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In this paper under review titled “Interpolating sequences in spaces with the complete Pick
property” (see [Ale+19|), Aleman, Hartz, McCarthy, and Richter generalise a result due to
Carleson for the Hardy space |[Car58b| and of Marshall and Sundberg for the Dirichlet space
[MS94].

Carleson showed in |[Car58b| that for a complex sequence ();) satisfying |A\;| < 1 for each
1 € N, the following are equivalent:

(1) For any bounded complex sequence (w;), there is f € H* (D) (which is the multiplier
algebra of the Hardy-Hilbert space H? (D)) such that f (z;) = w; for each i € N.
(2) There is some ¢ > 0 such that for each i € N,

>c>0.
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In modern terminology, a sequence (\;) C D, the open unit disk, is called an interpolating
sequence for H* (D) if it satisfies at least one of the condition (hence, both) of Carleson’s
result. Intuitively, it means a sequence is interpolating for H* (D) iff the points are suf-
ficiently spread out in the hyperbolic metric of the open unit disc. This is an conclusion
that one can make by observing equation [0.1] An analogous result can be formulated in the
context of reproducing kernel Hilbert spaces (or rkHs, inshort).

Aleman, Hartz, McCarthy, and Richter in |Ale+19| show that for a complete Pick space
H, a sequence is interpolating for its multiplier algebra M (H) iff it is separated and gen-
erates a Carleson measure. More specifically, if H is complete Pick space (a special rkHs
where positivity of Pick matrix with matricial entries implies interpolation by multipliers,
see [AMO2] for a precise definition) then the following are equivalent:

(IM): (A) = (N;) C X is interpolating for M (H), that is, whenever (w;);cy € £°°, there is
a multiplier ¢ € M (H) such that ¢ ()\;) = w; for each 4, and,

(S+C): the following two hold:
(S): A is separated with the pseudometric d on X given by

d(z,w):\/l—k(|k(z’w)| (z,w € X),

z,2) k (w,w)

that is, there is some ¢ > 0 such that d (A;, A;) > ¢ > 0 for each ¢ # j and
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Oy,
(C): the atomic measure p given by p = ; m is a Carleson measure for H,
in other words, there is some ¢ > 0 such that
If ()

2
: mﬁcﬂfﬂ (feH).

This settled a 20 year problem posed by Agler and McCarthy in Chapter 9 of their mono-
graph Pick interpolation and Hilbert function spaces [AMO02]. It is interesting to note that
the proof used an equivalent form of the Kadison Singer problem, called the Paving Conjec-
ture (as demonstrated in [And79]). The long standing Kadison Singer problem was resolved
by Marcus, Spielman, and Srivastava in [MSS15| in 2013.

Finally, the authors explore interpolating sequences for multipliers of pairs of reproducing
kernel Hilbert spaces. Tsikalas resolved some of the problems asked by the authors in his
paper |Tsi23].
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