Common Lisp by Example

A compilation of notes from various sources

Preface

Lisp was invented in 1958 by John McCarthy and is the second oldest programming language in
active use after FORTRAN. It is an elegant, industrial-strength language that has stood the test
of time for over fifty years and remains one of the most powerful languages today. In 1994, the
American National Standards Institute published the ANSI Common Lisp specification, under
the guidance of renowned language designers Scott Fahlman, Richard Gabriel, David Moon, Kent
Pitman, Guy Steele and Dan Weinreb. ANSI Common Lisp is the subject of this guide.

At a most basic level, a programming language is a set of rules (syntax) to convert text into
machine code. Source code is stored as strings in most text-based programming languages and
must be parsed by the compiler according to the syntax rules of the language. This is not the
case for Lisp, which expresses source codes in a primitive data structure known as lists that can
be directly evaluated by a Lisp compiler or interpreter.

This has a profound impact on the use of Lisp and the benefits it confers to its users. Lisp code is
a first-class data object in the language, and can be manipulated in much the same way as any
other data structure such as being dynamically created, destroyed, passed to a function,
returned as a value, and have all the rights that other variables in the programming language
have. This allows us to write programs that can generate and manipulate source code in much
the same way as any other data object. In this sense we say that Lisp programs can write their
own program, a truly remarkable result that resembles the next frontier of automation.

The World’s First Functional Programming Language

Whilst Common Lisp is a powerful general-purpose, multi paradigm programming language, its
roots lie in functional programming. In fact, John McCarthy’s original Lisp was the world’s first
functional programming language. Functional programming is centred on defining and then
utilising functions to generate programs. Simple functions are combined to build more
complicated ones, the result of each is passed as the argument to the next, and the result of the
last one is the result of the whole.

Common Lisp by Example

Side-effects represent changes to the state of the world as a result of evaluating an expression.
Assignment of a value to a variable is the most common side effect. Printing to a screen or file is
another common example. When we write code without side-effects, there is no point in
defining functions with bodies of more than one expression. The value of the last expressionin a
function is the value returned by it and the values of all preceding expressions are discarded. If
these preceding expressions did not have any side-effects, we would be unable to determine
whether they evaluated at all. Functions with more than one expression likely imply the
existence and use of side-effects.

Functions without side-effects can be easier to debug as there is a more direct transformation
from input to output and we do not need to track changes in the values of variables and how
they impact a function’s output (noting that if multiple functions can change the same variable,
we need to track all their changes to understand how the variables affect the function’s output).
That said, there are many cases where side-effects are useful and help in writing clearer code.

Indeed, each programming paradigm, whether it be functional, procedural, object-oriented or
another paradigm, is well suited for certain problems and ill-suited for others. Fortunately Lisp is
multi-paradigm and can be flexibly applied to many problem sets. In fact, many of the language
features of Lisp have been adopted by other languages over the last thirty years and it remains
one of the most powerful and flexible languages available today.

We will refrain from discussing functional programming further in this guide, except for the
remark that it is useful to learn Lisp, at least initially, from a functional perspective. Practically
this means we will be primarily focused with the values returned by functions and how the
outputs of one function are used as inputs to another, both as part of a composite function that
we arrange in our code. In fact, every Lisp expression can be thought of as a function that
returns a value and, optionally, performs some side-effect.

Credits & Disclaimer

This guide builds on leading books on Lisp, particularly Common Lisp the Language, 2nd Edition by Guy L. Steele,
ANSI Common Lisp by Paul Graham, Common Lisp: A Gentle Introduction to Symbolic Computation by David S.
Touretzky and Practical Common Lisp by Peter Seibel. Credit must also be given to the StackOverflow community
for their helpful answers over the years, in particular Rainer Joswig, Sylwester, coredump and tfh. Finally,
comments and suggestions by the Reddit R/Lisp community have helped shape this guide, including ramenbytes for
his assistance on macros). This guide is for educational purposes only and constitutes a 'fair use' of any copyrighted
material (referenced and provided for in section 107 of the US Copyright Law).

Table of Contents

Common Lisp by Example

Section

Preface

Table of Contents
Introduction
Symbols & Data Objects
Global Variables
Input & Output
Global Functions
Blocks

Data Types
Conditionals

Basic Loops

Local Variables & Functions

A Brief Detour - Code Formatting

List Manipulation

More on Functions
Arrays & Sequences
Hash Tables
Structures

Reading & Writing to Files
Advanced Looping
Scope & Extent
Packages

Symbols & Variables
Lambda Expressions
Macros

Further Reading
Appendix: Glossary

Notable Forms Covered Page
1
3
IF | QUOTE 4
6
DEFPARAMETER | DEFVAR | DEFCONSTANT | SETF 6
READ | READ-FROM-STRING | PRINT | FORMAT 8
DEFUN | LENGTH | SEARCH | SUBSEQ 10
PROGN | BLOCK 12
TYPEP | TYPE-OF | EQL | EQUAL | AND | OR 13
IF | WHEN | UNLESS | COND | CASE 15
DOTIMES | DOLIST 16
LET | LET* | FLET | LABELS 16
18
CONS | CAR | CDR | LIST | MEMBER | UNION | ASSOC | 20
PUSH
FUNCTION | APPLY | FUNCALL | VALUES | MAPCAR 23
MAKE-ARRAY | AREF | REMOVE | SORT | REDUCE 28
MAKE-HASH-TABLE | GETHASH | REMHASH 30
DEFSTRUCT 31
WITH-OPEN-FILE 32
DO | DO* 33
35
36
GET 37
LAMBDA 41
DEFMACRO | MACROEXPAND-1 | GENSYM 42
48
49

Common Lisp by Example

1. Introduction

Lisp is an interactive language and all Lisp systems will include an interactive front-end known
as the toplevel. We can enter Lisp expressions into the toplevel and Lisp will evaluate them and
print their value. This is known as the Read-Eval-Print-Loop, or REPL for short. Lisp expressions
that are meant to be evaluated are known as forms.

Atoms are the most basic unit of Lisp, representing singular objects, such as the number 5 and
the string “Hello, World!”. Lists are collections of atoms or other lists, separated by whitespace
and enclosed in parenthesis, such as (1 2 3) or (“Michael” “David” “Ben”). An example of a
nested list would be ((1 2 3) 4 56).

Lisp utilises prefix notation throughout the language, meaning operators precede their
arguments. As an example, we would calculate 2 + 3 as (+ 2 3).

1.1 Evaluation of Forms

Lisp applies a consistent set of evaluation rules for atomic and list forms. It is very important to
have a deep understanding of Lisp’s evaluation rules and this is the most important section of
this guide.

Atoms evaluate to themselves. For example, the number 8 appearing as an atom within Lisp
code will evaluate to 8 and the string “Color is gold” will evaluate to itself. This rule also applies
to atomic symbols (discussed shortly), which will evaluate to the value bound to the symbol or
return an error if the value is unbound. Note that lists themselves are a collection of atoms; in
evaluating a list, we need to evaluate each of the atoms individually and then apply the rules for
the evaluation of the list.

Lisp will evaluate a list by looking up its first element and determining whether it represents the
start of one of four types of forms: function, special, macro or lambda. A list whose first element
is the symbol for a function name is known as a function form. Lisp will evaluate the remaining
elements of a function form and pass them as arguments to the function bound to (i.e. named
by) the symbol. For example, the below form evaluates the arguments to 10, 5 and 15
respectively (each itself a result of a function), and pass them to the function call to return 30:

(+ (+ 5 5) (*5 1) (+ 10 5)) ; Returns 30

Common Lisp by Example

The evaluation rule for functions is not suitable for all scenarios. For example, in an IF
conditional, we only want the true statement to be evaluated if the condition is true and we only
want the false statement to be evaluated if the condition is false. For example, in the below, we
only want to divide 10 by the value stored in X if it is not zero (as otherwise we will get
divide-by-zero error). In an IF conditional, and in many other language constructs, we do not
want each element of the list to be evaluated.

(defparameter x 0)

(if (zerop X) ; Test 1f x = 0
"Cannot divide as X is zero" ; Do this if x = 0
(/ 10 X)) ; Do this if x not O

Common Lisp has 25 special forms, representing primitive functions with their own specific
evaluation rules. The evaluation rule for the IF special form is to evaluate the true statement
only if the condition is true and the false statement only if the condition is false. We will discuss
the evaluation rules for common special forms in the remainder of this guide.

Finally, Lisp also has specific evaluation rules for macro and lambda forms. We will discuss
these forms in greater depth towards the end of this guide. During this guide however we will
sporadically introduce some of Common Lisp’s built-in macros. For now, we can treat them
similarly to special forms, noting each macro has a specific evaluation rule.

Try entering the following list into our toplevel. You will receive an error. This is because Lisp will
look at the first element 1 and is unable to evaluate it as one of the four compound forms we
discussed as 1 is a number, not the name of a function, special form or macro:

(1 2 3)

1.2 Controlling Evaluation

The quote special form is used to override the above evaluation rules by returning back the
object literally without evaluation. For example, either of the below two forms will evaluate
without error as Lisp is no longer evaluating the list (1 2 3), but rather returning it literally:

(quote (1 2 3))

(1 2 3) ; ' is shorthand for quote

Common Lisp by Example

2. Symbols & Data Objects

We mentioned symbols in passing earlier but it is worth expanding on them a bit more here.
Symbols are fully fledged objects in Lisp and we will discuss them in depth later. For our current
purposes however we will focus on their role as names for objects. All variables and functions
are named by a symbol, and so are special forms and macros.

When we enter any non-numeric code that is not a quoted string in Lisp, we are generally
entering in a symbol. Lisp will then look up the symbol in a global table and retrieve the relevant
object for evaluation. You can start to see the consistency of the language. Lisp extracts the first
element of each form it receives, and looks up the symbol named by this element to get the
appropriate evaluation rule. It then applies this evaluation rule to the form.

2.1 Variables

Lisp has a unique approach to variables and data objects. Variables are a place in computer
memory that hold a pointer to a data object. Assigning a variable a new value will change what
object the variable points to, but has no effect on the previously referenced object. That said, if a
variable holds a reference to a mutable object, we can use that reference to modify that object
and the modification will be visible to any code that also has a reference to the same object.

Variables themselves do not have a type, it is the underlying data object that is typed. A variable
can have any Lisp object as its value. Lisp is accordingly a dynamically-typed language.

3. Globhal Variables & Assignment

DEFPARAMETER and DEFVAR establish global variables, known more technically as special or
dynamic variables. These variables can be accessed throughout a Lisp program.

If a local variable exists with the same name as a global variable, a lexical closure will typically
refer to the local variable. To avoid confusion, we should always name special variables with
leading and trailing asterisks *, such as in the below examples.

DEFPARAMETER will unconditionally assign the value supplied to the variable, while
DEFVAR will only assign the value if it is not already bound to the variable. A value must

Common Lisp by Example

be supplied to the DEFPARAMETER macro, whilst DEFVAR can establish a dynamic
variable without assigning it a value:

(defvar *x*) ; Establish an unbound variable
(defparameter *x* 15) ; Assign the value 15 to X
(defvar *x* 10) ; Does nothing as X already bound

We can define global constants with DEFCONSTANT. Note that global constants cannot be used
as function parameters or rebound to a new value at a later stage.

(defconstant +my-constant+ 20)

3.1 General Purpose Assignment

SETF is Lisp’s general purpose assignment macro that assigns a value to a designated place
(such as a variable). It is a very powerful setter that can assign values to many different objects.

We won’t go into detail, but rather provide illustrative examples throughout this guide. The
syntax of SETF is as follows:

(setf place value)

Below are some examples.

(setf x 10) ; Set x to 10

(setf x 1 y 2) ; Set x to 1 and y to 2
(incf x) ; Same as (setf x (+ x 1))
(decf x) ; Same as (setf x (- x 1))
(incf x 10) ; Same as (setf x (+ x 10))

Common Lisp by Example

4. Input & Output

The second important side-effect after assignment is input & output. To write meaningful
programs we need to be able to accept user input and provide output to the user. In this section,
we cover the basic functions to read & print to a screen. Later in the guide we will cover the
useful functions of reading & writing to a file.

4.1 Lisp Reader

The READ function takes characters from a stream, interprets them as a printed representation
of a Lisp object, builds a Lisp object and finally returns it as the value of the function. The
collection of routines that does this is called the (Lisp) reader. There are three primary variations
of the Lisp reader:

e The function READ is used to parse input into Lisp objects and reads exactly one
expression, regardless of newlines

e The function READ-LINE reads all characters up to a newline, returning a string
e The function READ-FROM-STRING takes a string and returns the first expression from it
Below are some examples you can experiment with.

(defparameter my-variable nil)
(setf my-variable (read-line))
(setf my-variable (read))

(setf my-variable (read-from-string " (1 2 3)"))

4.2 Lisp Printer

Functions such as PRINT take a Lisp object and send the characters of its printed representation
to a stream. The collection of routines that does this is known as the (Lisp) printer. PRIN1 and
PRINT are used to generate output useful for programs (the latter adds a newline to the output
whilst the former does not). PRINC is used for output for people. TERPRI prints a newline.

Common Lisp by Example

The FORMAT function is the most commonly used printer in Lisp. Its syntax is as follows.

(format destination control-string optional-arguments*)

The first argument of the FORMAT function is the destination where the output will be printed. A
value of T will send the out to the stream *standard-output™ (typically the main screen of your
Lisp system) whilst NIL here will return the output as a string. We can alternatively supply a
stream pointing to a file in our file system, and this is how we use FORMAT to write to files (we
will discuss this later in this guide).

The second argument of the FORMAT function is the string that we want to print. However, we
can enter directives (preceded by ~) to add complex behaviour to the string, such as printing
newlines (~%) (i.e. TERPRI) or for inserting the printed representation of Lisp objects into the
string (~A to print as PRINC, i.e. output for people and ~S to print as PRINI, i.e. output suitable
as input for the READ function).

The third (optional) argument of the FORMAT function is the arguments we want to supply to the
control string. Each ~A or ~S in the control-string takes a successive argument from here and
places it into the string.

This is best illustrated by the following examples. Note how Bob is quoted in the second
example as the printed representation of Lisp strings includes quotes.

;; Prints to screen:
Dear Bob,
How are you?

(format t "Dear ~A, ~% How are you?" "Bob'")

;; Prints to screen:
Dear "Bob", How are you?

(format t "Dear ~S, How are you?" "Bob'")
;; Returns "Number is: 3" (a string)

(format nil "~A ~A"™ "Number is:" (+ 1 2))

Common Lisp by Example

5. Global Functions

In our earlier examples, we used some of Lisp’s built-in functions such as + (for addition), READ
(for reading input) and FORMAT (for printing input). We will discuss how to define our own
functions and also introduce some common functions for manipulating numbers and text.

Global functions are defined with DEFUN with the below syntax. The * implies that multiple
forms can be included in these parts. body-form denotes the body of the function, which is
wrapped in an implicit BLOCK with the same name as function-name. Functions evaluate the
expressions of their bodies in order and return the value of the last expression, unless exited
earlier with RETURN-FROM. We will discuss BLOCK and RETURN-FROM in the next section.

(defun function-name (parameter*)
"Optional documentation string."
body-form*)

An example of a function that multiplies the sum of two numbers by 10 is below, together with
its function call.

(defun multiply-sum-by-10 (x v)
"Returns the sum of two numbers multiplied by 10"
(* 10 (+ x vy)))

(multiply-sum-by-10 5 10) ; Returns 150

5.1 Numerical Functions

Some of Lisp’s most basic functions are for arithmetic, e.g. (+ 3 3.0) for addition, (- 3 3.0) for
subtraction, (* 3 3.0) for multiplication and (/ 3 3.0) for division. Numerical functions disregard
type, i.e. 3 and 3.0 are treated as equal and we can complete arithmetic operations on disparate
numerical types such as integer and floating point numbers without error. We can compare
numbers with the below functions. With two arguments, they perform the usual arithmetic
comparison tests. With three or more arguments, they are useful for range checks.

= /= (not) < > <= >=

10

Common Lisp by Example

Below are examples of these functions.
(defparameter x 5)

(defparameter y 4)

(<= 0 x 5) ; true as x between 0 and 5 inclusive

(< 0 x 5) ; false as x not between 0 and 5 exclusive
(< 0 x y 6) ; false as x > vy

(< 0y x 6) ; true

Two other useful functions are MAX and MIN. Finally, we can use ABS to return the absolute
value of one number.

5.2 Text Functions

We will now cover some useful functions for joining strings (CONCATENATE), retrieving their
length (LENGTH), extracting a portion of a string (SUBSEQ) and searching within a string
(SEARCH). The FORMAT function that we discussed earlier is very useful for constructing strings
made up of smaller strings that we supply into the FORMAT function as arguments.

Below are examples of joining and searching within a string and retrieving its length in
characters. SEARCH will return the starting point of the term searched or NIL if not found.

(concatenate 'string "Hello, " "world" ". Today is good.")
(length "Common™) ; Returns 6

(search "term" "the term is search within this string")

SUBSEQ retrieves a portion of a string starting from a supplied starting position (indexed from 0)
and an optional ending position (which is not included in the string):

(subseq "Common Lisp" 7 11) ; Returns "Lisp"

11

Common Lisp by Example

The below table outlines comparison functions for strings. Replace STRING with CHAR in the
below to get the equivalent character comparison functions.

Case Sensitive Case Insensitive

STRING= STRING< STRING>
STRING<= STRING>= STRING/=

STRING-EQUAL
STRING-NOT-EQUAL

Note on usage: A string A is less than a string B if in the | STRING-LESSP
first position in which they differ the character of Ais less | STRING-NOT-LESSP
than the corresponding character of B according to the
function CHAR, or if string a is a proper prefix of string B | STRING-GREATERP
(of shorter length and matching in all the characters of A). STRING-NOT-GREATERP

6. Blocks

Until now we have been working with singular Lisp forms. Frequently however, we want to
evaluate a block of code together, such as within functions, or within an if statement or a loop.
The PROGN special operator allows us to evaluate a sequence of Lisp forms in order and return
the value of the last as the value of the PROGN form. Below is an example:

(progn
(print "Hello")
(print "World")
(+ 5 5)) ; Returns 10

The BLOCK special operator is similar, but it is named and has a mechanism for out-of-order exit
with the RETURN-FROM operator. As mentioned earlier, the bodies of functions are wrapped in
an implicit BLOCK.

(block my-block
(print "We see this")
(return-from my-block 10) ; Returns 10

(print "We will never see this"))

The RETURN macro returns its argument as the value of an enclosing BLOCK named NIL.

12

Common Lisp by Example

Many Common Lisp operators that take a body of expressions implicitly enclose the body in a
BLOCK named NIL and we can use RETURN in these forms:

(dolist (1 '(1 2 3 5 6 7))
(if (= 1 3)
(return 10)) ; Returns 10 when i = 3
(print 1)) ; Prints 1 and then 2

The value of the last expression is returned by the block (unless modified by RETURN or
RETURN-FROM). All other expressions in the block are thus only useful for their side effects.

7. Data Types

In the next two sections we will discuss conditionals and loops. To do so effectively, we need
first briefly discuss data types and how Lisp handles boolean and logic.

As a reminder, it is important to note that in Lisp, data objects are typed, not variables. Any
variable can have any Lisp object as its value.

Many Lisp objects belong to more than one type. The predicate TYPEP returns whether an object
belongs to a given type, and the function TYPE-OF returns a type to which a given object
belongs:

(typep "My String" 'string) ; Returns True

(type-of "My String") ; Returns (SIMPLE-ARRAY
CHARACTER (9)). As we learn
later, strings are an array
of characters

Examples of Type Predicate Functions

ATOM NULL ZEROP NUMBERP EVENP
LISTP ARRAYP PLUSP CHARACTERP ODDP
SYMBOLP PACKAGEP MINUSP STRINGP ODDP

13

Common Lisp by Example

7.1 Boolean & Logic

The built-in types form a hierarchy of subtypes and supertypes. The symbol T (for truth) is the
supertype of all types. We can express truth with any object other than NIL, the symbol for false:

(if 55 (print "True") (print "False")) ; Prints True

The function AND returns NIL if any of its arguments are false and returns the value of the last
argument if all arguments are true. The function OR returns the first argument that is true and
NIL if no argument is true.

(and t (+ 1 2) (* 1 5)) ; Returns 5
(or nil (+ 1 2) (* 1 5)) ; Returns 3

7.2 Equality & Comparison

Common Lisp has a few different functions for testing equality of two objects. Most beginners
should use EQUAL for non-numbers and = for numbers.

e EQ compares equality of memory addresses and is the fastest test. It is useful to
compare symbols quickly and to test whether two cons cells are physically the same
object. It should not be used to compare numbers.

e EOQL is like EQ except that it can safely compare numbers for numerical equality and type
equality. It is the default equality test in many Common Lisp functions.

e EQUAL is a general purpose test that, in addition to being able to safely compare
numbers like EQL, can safely compare lists on an element by element basis. Lists are not
unique and EQ and EQL will fail to return equality on equivalent lists if they are stored in
different memory addresses.

e EQUALP is a more liberal version of EQUAL. It ignores case distinctions in strings, among
other things.

e = s the most efficient way to compare numbers, and the only way to compare numbers
of disparate types, such as 3 and 3.0. It only accepts numbers.

14

Common Lisp by Example

8. Conditionals

The five main conditionals in Common Lisp are IF, WHEN, UNLESS, COND and CASE.
Conditionals with an implicit PROGN block allow for multiple forms within their bodies. To begin
with an example of IF form (note there is no implicit PROGN):

(if (equal 5 (+ 1 4))
(print "This is true")
(print "This if false"))

Example of WHEN form (note there is an implicit PROGN):

(when (equal 5 (+ 1 4))
(print "Print if statement is true")
(print "Print this also"))

Example of UNLESS form (note there is an implicit PROGN):

(unless (equal 3 (+ 1 4))
(print "Only print if condition is false")
(print "Print this also"))

Example of COND form (multiple ifs, implicit PROGN). The form exits on the first true:

(cond ((equal 5 3) (print "This will not print"))
((equal 5 5) (print "This will print"))
((equal 5 5)

(print "This will not print as the")
(print "form exited at first true")))

Example of CASE form (implicit PROGN). Cases are literal and not evaluated:

(case (read) ; Try entering in 9 and then
((1 3 57 (* 3 3)) "odd") ; (* 3 3) at the read prompt
(0 ; Note implicit PROGN here

(print "Zero")
(print "Number"))
(otherwise "Not a odd number < 10"))

15

Common Lisp by Example

9. Basic Loops

DOTIMES and DOLIST are basic loop macros for iteration. In the below example, DOLIST will
iterate over the items of my-list and execute the loop body for each item of the list. my-variable
holds the value of each successive item in the list during the iteration.

(dolist (my-variable my-list optional-result-form)
body-form*)

(dolist (i '"(1 2 3 5 6 7))
(print 1))

In the below example, DOTIMES will iterate my-variable from O to one less than the
end-number supplied. If an optional-result-form is supplied, it will be evaluated at the end of
the loop. Below is the structure of the macro, together with an example:

(dotimes (my-variable end-number optional-result-form)
body-form*)

(dotimes (i 5 T)
(print 1))

10. Local Variables & Functions

LET and LET* are special operators that allow us to create local variables that can only be
accessed within their closures. LET binds its variables in parallel such that you cannot refer to
another variable in the LET form when setting the value of another. LET* binds its variables in
sequentially, so that you can refer to the value of any previously bound variables. This is useful
when you want to assign names to several intermediate steps in a long computation.

The LET form has the following syntax:

(let ((var-1 value-1)

(var-n value-n))
body-form*)

16

Common Lisp by Example

An example of LET* in use:

(let* ((x 5) (v (+ = x)))
(print v)) ; Prints 10

As a general note on assignment, it is good programming style to avoid changing the value of
local variables after they have been set. This makes our programs easier to follow as we do not
need to track any changes in the values of our local variables. Thus, we should only use SETF on
global variables and not alter variables created by LET and LET* forms within their closures.

10.1 Local Functions

Functions named by DEFUN are global functions that can be accessed anywhere. We can define
local functions through FLET and LABELS, which are only accessible within their context. The
scope of the functions in a FLET form is limited to the body of the form and function definitions
are not visible to other functions defined by the FLET form. LABELS is equivalent to FLET except
that the scope of the defined function names for LABELS encompasses the function definitions
themselves as well as the body. Practically this means LABELS allows you to write recursive
functions. The syntax of LABELS is:

(labels ((fn-1 args-1 body-1)

(fn-n args—-n body-n))
body-form*)

Functions defined within LABELS take a similar format to a DEFUN form. Within the body of the
LABELS form, function names matching those defined by the LABELS refer to the locally defined
functions rather than any global functions with the same names. Below is an example of a
LABELS form that will return 12, the result of (+ 2 4 6), where 2, 4 and 6 are the results of
evaluating the three local functions defined in the form.

(labels ((first-function (x) (+ x X))
(second-function (y) (* y y))
(third-function (z) (first-function z)))
(+ (first-function 1)
(second-function 2)
(third-function 3))) ; Returns 12

17

Common Lisp by Example

11. A Brief Detour - Code Formatting

Congratulations — you have now completed a basic introduction of Common Lisp! We will now
take a brief detour to discuss conventions for formatting Lisp code, before returning to
intermediate and advanced concepts in Lisp in the succeeding sections.

It is important to format Lisp code according to shared conventions. This will allow others to
read your code and it will make your life easier as unformatted Lisp code is difficult to read.

11.1 Parentheses & Line Spacing

Horizontally space elements within Lisp forms like (+ (+ 1 2) 3), with no whitespace around
parentheses. Always put ending parentheses on the last line of code and not separately on
newlines by themselves.

When a Lisp form does not fit on one line, consider inserting newlines between the arguments so
that each one is on a separate line. However, do not insert newlines in a way that makes it hard
to tell how many arguments the function takes or where an argument starts and ends.

11.2 Indentation

Indent your code the way a properly configured GNU Emacs does. In practice, this means
relying on a Lisp editor (such as Emacs) that indents code automatically. Lisp editors have a
complex set of indenting rules, but they can be generalised in most instances as follows:

e Function arguments are aligned with the first argument. If the first argument is on its
own line, it is aligned with the function name

e Bodies of forms are indented two spaces

e Distinguished (“special”) arguments are indented four spaces when on a newline
The purpose of indenting is to visually communicate nesting. This is most commonly achieved
with the nesting of the bodies through the standard two spaces of indentation. Function

arguments and distinguished arguments have a greater level of indentation to visually separate
them and ensure they are not confused as part of a nested form.

18

11.3 Examples

Common Lisp by Example

Below are some examples that illustrate the above guidelines.

Good: Group ending parentheses on the last line
of the form

Bad: Never place parentheses on their own lines

(defun my-function (x)
(1f (< x 0)
("Negative")

("Non-positive™)))

(defun my-function (x)
(1f (< x 0)
("Negative")

("Non-positive")

)

Good: Function arguments are aligned under the
first argument

Bad: Without extra indentation, function calls can
be confused for nested bodies

(my-function first-arg
second-arg
third-arg)

(my-function first-arg
second-arg
third-arg)

Good: Bodies of forms should be nested two
spaces

Good: Distinguished forms should be nested four
spaces

(when something
(do-this)
(and-this)
(and-also-this))

(with-slots (a b)
(distinguished-form)
(print a)
(print b))

Note in the first example above, the IF form is indented in a similar manner to a function call.
This is purely coincidental: the test, then and else forms are distinguished arguments and
indented four spaces. This coincidentally happens to line them up under the first argument.

To doubly emphasise the point of function calls and distinguished arguments having special

indentation, note that an IF form would be very confusing with standard indentation as we may
incorrectly assume the last two forms are to be evaluated consecutively as part of the then form:

19

Common Lisp by Example

12. Lists & List Manipulation

Lisp stands for List Processor and a deeper understanding of lists is essential to proficiency in
the language. Our earlier definition of atoms & lists focused on their printed representation. We
begin this section with detail on their internal representation.

Inside computer memory, lists are organized as chains of cons cells. CONS are a pair of pointers,
the first cell is called the CAR and the second the CDR. The CAR points to some data structure
(e.g. an integer, string, or even another list), while the CDR points to either another CONS or to
the empty list NIL.

Lists are thus defined recursively to be either empty lists or CONS whose CDR components are
lists. The list (A B C) is comprised of the following (observe the recursive definition in action):

Recursive definition of the list (A B C): A cons with car of A and cdr of (B C) = A cons with car of
B and cdr of (C) = A cons with car of C and cdr of NIL = The empty list NIL

‘ | | NIL

| | |

A B C

Atoms are defined simply as not cons. The empty list NIL is both an atom and a list. We can
access the first and second con cells of a list with the CAR and CDR accessors:

(car '(1 2 3)) ; Returns 1
(edr '(1 2 3)) ; Returns (2 3)

We can join atoms or lists into a pair of cons cells with the CONS function:

(cons 1 ' (2 3)) ; Returns (1 2 3)
(cons ' (1 4) '"(2 3)) ; Returns ((1 4) 2 3)

20

Common Lisp by Example

Note in our last example, the CAR of the generated list is yet another list (1 4) as we passed a list
as the CAR argument of the CONS function. This gives a glimpse into creating nested lists.

When printing a list in parenthesis notation, Lisp starts by printing a left parenthesis followed by
all the elements, separated by spaces. If the list ends in NIL, Lisp prints a right parenthesis. A
proper list is a cons cell chain ending in NIL.

If the list does not end in NIL, before printing the right parenthesis Lisp prints a space, a period,
another space, and the atom that ends the chain. A list not ending in NIL is called a dotted list:

(cons 1 2) ; Returns (1 . 2)

12.1 Building & Copying Lists

The LIST function allows us to create lists of more than two elements by consing onto NIL. The
COPY-LIST function takes a list as its argument and returns a copy of it. The APPEND function
returns a concatenation of the elements of any number of lists supplied as its argument.

(list 3 'a 'b 'c 'd) ; (3 A B C D)

(list '(a b c d) 3) ; ((A B C D) 3)
(append '(a b c d) '(a b c d)) ; (ABCDABC D)
(append '(a b c d) 3) ; (A BCD. 3)

12.2 Accessing List Elements

The NTH function can access an element at a given position in a list while the function NTHCDR
is used to get CDR at a given position. In addition, we can FIRST - TENTH to get the 1st to 10th
elements of a list, while LAST will give the last CDR in a cons cell.

(first "(a b c d e f qg)) ; Returns A
(fifth '(a b ¢ d e f qg)) ; Returns E
(tenth '(1 2 3 4 56 7 8 9 11)) ; Return 11
(last '(a b c de f qg)) ; Returns (G)

(the last CDR)

Finally, lists are sequences and there are a number of useful functions for sequences that can be
used on lists (these are discussed later in this guide).

21

Common Lisp by Example

12.3 Lists as Sets

Lists are a good way to represent small sets. The function MEMBER checks if an element is part
of a list and returns the part of the list beginning with the element if it is found.

(member 'b '(a b c¢)) ; Returns (B C)

Recall that lists are not unique and lists with the same elements can be stored in different parts
of computer memory. MEMBER utilises EQL for its comparison, and will not return a match
where the two lists are stored in different parts of memory. To achieve this, i.e. to compare lists
on an element by element basis, utilise the following configuration of the MEMBER function:

(member 'b '(a b c) :test #'equal) ; Element-wise test

We can also specify a function to be applied to each element before the comparison. In the
below example, we test if there is an element whose CAR is the symbol B:

(member 'b '((a) (b) (c d)) :key #'car) ; ((B) (C D))

MEMBER-IF allows us to search for an element satisfying an arbitrary predicate. For example, in
the below, we search for odd numbers in the list and return the part beginning with the first odd:

(member-if #'oddp '(2 3 4)) ;o (3 4)
ADJOIN joins an object onto a list only if it is not already a member:

(adjoin 'b '(a b c)) ; Returns (A B C)
(adjoin 'z '(a b <)) ; Returns (Z A B C)

The below examples illustrate set union, intersection and complement operations on exactly
two lists. SET-DIFFERENCE returns a list of elements of the first list that do not appear in the
second list. Also note that since there is no notion of ordering in a set, the below functions do
not necessarily bother to preserve the order of elements found in the original list.

(union '(a b ¢) '"(c b s8)) ; Returns (A B C 3)
(intersection '(a b ¢) '"(c b s)) ; Returns (C B)
(set-difference '(a b ¢c) '"(c b s)) ; Returns (2)

22

Common Lisp by Example

12.4 Association Lists

We can use a list of conses (remember a cons consists of two elements, its car and its cdr) to
represent mappings. ASSOC is used to retrieve the value associated with a particular key.

Below is an example of defining and retrieving from an assoc-list (which is just a list of conses):

(defparameter mapping-table
"((+ . "add") (- . "subtract")))

(assoc '+ mapping-table) ; Returns (+ . "add")

12.5 Pushdown Stacks

We can use lists as pushdown stacks. The macro PUSH can be used to push an element to the
front of the list, while the macro POP can remove and return the first element of the list. Both
are destructive operations as they directly change the original lists in question. For example:

(defparameter my-list '(2 3 4))

(push 1 my-list) ; Returns (1 2 3 4)
my-list ; Returns (1 2 3 4)
(pop my-list) ; Returns 1, the car of the 1list

N

my-1list ; Returns (2 3 4)

13. More on Functions

Functions in Lisp are first-class objects that generally support all operations available to other
data objects, such as being modified, passed as an argument, returned from a function and
being assigned to a variable.

The FUNCTION special operator (shorthand #') returns the function object associated with the
name of function that is supplied as an argument:

(function +) ; Returns the function object

#'+ ; Equivalent syntax

23

Common Lisp by Example

When you type the above in your toplevel, your Lisp implementation will print the external
representation of the function object (implementations are free to choose whatever external
representation they like), such as #<FUNCTION +>. Internally however, a built-in function like +
is likely to be a segment of machine language. CONS or + are examples of symbols used to
name built-in Lisp functions. The symbol CONS has a pointer in its function cell to a "compiled
code object" that represents the machine language instructions for creating new cons cells.

For user defined functions, the DEFUN macro is used to name a function with a symbol. For
example, in the below example, the symbol HALF names the function, whilst the symbol itself is
named by the string "HALF". The function cell of the symbol points to a function object that is
the real function. Exactly what this function object looks like depends on which implementation
of Common Lisp you’re using, but as the diagram indicates, there’s probably a lambda
expression in there somewhere.

Example showing how symbols point to function objects

Name - “"HALF~ /m

Function
Object

Function

S~ (LAMBDA (N} (/ N 2))

APPLY takes a function and a list of arguments for it and returns the result of applying the
function to its arguments. Note how we have to use to sharp-quote (#') to pass the + function as
an object into the APPLY function. Without doing so, Lisp will return an error as it will try to
evaluate +, which is not legally permissible in the below example.

(apply #'+ '"(1 2 3)) ; Returns 6

The function FUNCALL is similar to APPLY, but allows us to pass arguments individually and not
packaged as a list:

(funcall #'+ 1 2 3) ; Returns ©

24

Common Lisp by Example

We can use APPLY and FUNCALL to evaluate lambda expressions, as lambda expressions are
nothing but lists which can be used directly in place of function names.

Below is an example of passing a lambda expression to FUNCALL:
(funcall #' (lambda (x v z) (+ x v z)) 1 2 3) ; Returns 6

As a closing remark, Lisp programs are nothing but lists themselves. The function EVAL takes an
expression, evaluates it and returns its value. In fact, our toplevel is nothing but a
read-eval-print loop (hence known as REPL). Calling EVAL ourselves is not advisable as it is
inefficient (lists are evaluated at run-time and not as compiled coded) and as it does not handle
lexical context (EVAL within a LET cannot refer to variables established by the LET). Indeed, one
of the only places where it is appropriate to use EVAL is in a top-level loop.

(eval '(+ 1 2 3)) ; Returns ©

13.1 Function Parameters

By default, a function call must supply values for all parameters that feature in the function
definition. We can modify this behaviour with the &optional, &key and &rest tokens. The
&optional token allows to distinguish between required parameters, placed before the
&optional token, and optional parameters, placed after the token:

(defun make-a-list (a b ¢ d &optional e f g)
(list a b cde f qg))

(make-a-1list 1 2 3 4 5) ; Returns (1 2 3 4 5 NIL NIL)

One drawback of the &optional token, using the above as an example, is that we need to supply
values for E and F if we want to supply the value for G, as arguments in a function call are
assigned to the parameters in order. To overcome this, we utilise the &key token to be able to
specify which optional parameter we want to assign a value to. Below is an example of this,

(defun make-a-list-2 (a b c d &key (e 1) £ qg)
(list a b c de f g))

(make-a-list-2 1 2 3 4 :g 7) ; Returns (1 2 3 4 1 NIL 7)

25

Common Lisp by Example

The preceding example also shows how we can supply a default value to an optional (setting E
to 1 if no value for E is provided). When we called this function in the above, we set G to 7 and E
also defaulted to 1. As no value was supplied for F, it defaulted to NIL.

In general, &key is preferable to &optional as it allows us to have greater control in our function
calls. It also makes code easier to maintain and evolve as we can add new parameters to a
function without affecting existing function calls (useful when writing libraries that are already
being used by other programs).

Finally, the &rest token, placed before the last variable in a parameter list, allows us to write
functions that can accept an unknown number of arguments. The last variable will be set to a list
of all the remaining arguments supplied by the function call:

(defun make-a-1ist-3 (a b ¢ d &rest e)
(list a b ¢ d e))

(make-a-1list-3 1 2 3 4 5 6 7 8) ; (L 234 (567 8))

We can utilise multiple tokens in the same function call, as long as we declare them in order.
First the names of required parameters are declared, then the optional parameters, then the
rest parameter and finally the keyword parameters are declared.

13.2 Multiple-Value-Binds

Until now, we have only considered functions that return one value. In certain circumstances it
is useful for a function to return several values, without having to build an overarching structure
to contain them all. This is achieved through multiple-value-binds.

The VALUES function returns multiple values and can be used as the last expression in the body
of a function. The below example returns 1, NIL and 6 (individually, not as a list):

(values 1 nil (+ 2 4))

If a VALUES function is supplied as an argument to a form which is only expecting one value, the
first value returned by the VALUES function is used and the rest are discarded:

(+ 5 (values 1 nil (+ 2 4))) ; Returns ©

26

Common Lisp by Example

The MULTIPLE-VALUE-BIND macro is used to receive multiple values. The first argument of this
macro is the variables and the second is the expression that returns their values. We can then
use these values in the body of the multiple-value-bind macro. Below is an example.

(multiple-value-bind (x v z) (values 1 2 3)
(list x vy z)) ; Returns (1 2 3)

If there are more variables than values, the leftover variables will be bound to NIL. If there are
more values than variables, the extra values will be discarded. Finally, you can pass multiple
values as arguments to a function using the MULTIPLE-VALUE-CALL special operator:

(multiple-value-call #'+ (values 1 2 3)) ; Returns ©

13.3 Applying Functions To Elements of a List

MAPCAR takes a function and one or more lists and returns a list of the results of applying the
function to elements taken from each list. A function with multiple arguments takes one
element from each list, as in the second and third examples below.

(mapcar #' (lambda (x) (+ x 1))
(1 2 3)) ; Returns (2 3 4)

(mapcar #' (lambda (x y) (+ x Vv))
(1 2 3) '"(5 10 15)) ; Returns (6 12 18)

(mapcar #'+
(1 2 3) "(5 10 15) '"(10 20 30)) ; (16 32 48)

A similar function is MAPLIST, which works on successive cdrs of the list:

(maplist #' (lambda (x) x)
(1 2 3)) ; Returns ((1 2 3) (2 3) (3))

27

Common Lisp by Example

14. Arrays & Sequences

The function MAKE-ARRAY allows us to create arrays. For example, we can create a 2 x 3 array
as follows:

(defparameter my-array (make-array
'(2 3)
tinitial-element nil))

The functions AREF and SETF allow us to access elements and set them with values:

(aref my-array 0 0) ; Returns NIL
(setf (aref my-array 0 0) 'b) ; Set (0,0) to B
(aref my-array 0 0) ; Returns B

The functions ARRAY-RANK and ARRAY-DIMENSION retrieve the the number of dimensions and
the number of elements in a given dimension respectively:

(setf my-array

(make-array ' (2 3)
tinitial-element '"((1 2 3) (1 2 3))))
(array-rank my-array) ; Returns 2
(array-dimension my-array 0) ; Returns 2
(array-dimension my-array 1) ; Returns 3

We use :INITIAL-ELEMENT to set the value of every element of an array to the provided
argument, while we use :INITIAL-CONTENTS to set the array to the object provided. A
one-dimensional array is a vector and can be created with either of the following.

(vector "a" 'b 3)

(defparameter my-vector
(make-array 3 :initial-contents '("a" 'b 3)))

Finally, we can create a literal array using the #na syntax, where n is the number of dimensions:

#2a((b nil nil) (1 2 3)) ; Returns ((B NIL NIL) (1 2 3))

28

Common Lisp by Example

Strings are vectors of characters, denoted with double quotes (e.g. "my-string"). Strings
evaluate to themselves. A character such as c is denoted as #\c. Each character has an
associated integer that is usually (but not necessarily) its ASCII number:

(char-code #\c) ; Returns 99
(code-char 99) ; Returns #\c
14.1 Sequences

The type sequence includes both lists and vectors (and therefore strings). Sequences have
many useful functions:

(length '(a b c d e £)) ; Returns 6
(reverse '(a b c¢c d e f)) ; Returns (F E D C B A)

;; Returns (C R T) (a new original list unaffected):
(remove 'a '(c a r a t))

;; Returns "cbdra" (preserves only the last of each):

(remove-duplicates "abracadabra")

We use SUBSEQ to get a portion of a list. Its arguments are a list, the starting position and an
optional ending position (which is not to be included in the subsequence):

(subseq '(a b c de f) 1 4) ; Returns (B C D)

SORT takes a sequence and a comparison function of two arguments and destructively (i.e. by
modifying the original sequence) returns a sequence sorted according to the function:

(sort '(1 4 2 5 6) #'>) ; Returns (6 5 4 2 1)

The functions EVERY and SOME test whether a sequence satisfies a provided predicate:

(every #'oddp '(1 2 5)) ; Returns NIL
(some #'oddp '(1 2 5)) ; Returns T
(every #'> '"(1 3 5) '(0 2 4)) ; Returns T

29

Common Lisp by Example

14.2 Keyword Arguments

Many sequence functions take one or more keyword arguments from the below table. For
example, we can use POSITION to return the position of an element within a sequence (or NIL if
not found) and use keyword arguments to determine where to begin the search:

(position #\a "fantasia" :start 3 :end 7) ; Returns 4
Parameter Purpose Default
tkey A function to apply to each element identity
:test The test function for comparison eql
:from-end | Iftrue, work backwards nil
istart Position at which to start 0
:end Position, if any, at which to stop nil

The function REDUCE is useful to extend functions that only take two variables. It takes two
arguments, a function (which must take exactly two values) and a sequence. The function is
initially called on the first two elements of the sequence, and thereafter with each successive
element as the second argument. The value returned by the last call is the value returned by the
REDUCE function. For example, the below returns (A), the intersection of these three lists:

(reduce #'intersection '"((b r a d) (b a d) (c a t)))

15. Hash Tables

A hash table is a way of associating pairs of objects, like a dictionary. The objects stored in a
hash table or used as keys can be of any type. We can make hastables with MAKE-HASH-TABLE
and retrieve values associated with a given key with GETHASH:

(defparameter my-hash-table (make-hash-table))

(gethash 'color my-hash-table) ; Returns NIL as not yet set

30

Common Lisp by Example

Similar to other structures, we use SETF to set values. Hash tables can accommodate any

number of elements, because they are expanded when they run out of space. We can remove
values with REMHASH.

(setf (gethash 'color my-hash-table) 'red) ; Returns RED

(remhash 'color my-hash-table)

Finally, the function MAPHASH allows you to iterate over all entries in the hash table. Its first
argument must be a function which accepts two arguments, the key and the value of each entry.
Note that due to the nature of hash tables you can't control the order in which the entries are
provided to MAPHASH (or other traversing constructs):

(maphash #' (lambda (key value)

(format t "~A = ~A~3%" key value))
my—-hash-table)

16. Structures

Common Lisp provides the DEFSTRUCT facility for creating named data structures with named
components. This makes it easier to manipulate custom data objects as we can refer to their
components by name. Constructor, access and assignment constructs are automatically defined
when a data type is defined through DEFSTRUCT.
Consider the below example of defining a data type for rectangles. DEFSTRUCT defines
RECTANGLE to be a structure with two fields, height and width. The symbol RECTANGLE
becomes the name of a data type and each rectangle will be of type RECTANGLE, then
STRUCTURE, then ATOM and then T. DEFSTRUCT generates four associated functions:

1. RECTANGLE-HEIGHT and RECTANGLE-WIDTH to access elements of the structure

2. RECTANGLE-P to test whether an object is of type rectangle

3. MAKE-RECTANGLE to create rectangles

4. COPY-RECTANGLE to create copies of rectangles

31

Common Lisp by Example

Example of a Rectangle Structure

(defstruct rectangle
(height) ; Height will default to NIL
(width 5)) ; Width will default to 5
(defvar rectangle-1)
(setf rectangle-1 (make-rectangle :height 10 :width 15))
(rectangle-height rectangle-1) ; Returns 10
(setf (rectangle-width rectangle-1) 20) ; Returns 20
(defvar rectangle-2)

(setf rectangle-2 (make-rectangle))

rectangle-2 ; Prints #S(RECTANGLE :HEIGHT NIL :WIDTH 5)

There are some advanced initialization options that we will not discuss here. Note that the the
#S syntax can be used to read instances of rectangle structures.

17. Reading & Writing to Files

The WITH-OPEN-FILE macro is used to read & write to files and then close the file. Streams are
Lisp objects representing sources and/or destinations of characters. To read from or write to a
file, you open it as a stream. By default, input is read from the stream *standard-input* and
output is recorded in *standard-output®. Initially they will be the same place - the toplevel.

Below is an example opening a file as my-stream and then reading from it. The NIL in the below
inhibits end of file errors.

(with-open-file (my-stream "/Users/ashokkhanna/test.txt")
(format t "~a~%" (read-line my-stream nil)))

Below is an example opening a file as my-stream and then writing to it.

32

Common Lisp by Example

(with-open-file (my-stream "/Users/ashokkhanna/test.txt"
:direction :output
:if-exists :append)
(format my-stream "~a~%" "Hello, World!"))

The following open arguments can be supplied to the WITH-OPEN-FILE macro:

e Write to a file instead of reading :direction :output

e Create afileif it does not exist :if-does-not-exist :create
e Replace file that exists :if-exists :supersede

e Overwrite file :if-exists :overwrite

e Write to end of file :if-exists :append

18. Advanced Looping

The DO macro is a very powerful and flexible iterator. It looks like this:

(do ((varl initl stepl)

(varn initn stepn))
(end-test result-forms¥*)
body-forms*)

Below is an example of the DO loop, together with a detailed step through. This example will
return 81l and print1, 0,1, 4, 9, 16, 25, 36, 49 and 64 on newlines. During each iteration,
loop-step is increased by one while square is set to the square of loop-step.

(do ((loop-step 0 (+ loop-step 1))
(square 1 (* loop-step loop-step)))
((= 10 loop-step) square) ; Stop at 10
(print square)) ; Print square at each step

33

Common Lisp by Example

Step Through

1. The init forms are evaluated at the beginning of the loop and bound to the variables. In
the above example, loop-step is bound to O while square is bound to 1.

2. The end-test form is evaluated at the beginning of each iteration. If it evaluates to NIL,
the iteration proceeds and the body of the loop is executed. Hence, in the above example
you see 1 printed on the first iteration, as that is the starting value of the square variable.

3. After all the body forms have been evaluated, and before each subsequent iteration of
the loop, the step forms will be evaluated and their values will be bound to the variables.

In a DO loop, the step forms can refer to other variables defined by the loop, but the
value they receive for these variables is the value before the step forms are evaluated.
Thus, in the first update, square is set to O as that is the value of loop-step before the
step forms are evaluated.

4. This can be seen in the printed output of O provided by the second iteration of the loop.

5. Note in a DO loop, the init forms cannot refer to other variables defined in the loop as
they have not yet been bound to a value (the DO loop, similar to LET, binds values in
parallel).

6. After 10 iterations, the loop-step variable will have a value of 10. Accordingly, the

end-test form will return T. When this occurs, the result-forms are evaluated and the
value of the last result form is returned as the value of the loop.

7. Inourexample above, the value of square will be 81 at this point, being the square of the
last value of loop-step (9). This is the value returned by the loop.

8. Note that the body-forms are not evaluated when the end-test is true, and the last
printed output is 64 in our example.

The DO* macro is similar to a LET* form and binds its variables in sequence. Therefore a variable
can access the latest value of a previously defined variable in either the initial or step forms.

34

Common Lisp by Example

Below is an near-identical example of the above, but with a DO* loop. The DO* loop will return
100 and print 0, 1, 4, 9, 16, 25, 36, 48, 64 and 81 on newlines.

(do* ((loop-step 0 (+ loop-step 1))
(square loop-step (* loop-step loop-step)))
((= 10 loop-step) square)
(print square))

As a final example, consider the below, where we switch the lexical positions of
loop-step and square within the loop. This example will return 81 and print O, O, 1, 4, 9, 16,
25, 36, 49, 64 and 81. Observe how square is now accessing the prior value of loop-step, as it
is evaluated before loop-step and does not have access to its current value. This is a reminder
that the DO* loop performs its bindings in sequence.

(do* ((square 0 (* loop-step loop-step))
(loop-step 0 (+ loop-step 1)))
((= 10 loop-step) square)
(print square))

19. Scope & Extent

We will briefly introduce and discuss the concepts of scope and extent. Before we begin, as a
general rule, local variables and functions (defined by LET, LET*, LABELS, FLET) can only be
accessed within their closures, whilst global names (defined by DEFVAR, DEFPARAMETER,
DEFCONSTANT, DEFUN) are accessible everywhere.

It is best practice to avoid using the same names for local and global variables and
functions.

Scope refers to the textual region of the program within which references may occur, whilst
extent refers to the interval of time during which references may occur. For example, the scope
of the parameter X in the below is the body of the DEFUN form and its extent is the interval from
the time the function is invoked to the time it is exited:

(defun copy-cell (x)
(cons (car x) (cdr x)))

35

Common Lisp by Example

Accordingly, there are four permutations of scope and extent as listed below.

1. Lexical scope: Here references to the established entity can occur only within certain
program portions that are lexically (that is, textually) contained within the establishing
construct. Typically the construct will have a part designated the body, and the scope of
all entities established will be (or include) the body.

2. Indefinite scope: References may occur anywhere, in any program.

3. Dynamic extent: References may occur at any time in the interval between
establishment of the entity and the explicit disestablishment of the entity. As a rule, the
entity is disestablished when execution of the establishing construct completes or is
otherwise terminated.

4. Indefinite extent: The entity continues to exist as long as the possibility of reference
remains. (An implementation is free to destroy the entity if it can prove that reference to
it is no longer possible. Garbage collection strategies implicitly employ such proofs.)

Variable bindings and bindings of local function names have lexical scope and indefinite extent,
whilst bindings declared to be special (such as DEFVAR and DEFPARAMETER) have “dynamic
scope” (indefinite scope and dynamic extent). Named constants such as NIL and PI have
indefinite scope and indefinite extent.

The binding rule for dynamic scope in Lisp is as follows: a use of a name is bound to the most

recent declaration of that name that is still live (i.e. we first look for a local definition of a
variable, if it isn’t found, we look up the calling stack for a definition).

20. Packages

In large Lisp systems, with modules written by many different programmers, accidental name
collisions become a serious problem. Packages are used to overcome this issue.

A package is a data structure that establishes a mapping from print names (strings) to symbols.
The string-to-symbol mappings available in a given package are divided into two classes,

36

Common Lisp by Example

external and internal. Within a given package, a name refers to one symbol or to none; if it does
refer to a symbol, then it is either external or internal in that package, but not both.

e External symbhols are part of the package's public interface to other packages. and
are to be chosen with care. They are advertised to users of the package.

e Internal symbols are for internal use only, and are normally hidden from other
packages. Most symbols are created as internal symbols; they become external only if
they appear explicitly in an export command for the package.

At any given time, only one package is current. This package is used by the Lisp reader in
translating strings into symbols. The current package is, by definition, the one that is the value of
the global variable *package™.

It is possible to refer to symbols in packages other than the current package through the use of
package qualifiers in the printed representation of the symbol. For example, FOO:BAR, when
seen by the reader, refers to the symbol whose name is BAR in the package whose name is FOO.
This is technically only true if BAR is an external symbol of FOO. A reference to an internal
symbol requires the intentionally clumsier syntax FOO::BAR.

Symbols in the keyword package have two unique properties: (1) they always evaluate to
themselves and (2) they can be referred anywhere simply as :X instead of KEYWORD:X.

21. Symbols & Variables

A deeper understanding of symbols and variables is useful as you progress to more advanced
Lisp programs and we will aim to cover some of their detail here.

21.1 Internal Representation of Symbols

Symbols are Lisp data objects that serve several purposes and have several interesting
characteristics. Conceptually, a symbol is a block of five pointers. Internally, symbols are
composed of five cells: the name, value, function, plist, and package cells. A symbol may have
uppercase letters, lowercase letters, numbers, certain special characters or a mixture in its print
name; it however cannot be a number.

37

Common Lisp by Example

Symbols are unique, meaning there can be only one symbol in the computer’s memory with a
given name. Every object in the memory has a numbered location, called its address. Since a
symbol exists in only one place in memory, symbols have unique addresses.

Every object of type symbol has a name, called its print name: Given a symbol, one can obtain its
name in the form of a string. Conversely, given the name of a symbol as a string, one can obtain
the symbol itself. (More precisely, symbols are organized into packages, and all the symbols in a
package are uniquely identified by name).

21.2 Variables & Functions can share a symbol name

Because symbols have separate function and value cells, we can have a variable and a function
with the same name. Common Lisp determines whether a symbol refers to a function or a
variable based on the context in which it appears. If a symbol appears as the first element of a
list that is to be evaluated, it is treated as a function name. In other contexts it is treated as a
variable name.

In the below example, the symbol CAR is associated with both the CAR function and the value
“ROLLS-ROYCE”. Thus, the form (CAR ‘(A B C)) will call the CAR function, which returns A. On
the other hand, the form (LIST 'A 'NEW CAR) references the global variable CAR and produces
the result (A NEW "ROLLS-ROYCE").

Example of a Symbol with both Variable & Function assigned — Credits David David S. Touretzky,
Common Lisp: A Gentle Introduction to Symbolic Computation

MName » "CAR"
Value » ROLLS-ROYCE

Compiled
Function . CAR

Function

38

Common Lisp by Example

21.3 What are Variables?

As noted at the start of this guide, variables are a place where a value is stored. Variables
represent references to objects and assigning a variable a new value changes what object the
variable refers to but has no effect on the previously referenced object. However, if a variable
holds a reference to a mutable object, you can use that reference to modify the object, and the
modification will be visible to any code that has a reference to the same object.

Each time a function is called, Lisp creates new bindings to hold the arguments passed by the
function's caller. A binding is the runtime manifestation of a variable. A single variable - the thing
you can point to in the program's source code - can have many different bindings during a run of
the program. A single variable can even have multiple bindings at the same time; parameters to
a recursive function, for example, are rebound for each call to the function.

Much of Lisp’s terminology for variables is a holdover from the days when dynamic scoping was
the norm. For historical reasons some writers talk about “binding a variable” when they mean
“creating a new variable.” But people also say “unbound variable” when they mean
“unassigned variable.” Binding does not refer strictly to assignment; that is one of the major
sources of terminological confusion in Lisp. Non-global lexical variables always have values, but
it is possible for global or special variables to exist without a value. We won’t get into the arcane
details of that here.

21.4 Interplay of Symbols & Variables

Variables are named by symbols but they are not symbols themselves. Symbols are related to
variables in two very different ways:

e Special variables (i.e. global variables), such as those established by DEFVAR and
DEFPARAMETER, are stored with a symbol with the same name. The value of the special
variable is stored within the value cell of the symbol

e Lexical variables and lexical function definitions are also named by symbols, but here the
symbol is only an object identifier, and not a “full symbol”. In this role, only the symbol’s
name is significant and Common Lisp provides no operations on symbols that can have
any effect on a lexical variable or a lexical function definition.

39

Common Lisp by Example

Special Variables
DEFVAR & DEFPARAMETER

Lexical Variables & Functions
LET, LET*, FLET, LABELS

Variable are named by the symbol, whose
value cell holds the variables value. A symbol
evaluates to the value of the variable it holds.

Any part of the program can access the
variable by referencing the associated symbol
that exists within the global Lisp user
package. Hence, the variable is a global
variable.

Variables are named by the symbol, but there
is no local symbol that is holding the
variable’s value. By compile time, this
reference is translated to location in memory
and there will be no trace of the symbol. Parts
of the program outside of the lexical scope
cannot reference the variable through its
symbol name as no symbol is created within
the global Lisp user package.

21.5 Symbols & Property Lists (PLIST)

Symbols have a component called the property list, or plist. By convention this is always a list
whose even-numbered components (calling the first component zero) are symbols, here
functioning as property names, and whose odd-numbered components are associated property
values (either a value or a function, but not both). Functions are provided for manipulating this
property list; in effect, these allow a symbol to be treated as an extensible record structure.

The function GET is used to retrieve a value associated with a key in a symbol’s property list and
we can use it in conjunction with SETF to set values:

(get 'symbol-name 'my-key) ; Uses egl to compare keys

(setf (get 'symbol-name 'my-key) 3) ; Set my-key to 3

To illustrate these concepts, the below example associates a function with a plist key and then
we retrieve and apply the function:

(setf (get 'symbol-name 'my-key) (lambda (x) (+ x 100)))

(funcall (get 'symbol-name 'my-key) 1) ; Returns 101

40

Common Lisp by Example

22. Lambda Expressions

As noted earlier, there are four types of compound forms evaluated by Lisp: special forms,
macro forms, function forms and lambda forms. A lambda form is similar to a function form,
except the function name is replaced by a lamhda expression. As an example, the below two are
equivalent. Lambda expressions can be used to utilise unnamed functions.

Function Form Lambda Form
(defun my-function (x) ((lambda (x)
(+ x 100)) (+ x 100))
1) ; Returns 101
(my-function 1) ; Returns 101

More specifically, a lambda expression is a list which can be used in place of a function name in
certain contexts to denote a function by directly describing its behavior rather than indirectly by
referring to the name of an established function. Its name derives from the fact that its first
element is the symbol LAMBDA. The second element of a lambda expression must be an
argument list and its remaining elements constitute the body of the function.

In a slightly confusing manner, LAMBDA is also a Common Lisp macro. Depending on context,
LAMBDA can refer either to the symbol LAMBDA or the macro LAMBDA. LAMBDA will be
evaluated as a macro when it is the first element of a macro form. LAMBDA will be treated as a
symbol when it is used as part of a lambda expression such as in the lambda form in the above
table or as an argument to FUNCTION below.

Below is an example of LAMBDA evaluated as a macro:
(funcall (lambda (x) (+ x 100)) 1) ; Macro call

The LAMBDA macro expands its arguments to (function (lambda ...)). The above expression is
expanded to:

(funcall (function (lambda (x) (+ x 100))) 1) ; Returns 101
We can supply lambda expressions as arguments to FUNCTION. Thus, in the above, LAMBDA

refers to the symbol LAMBDA. The FUNCALL function above will evaluate the lambda form and
returns 101.

41

Common Lisp by Example

23. Macros

Macros are special kinds of functions whose arguments are not evaluated. Macro functions must
return Lisp expressions, which are then evaluated. Macros are important in the writing of good
code: they make it possible to write code that is clear and elegant at the user level but that is
converted to a more complex or more efficient internal form for execution. Reddit user
ramenbytes assisted with this section.

23.1 Basic Syntax

Macros are defined by DEFMACRO, which is very similar to DEFUN:

(defmacro macro-name (parameters*)
"Optional documentation string."
body-forms*)

Below is an example of a macro definition and a macro call. This macro will convert the form
(MY-ADD-MACRO X) to (+ 1 2 3 X) and then the subsequent macro call will expand the function,
inserting 8 into X (during READ TIME - refer section below), and evaluate (+ 1 2 3 8) to return 14.

(defmacro my-add-macro (x)
(+1 2 3 ,x%x))

(my-add-macro 8) ; Returns 14
The function MACROEXPAND-1 takes a macro call and generates its expansion:
(macroexpand-1 ' (my-add-macro x)) ; Returns (+ 1 2 3 X)

23.2 Use of Backquote

Backquotes = prevent evaluation in a similar manner to regular quotes ', but have additional
functionality with the use of the unquote operators , (comma) and ,@ (comma-at) that provide
the ability to turn evaluation back on. As an example:

+ 1 2 3 x) ; Returns (+ 1 2 3 X)

(defparameter x 2)
'
(+ 1 2 3 ,x) ; Returns (+ 1 2 3 2)

~

42

Common Lisp by Example

23.3 Compile Time, Read Time, Run Time

When a function is being compiled, any macros it contains are expanded at compilation time.
Therefore macro definitions must be seen by the compiler before their first use. To understand
how macros work, we need to understand the three stages of evaluation - compile time, read
time and run time.

We will carefully walk through the examples on the following two pages to illustrate these
concepts. For this, we have created three simple macros, the bad macro, the good macro and
the best macro and applied them to three examples.

1. Macros are expanded at compilation time. During this phase, they take any arguments
supplied in the macro definition and insert them without evaluation into the form (as
per the macro definition). For example, in Example 2 below, the bad macro returns an
error “X is not a number” during the macroexpansion phase as it has received an
unevaluated symbol X and is trying to add that to a series of numbers.

2. That said, we can control evaluation through reader macros like quote ' , backquote
and comma , . These occur at READ TIME, i.e. when they are read by the lisp reader and
parsed into lisp objects. For both the good macro and the best macro in the below
examples, we use quotes and backquotes to prevent evaluation during read time and the
lisp reader supplies the unevaluated objects for the macroexpansion.

Note that within the best macro, we use comma to turn evaluation back on, and thus,
during READ TIME, we evaluate the argument X of the macro. Without this forced
evaluation, the argument would be inserted into the macro expansion without
evaluation, as per point 1 above. Hence, in example 1 below, you can see the macro
expansion of the best macrois (+ 1 2 3 8) vs. the macro expansion of the good macro
which is (+ 1 2 3 X), the latter utilising the unevaluated symbol X whilst the former
evaluating X to 8 and supplying this to the macro expansion.

3. During runtime, the expanded expressions from the macro call are evaluated. This

part is relatively straightforward — the trick is understanding the above two points as
they determine the expression to be evaluated during runtime.

43

23.4 Macro Walk Through - Three Examples

To walk through the following examples, first start a fresh Lisp session without any predefined
global symbols for X. First evaluate the macro definitions to establish the macros, then step
through each example - first evaluating macro-expand-1 to observe the macro expansions and

then evaluating macro calls for each of the three macros.

Common Lisp by Example

GOOD MACRO

BEST MACRO

Macro
Definition

(defmacro bad
(x)(+ 1 2 3
X))

Example 1: Run the following on a

(x)

(defmacro good
'(+ 1 2 3 x))

Lisp session without X as a

(x)

1 %))

(defmacro best
(+ 1 2 3

predefined symbol

Macro
expansion

14 returned by the
macro expansion

Example 2: Before the following, first

(macroexpand-1
'(bad x))

3 X) but is unable to find a
value for X as it is unbound

establish a global variable X vi

(macroexpand-1
' (good x))

Macro (macroexpand-1 (macroexpand-1 (macroexpand-1 ' (best
expansion | ' (Pad 8)) ' (good 8)) 8))
Result of
Macro
expansion (| Result of evaluating Quote in the macro Backquote in the macro definition
COMPILE (+1238).The definition prevents prevents evaluation of the form
TIME) argument 8 is passed | evaluation of the form during macro expansion.
into the macro during macro expansion
unevaluated, but the Comma before X forces evaluation
forms in the macro of X during READ TIME, hence X is
are themselves bound to 8 in the macro
evaluated. 8isa expansion
literal, hence no error
Macro Call | (bad 8) (good 8) (best 8)
Result of
Macro Call
(RUN This the result of Lisp is trying to evaluate This is the result of the
TIME) evaluating the value the macroexpansion (+ 1 2 | macroexpansion (+ 12 3 8)

a (defparameter x 16)

(macroexpand-1 ' (best

X))

44

Common Lisp by Example

Result of Error - Xis not a Returns (+1 2 3 X) Returns (+ 12 3 X)

Macro Number

expansion (

COMPILE Result of trying to Quote in the macro Backquote in the macro definition

TIME) pass an unevaluated | definition prevents prevents evaluation of the form
symbol X to the form | evaluation of the form during macro expansion
(+1 2 3 X) which during macro expansion
gives an error as X is However, the comma before X
not a number. During forces evaluation of X during
macroexpansion, READ TIME, hence the argument
arguments are X in the macro definition is bound
inserted to the form to the symbol X in the macro
without evaluation expansion

Macro Call | (bad x) (good x) (best x)

Result of Error Returns 22 Returns 22

Macro Call

(RUN See above - macro Lisp evaluates the Lisp evaluates the macro

TIME) expansion fails in this | macroexpansion (+ 1 2 3 X) | expansion (+ 1 2 3 X) and applies

Example 3: Revisiting example 1, but

example

and applies the value of the
symbol X here (16)

the value of the symbol X here
(16).

noting in example 2 we established a global variable X

Macro dtod (macroexpand-1 (macroexpand-1 ' (best
expansion LUl ' (good 8)) 8))

Result of Returns (+1 2 3 X) Returns (+ 12 3 8)
Macro

expansion (No need to do Same as Examples 1 and 2 | Same as Example 1
COMPILE

TIME)

Macro Call No need to do (good 8) (best 8)

Result of Returns 22 Returns 14

Macro Call

(RUN Same as Example 2. Same as Example 1.
TIME)

No need to do

Lisp evaluates the macro
expansion (+123X),
returning 22

Argument X is bound to 8 in the
macro expansion during READ
TIME due to the forced evaluation
via X

45

Common Lisp by Example

23.5 Additional Uses of Backquote

Comma-at allows us to splice arguments (which should be a list) such that the elements are
inserted into the template in place of the list itself:

(setf my-list '(a b c))
S (my-list is ,my-list) ; Returns (MY-LIST IS (A B C))
" (Elements are ,@my-list) ; Returns (ELEMENTS ARE A B C)

Comma-at is useful in macros with &rest parameters representing code bodies (note that &body
is a synonym and preferable to &rest as it helps some Lisp editors with code formatting):

(defmacro my-multi-print-macro (first-line &body body)

' (progn
(print ,first-1line)
, @body))
(my-multi-print-macro 55 (print "hello") (print "world"))

Finally, we should note that while comma , is used for evaluation, a regular quote ' is used to
prevent evaluation within a backquote. Thus, ',(exp) will be converted to (quote exp). In this
case, the exp is evaluated to the symbol that is passed into the macro, but the symbol itself is

not evaluated as it is quoted (contrast with the second exp in the below):

(defmacro test-exp (exp)
" (format t "~&~S => ~S~%" ',exp ,exp))

(test-exp (+ 5 8)) ; Returns (+ 5 8) => 13

23.6 The Role of Gensym

One issue commonly encountered when writing macros is clashes between identifiers. This can
be overcome by utilising the GENSYM function. It creates new and unique symbols each time it
is called that are guaranteed not to clash with any pre existing identifiers.

Try the below. There is a lot going on. As an exercise, carefully break it down by applying the

rules of backquote and the comma operator we discussed above. You will also need to revisit
your understanding of LET forms to fully comprehend the below.

46

Common Lisp by Example

(defmacro my-add-macro-2 (x)
(let ((new-id (gensym)))
“(let ((,new-id ,x))

(+ 1 2 3 ,new-1id))))

(my-add-macro-2 8) ; Returns 14

23.7 Macros vs. Functions

Macros are not functions. They cannot be used as functional arguments to functions such as
APPLY, FUNCALL or MAP. We can however refer to macros within functions and then use these
functions as functional arguments in APPLY, FUNCALL or MAP. The below examples show this,
utilising the MY-ADD-MACRO that we defined earlier. Functions can refer to macros within their
bodies. The macros will be expanded into full code by the compiler on compilation. We can
continue to use APPLY or FUNCALL on such functions.

(defun my-function (x) ; Define MY-ADD-MACRO
(my—-add-macro x)) ; before running this
(funcall #'my-function 8) ; Returns 14

The below will not work as we cannot pass macros to a function expecting a function:

(funcall #'my-add-macro 8) ; Error - not a function

23.8 Closing Remarks on Macros

It is not always clear when to use macros and when to use functions as they are somewhat
similar. One approach is to consider the purpose behind our code:

e When we are writing code to directly solve real world problems, i.e. when our code adds
functionality to our applications, a function is likely the best choice.

e When we want to streamline the way we write our code, i.e. by defining shorthand syntax
for common blocks of code instructions, macros are likely more appropriate.

Macros extend the language’s syntax whilst functions use the language.

47

Common Lisp by Example

24. Further Reading

We have come to the conclusion of this guide and I hope you found it enjoyable and useful.
There are quite a few topics that are not covered in this guide, for example CLOS, the condition
system and the LOOP macro. Further details on these concepts and also other concepts not
covered in this guide can be found in the below resources.

There is much more to learn in Lisp, our purpose today was simply to help you get started in
your journey. I really believe Lisp is a beautiful and great language; I hope you do too.

Common Lisp the Language, 2nd Edition
http://www.cs.cmu.edu/Groups/Al/html/cltl/cltl2.html

Common Lisp: A Gentle Introduction to Symbolic Computing
http://www.cs.cmu.edu/%7Edst/LispBook/

Practical Common Lisp
http://www.gigamonkeys.com/book/

Common Lisp Cookhook
https://lispcookbook.github.io/cl-cookbook/

Many More Resources (including links to various texthooks) are available on Reddit
https://www.reddit.com/r/lisp/

24.1 Contact Information

Feel free to contact me for any feedback or comments for this guide. If you find it useful, do
please star the github repo where it is uploaded, this helps me track the guide’s value and also
increases its credibility in the eyes of others.

Repo (please star it!)
https://sithub.com/ashok-khanna/common-Llisp-by-example

My e-mail
ashok.khanna@hotmail.com

48

http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
http://www.cs.cmu.edu/~dst/LispBook/
http://www.gigamonkeys.com/book/
https://lispcookbook.github.io/cl-cookbook/
https://www.reddit.com/r/lisp/
https://github.com/ashok-khanna/common-lisp-by-example
mailto:ashok.khanna@hotmail.com

Common Lisp by Example

25. Appendix: Glossary

The below is an extract of the glossary of Common Lisp: A Gentle Introduction to Symbolic
Computation by David S. Touretzky.

Address: A number describing the location of an object in memory.

Binding: An archaic term with conflicting uses. Essentially, binding means creating a variable
and assigning it a value. See also rebinding.

Block: A named sequence of Lisp expressions, forming the body of a BLOCK expression. Blocks
may be exited using RETURN-FROM.

Block name: A symbol serving as the name of a block. DO, DO*, DOTIMES and DOLIST create
implicit blocks named NIL. Functions defined by DEFUN or LABELS surround their bodies with
implicit blocks whose name is the same as the function.

Body: The body of a form, such as a function definition or a LET, LABELS or DO expression,
contains expressions to be evaluated sequentially within the lexical context of the form.
Normally, the value of the last expression in the body is returned by the form.

Clause: An element of a COND, AND, or OR conditional expression. A conditional can decide
which of its clauses will be evaluated.

Cons cell: The unit of computer memory from which lists are composed. Each cons cell holds
two pointers, one in the CAR half, and one in the CDR half.

Dot notation: A notation for writing lists in which cons cells are written as dotted pairs, that is,
each cons cell is displayed as a CAR and CDR separated by a dot, enclosed in parentheses. The
list (A (B) C) is written (A . ((B. NIL). (C.NIL))) in dot notation. See also hybrid notation.

Dotted list: A cons cell chain ending in an atom other than NIL. For example, (AB C.D)is a

chain of three cons cells ending in the symbol D. This list must be written with a dot to show that
the D is the CDR of the third cell, not the CAR of a fourth cell.

49

Common Lisp by Example

Dotted pair: A single cons cell written in do notation. Usually the CAR is a non-NIL atom. A
typical dotted pairis (A . B).

Element: The elements of a list are the cars of its top-level cons cells, that is, the things that
appear within only one level of parentheses.

Function: Functions transform inputs to outputs. Lisp functions are defined with DEFUN. Lisp
programs are organized as collections of functions.

Function cell: One of the five components of a symbol. The function cell holds a pointer to the
function object representing the global function named by that symbol. (Local functions created
by LABELS do not reside in the function cell.)

Function object: A piece of Lisp data that is a function, and can be applied to arguments. The
representation of function objects is implementation dependent.

Gensym: A symbol created automatically, with a name such as #:G0037, that is not registered
in any package. Gensyms are often found in the expansions of complex macros such as SETF.

Lambda: A marker indicating that a list is a lambda expression and is to be interpreted as a
description of a function.

Lambda-list keyword: A special symbol such as &OPTIONAL or &REST that has a special
meaning when it appears in the argument list of a function.

Lambda expression: A list that describes a function. Its first element must be the symbol
LAMBDA, its second element must be an argument list, and its remaining elements constitute
the body of the function. Lambda expressions must be quoted with #'. For example, #'(LAMBDA
(N) (* N 2)).

Lexical closure: A type of function. Lexical closures are created automatically by Lisp when
functions passed as arguments to other functions need to remember their lexical context.

50

Common Lisp by Example

Lexical scoping: A scoping discipline in which the only variables a function can see are those it
defined itself, plus those defined by forms that contain the function, as when a function defined
with DEFUN contains a lambda expression inside it.

List: A chain of cons cells. One of the fundamental data structures of Lisp.

Macro function: A special kind of function whose arguments are not evaluated. Macro functions
must return Lisp expressions, which are then evaluated.

Package: Packages are the name spaces in which symbols are registered. The default package
is called USER. Lisp functions and variables are named by symbols in package Lisp.

Package name: A character string giving the name of a package, such as USER. APROPOS takes
a package name as an optional second argument.

Pointer: A pointer to an object gives the address of that object in memory. Pointers are drawn as
arrows in cons cell diagrams.

Primitive: An elementary function that is built into Lisp, not defined by the user. CONS and + are
primitives.

Proper list: A cons cell chain ending in NIL. NIL is itself a proper list.

Rebinding: Rebinding a special variable means creating a new dynamic variable with the same
name, such as with LET. The name is then dynamically associated with the new variable when it
appears anywhere in the program, and the old variable is inaccessible until the form that bound
the new variable returns.

Scope: The scope of an object is the region of the program in which the object can be
referenced. For example, if a variable names the input to some function, the scope of the

variable is limited to the body of that function. See also lexical scoping and dynamic scoping.

Special form: See special function.

51

Common Lisp by Example

Special function: A built-in function that does not evaluate its arguments. Special functions
provide the primitive constructs, such as assignment, block structure, looping, and variable
binding, from which the rest of Lisp is built. They do not return Lisp expressions to be evaluated,
as macros do. Lisp programmers can create new macros, but they cannot create new special
functions.

Special variable: A dynamically scoped variable. When a name is declared special, all variables
with that name will be dynamically scoped.

String: A sequence of characters enclosed in double quotes, e.g. “Foo Bar”. Strings are vectors
of character objects.

Symbol: One of the fundamental Lisp datatypes. Internally, symbols are composed of five cells:
the name, value, function, plist, and package cells. Besides serving as data, symbols also serve

as names for things, such as functions, variables, types, and blocks.

Symbol name: Symbols are named by character strings. Each symbol contains a name cell that
holds a pointer to the character string that is the symbol’s name.

Type system: The set of datatypes a language offers, and their organization. The Lisp type
system includes type predicates, a TYPE-OF function for generating type descriptions, and a
facility for creating new datatypes with DEFSTRUCT.

Unassigned variable: A variable that has no value.

Unbound variable: See unassigned variable. “Unbound” is an archaic term for “unassigned”.

Value cell: A cell in the internal representation of a symbol where Lisp keeps the value of the
global lexical variable (or the currently accessible dynamic variable) named by that symbol.

Variable: A place where a value is stored. Ordinary variables are named by symbols.
Generalized variables are named by place descriptions, which may be Lisp expressions.

Vector: A one-dimensional array.

52

