// Copyright (c) .NET Foundation. All rights reserved. // Licensed under the Apache License, Version 2.0. See License.txt in the project root for license information. using System; using System.Runtime.CompilerServices; using System.Security.Cryptography; using Microsoft.AspNetCore.Cryptography.KeyDerivation; using Microsoft.Extensions.Identity.Core; using Microsoft.Extensions.Options; namespace Microsoft.AspNetCore.Identity { /// /// Implements the standard Identity password hashing. /// /// The type used to represent a user. public class PasswordHasher : IPasswordHasher where TUser : class { /* ======================= * HASHED PASSWORD FORMATS * ======================= * * Version 2: * PBKDF2 with HMAC-SHA1, 128-bit salt, 256-bit subkey, 1000 iterations. * (See also: SDL crypto guidelines v5.1, Part III) * Format: { 0x00, salt, subkey } * * Version 3: * PBKDF2 with HMAC-SHA256, 128-bit salt, 256-bit subkey, 10000 iterations. * Format: { 0x01, prf (UInt32), iter count (UInt32), salt length (UInt32), salt, subkey } * (All UInt32s are stored big-endian.) */ private readonly PasswordHasherCompatibilityMode _compatibilityMode; private readonly int _iterCount; private readonly RandomNumberGenerator _rng; /// /// Creates a new instance of . /// /// The options for this instance. public PasswordHasher(IOptions optionsAccessor = null) { var options = optionsAccessor?.Value ?? new PasswordHasherOptions(); _compatibilityMode = options.CompatibilityMode; switch (_compatibilityMode) { case PasswordHasherCompatibilityMode.IdentityV2: // nothing else to do break; case PasswordHasherCompatibilityMode.IdentityV3: _iterCount = options.IterationCount; if (_iterCount < 1) { throw new InvalidOperationException(Resources.InvalidPasswordHasherIterationCount); } break; default: throw new InvalidOperationException(Resources.InvalidPasswordHasherCompatibilityMode); } _rng = options.Rng; } // Compares two byte arrays for equality. The method is specifically written so that the loop is not optimized. [MethodImpl(MethodImplOptions.NoInlining | MethodImplOptions.NoOptimization)] private static bool ByteArraysEqual(byte[] a, byte[] b) { if (a == null && b == null) { return true; } if (a == null || b == null || a.Length != b.Length) { return false; } var areSame = true; for (var i = 0; i < a.Length; i++) { areSame &= (a[i] == b[i]); } return areSame; } /// /// Returns a hashed representation of the supplied for the specified . /// /// The user whose password is to be hashed. /// The password to hash. /// A hashed representation of the supplied for the specified . public virtual string HashPassword(TUser user, string password) { if (password == null) { throw new ArgumentNullException(nameof(password)); } if (_compatibilityMode == PasswordHasherCompatibilityMode.IdentityV2) { return Convert.ToBase64String(HashPasswordV2(password, _rng)); } else { return Convert.ToBase64String(HashPasswordV3(password, _rng)); } } private static byte[] HashPasswordV2(string password, RandomNumberGenerator rng) { const KeyDerivationPrf Pbkdf2Prf = KeyDerivationPrf.HMACSHA1; // default for Rfc2898DeriveBytes const int Pbkdf2IterCount = 1000; // default for Rfc2898DeriveBytes const int Pbkdf2SubkeyLength = 256 / 8; // 256 bits const int SaltSize = 128 / 8; // 128 bits // Produce a version 2 (see comment above) text hash. byte[] salt = new byte[SaltSize]; rng.GetBytes(salt); byte[] subkey = KeyDerivation.Pbkdf2(password, salt, Pbkdf2Prf, Pbkdf2IterCount, Pbkdf2SubkeyLength); var outputBytes = new byte[1 + SaltSize + Pbkdf2SubkeyLength]; outputBytes[0] = 0x00; // format marker Buffer.BlockCopy(salt, 0, outputBytes, 1, SaltSize); Buffer.BlockCopy(subkey, 0, outputBytes, 1 + SaltSize, Pbkdf2SubkeyLength); return outputBytes; } private byte[] HashPasswordV3(string password, RandomNumberGenerator rng) { return HashPasswordV3(password, rng, prf: KeyDerivationPrf.HMACSHA256, iterCount: _iterCount, saltSize: 128 / 8, numBytesRequested: 256 / 8); } private static byte[] HashPasswordV3(string password, RandomNumberGenerator rng, KeyDerivationPrf prf, int iterCount, int saltSize, int numBytesRequested) { // Produce a version 3 (see comment above) text hash. byte[] salt = new byte[saltSize]; rng.GetBytes(salt); byte[] subkey = KeyDerivation.Pbkdf2(password, salt, prf, iterCount, numBytesRequested); var outputBytes = new byte[13 + salt.Length + subkey.Length]; outputBytes[0] = 0x01; // format marker WriteNetworkByteOrder(outputBytes, 1, (uint)prf); WriteNetworkByteOrder(outputBytes, 5, (uint)iterCount); WriteNetworkByteOrder(outputBytes, 9, (uint)saltSize); Buffer.BlockCopy(salt, 0, outputBytes, 13, salt.Length); Buffer.BlockCopy(subkey, 0, outputBytes, 13 + saltSize, subkey.Length); return outputBytes; } private static uint ReadNetworkByteOrder(byte[] buffer, int offset) { return ((uint)(buffer[offset + 0]) << 24) | ((uint)(buffer[offset + 1]) << 16) | ((uint)(buffer[offset + 2]) << 8) | ((uint)(buffer[offset + 3])); } /// /// Returns a indicating the result of a password hash comparison. /// /// The user whose password should be verified. /// The hash value for a user's stored password. /// The password supplied for comparison. /// A indicating the result of a password hash comparison. /// Implementations of this method should be time consistent. public virtual PasswordVerificationResult VerifyHashedPassword(TUser user, string hashedPassword, string providedPassword) { if (hashedPassword == null) { throw new ArgumentNullException(nameof(hashedPassword)); } if (providedPassword == null) { throw new ArgumentNullException(nameof(providedPassword)); } byte[] decodedHashedPassword = Convert.FromBase64String(hashedPassword); // read the format marker from the hashed password if (decodedHashedPassword.Length == 0) { return PasswordVerificationResult.Failed; } switch (decodedHashedPassword[0]) { case 0x00: if (VerifyHashedPasswordV2(decodedHashedPassword, providedPassword)) { // This is an old password hash format - the caller needs to rehash if we're not running in an older compat mode. return (_compatibilityMode == PasswordHasherCompatibilityMode.IdentityV3) ? PasswordVerificationResult.SuccessRehashNeeded : PasswordVerificationResult.Success; } else { return PasswordVerificationResult.Failed; } case 0x01: int embeddedIterCount; if (VerifyHashedPasswordV3(decodedHashedPassword, providedPassword, out embeddedIterCount)) { // If this hasher was configured with a higher iteration count, change the entry now. return (embeddedIterCount < _iterCount) ? PasswordVerificationResult.SuccessRehashNeeded : PasswordVerificationResult.Success; } else { return PasswordVerificationResult.Failed; } default: return PasswordVerificationResult.Failed; // unknown format marker } } private static bool VerifyHashedPasswordV2(byte[] hashedPassword, string password) { const KeyDerivationPrf Pbkdf2Prf = KeyDerivationPrf.HMACSHA1; // default for Rfc2898DeriveBytes const int Pbkdf2IterCount = 1000; // default for Rfc2898DeriveBytes const int Pbkdf2SubkeyLength = 256 / 8; // 256 bits const int SaltSize = 128 / 8; // 128 bits // We know ahead of time the exact length of a valid hashed password payload. if (hashedPassword.Length != 1 + SaltSize + Pbkdf2SubkeyLength) { return false; // bad size } byte[] salt = new byte[SaltSize]; Buffer.BlockCopy(hashedPassword, 1, salt, 0, salt.Length); byte[] expectedSubkey = new byte[Pbkdf2SubkeyLength]; Buffer.BlockCopy(hashedPassword, 1 + salt.Length, expectedSubkey, 0, expectedSubkey.Length); // Hash the incoming password and verify it byte[] actualSubkey = KeyDerivation.Pbkdf2(password, salt, Pbkdf2Prf, Pbkdf2IterCount, Pbkdf2SubkeyLength); return ByteArraysEqual(actualSubkey, expectedSubkey); } private static bool VerifyHashedPasswordV3(byte[] hashedPassword, string password, out int iterCount) { iterCount = default(int); try { // Read header information KeyDerivationPrf prf = (KeyDerivationPrf)ReadNetworkByteOrder(hashedPassword, 1); iterCount = (int)ReadNetworkByteOrder(hashedPassword, 5); int saltLength = (int)ReadNetworkByteOrder(hashedPassword, 9); // Read the salt: must be >= 128 bits if (saltLength < 128 / 8) { return false; } byte[] salt = new byte[saltLength]; Buffer.BlockCopy(hashedPassword, 13, salt, 0, salt.Length); // Read the subkey (the rest of the payload): must be >= 128 bits int subkeyLength = hashedPassword.Length - 13 - salt.Length; if (subkeyLength < 128 / 8) { return false; } byte[] expectedSubkey = new byte[subkeyLength]; Buffer.BlockCopy(hashedPassword, 13 + salt.Length, expectedSubkey, 0, expectedSubkey.Length); // Hash the incoming password and verify it byte[] actualSubkey = KeyDerivation.Pbkdf2(password, salt, prf, iterCount, subkeyLength); return ByteArraysEqual(actualSubkey, expectedSubkey); } catch { // This should never occur except in the case of a malformed payload, where // we might go off the end of the array. Regardless, a malformed payload // implies verification failed. return false; } } private static void WriteNetworkByteOrder(byte[] buffer, int offset, uint value) { buffer[offset + 0] = (byte)(value >> 24); buffer[offset + 1] = (byte)(value >> 16); buffer[offset + 2] = (byte)(value >> 8); buffer[offset + 3] = (byte)(value >> 0); } } }