following steps:

1. Select the most overloaded VM,ms.
2. Select the most underloaded VM,md.
3. Move the smallest size data file from VMms to md.

The above steps are repeated until there is no overloaded VM.
Based on the hypothesis that the assignments defined by the

metaheuristic correspond to the best ones, it seems interesting
not changing the original chromosome very much, since it could
impact negatively on themakespan. In order to soften this probable
impact, the smallest data files are selected to be moved.

4.8. Fitness function

Let f : s→ Z be a fitness function, where s is a feasible solution
in the search space and Z is an integer number that quantifies the
quality of a solution represented by a chromosome. So, the fitness
function allows for ordering the solutions in terms of quality and
to direct the search towards the best solutions [51].

In TaSDAP, the quality of an individual is given by themakespan,
i.e., let chri and chrj be two chromosomes, if makespan(chri) <

makespan(chrj), then the solution given by chri is better than the
one given by chrj. To calculate the makespan, we define the Al-
gorithm 3. As can be seen, the information in the structures order

jie

10 L. Teylo et al. / Future Generation Computer Systems 76 (2017) 1–17

(a) Swap machines in the task and data assignment vector. (b) Swap tasks in the tasks execution order list.

(c) Moving a task or data file from one machine to another.

Fig. 5. Local search procedures.

Fig. 6. Distance dist(chr1, chr2) = 6.

list (sorting by the tasks height values) and assignment vector are
retrieved to compute the finish time of each task.

Algorithm 3: Compute Fitness
Input: A chromosome chr
Output: The value of the makespan

1 Q ← 0
2 FT ← 0
3 for taski in chr.order_list do
4 mj ← chr.assigment_vector[taski]
5 max_pred_time← maxFinishTimePred(FT , taski)
6 start_timei ← max (max_pred_time,Q [mj])
7 finish_timei ← start_timei + runTime(taski,mj)+

readTime(taski,mj)+WriteTime(taski,mj)
8 Q [vmj] ← finish_timei
9 FT [taski] ← finish_timei

10 returnmax(FT)

In Algorithm3, vectorsQ and FT are auxiliary structures used to
keep the times computed in every step of the algorithm. Vector Q

is indexed by the VM identification (mj) and contains the finishing
time of the last task executed in the corresponding VM. Each ele-
ment of vector FT corresponds to a taski and contains the finishing
time of the associated task.

The calculations of the start and finishing times of each task
follow the model presented in Section 3.1. Firstly, the start time
of taski is computed as the maximum finishing time among all its
immediate predecessors (represented by max_pred_time) and the
finishing time of the last task executed in VMmj (stored in Q [mj]),
as presented in line 6.

Then, in line 7, the finishing time of taski is computed by sum-
ming the following values: (i) the start time of taski (start_timei);
(ii) the execution time of taski when executed in VM mj; (iii) the
necessary time for reading all required data files by taski; and (iv)
the necessary time for writing all data files generated by taski.
Finally, in line 10, the algorithm returns the makespan that is the
maximum finishing time among all tasks of the workflow.

jie

L. Teylo et al. / Future Generation Computer Systems 76 (2017) 1–17 11

5. Experimental results

This section presents experiments conductedwithHEA-TaSDAP
to evaluate the proposed approach. We conducted two types of
experiments: theoretical and practical ones. The central idea of this
section is to compare the proposed scheduling approach with ex-
isting solutions that can be used to schedule workflows in clouds.
It is worth mentioning that all schedules used in this section for
experiments and all optimization code are available in a BitBucket
Git repository (https://bitbucket.org/danielcmo/hea-tasdap).

5.1. Simulated experiments

We firstly evaluate HEA-TaSDAP, in terms of quality of solution
and execution time, by comparing itwith: (i) the solutions given by
mathematical formulation TaSDAP-IP (solved with CPLEX 12.5.1);
(ii) theMinMin-Task Scheduling Heuristic (MinMin-TSH) [34]; and
(iii) the Heterogeneous Earliest Finish Time (HEFT) [32]. We have
chosen MinMin-TSH and HEFT because these heuristics run in
polynomial time, produce efficient schedules and have been used
as baselines in related works [52,53,26].

Tests were run in a computer with a processor Intel Core i7-
3770 CPU 3.40 GHz with 12Gb memory running Ubuntu 14.04.
The HEA-TaSDAP, MinMin-TSH and HEFT were implemented with
C/C++, and compiled with g++ version 5.3.0.

We use two types of synthetic instances in these experiments.
The first one, used in the comparison between HEA-TasDap and
TaSDAP-IP (Section 5.1.1), was randomly generated varying the
number of tasks, data files and representations ofworkflows, as ex-
plained later. The second type, used in Section 5.1.2, was generated
by the Workflow Generator [54] (https://confluence.pegasus.isi.
edu/display/pegasus/WorkflowGenerator). This application gener-
ates instances of workflow executions for evaluation of algorithms
and systems on a range of workflow sizes. All data within these
synthetic workflows is gathered from real executions of scientific
workflows on the grid and in the cloud from the Pegasus’ team in
ISI @ University of Southern California.

The metaheuristic HEA-TaSDAP was executed with a popula-
tion of 50 individuals and the stopping criterion was satisfied
after 100 iterations without improvement. Concerning the other
parameters, the algorithm uses the ones defined in Section 4. It is
worth mentioning that all parameters were adjusted empirically
after several tests.

5.1.1. Comparing HEA-TaSDAP with the exact approach
HEA-TaSDAP and TaSDAP-IP were evaluated using a set of 12

random instances divided into 4 groups according to their sizes. For
each group, three different instances were generated by varying
the number of tasks, files, and the representation of the workflow.
Two computational environments were defined for simulation,
with 3 and 5 VMs. File sizes (MB) and the process execution time
(seconds) were randomly set between 0.1 and 100. The storage
capacity of 1 TB has been set, and the transfer link rates were 5,
10 and 15 MB/s. Finally, the slowdown of the machines were set
between 0.01 and 1. Table 1 shows the amounts of tasks and files
for each generated instance. In addition, the basic workflow struc-
tures found on them are presented according to the classification
made by Bharathi et al. [55].

Table 2 summarizes the results obtained by exact approach
and the HEA-TaSDAPmetaheuristic. The first column identifies the
instance. The following two columns present the results obtained
by HEA-TaSDAP: makespan and the execution time to obtain the
solution. Following, the next 2 columns present the same results
for the exact approach. Finally, the last column, shows the gap
between the solutions given by HEA-TaSDAP and the exact ap-
proach (mathematical formulation). The values shown for HEA-
TaSDAP are averages of five executions. The standard deviations

were zero for almost all instances, except 15B_m3, 15B_m5 and
15A_m5, which were less than 0.6.

By analyzing Table 2, we can observe that for all instances the
HEA-TaSDAP obtains good solutions with small gaps, in average
1.1%. Moreover, it takes significantly less time when compared
with the mathematical formulation when solved with the CPLEX,
on average 1.5 s against 12, 640.3 s, respectively. Furthermore,
CPLEX could not find a feasible solution for instances 10A_m5 and
15C_m5 within 24 h time limit. Finally, in instance 15C_m3, the
CPLEX could not prove the optimality of the solution. Although
these results are very encouraging, we have also evaluated HEA-
TaSDAP with other heuristics and using a real workflow as pre-
sented following in this article.

5.1.2. Comparing HEA-TaSDAP with HEFT and MinMin-TSH
In order to compare the performance and the quality of the re-

sults of HEA-TaSDAP, HEFT and MinMin-TSH, the aforementioned
synthetic workflows produced by workflow generator: Montage,
Cybershake, Epigenomics and Inspiral workflows [30] were cho-
sen. Each instance (workflow) has the following corresponding
information: (i) a Direct Acyclic Graph representing tasks and data
files of the workflow; (ii) execution time of each task in a machine
with known processing capacity; and (iii) size of each input and
output data file. Table 3 shows the main characteristics of each
workflow.

We also considered the characteristics of the VMs fromAmazon
EC2 cloud environment. So, although we are theoretically evaluat-
ing the algorithms, the used data (structure of workflows and VMs
characteristics) were acquired from real scenarios. The used cloud
environment is composed by 4 VMs: 1 m3.medium (1 vCPU Intel
Xeon E5-2670 v2); 1 m3.large (2 vCPU Intel Xeon E5-2670 v2); 1
m3.xlarge (4 vCPU Intel Xeon E5-2670 v2); and 1 m3.2xlarge (8
vCPU Intel Xeon E5-2670 v2). We also considered the following
information about each VM: (i) network bandwidth; (ii) storage
capacity; and (iii) processing capacity.

It is worth mentioning that the execution time of a task is
defined as the product between a basis time and themachine slow-
down where it will be executed. A machine slowdown is defined
as PB

Pmj
, where PB is the processing capacity of the machine used to

calculate the basis time, and Pmj is the processing capacity of the
virtual machine of our experiment. So, the slowdown represents
the processing capacity of a virtual machine when compared with
the machine used to calculate the basis time. In our experiments,
the basis time and the processing capacity PB were obtained from
instances of the Workflow Generator, while Pmj is the processing
capacity of the virtualmachine fromAmazonEC2. The transfer-rate
parameter was estimated through practical experiments using the
tool Iperf, available in https://iperf.fr.

Table 4 presents the makespan (the average of 5 executions),
Relative Standard Deviation (RSD) and the execution time of HEA-
TaSDAP. It also presents the makespan of MinMin-TSH and HEFT,
and since they are deterministic heuristics, the result is always the
same for each execution of the algorithm. The execution times of
MinMin-TSH and HEFT are not presented, since they are negligible
(less than 1min). Note that, HEA-TaSDAP outperformswith respect
to makespan both MinMin-TSH and HEFT algorithms.

In fact, these results were already expected, since variations
of solutions given by MinMin-TSH and HEFT are used in initial
population. It worth noticing that with our proposal we improved
the quality of the makespan in all cases and with a acceptable run
time (less than 9 min in the worst case). The HEA-TaSDAP showed
an average improvement of 22.72% in relation of MinMin-TSH and
11.15% in relation of HEFT.

Analyzing Table 4 we can state that there is an improvement
variation among all workflows. After analyzing all workflow struc-
tures and the volume of data transferredwith the scheduling plans

https://bitbucket.org/danielcmo/hea-tasdap
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://iperf.fr
jie

jie

jie

jie

jie

jie

12 L. Teylo et al. / Future Generation Computer Systems 76 (2017) 1–17

Table 1
Description of instances used in the comparison with mathematical formulation.

Workflow Basic structures Number of tasks Number of files

5A; 5B; 5C
Process 2 3
Process; Data aggregation 2 3
Data aggregation 1 4

7A; 7B; 7C
Data aggregation; Data redistribution 2 5
Process 3 4
Data aggregation; Pipeline 3 4

10A; 10B; 10C
Data aggregation 4 6
Data redistribution 3 7
Data distribution; Pipeline 3 6

15A; 15B; 15C
Data aggregation; Data distribution 5 10
Data distribution; Pipeline 4 11
Data aggregation; Data distribution 5 10

Table 2
Results of HEA-TaSDAP metaheuristic and the mathematical formulation using CPLEX.

Instance HEA-TaSDAP Mathematical formulation Gap (%)

Makespan Time (s) Makespan Time (s)

5A_m3 10.0 0.83 10.0 4.2 0.0
5B_m3 11.0 0.79 11.0 14.0 0.0
5C_m3 13.0 0.71 13.0 2.8 0.0
7A_m3 21.0 0.96 21.0 140.8 0.0
7B_m3 16.0 1.17 16.0 7.3 0.0
7C_m3 14.0 1.11 14.0 105.0 0.0
10A_m3 21.0 1.80 21.0 1644.6 0.0
10B_m3 12.0 1.74 12.0 21.4 0.0
10C_m3 21.0 1.22 21.0 316.7 0.0
15A_m3 16.0 2.47 16.0 2606.6 0.0
15B_m3 11.4 3.01 11.0 600.9 3.6
15C_m3* 19.2 2.42 94.0 86395.5 –
5A_m5 10.0 0.90 10.0 14.4 0.0
5B_m5 9.0 0.50 9.0 462.6 0.0
5C_m5 10.0 0.75 10.0 9.0 0.0
7A_m5 27.0 0.97 27.0 1836.4 0.0
7B_m5 26.0 1.26 26.0 21.0 0.0
7C_m5 16.0 1.09 16.0 2426.9 0.0
10A_m5* 25.0 1.58 – 86489.2 –
10B_m5 14.0 1.75 13.0 103.0 7.6
10C_m5 47.6 1.88 47.0 7353.5 1.2
15A_m5 16.0 2.64 16.0 15783.9 0.0
15B_m5 11.0 2.97 10.0 10764.3 10.0
15C_m5* 20.0 2.49 – 86243.0 –
Average 17.4 1.5 20.2 12640.3 1.1

Table 3
Scientific workflow attributes.a
Source: Adapted from [21].
Workflow Type Number of tasks Number of data files (static and dynamic)

I/O; memory; CPU

Cybershake Low; low; medium 30; 50; 100 49; 79; 154
Epigenomics Low; medium; high 24; 47; 79; 100; 127 38; 71; 119; 152; 192;
Montage High; low; low 25; 50; 100 38; 53; 93
Inspiral Low; medium; high 30; 50; 100 47; 77; 151

a Columns ‘‘Number of tasks’’ and ‘‘Number of data files’’ show different instance sizes used in our tests.

provided by HEA-TaSDAP, HEFT and MinMin-TSH (Table 5), we
can state that those improvements variations are mainly due to
the volume of data that is transferred among activities in each
workflow. In fact, workflows that produce large files presented
significant performance gains when using HEA-TaSDAP since it
considers file allocation in its essence. As can be seen in Table 5,
Cybershake_100 that presented the best makespan improvement
reduced the amount of data transferred in 42.5% and 36.6% when
compared with MinMin-TSH and HEFT, respectively. On the other
hand, Inspiral_100 that presented the worst makespan improve-
ment reduced the amount of data transferred in 23% and 6.4%
when compared with MinMin-TSH and HEFT, respectively. This
fact corroborates our analysis since Inspiral_100 has many small
files. Evenwhen usingMinMin-TSH andHEFT (that do not consider

file allocation) the volume of data transferred does not impact the
makespan considerably.

5.2. Evaluation of HEA-TaSDAP with a real workflow

This subsection presents the evaluation of the scheduling pro-
vided by HEA-TaSDAP using a real workflow from the bioinfor-
matics domain. To achieve that, we have chosen the SWfMS Sci-
Cumulus to execute the schedule provided by HEA-TaSDAP. The
following sections present the workflow used as case study, a brief
description of the SWfMS used and the needed modifications, the
environment configurations and the results achieved.

jie

L. Teylo et al. / Future Generation Computer Systems 76 (2017) 1–17 13

Table 4
Results of HEA-TaSDAP, HEFT and MinMin-TSH.

Instance MinMin-TSH HEFT HEA-TaSDAP

Makespan (min) Makespan (min) Makespan (min) RSD Run time (min)

Cybershake_30 11.98 11.28 10.25 0.0019 0.39
Cybershake_50 14.88 16.65 12.46 0.0264 2.19
Cybershake_100 26.93 28.08 14.52 0.0261 8.11
GENOME.d.3510 530.88 469.38 444.91 0.0109 4.05
GENOME.d.7020 923.46 865.45 833.98 0.0004 6.79
Epigenomics_24 67.36 57.30 55.80 0.0000 0.03
Epigenomics_46 119.95 104.07 99.27 0.0140 0.48
Epigenomics_100 1,004.23 916.73 889.65 0.0001 4.02
Montage_25 1.81 1.16 0.95 0.0242 0.05
Montage_50 3.06 2.08 1.88 0.0036 0.10
Montage_100 5.31 4.66 3.93 0.0038 3.33
Inspiral_30 18.26 14.61 13.95 0.0014 0.17
Inspiral_50 29.96 23.36 22.41 0.0005 0.79
Inspiral_100 44.65 41.80 40.76 0.0036 1.55

Table 5
Volume of data transferred (in MB) with the scheduling plans provided by HEA-
TaSDAP, HEFT and MinMin-TSH.

Instance MinMin-TSH HEFT HEA-TaSDAP

Cybershake_30 3,228.59 3,460.30 2,270.97
Cybershake_50 6,025.76 5,549.10 4,833.56
Cybershake_100 14,335.00 12,931.10 8,234.62
GENOME.d.3510 68,511.50 67,893.10 64,897.90
GENOME.d.7020 111,237.00 106,490.00 106,480.00
Epigenomics_24 8,344.20 7,958.83 7956.5
Epigenomics_46 14,489.30 12,871.90 12,607.00
Epigenomics_100 121,654.00 116,368.00 116,355.22
Montage_25 247.10 117.44 80.86
Montage_50 577.60 264.69 240.04
Montage_100 764.21 729.59 593.47
Inspiral_30 812.12 772.32 656.72
Inspiral_50 1,383.53 1,104.66 1,104.58
Inspiral_100 2,603.20 2,139.80 2,002.35

5.2.1. SciPhy: A workflow for phylogenetic analysis
This subsection presents the workflow used as a case study for

a real workflow execution in this article. Many types of bioinfor-
matics experiments are based on the outcome of a phylogenetic
analysis, such as pharmacophylogenomics experiments, develop-
ment of new drugs, etc. A phylogenetic analysis aims at producing
phylogenetic trees, which are structures that show the inferred
evolutionary relationships among homologous genes represented
in the genomes of divergent species. Managing phylogenetic ex-
periments is far from trivial, since they are compute- and data-
intensive. As they are based on a pipeline of scientific programs,
computational phylogenetic experiments can be modeled as a
scientific workflow.

SciPhy [3] is one of the existing workflows for phylogenetic
analysis. The SciPhyworkflow is a parameter sweep analysiswhere
the same workflow is executed for each input file in a given large
input dataset. It is composed by four main activities: multiple
sequence alignment (MSA), sequence conversion, search for the
best evolutionary model, and construction of phylogenetic trees,
and they respectively execute the following bioinformatics ap-
plications: MSA programs (MAFFT, Kalign, ClustalW, Muscle and
ProbCons), ReadSeq, ModelGenerator, and RAxML.

The graph representing one execution of SciPhy is presented
in Fig. 7. Each one of the circles represents a different activity
execution in a VM and the squares represent data produced and
consumed. The first activity of SciPhy (with associated tasks t1, t5
and tn) constructs an individual MSA using one of five available
MSA programs – ClustalW, Kalign, MAFFT, Muscle, and ProbCons
– with default parameters. Each MSA program receives a multi-
fasta file as input (containing sequences of DNA, RNA and amino
acids —Mf1, Mf2 andMfm), then producing aMSA as output (Ms1,

Ms2 and Msm). Each MSA is then converted to the phylip format
in the second activity (with associated tasks t2, t6 and t(n+ 1)) to
be further processed. After being converted to the phylip format
(Rs1, Rs2 and Rsm), it is tested at the third activity to find the best
evolutionary model using ModelGenerator (with associated tasks
(t3, t7, t(n + 2))), and both of them (individual MSA, converted
MSA and evolutionary model) are used in the fourth activity (with
associated tasks t4, t8 and t(n+ 3)) to generate phylogenetic trees
(T1, T2 and Tm) using RAxML with 100 bootstrap replicates [56].
Consequently, we can obtain several different trees for each one
of the MSA programs and for several input multi-fasta files. In the
experiments executed in this article we have chosen MAFFT as the
MSA method.

Since we aim at executing a parameter sweep in SciPhy, each
one of the activities is going to be executed for a different input
file containing several sequences (multi-fasta file) thus generating
several different tasks. Each one of these tasks can be performed in
parallel. For more information about SciPhy, please refer to Ocaña
et al. [3].

5.2.2. SciCumulus workflow system
This section briefly describes the SciCumulus SWfMS used

as the computational infrastructure to execute SciPhy. SciCumu-
lus provides support for two types of parallelism: parameter
sweep [11] and data parallelism [57]. SciCumulus aims at dis-
tributing, controlling and monitoring parallel execution of sci-
entific workflows in a cloud environment, such as Amazon EC2.
SciCumulus is a distributed application as well and it is composed
by 4 modules:

I Client Tier: The components of this module dispatches
workflows to be executed in the cloud.

II Distribution Tier: It generates andmanages the execution of
activities in one or more VMs instantiated in one or more
cloud environments.

III Execution Tier: It is responsible for executing programs
invoked by workflow activities, generating data files and
storing provenance data.

IV Data Tier: This tier is the provenance database, which stores
all provenance data consumed and generated by the parallel
execution of the workflow.

SciCumulus provides theminimal computational infrastructure
to support workflow parallelism with provenance management.
For the experiments presented in this article the scheduler of
SciCumulus had to bemodified. In the current and available version
of SciCumulus, the scheduler is based on a greedy and dynamic
approach. As a VM becomes idle, it requests a task and then the
scheduler decides the best task to be executed in that VM at that

jie

14 L. Teylo et al. / Future Generation Computer Systems 76 (2017) 1–17

Fig. 7. A graph representing a single execution of SciPhy.

specific moment. This is a simple approach and provides good
solutions especially when we face performance variations in the
VMs, but since it is based on a greedy algorithm, it is not guaranteed
that the optimal solution is provided.

In the version of SciCumulus used in this experiment, the HEA-
TaSDAP is invoked before each workflow execution. It is provided
with a list of tasks, the estimated execution time, the number of
data files to be produced and consumed and the amount of VMs
that are part of the virtual cluster in the cloud. All input data
for HEA-TaSDAP is queried and retrieved from the provenance
database [58]. HEA-TaSDAP then creates a scheduling plan that
is returned to SciCumulus. This scheduled plan is loaded into a
database table (since SciCumulus is database-oriented) and this
table is queried by the scheduler every time a VM is idle. For more
information about SciCumulus, please refer toOliveira et al. [23]. As
aforementioned, all scheduling plans providedbyHEA-TaSDAP and
the executable code will be available on the URL https://bitbucket.
org/danielcmo/hea-tasdap.

5.2.3. Environment setup
For the experiments executed in this article, we have deployed

the 2 aforementioned versions of SciCumulus on top of Amazon
EC2. Amazon EC2 is the most popular commercial cloud and many
scientific and commercial applications are being deployed on it.
Amazon EC2 provides several different types of VMs for deploy-
ment and use. In the experiments presented in this paper we have
considered 2 types of VMs: m3.medium (1 CPU and 3.75 GB RAM)
and m3.2xlarge (8 virtual CPU and 30 GB RAM). We have instanti-
ated 1m3.small and 2m3.2xlarge following the recommendations
of GraspCC [59], a GRASP-based approach for dimensioning the
cloud environment for scientific workflows.

Each deployed VMpresented in this article is based on the Linux
Cent OS 7 (64-bit), andwas configuredwith the necessary software
and libraries, and the bioinformatics applications. All VMs were
configured to be accessed using SSH. Additionally, these VMs are
based on a AMI image (ami-7e1a1716) that is also stored in the
cloud and SciCumulus creates the virtual cluster to execute the
experiment based on this AMI. In terms of software, all VMs, no
matter their type, execute the same programs and configurations.
All VMs were deployed in the US East - N. Virginia location and
follow the pricing rules of that locality. In addition, the executions
of SciPhy were performed in a single site of the Amazon EC2 cloud.
We did not consider the execution of SciPhy in Multisite clouds
neither federated clouds.

5.2.4. Experiment setup
To execute SciPhy, we have used as input a dataset of multi-

fasta files of protein sequences extracted from RefSeq release 75

— March 14, 2016. This dataset is formed by 25 amino acid multi-
fasta files and each multi-fasta file is constituted by an average of
20 sequences. Once downloaded, each inputmulti-fast file is stored
in one m3.2xlarge VM. In order to generate large data files for the
experiment, each multi-fasta file had its size artificially increased.
Although this does not produce useful and meaningful results
from the biological perspective (since the sequences are replicated
several times within the same fasta file), it is suitable to evaluate
the performance of HEA-TaSDAP. The following program versions
were used in the experiments: MAFFT version 6.857 (Multiple
Sequence Aligment), ReadSeq 2.1.22 (Sequence Conversion), Mod-
elGenerator version 0.85 (Search for the best evolutionary model)
and RAxML-7.2.8-ALPHA (Construction of the phylogenetic tree).
For ModelGenerator, we considered the following evolutionary
models: BLOSUM62, CPREV, JTT, WAG, and RtREV. Each execution
of SciPhy with these configurations generated 100 activity execu-
tions and produced 125 data files.

5.2.5. Experimental results of sciphy
This subsection presents the execution time of SciPhy using a

greedy scheduling algorithm [23], MinMin-TSH, HEFT and HEA-
TaSDAP scheduling plans in SciCumulus system. The results are
presented in Fig. 8. SciPhy was executed 5 times for each ap-
proach in order to achieve statistical significance. As presented
in Fig. 8, the total execution time of SciPhy when using greedy
scheduling was 273.1 min on average, was 224.6 min when using
MinMin-TSH, was 214.5 using HEFT and when using HEA-TaSDAP
was 198.2 min on average. It represents approximately 27.4% of
improvement when using HEA-TaSDAP in comparison with the
greedy algorithm of SciCumulus, 11.7% of improvement in com-
parisonwithMinMin-TSH and 8.1% of improvement in comparison
with HEFT. This difference is due to the data file assignment of
HEA-TaSDAP. Most of the bigger data files were placed in VMs
with high bandwidth. In case of greedy scheduling and MinMin-
TSH, some data files with several GB were placed in VMs with
low bandwidth. The difference of the estimated time (presented in
Table 6) and the real execution time (presented in Table 7) may be
caused by several factors such as the VM performance variations,
the provenance data used as input for estimation may be not
accurate, deployment time, etc. In fact, in Table 6 we considered
themakespan as the period of time between the time that the user
started the execution in the SWfMS and the time that the SWfMS
informs that the execution finished. Thus, we consider the time
needed for deploying VMs in the cloud as well the time needed for
undeploying these VMs. The time needed for deployment cannot
be negligible since the used SWfMS needs to wait for all VMS to be
ready to start execution, so the deployment time is the maximum
deployment time of all VMs in the virtual cluster instantiated for
the workflow execution.

https://bitbucket.org/danielcmo/hea-tasdap
https://bitbucket.org/danielcmo/hea-tasdap
https://bitbucket.org/danielcmo/hea-tasdap
jie

jie

jie

L. Teylo et al. / Future Generation Computer Systems 76 (2017) 1–17 15

Fig. 8. Boxplot comparing the executions of SciPhy using HEA-TaSDAP, Greedy, HEFT and MinMin-TSH algorithms.

Table 6
Estimated workflow execution time — values in minutes.

Approach Average

MinMin-TSH 219.31
HEFT 168.10
HEA-TaSDAP 133.36

Table 7
Statistics of the SciPhy execution — values in minutes.

Approach Average Median Min Max Q1 Q3

Greedy 273.1 271.0 260.3 295.9 264.1 275.2
HEA-TaSDAP 198.2 198.7 190.3 213.2 194.4 201.8
HEFT 214.5 211.5 198.5 221.7 209.5 215.2
MinMin-TSH 224.6 224.6 214.2 238.0 221.9 230.6

In addition, in the execution with the greedy scheduling ap-
proach, all data is synchronized for all 3 VMs using Amazon S3,
which implies in a certain overhead for every data file produced.
The overall statistics of the execution (median, min, max, Quartile
1, Quartile 3 and Average) are also presented in Table 7. It is
worth noticing that there were neither failures nor performance
variations in the VMs during the workflow execution. If there
were failures or performance variations, the execution using HEA-
TaSDAP, HEFT and MinMin-TSH would probably produce worse
results since they consider a static set of VMs during the entire
execution. Nevertheless, the results are promising and more tests
are planned using different workflows such as Montage and Ligo.

6. Concluding remarks

Data- and compute-intensive scientific experiments usually
produce a huge volume of data and present a long duration where
several executions, using different parameters and input data, are
necessary to draw conclusions. These experiments are commonly
modeled as scientific workflows, which are composed by a chain of
activities and each activity can be further decomposed in a set of
tasks. Each task is associated with the execution of an activity for a
specific portion of data or set of parameter values. These tasks have
to be executed in parallel in HPC environments to produce results
in a feasible time with good performance.

However, it is far from trivial to manage the parallel executions
of data- and compute-intensive scientific workflows, particularly
in clouds. One important issue to consider when executing work-
flows in parallel in clouds is how to schedule the multiple tasks to
a set of heterogeneous VMs. Task scheduling is a well-known NP-
complete problem even in its simplest form. But to schedule the

tasks to VMswe have to consider several requirements such as the
processing capacity of the VM, its storage capacity and the impact
of data transfer. In this article we claim that data distribution and
task distribution are not independent problems and have to be an-
alyzed together by the scheduling approach. In previous work [23]
we have addressed workflow execution in clouds using a greedy
scheduling algorithm but it does not consider data placement in
the scheduling algorithm, which may result in severe overheads.
Thus, to increase the uptake of the cloud paradigm for executing
scientificworkflows that demandHPC capabilities, new scheduling
solutions have to be developed.

In this article, we propose a new model for representing work-
flows, amathematical formulation of The Task Scheduling andData
Assignment Problem and a scheduling algorithm based on Hybrid
Evolutionary Algorithm (HEA) named HEA-TaSDAP that takes into
account the variety and heterogeneity of VMs in a cloud virtual
cluster (e.g. different bandwidths, transfer rates, and processing
capacities), the data distribution and data constraints all together
within the same solution, i.e. tasks and data files are scheduled
together by the SWfMS.

We have evaluated HEA-TaSDAP using synthetic and real work-
flows in the cloud using SciCumulus. The performance evalua-
tion of the HEA-TasDAP using synthetic workflows in compari-
son with the exact solution showed that for all instances HEA-
TaSDAP obtains good solutions with small gaps, on average 2.6%.
Moreover, it takes significantly less time when compared with the
mathematical formulationwhen solvedwith the CPLEX, in average
1.5 s against 1942.7 s, respectively. In the real execution, we used
SciPhy as a case study and compared HEA-TaDASP with the greedy
scheduling of SciCumulus, MinMin-TSH and HEFT. The execution
time of SciPhy when using the scheduling plan provided by HEA-
TaSDAP was about 27.4% smaller than the one using the greedy
algorithm, 11.7% smaller than MinMin-TSH and 8.1% smaller than
using HEFT. As future work, we plan to use the proposed approach
in conjunction with a fault-tolerance and a dimensioning mecha-
nism within the scheduler to distribute backups of tasks and then
execute the workflow with more reliability. Another interesting
work could involve considering other objectives in our model
like minimization of financial costs and power consumption, re-
specting deadlines. In the future the model can be improved and
consider more details regarding the environment, for example, in
the reading andwriting operations the latencies related to the used
storage system could be considered, once it varies a lot depending
on the applied technology and their corresponding properties.
Finally, we also intend to tackle the data replication problem in our
models, as previous commented in Section 3.1.

jie

jie

jie

jie

jie

jie

jie

jie

16 L. Teylo et al. / Future Generation Computer Systems 76 (2017) 1–17

Acknowledgments

This work was partially funded by CNPq (grants 308966/2015-
5 and 305995/2013-8), CAPES (grant 130177/2015-6) and FAPERJ
(grant E-26/203.215/2016). The authors also acknowledge the
Amazon EC2 for providing HPC and database resources that have
contributed to the research results reported within this article.

References

[1] M. Mattoso, C. Werner, G.H. Travassos, V. Braganholo, E. Ogasawara, D.D.
Oliveira, S.M. Cruz, W. Martinho, L. Murta, Towards supporting the life cycle
of large scale scientific experiments, Int. J. Bus. Process Integr. Manage. 5 (1)
(2010) 79+.

[2] I.J. Taylor, E. Deelman, D.B. Gannon, M. Shields, Workflows for e-Science:
Scientific Workflows for Grids, Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

[3] K. Ocaña, D. de Oliveira, E.S. Ogasawara, A.M.R. Dávila, A.A.B. Lima, M.Mattoso,
SciPhy: A cloud-based workflow for phylogenetic analysis of drug targets in
protozoan genomes, in: O.N. de Souza, G.P. Telles, M.J. Palakal (Eds.), BSB,
in: Lecture Notes in Computer Science, vol. 6832, Springer, 2011, pp. 66–70.

[4] G.M. Guerra, S. Zio, J.J. Camata, J. Dias, R.N. Elias, M. Mattoso, P.L.B. Paraizo,
A.L.G.A. Coutinho, F.A. Rochinha, Uncertainty quantification in numerical sim-
ulation of particle-laden flows, Comput. Geosci. 20 (1) (2016) 265–281.

[5] E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good, The cost of doing science
on the cloud: The montage example, in: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, in: SC’08, IEEE Press, Piscataway, NJ, USA,
2008, pp. 50:1–50:12.

[6] J.M. Wozniak, T.G. Armstrong, M. Wilde, D.S. Katz, E. Lusk, I.T. Foster, Swift/T:
Scalable data flow programming for many-task applications, SIGPLAN Not.
48 (8) (2013) 309–310.

[7] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
G.B. Berriman, J. Good, A.C. Laity, J.C. Jacob, D.S. Katz, Pegasus: A framework for
mapping complex scientific workflows onto distributed systems, Sci. Program.
13 (3) (2005) 219–237.

[8] S.P. Callahan, J. Freire, E. Santos, C.E. Scheidegger, C.T. Silva, H.T. Vo, VisTrails:
Visualization meets data management, in: SIGMOD International Conference
on Management of Data, in: SIGMOD’06, ACM, New York, NY, USA, 2006,
pp. 745–747.

[9] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S.
Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bhagat, K. Belhajjame, F.
Bacall, A. Hardisty, A. Nieva de la Hidalga, M.P. Balcazar Vargas, S. Sufi, C.
Goble, The Taverna workflow suite: designing and executing workflows of
Web Services on the desktop, web or in the cloud, Nucleic Acids Res. 41 (W1)
(2013) W557–W561.

[10] I. Altintas, B. Ludaescher, S. Klasky, M.A. Vouk, Introduction to scientific
workflow management and the Kepler system, in: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, in: SC’06, ACM, NewYork, NY, USA,
2006.

[11] E. Walker, C. Guiang, Challenges in executing large parameter sweep studies
across widely distributed computing environments, in: Proceedings of the 5th
IEEE Workshop on Challenges of Large Applications in Distributed Environ-
ments, in: CLADE’07, ACM, New York, NY, USA, 2007, pp. 11–18.

[12] J. Liu, V. Silva, E. Pacitti, P. Valduriez, M. Mattoso, Scientific workflow parti-
tioning in multisite cloud, in: Euro-Par 2014: Parallel Processing Workshops:
Euro-Par 2014 International Workshops, Porto, Portugal, August 25–26, 2014.
Revised Selected Papers, Part I, in: CLADE’07, ACM, New York, NY, USA, 2014,
pp. 105–116.

[13] F. FC, C. A, Competitive science: is competition ruining science? Infect. Immun.
83 (4) (2015) 1229–1233.

[14] L.M. Vaquero, L. Rodero-Merino, J. Caceres, M. Lindner, A break in the clouds:
Towards a cloud definition, SIGCOMM Comput. Commun. Rev. 39 (1) (2008)
50–55.

[15] J. Liu, E. Pacitti, P. Valduriez, M. Mattoso, A survey of data-intensive scientific
workflow management, J. Grid Comput. 13 (4) (2015) 457–493.

[16] L. Youseff,M. Butrico, D.D. Silva, Toward aunified ontology of cloud computing,
in: 2008 Grid Computing Environments Workshop, 2008, pp. 1–10.

[17] D. Oliveira, F.A. Baião, M. Mattoso, Towards a taxonomy for cloud computing
from an e-Science perspective, in: N. Antonopoulos, L. Gillam (Eds.), Cloud
Computing, in: Computer Communications and Networks, Springer London,
2010, pp. 47–62.

[18] J.D. Ullman, Polynomial complete scheduling problems, SIGOPS Oper. Syst.
Rev. 7 (4) (1973) 96–101.

[19] S. Pandey, L. Wu, S.M. Guru, R. Buyya, A particle swarm optimization-based
heuristic for scheduling workflow applications in cloud computing environ-
ments, in: 24th International Conference on Advanced Information Network-
ing and Applications, AINA, IEEE, 2010, pp. 400–407.

[20] D. Yuan, Y. Yang, X. Liu, J. Chen, A data placement strategy in scientific cloud
workflows, Future Gener. Comput. Syst. 26 (8) (2010) 1200–1214.

[21] C. Szabo, Q.Z. Sheng, T. Kroeger, Y. Zhang, J. Yu, Science in the cloud: Allocation
and execution of data-intensive scientific workflows, J. Grid Comput. 12 (2)
(2013) 245–264.

[22] P. Bryk, M. Malawski, G. Juve, E. Deelman, Storage-aware algorithms for
scheduling of workflow ensembles in clouds, J. Grid Comput. (2015) 1–20.

[23] D. Oliveira, K.A.C.S. Ocaña, F. Baião, M. Mattoso, A provenance-based adaptive
scheduling heuristic for parallel scientific workflows in clouds, J. Grid Comput.
10 (3) (2012) 521–552.

[24] D.E. de Oliveira, C. Boeres, A. Fausti, F. Porto, Avaliação da localidade de dados
intermediários na execução paralela de workflows big data, in: In Proc. of the
XXX Brazilian Simposyum on Databases, 2015, pp. 29–40.

[25] J. Yu, R. Buyya, K. Ramamohanarao, Workflow scheduling algorithms for grid
computing, in: Metaheuristics for Scheduling in Distributed Computing Envi-
ronments, Springer, Berlin, Heidelberg, 2008, pp. 173–214.

[26] J. Yu, R. Buyya, Scheduling scientific workflow applications with deadline and
budget constraints using genetic algorithms, Sci. Program. 14 (3–4) (2006)
217–230.

[27] W.N. Chen, J. Zhang, An ant colony optimization approach to a grid workflow
scheduling problem with various qos requirements, IEEE Trans. Syst. Man
Cybern. C 39 (1) (2009) 29–43.

[28] M. Wang, J. Zhang, F. Dong, J. Luo, Data placement and task scheduling opti-
mization for data intensive scientific workflow in multiple data centers envi-
ronment, in: Advanced Cloud and Big Data (CBD), 2014 Second International
Conference on, 2014, pp. 77–84. http://dx.doi.org/10.1109/CBD.2014.19.

[29] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K.
Vahi, M. Livny, Pegasus: Mapping scientific workflows onto the grid, in: Grid
Computing: Second European AcrossGrids Conference, AxGrids 2004, Nicosia,
Cyprus, January 28–30, 2004. Revised Papers, Springer, Berlin, Heidelberg,
2004, pp. 11–20.

[30] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G.Mehta, K. Vahi, Characterizing
and profiling scientific workflows, Future Gener. Comput. Syst. 29 (3) (2013)
682–692. http://dx.doi.org/10.1016/j.future.2012.08.015.

[31] T. Shibata, S. Choi, K. Taura, File-access patterns of data-intensive workflow
applications and their implications to distributed filesystems, in: Proceedings
of the 19th ACM International Symposium on High Performance Distributed
Computing, in: HPDC’10, ACM, New York, NY, USA, 2010, pp. 746–755.

[32] H. Topcuouglu, S. Hariri, M.-y. Wu, Performance-effective and low-complexity
task scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib. Syst.
13 (3) (2002) 260–274. http://dx.doi.org/10.1109/71.993206.

[33] H. Zhao, R. Sakellariou, An experimental investigation into the rank function
of the heterogeneous earliest finish time scheduling algorithm, in: H. Kosch,
L. Böszörményi, H. Hellwagner (Eds.), Euro-Par 2003 Parallel Processing: 9th
International Euro-Par Conference Klagenfurt, Austria, August 26–29, 2003
Proceedings, Springer, Berlin, Heidelberg, 2003, pp. 189–194. http://dx.doi.
org/10.1007/978-3-540-45209-_28.

[34] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, K. Kennedy, Task
scheduling strategies for workflow-based applications in grids, in: CCGrid
2005. IEEE International Symposiumon Cluster Computing and the Grid, 2005,
vol. 2, 2005, pp. 759–767. http://dx.doi.org/10.1109/CCGRID.2005.1558639.

[35] M.A. Rodriguez, R. Buyya, Deadline based resource provisioningand scheduling
algorithm for scientific workflows on clouds, IEEE Trans. Cloud Comput. 2 (2)
(2014) 222–235.

[36] E.-K. Byun, Y.-S. Kee, J.-S. Kim, S. Maeng, Cost optimized provisioning of elastic
resources for applicationworkflows, Future Gener. Comput. Syst. 27 (8) (2011)
1011–1026.

[37] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B.P. Berman, P. Maechling,
Data sharing options for scientific workflows on amazon ec2, in: Proceedings
of the 2010 ACM/IEEE International Conference for High Performance Com-
puting, Networking, Storage and Analysis, in: SC’10, IEEE Computer Society,
Washington, DC, USA, 2010, pp. 1–9. http://dx.doi.org/10.1109/SC.2010.17.

[38] S. Abrishami, M. Naghibzadeh, D.H. Epema, Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds, Future Gener.
Comput. Syst. 29 (1) (2013) 158–169. Including Special section: AIRCC-
NetCoM 2009 and Special section: Clouds and Service-Oriented Architectures.

[39] A. Broder, L. Garcia-Pueyo, V. Josifovski, S. Vassilvitskii, S. Venkatesan, Scalable
k-means by ranked retrieval, in: Proceedings of the 7th ACM International
Conference on Web Search and Data Mining, in: WSDM’14, ACM, New York,
NY, USA, 2014, pp. 233–242.

[40] U.V. Çatalyürek, K. Kaya, B. Uçar, Integrated data placement and task assign-
ment for scientific workflows in clouds, in: Proceedings of the Fourth In-
ternational Workshop on Data-Intensive Distributed Computing, in: DIDC’11,
ACM,NewYork, NY, USA, 2011, pp. 45–54. http://dx.doi.org/10.1145/1996014.
1996022. URL http://doi.acm.org/10.1145/1996014.1996022.

[41] R.S.C. Navjot Kaur Taranjit Singh Aulakh, Comparison of workflow scheduling
algorithms in cloud computing, Int. J. Adv. Comput. Sci. Appl. 2 (10) (2011).

http://refhub.elsevier.com/S0167-739X(17)30988-3/sb1
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb1
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb1
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb1
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb1
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb1
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb1
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb2
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb2
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb2
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb2
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb2
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb3
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb3
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb3
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb3
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb3
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb3
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb3
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb4
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb4
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb4
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb4
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb4
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb5
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb5
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb5
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb5
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb5
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb5
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb5
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb6
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb6
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb6
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb6
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb6
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb7
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb7
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb7
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb7
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb7
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb7
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb7
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb8
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb8
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb8
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb8
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb8
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb8
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb8
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb10
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb10
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb10
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb10
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb10
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb10
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb10
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb11
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb11
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb11
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb11
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb11
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb11
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb11
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb12
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb12
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb12
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb12
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb12
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb12
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb12
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb12
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb12
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb13
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb13
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb13
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb14
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb14
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb14
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb14
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb14
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb15
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb15
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb15
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb16
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb16
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb16
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb17
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb17
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb17
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb17
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb17
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb17
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb17
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb18
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb18
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb18
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb19
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb19
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb19
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb19
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb19
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb19
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb19
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb20
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb20
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb20
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb21
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb21
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb21
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb21
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb21
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb22
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb22
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb22
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb23
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb23
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb23
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb23
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb23
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb24
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb24
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb24
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb24
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb24
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb25
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb25
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb25
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb25
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb25
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb26
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb26
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb26
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb26
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb26
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb27
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb27
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb27
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb27
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb27
http://dx.doi.org/10.1109/CBD.2014.19
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb29
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb29
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb29
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb29
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb29
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb29
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb29
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb29
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb29
http://dx.doi.org/10.1016/j.future.2012.08.015
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb31
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb31
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb31
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb31
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb31
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb31
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb31
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1007/978-3-540-45209-_28
http://dx.doi.org/10.1007/978-3-540-45209-_28
http://dx.doi.org/10.1007/978-3-540-45209-_28
http://dx.doi.org/10.1109/CCGRID.2005.1558639
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb35
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb35
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb35
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb35
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb35
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb36
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb36
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb36
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb36
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb36
http://dx.doi.org/10.1109/SC.2010.17
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb38
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb38
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb38
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb38
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb38
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb38
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb38
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb39
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb39
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb39
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb39
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb39
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb39
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb39
http://dx.doi.org/10.1145/1996014.1996022
http://dx.doi.org/10.1145/1996014.1996022
http://dx.doi.org/10.1145/1996014.1996022
http://doi.acm.org/10.1145/1996014.1996022
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb41
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb41
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb41

L. Teylo et al. / Future Generation Computer Systems 76 (2017) 1–17 17

[42] L.M. Vaquero, L. Rodero-Merino, J. Caceres, M. Lindner, A break in the clouds:
towards a cloud definition, SIGCOMM Computer Commun. Rev. 39 (1) (2008)
50–55.

[43] J.M. Silva, C. Boeres, L.M. Drummond, A.A. Pessoa, Memory aware load balance
strategy on a parallel branch-and-bound application, Concurr. Comput. : Pract.
Exper. 27 (5) (2015) 1122–1144.

[44] A. Moraglio, Geometry of evolutionary algorithms, in: Proceedings of the 14th
Annual Conference Companion on Genetic and Evolutionary Computation,
in: GECCO’12, ACM, New York, NY, USA, 2012, pp. 1317–1344.

[45] C.R. Reeves, T. Yamada, Genetic algorithms, path relinking, and the flowshop
sequencing problem, Evol. Comput. 6 (1) (1998) 45–60.

[46] P.Moscato, C. Cotta, Amodern introduction tomemetic algorithms, in: Handbook
of Metaheuristics, Springer US, Boston, MA, 2010, pp. 141–183.

[47] Y. Tsujimura, M. Gen, Genetic algorithms for solving multiprocessor schedul-
ing problems, in: Simulated Evolution and Learning: First Asia-Pacific Confer-
ence, SEAL’96 Taejon, Korea, November 9–12, 1996. Seclected Papers, Springer,
Berlin, Heidelberg, 1997, pp. 106–115.

[48] B.L. Miller, D.E. Goldberg, Genetic algorithms, tournament selection, and the
effects of noise, Complex Syst. 9 (3) (1995) 193–212.

[49] J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence, MIT
Press, Cambridge, MA, USA, 1992.

[50] F. Glover, M. Laguna, R. Marti, Fundamentals of scatter search and path relink-
ing, Control Cybernet. 29 (3) (2000) 653–684.

[51] E.-G. Talbi, Metaheuristics: FromDesign to Implementation,Wiley Publishing,
2009.

[52] M. Rahman, S. Venugopal, R. Buyya, A dynamic critical path algorithm for
scheduling scientific workflow applications on global grids, in: e-Science and
Grid Computing, IEEE International Conference on, 2007, pp. 35–42.

[53] M.M. Lopez, E. Heymann, M.A. Senar, Analysis of dynamic heuristics for work-
flow scheduling on grid systems, in: 2006 Fifth International Symposium on
Parallel and Distributed Computing, 2006, pp. 199–207. http://dx.doi.org/10.
1109/ISPDC.2006.9.

[54] R.F.d. Silva, W. Chen, G. Juve, K. Vahi, E. Deelman, Community resources
for enabling research in distributed scientific workflows, in: e-Science (e-
Science), 2014 IEEE 10th International Conference on, vol. 1, 2014, pp. 177–
184.

[55] S. Bharathi, A. Chervenak, E. Deelman,G.Mehta,M.-H. Su, K. Vahi, Characterization
of scientific workflows, in: Workflows in Support of Large-Scale Science, 2008,
WORKS 2008, Third Workshop on, 2008, pp. 1–10.

[56] A. Stamatakis, RAxML-VI-HPC:maximum likelihood-based phylogenetic anal-
yses with thousands of taxa and mixed models, Bioinformatics 22 (21) (2006)
2688–2690.

[57] F. Coutinho, E. Ogasawara, D. de Oliveira, V. Braganholo, A.A.B. Lima, A.M.R.
Dávila, M. Mattoso, Data parallelism in bioinformatics workflows using hydra,
in: Proceedings of the 19th ACM International Symposium on High Perfor-
mance Distributed Computing, in: HPDC’10, ACM, New York, NY, USA, 2010,
pp. 507–515.

[58] J. Freire, D. Koop, E. Santos, C.T. Silva, Provenance for computational tasks: A
survey, Comput. Sci. Engg. 10 (3) (2008) 11–21.

[59] R. de C. Coutinho, L.M. Drummond, Y. Frota, D. de Oliveira, Optimizing virtual
machine allocation for parallel scientificworkflows in federated clouds, Future
Gener. Comput. Syst. 46 (2015) 51–68.

Luan Teylo is a Ph.D. student at the Institute of Computing
at Fluminense Federal University (UFF). He graduated in
Computer Science from Mato Grosso Federal University
(UFMT) in 2015 and obtained theM.S. degree in Computer
Science from UFF (2017). His research interests includes
distributed algorithms, cloud computing and optimization
problems.

Ubiratam de Paula is a Professor of the Department of
Computer Science at Federal Rural University of Rio de
Janeiro (UFRRJ) since 2016. He graduated in Computer Sci-
ence (2009), obtained the M.S. degree (2011) and the D.S.
degree (2015) also in Computer Science from Fluminense
Federal University (UFF). He has experience in computer
science, acting on the following subjects: distributed al-
gorithms, mathematical programming and cloud comput-
ing.

Yuri Frota is a Professor of the Department of Computer
Science at Fluminense Federal University, where he has
been since 2010. He graduated in Computer Science from
UECE (1999), obtained an M.S. in Computer Science from
UFC (2002) and a Ph.D. also in Computer Science fromUFRJ
(2008). He has experience in computer science, focusing
on algorithms, and engaged in the following subjects:
combinatorial optimization and integer programming.

Daniel de Oliveira is a Professor of the Institute of Com-
puting of the Fluminense Federal University (UFF) since
2013. He received the Doctor of Science degree from the
Federal University of Rio de Janeiro (UFRJ) in 2012. His
current research interests include scientific workflows,
provenance, cloud computing, high performance comput-
ing and distributed and parallel databases. He participates
in research projects in those areas, with funding from
several Brazilian government agencies, including CNPq,
CAPES and FAPERJ. He is a member of several program
committees of national and international conferences and

workshops, and is a member of IEEE, ACM and of the Brazilian Computer Society.

Lúcia M.A. Drummond is a full Professor of the Institute
of Computing of the Fluminense Federal University (UFF).
She received theDoctor of Science degree from the Federal
University of Rio de Janeiro (UFRJ) in 1994. Her current
research interests are in high performance computing,
cloud computing, performance optimization, parallel and
distributed algorithms. She has taken part in several re-
search projects in those areas, with funding from Brazil-
ian government agencies and industry, including CNPq,
CAPES, FAPERJ and PETROBRAS (Brazilian Oil Company).
She has participated of several program and organization

committees of national and international conferences and workshops. She has
been engaged in the graduation and the graduate program, advising Master’s and
doctoral students at Fluminense Federal University.

http://refhub.elsevier.com/S0167-739X(17)30988-3/sb42
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb42
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb42
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb42
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb42
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb43
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb43
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb43
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb43
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb43
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb44
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb44
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb44
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb44
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb44
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb45
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb45
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb45
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb46
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb46
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb46
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb47
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb47
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb47
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb47
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb47
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb47
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb47
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb48
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb48
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb48
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb49
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb49
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb49
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb49
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb49
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb50
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb50
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb50
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb51
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb51
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb51
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb52
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb52
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb52
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb52
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb52
http://dx.doi.org/10.1109/ISPDC.2006.9
http://dx.doi.org/10.1109/ISPDC.2006.9
http://dx.doi.org/10.1109/ISPDC.2006.9
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb54
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb54
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb54
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb54
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb54
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb54
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb54
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb55
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb55
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb55
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb55
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb55
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb56
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb56
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb56
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb56
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb56
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb57
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb57
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb57
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb57
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb57
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb57
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb57
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb57
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb57
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb58
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb58
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb58
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb59
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb59
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb59
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb59
http://refhub.elsevier.com/S0167-739X(17)30988-3/sb59

	A hybrid evolutionary algorithm for task scheduling and data assignment of data-intensive scientific workflows on clouds
	Introduction
	Related work
	The Task Scheduling and Data Assignment Problem - TaSDAP
	Application and architecture models
	Mathematical formulation

	HEA-TaSDAP: a hybrid evolutionary algorithm for solving TaSDAP
	Representation of a chromosome
	Initial population generation
	Crossover operation and selection phase
	Mutation operation
	Local search procedures
	Path relinking
	Move-file heuristic
	Fitness function

	Experimental results
	Simulated experiments
	Comparing HEA-TaSDAP with the exact approach
	Comparing HEA-TaSDAP with HEFT and MinMin-TSH

	Evaluation of HEA-TaSDAP with a real workflow
	SciPhy: A workflow for phylogenetic analysis
	SciCumulus workflow system
	Environment setup
	Experiment setup
	Experimental results of sciphy

	Concluding remarks
	Acknowledgments
	References

