{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"accelerator": "GPU",
"colab": {
"name": "Israel_changing_point.ipynb",
"provenance": [],
"collapsed_sections": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.10"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "kqXl71t9suiG"
},
"source": [
"# Estimating the Date of COVID-19 Changes\n",
"\n",
"https://nbviewer.jupyter.org/github/jramkiss/jramkiss.github.io/blob/master/_posts/notebooks/covid19-changes.ipynb "
]
},
{
"cell_type": "code",
"metadata": {
"id": "gFnvD8OysuiI",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "bcece40f-0a99-4836-a32e-0f29e21a3eec"
},
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"import seaborn as sns; sns.set()\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.dates as mdates\n",
"\n",
"\n",
"from sklearn.linear_model import LinearRegression\n",
"\n",
"from scipy import stats\n",
"import statsmodels.api as sm\n",
"import pylab\n",
"\n",
"# from google.colab import files\n",
"# from io import StringIO\n",
"# uploaded = files.upload()\n",
"\n",
"url = 'https://raw.githubusercontent.com/assemzh/ProbProg-COVID-19/master/israel.csv'\n",
"data = pd.read_csv(url)\n",
"\n",
"data.Date = pd.to_datetime(data.Date)\n",
"\n",
"# for fancy python printing\n",
"from IPython.display import Markdown, display\n",
"def printmd(string):\n",
" display(Markdown(string))\n",
" \n",
"import warnings\n",
"warnings.filterwarnings('ignore')\n",
"\n",
"import matplotlib as mpl\n",
"mpl.rcParams['figure.dpi'] = 250"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.\n",
" import pandas.util.testing as tm\n"
],
"name": "stderr"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 204
},
"id": "kvgkeTE9yls9",
"outputId": "8d179fc1-4c45-44eb-d3d6-266625b6fb53"
},
"source": [
"\n",
"data.tail()"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Date | \n",
" Country/Region | \n",
" Province_State | \n",
" Confirmed | \n",
" Deaths | \n",
" Recovered | \n",
" Active | \n",
" New cases | \n",
" New deaths | \n",
" New recovered | \n",
"
\n",
" \n",
" \n",
" \n",
" | 396 | \n",
" 2021-04-22 | \n",
" Israel | \n",
" NaN | \n",
" 837807.0 | \n",
" 6346.0 | \n",
" 829424.0 | \n",
" 2037.0 | \n",
" 85.0 | \n",
" 0.0 | \n",
" 272.0 | \n",
"
\n",
" \n",
" | 397 | \n",
" 2021-04-23 | \n",
" Israel | \n",
" NaN | \n",
" 837892.0 | \n",
" 6346.0 | \n",
" 829696.0 | \n",
" 1850.0 | \n",
" 82.0 | \n",
" 4.0 | \n",
" 115.0 | \n",
"
\n",
" \n",
" | 398 | \n",
" 2021-04-24 | \n",
" Israel | \n",
" NaN | \n",
" 837974.0 | \n",
" 6350.0 | \n",
" 829811.0 | \n",
" 1813.0 | \n",
" 50.0 | \n",
" 2.0 | \n",
" 172.0 | \n",
"
\n",
" \n",
" | 399 | \n",
" 2021-04-25 | \n",
" Israel | \n",
" NaN | \n",
" 838024.0 | \n",
" 6352.0 | \n",
" 829983.0 | \n",
" 1689.0 | \n",
" 83.0 | \n",
" 1.0 | \n",
" 105.0 | \n",
"
\n",
" \n",
" | 400 | \n",
" 2021-04-26 | \n",
" Israel | \n",
" NaN | \n",
" 838107.0 | \n",
" 6353.0 | \n",
" 830088.0 | \n",
" 1666.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Date Country/Region ... New deaths New recovered\n",
"396 2021-04-22 Israel ... 0.0 272.0\n",
"397 2021-04-23 Israel ... 4.0 115.0\n",
"398 2021-04-24 Israel ... 2.0 172.0\n",
"399 2021-04-25 Israel ... 1.0 105.0\n",
"400 2021-04-26 Israel ... NaN NaN\n",
"\n",
"[5 rows x 10 columns]"
]
},
"metadata": {
"tags": []
},
"execution_count": 2
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hzvPpvVvphTD"
},
"source": [
"## Create country\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "koX5yGHrsuib"
},
"source": [
"# function to make the time series of confirmed and daily confirmed cases for a specific country\n",
"def create_country (country, end_date, state = False) : \n",
" if state :\n",
" df = data.loc[data[\"Province/State\"] == country, [\"Province/State\", \"Date\", \"Confirmed\", \"Deaths\", \"Recovered\"]]\n",
" else : \n",
" df = data.loc[data[\"Country/Region\"] == country, [\"Country/Region\", \"Date\", \"Confirmed\", \"Deaths\", \"Recovered\"]]\n",
" df.columns = [\"country\", \"date\", \"confirmed\", \"deaths\", \"recovered\"]\n",
"\n",
" # group by country and date, sum(confirmed, deaths, recovered). do this because countries have multiple cities \n",
" df = df.groupby(['country','date'])['confirmed', 'deaths', 'recovered'].sum().reset_index()\n",
"\n",
" # convert date string to datetime\n",
" df.date = pd.to_datetime(df.date)\n",
" df = df.sort_values(by = \"date\")\n",
" df = df[df.date <= end_date]\n",
"\n",
"\n",
" # make new confirmed cases every day:\n",
" cases_shifted = np.array([0] + list(df.confirmed[:-1]))\n",
" daily_confirmed = np.array(df.confirmed) - cases_shifted\n",
" df[\"daily_confirmed\"] = daily_confirmed \n",
"\n",
" fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(9, 6))\n",
" ax = [ax]\n",
" sns.lineplot(x = df.date, \n",
" y = df.daily_confirmed, \n",
" ax = ax[0])\n",
"\n",
" ax[0].set(ylabel='Daily Confirmed Cases')\n",
"\n",
" ax[0].axvline(pd.to_datetime('2020-12-20'), \n",
" linestyle = '--', linewidth = 1.5,\n",
" label = \"Vaccination start: Dec 20, 2020\" ,\n",
" color = \"red\") \n",
" \n",
" ax[0].xaxis.get_label().set_fontsize(22)\n",
" ax[0].yaxis.get_label().set_fontsize(22)\n",
" x = df.date\n",
" ax[0].set_xticks(x[::170])\n",
" # ax[0].xaxis.set_major_locator(mdates.MonthLocator(interval=5)) #to get a tick every month\n",
"\n",
" ax[0].title.set_fontsize(20)\n",
" ax[0].tick_params(labelsize=22)\n",
" myFmt = mdates.DateFormatter('%b %-d, %Y')\n",
" ax[0].xaxis.set_major_formatter(myFmt)\n",
" ylabels = ['{}'.format(round(x)) for x in ax[0].get_yticks()/1000]\n",
" ax[0].set_yticklabels(ylabels)\n",
"\n",
" ax[0].set(ylabel='', xlabel='');\n",
" ax[0].legend(loc = \"bottom right\", fontsize=22)\n",
"\n",
" sns.set_style(\"ticks\")\n",
" plt.tight_layout()\n",
" sns.despine()\n",
" plt.savefig('/content/sample_data/israel_daily.pdf')\n",
" print(df.tail())\n",
" return df\n",
"\n",
"\n",
"def summary(samples):\n",
" site_stats = {}\n",
" for k, v in samples.items():\n",
" site_stats[k] = {\n",
" \"mean\": torch.mean(v, 0),\n",
" \"std\": torch.std(v, 0),\n",
" \"5%\": v.kthvalue(int(len(v) * 0.05), dim=0)[0],\n",
" \"95%\": v.kthvalue(int(len(v) * 0.95), dim=0)[0],\n",
" }\n",
" return site_stats"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 543
},
"id": "w_A0fd4Zsuiw",
"outputId": "af643e85-7d8e-4738-dddc-115a72ca62e8"
},
"source": [
"cad = create_country(\"Israel\", end_date = \"2021-04-26\")"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
" country date confirmed deaths recovered daily_confirmed\n",
"396 Israel 2021-04-22 837807.0 6346.0 829424.0 315.0\n",
"397 Israel 2021-04-23 837892.0 6346.0 829696.0 85.0\n",
"398 Israel 2021-04-24 837974.0 6350.0 829811.0 82.0\n",
"399 Israel 2021-04-25 838024.0 6352.0 829983.0 50.0\n",
"400 Israel 2021-04-26 838107.0 6353.0 830088.0 83.0\n"
],
"name": "stdout"
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAn0AAAGoCAYAAAAzaFPMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd5wTdf4/8NfMJNnCAksHEQFLUIpUQRQFARsnIKLceZQFRPAsX72H+lNPPdHzDvt5gih6UgTseh5WDlCaoosKSBPukLKUpSzbS9rM74/JTGaSSdkluwnJ6/l4rLubmSSzEMl73+/P+/0RFEVRQEREREQpTUz0BRARERFR/WPQR0RERJQGGPQRERERpQEGfURERERpICWDPq/Xi4MHD8Lr9Sb6UoiIiIiSQkoGfYWFhRg2bBgKCwsTfSlERERESSElgz4iIkpTu3apH0QUwpboCyAiIoqbGTPUz6tXJ/QyiJIRM31EREREaYBBHxEREVEaYNBHRERElAYY9BERERGlATZyEBFR6njkkURfAVHSYtBHRESpY/jwRF8BUdKKa9D366+/Yt26ddi6dSu2bduGffv2QVEU/OMf/8A111wTcr7H48EPP/yANWvWID8/H/v27YPb7UazZs3Qu3dvjB8/HgMGDIjnJRIRUSrbvFn93KtXYq+DKAnFNeh7++238eabb8Z8/saNGzFlyhQAQKtWrXDRRRchKysLe/bswfLly7F8+XLcfvvtuPvuu+N5mURElKruuUf9zDl9RCHiGvQ5nU7ccsst6N69O7p3746HH34Y+fn5Yc8XBAFXX301Jk2ahH79+pmOff7557jvvvswd+5cDBgwABdffHE8L5VIpygKysvLUVZWhqqqKvh8vkRfEhHV1WOPqZ937kzsdRCdIpvNhqZNm6J58+aw2eITrsU16Lvppptqdf7AgQMxcOBAy2MjRozAN998gw8++ADLli1j0Ef1QlEUHDt2DJWVlWjevDnatm0LSZIgCEKiL42I6kL0D6Xo0iWx10F0ChRFgdvtRlFREQoKCtCxY0eI4qkPXEnqkS1du3YFABw9ejTBV0Kpqry8HJWVlejYsSNyc3Nhs9kY8BERUUIJgoCMjAy0a9cONpsNxcXFcXncpA769u3bB0Bd70dUH8rKytC8eXNIkpToSyEiIjIRBAG5ubmorKyMy+Ml7ciW48eP41//+hcA4Kqrrgp7XllZGcrKyky3FRYW1uu1UeqoqqpC27ZtE30ZRBQv7dsn+gqI4io7OxuHDx+Oy2MlZdDn9Xpx//33o7y8HAMHDsTQoUPDnrto0SLMmTOnAa+OUonP52OWjyiV5OQk+gqI4koURciyHJfHSsqg77HHHsOGDRvQrl07PPvssxHPzcvLw5gxY0y3FRYWYvz48fV5iZRCuIaPKIVUVKifT+Pgz+eTceBoOdq1aITMjKR8m6YGFM/3qKR7NT355JP44IMP0KpVKyxcuDDqer4mTZqgSZMmDXR1RESU1A4dUj+fxt27XlmB16fA45WRmZHoq6FUklSNHE899RQWL16M5s2bY+HChejUqVOiL4mIiKhhKYr6KcGXQaknaYK+Z555BgsWLEBubi4WLFiAc889N9GXRERE1OAUi6+I4iEpyrvPPfcc3njjDTRt2hQLFizA+eefn+hLIkp7999/P5YtW4YxY8bgqaeeinr+E088gaVLl2L48OF4+eWXG+AKa2/o0KE4dOgQVq1ahTPPPDPRlxPW7NmzMWfOHNx555246667En05FIH2mtIIgoCsrCw0adIEnTt3Ro8ePfCb3/ymdu9rStDnenb48GGsWbMG69atw44dO3DixAnY7XZ06tQJw4YNw+TJk5ETYY3k0aNHMXfuXKxduxbHjx9Hbm4uBg4ciNtvvx2dO3eO23UWFRVh7dq1WLt2LbZu3YrCwkLYbDaceeaZuOyyyzB16tSIS8LKy8vxyiuvYOXKlThy5AhycnLQp08fzJgxAxdeeKHl+evWrcO6deuwadMmvYO2bdu2GDhwIKZOnYqOHTuGfT6324033ngDn332GQoKCpCRkYEePXpg8uTJuOyyy079D6QOEp7p+/vf/47XX38dTZo0wfz58/WBzESUWGPHjgUALF++POqMKLfbjU8//dR0P7J28OBBdOnSJeJUglTz/fffo0uXLpg4cWJCnr9Lly7oUs9r/AYNGoQxY8bg+uuvx+WXX46zzjoL27Ztw2uvvYbRo0fjtttuw/Hjx2N6rAaO+XDvvfdi5syZWLNmDVq2bIkrr7wSvXv3xoEDBzB79myMGjUKBQUFlvfds2cPRo0ahXfeeQeZmZm48sor0apVK/0Xxh9//DFu1zlr1iw8+OCD+PLLL5GdnY1hw4ahf//+KCoqwvz583Hddddh27Ztlvc9fvw4xowZgzfeeANerxfDhg1Dp06dsHLlSvzud7/DF198EXKff/7zn/jjH/+Ijz76CIqiYPDgwRg0aBBcLhfeeecdjBo1CqvD7PFcVVWF8ePH48UXX0RRUREGDx6Mrl27YsOGDZg2bRoWLFgQtz+X2ohrpm/79u14/PHH9e//97//AVADu/nz5+u3v/feewCAVatW4dVXXwUAnHXWWViyZInl45599tmYPn16PC+ViKIYMGAAOnTogIKCAnz55ZcRg7mVK1eitLQUrVq1wuWXX96AV1k7CxcuhMfjQZs2bRJ9KRGNHz8eI0aMQLNmzRJ9KaefDh0S8rTTp0/HgAEDTLfJsoyvvvoKTz31FL7++mtMmDAB77zzTtL9vbZp0wYPPfQQRo8ebbq2kydP4u6770Z+fj4eeuihkPdoWZbxxz/+ESUlJZg6dSoeeOAB/djixYvx5JNP4p577sF//vMfZGVlnfJ15ubm4q677sJNN91k+n+4srISjz76KD777DPcc889+PLLL0P2qn300UdRUFCA3/zmN3jmmWf04ytXrsRdd92Fhx56CH369DE9bnZ2NqZMmYLf/e53ph4Dj8eD5557DgsXLsT999+PFStWIDc31/R8zz//PH7++Wf0798fr776Kho1agQA2LJlC/Ly8vD0009jwIABDZ7oimumr6KiAlu2bNE/tOzAvn37TLdrSktL9a+3bduGf/3rX5Yf69ati+dlElEMBEHQxyFpg9LD+eijjwAAo0ePjtvG4PXhrLPOwjnnnAO73Z7oS4moefPmOOecc9C8efNEX8rpJztb/UgCoihi+PDh+PDDD9GxY0fs27cPTz/9dNT7KQ3cyPHiiy9i8uTJIcFo8+bN9bFpGzduxJEjR0zH16xZg127dqFjx4647777TMcmTpyI/v3749ixY/q/D6fqkUcewZ133hnyS1ujRo3w17/+FY0aNUJBQQE2b95sOr579258/fXXyMnJwRNPPGH6N2r48OG4/vrrUV1djUWLFpnuN2PGDDz44IMhTaV2ux0PPPAAOnXqhLKyspBsX0lJCd59912Iooi//e1vesAHAD179sS0adOgKArmzZt3Cn8adRPXf50HDBiAXbt2xXz+DTfcgBtuuCGel0BEcXTDDTdgzpw5+OGHH1BQUIAOFlmUo0eP4ptvvgEQKO0eOnQIn376KdavX48DBw6gqKgI2dnZ6NKlC8aNG4eRI0eGfc4jR45g4cKFWLduHQ4fPgxRFNGmTRsMGDAAv//97+F0Ok3nFxcX480338TXX3+NAwcOQJZltG7dGn369MG4cePQp08f/dxwa/omTpyI/Px8vPnmm2jUqBHmzJmDTZs2oaqqCp07d8bEiRNx0003hVxrbX/OBx98UA+gDx06ZCo5tm/fHl999RWA6Gv6Vq9ejSVLlmDr1q2orKxEixYtcPHFF2P69Ok455xzQs43/tz79+/Ha6+9hm3btsHr9aJLly6YMWMGhg0bFvbvxMrRo0cxb948rFu3DoWFhRBFEc2aNcM555yDq666Cr/97W9Nf7YAkJ+fb/qZ+/fvj8WLF9fpzxJQy8aTJk1C//798dprr+HVV1/F8i++wOHCQnTu3BnDhw83De8PLvHW5v3qVDRt2hR/+tOfMGPGDCxbtgz33ntvyNqz4uJiLFy4EF999RUKCgogKwo6deyEG24Yg/Hjx4f9RWXdunV49913sXnzZpSUlKBp06bo0KEDhg4dikmTJiEzM/OUrr1t27Zo1qwZiouLUVhYiHbt2unHVq5cCQAYMWKE5ZD7UaNGIT8/H6tWrar32blZWVno3Lkztm3bFrIrl3adQ4cOtVybOHLkSHz00UdYtWoV/t//+38xPZ8oiujSpQv27duHo0ePmo6tWbMGHo8Hffv2tfw3c+TIkZg9ezbWrl0Lj8fToL+EJu+v5ESUcO3atcMll1yC9evX46OPPsLdd98dcs7HH38MWZbRu3dvnH322QCAf//73/jHP/6Bs846C2effTb69OmDwsJC/Pjjj8jPz8eWLVvwyCOPhDzW+vXrcffdd6OiogKtW7fGoEGDIIoiCgoK8O6776JFixamoG/Hjh2YPn26vni8f//+yMjIwOHDh/U1hsagL5p169Zh4cKF6Ny5My699FIcPnwYmzZtwiOPPILy8nJMnTrVdH5tf86+ffuiqqoKy5cvR3Z2Nq6++mr9WKwlv+effx6vvfYaRFFE37590aZNG+zatQsff/wxvvjiC7z00ksYMmSI5X0/+OADvPrqq+jRowcGDx6MvXv3YsuWLbjjjjvw4osv4pprronpGo4dO4axY8fi+PHjaN++PS677DI4HA4cPXoUW7ZswaFDh/SgTzu2fv16tGzZ0rSAXXu91OXP0sjlcmHixInYs2cPLuraFed36ABPZiYuuOACjBkzRg+0gwf5G2mB8axZs+olGTF48GDk5uaipKQE33//Pa677jr92K5duzBt2jQcO3YMbdu2Rd9+F6Ha5cF/d+3ArFmzsHr1arz22mtwOBz6fRRFwcyZM/HOO+8AALp3747+/fujtLQUe/bswfPPP48RI0accsPSyZMn9a1OgwPVnTt3AgB69OhheV/t9h07dpzSNcTC4/HoDTV1vc79+/ejsrLSlJmLZP/+/XV6vo4dO6Jp06YoLS3Fvn37cN5558X0fHGhpKCCggLF6XQqBQUFib4USnI7duyIftLgwaEfL7+sHqustD6+YIF6/Phx6+PvvKMeP3DA+viyZerxX36xPr5ihXp806bQY3H22WefKU6nUxkyZIgiy3LI8auvvlpxOp3Ke++9p9+2ZcsWZffu3SHn7t27Vxk8eLDidDqVzZs3m44dOnRI6d27t+J0OpWXX35Z8Xg8Ice3bt2qf19RUaFcfvnlitPpVP785z8r1dXVpvOLioqUjRs3mm674oorLP9tmDBhguJ0OhWn06m8//77pmMff/yx4nQ6lT59+ihVVVWmY3X5ObV/n6644oqQ+2leeuklxel0Ki+99JLp9tWrVytOp1Pp1auXkp+fbzr2+uuvK06nU+nbt69y4sQJy5+7W7duypo1a0zHXn75ZcXpdCpXXnll2OsJNnv2bMXpdCqPPvpoyGvC5XKFXNt3332nOJ1OZcKECWEfsy5/ltrjOp1OZfTo0crx48fV/2d++cV0nnZOJNqf0YcffhjxvHD3++6776KeO3nyZMXpdCovvPCCflt1dbUydOhQxel0KvPmzVM8Ho9SUeVWdh8oVvYWFOr3CX4tLFiwQHE6ncoll1yibNq0yXRMlmXl22+/VcrKymr1s1h59tlnFafTqYwZMybk2EUXXaQ4nU5l586dlvctKSnR/+wrKipO+VoieeuttxSn06lceumlisvlMh27/vrrFafTqazQ/t200KdPH8XpdCq7du2K6fnWrFmjOJ1O5cILL1RfdwZ33HGH4nQ6lYULF4a9/8iRIxWn06l89dVXMT1fTO9VMUh49y4RJbfhw4cjNzcXhw8fxnfffWc69tNPP2Hv3r3Izs7GiBEj9NsvvPBCy99eO3XqhNtvvx0A8OWXX5qOLViwAJWVlRgxYgRuv/32kLWBZ5xxBrp3765///7776OwsBC9e/fGzJkzQ8pYzZs3R79+/Wr1s1599dW48cYbTbeNHj0a55xzDioqKkI6A+vyc54KrSFu0qRJuOiii0zHpk2bhl69eqG8vFxvlgs2ceLEkEabadOmoXHjxti/f3/Mm7oXFRUBAC6//PKQLaIcDkfItcXiVP8s//znP6Nly5a1fl5Nhw4d0LlzZzRu3LjOjxGNls0tKSnRb/voo49w8OBBXHvttZg+fbrpdd+0SVM89dRTsNvtWLp0qb7Wz+v16k2Qs2bNQq9evUzPIwgCBg4ceMo/y7fffov58+dDFEU8+OCDIcerqqoAIGyTRrZhbWW0CQCnYteuXXjmmWcAAPfdd58pIwoErjM7wlpP7Vgs13n06FE8/PDDANQGnuDXXbyfL55Y3iWKJkxLPgB1wXik4y1bRj7eoUPk4126RD7eq1fk43HgcDhw3XXXYcmSJfjwww8xcOBA/Zi2QPuaa64JKYm4XC6sW7cOW7duRXFxMdxuNwDoYyv27dtnOl9r2LJaO2dFO3/s2LFx25syXFn07LPPxp49e3Ds2LGQY7X9OevK6/Xip59+AhC+THnDDTdg8+bNyM/Pxx/+8IeQ41Y/n8PhQIcOHbBjxw4cO3YMZ5xxRtRrufDCC/HWW2/pi/wvueSSiG9wsarrn2XLli1rVca3EryIvz7IsgxAXQ+mWbt2LQCYSutacAeonbUdO3bE//73P+zbt09ft1ZcXIy2bdvWW7f8rl27cPfdd8Pn8+Gee+5B//796+V5TlVhYSH+8Ic/oKqqCjfddBOuv/76en2+iooK3HbbbTh27BgGDRpk+f9ZMmPQR0RRjR07FkuWLMHKlStRUVGBnJwcVFdX67Otgse5bNq0Cffcc0/IgmqjiooK0/dalsm4zisS7fx4Dn81LlI30hZ/u1wu0+11+TnrqqSkBG63G6Iohg3MtEXjwQvLNeHuF+7nC2f06NFYv349Pv30U9xxxx2QJAnnnXceLrroIowYMaJOAdip/FnGEqgmg+LiYgBqY4dGm39ntV422MmTJ9G5c+d6ee0b7dmzB1OmTEFZWRmmTp0aNrDJzs5GaWkpqqurLY9rGS8AMa+Tq43jx48jLy8Phw4dwrXXXmsaGRd8ncHXE0w7Fuk6KysrMW3aNOzYsQP9+vXDnDlzTAF8vJ+vPjDoI6KounbtigsuuAA7d+7E559/jnHjxmH58uWoqKhAp06dTGXU6upq3HnnnThx4gRuvPFG3HzzzejYsSMaNWoEURSxfv163HLLLSHPUdtsXbyye0ZW/4CHU9efMx7q+rPH689MFEU8//zzmDFjBlavXo2ffvoJP/30ExYvXozFixdj7Nix+Nvf/hbz453qn6WptB9hh4REUhRFX+BvbEby+XwA1CysVv71eH2odvmQYZeQ4Qh0xQbPgqsPe/fuRV5eHoqKijB+/HjT7L1g7du3R2lpKQ4dOmS544g24iU3NzfuwU1RURHy8vKwb98+DBs2DM8995xlB7F2nTt27Ai7fKGiokL/hSLcLxBVVVWYMWMGNm3ahJ49e2LevHlhy9rt27cHgIjLJbRfbrRzGwqDPiKKydixY/Hkk0/io48+wrhx4/SOyOBOx40bN+LEiRPo1q0b/vrXv4Y8jtbxFqxdu3bYu3cv9u7di7Zt20a9nnbt2mHPnj3Yu3dvrdfuxUNdf866ys3NhcPhgNvtxqFDh0JmhwGBrFFDDZ92Op16ACPLMtasWYN7770XH374IUaMGIFBgwbF9Dhx/bM8xREl9WX16tUoLS2F3W43DXHWXvc333yzXn4vr3Sj8GQVmjfJRIumoT+PFpjs3bs3rte4b98+TJo0CcePH8e4cePw6KOPRjy/a9eu2LFjB7Zu3Wo58mfr1q36efF08uRJ5OXlYc+ePRgyZAhefPHFiPNBu3btihUrVujXE+znn38GoHbVWo10qa6uxowZM7Bx40Z0794db7zxRsRt6bSfN9zz7d+/H6WlpcjKyrL8/7g+sZGDiGIycuRIOBwObNq0CevXr8f3338PSZJC1tBoQ9fDlUq1USrBtADh/fffj+l6tNEfH374oWkNVEOp68+pzeTyer21ej6bzaaXTT/++GPLc7RAPBHrr0RRxBVXXKG/+f/yyy/6sWg/c13/LC2VlKgfBnX9M4+X0tJSzJo1C4BaGm/RooV+TFuTZ2xSUaJsxNatWzc0a9YMhYWFcdu84MCBA5g0aRKOHTuGG264AU888UTUzLD2d/3555/rGUujZcuWAVCbweJFC/j++9//YtCgQZg9e3ZI40a46/z6668tlwh88sknYa+zpqYGM2bMQH5+Prp27Yr58+dHbZAZPHgw7HY7Nm3aZLl9nfZ8gwcPjnrt8cagj4hikpubq//jef/990NRFAwaNCgkq6Styfvuu++wZ88e/XZZljFnzhy9GSHYlClTkJ2djc8++wzz5s0LeRM5cuSIqXv2xhtvROvWrbFp0yb85S9/CVmPdvLkSfzwww91/4GjqOvP2bx5c9jtdhQVFZl2JYrFlClTAKhNB8F7mi5YsACbNm1C48aNY26GqauPP/4Y27dvD7m9uLhY3w3BWCbTXiMHDhywDLzq+mdp6ehR9cOgdevWAGB67GB5eXm45pprsGLFitifKwpZlrFq1SrceOON2L9/P84+++yQ4b/jxo1Du3bt8K9//QuzZ89W18cFxXoFBQX497//rX9vt9sxY8YMAMBDDz2kZ6o0iqLgu+++Q3l5eUzXWVBQgEmTJuHo0aMYM2YM/vrXv8a0FGDIkCHo0qUL9u/fj+eff950bMmSJcjPz0fr1q0t5x5OnDgRXbp0wezZs2O6RkBd1zp58mTs3r0bl156KebOnRtT0NSlSxcMGTIE5eXl+POf/2x6Da5cuRIff/wxsrKykJeXZ7qfy+XCH/7wB3z//fe44IILsGDBAtN6zHByc3Mxbtw4yLKMP/3pT6YO3S1btuCf//wnBEHQ/w4bEsu7RBSzsWPH4osvvsDJkyf174N169YNV1xxBb7++mtcf/31GDBgABo3boytW7fiyJEjmDZtGv75z3+G3K99+/Z48cUXcc899+CFF17A0qVL0bNnTwiCgIMHD2Lnzp24/fbb9bEtOTk5mDt3LmbMmIGlS5fis88+Q58+ffThzDt27MB1111Xb6Xfuv6cdrsdQ4YMwYoVKzBmzBj07t0bmZmZaNasWchWVsGGDBmCW2+9Fa+//jomTJiAfv36oXXr1ti9ezd2796NjIwMPPvss6c0uiQW//nPf/DAAw+gTZs2uOCCC9C4cWOUlJTgxx9/RFVVFfr164crr7xSP799+/Z6KXDUqFHo1q0bHA4HOnfujGnTptX5zzJWV155JRYuXIjJkyfj4osv1hfaG0vJBQUFOHToUMyBUrDXXntNz7S6XC6cPHkSO3bs0AcbDx8+HE888URI0NCoUSPMmzcPt912G+bMmYMlS5bgnHPOQ07T5vB6anDwwD7s378fPXv2xOjRo/X7TZ48GXv27MH777+PcePGoXv37ujYsSNKSkqwZ88eHDlyBKtWrYppbMv//d//4ciRI3A4HHqgYuXWW2817fgiiiJeeOEFjB8/Hm+88QZWr16N888/H/v27cP27duRmZmJv//975Zr37RO5tps2/jII49g165dEAQBTZs2xWOPPWZ53o033hjy//2TTz6Jm2++GZ999hk2b96Mnj174ujRo/jpp5/07dKCf4F94YUX8O233wJQdyZ56qmnLJ9v+PDhIVnCe++9Fz///DPy8/Nx5ZVX4qKLLkJ5eTm+++47+Hw+PPDAAw2+7y7AoI+IauHSSy9Fu3btcOTIETRr1gxDhw61PO+ll17CwoULsWzZMuTn5yM7Oxu9evXC888/j5qamrBv4IMHD8ayZcuwYMECrF+/HqtXr4bD4UDbtm1x880349prrzWd36NHD3zyySdYuHAhvv76a3z77bcQRRGtW7fGyJEj9V0h6ktdf86//OUvaNq0KdavX48vv/wSXq8X7du3jxr0Aeocsr59+2LJkiXYtm0bNm3ahObNm2P06NGYPn06zj333Hj/mCGmTp2K9u3bY9OmTdi2bRtKS0vRrFkzdO3aFWPGjMGoUaNCtpaaPXs2nnvuOWzcuBGfffYZfD4f+vfvj2nTpgGo+59lLP74xz9CEASsWLECK1asgMfjAQDL9YN1tX79egBqs0xWVhaaNGmCbt264cILL8R1110Xsn2gUZcuXbBs2TK89dZbWLVqFX75ZSdcbhea5TZD+/Zn4De/+Y1p9xbteZ588kkMGzYM77zzDn7++Wf88ssvyM3NxVlnnYUJEyaE7BQRjpZxdrvdpoxisDFjxoRs83fuuedi2bJlePnll7F27Vr85z//QW5uLkaOHIk77rjDssPY5/Nh165dcDgcGDVqVEzXaLxORVHw+eefhz2vf//+IUFfq1at8NFHH+GVV17BypUrsWLFCuTk5GDo0KG47bbbcOGFF4Z9PkAtDYfTvn37kKCvUaNGWLp0Kd544w18+umn+Prrr5GRkYGLL74YU6ZMMe1M05AEJRGLYerZwYMHMWzYsJD9NYmC7dy5ExdccEGiL4OI4kXbTzdon93TSUm5C8dLqtGscQZa5lp3iJ7ONm3ahN/97neYPHkyHnrooURfzmkhXu9VXNNHRESUVBTDf1PPN998g5ycHNx2222JvpS0w6CPiIhSR+fO6sdpTLH4KpXceeed+PHHH/W5hNRwuKaPiIhSRwOPwKgXkSe2ENUZM31ERJQ6Tp5UP05jjPmovjDTR0REqeP4cfVz8+aJvY54YNRHccZMHxERURJJwaEalCQY9BERESUhhn4Ubwz6KO3xt2oiSib8J4mM4vkexaCP0prNZoPb7U70ZRARhWL0RwA8Hg8kSYrLYzHoo7TWtGlTFBUVMdtHlCrOPlv9OI0pKT6cmWqnrKwspj2UY8Ggj9Ja8+bN4XK5cPDgQZSXl8Pn8zEAJDqd2e3qx+mM/wSlPUVR4Ha7ceLECRQXF6N5nLrRObKF0prNZkPHjh1RXFyM4uJiHD58GLIsJ/qyiKiuKirUz6b1uZgAACAASURBVDk5ib2OU1Be5Ua1y4sMu4TiYxmJvhxKEEmS0LhxY5x11lnIyIjP64BBH6U9URTRokULtGjRItGXQkSnasgQ9fPq1Ym8ilMy5/3NWP7dQVx64Rl4MK9Xoi+HUgjLu0RERElEltX6rsylJhRnDPqIiIiSiE8L+mQGfRRfDPqIiIiSiJbhY6KP4o1BHxERURKRfSzvUv1gIwcREaWOzz9P9BWcMp/CoI/qB4M+IiJKHdnZib6CUyZzTR/VE5Z3iYgodcydq36cxrRgj4PiKd4Y9BERUep47z314zTmk9nIQfWDQR8REVES0TJ9PpZ3Kc4Y9BERESURlnepvjDoIyIiSiIczkz1hUEfERFREuFwZqovHNlCRESpY/XqRF/BKfP5ZPUzoz6KM2b6iIiIkkgg08egj+KLQR8REaWO555TP05jXNNH9YVBHxERpY5PP1U/kli0DJ7MOX1UT+Ia9P36669YtGgR7rvvPlxzzTU4//zz0aVLF3z55ZdR7/vJJ5/g97//Pfr27YvevXvjhhtuwNKlSyHLcjwvkYiIKGH+V1CCsQ9+iqLS6rDn+Dinj+pJXBs53n77bbz55pu1vt/jjz+Ot956CxkZGRg4cCBsNhs2bNiAJ554Ahs2bMBLL70EUWRSkoiITm9HT1bB45VRXOZCi6ZZludwTh/Vl7gGfU6nE7fccgu6d++O7t274+GHH0Z+fn7E+yxfvhxvvfUWWrVqhSVLlqBTp04AgBMnTmDSpElYsWIFFi9ejLy8vHheKhERUYPz+atXcoSATuaaPqoncQ36brrpplrfZ968eQCA++67Tw/4AKBly5aYOXMmJk6ciNdffx0TJ05kto+IiCLLss6eJQu9dOsLH9Bx712qLwmNogoLC7F9+3bY7XZcc801Icf79++PNm3a4Pjx49i8eXMCrpCIiE4rX3yhfiQpLdjzRVivrmUBOaeP4i2hQd+OHTsAAOeddx4yMzMtz+nRowcAYOfOnQ12XURERPVBH8cSIaDTAkOu6aN4S+iOHAcPHgQAnHHGGWHPadeunencYGVlZSgrKzPdVlhYGKcrJCKi08pf/qJ+fvTRBn/q7b8W4fNv9+Le3/eFKAqW52gTKSKVd7WAkGv6KN4SGvRVVVUBALIirMFo1KgRAKCystLy+KJFizBnzpz4XxwREZ1+Vq1SPycg6Nu8+zjWbjqE8VefjzNa5Vie4/VFH8fCTB/Vl9N+7928vDyMGTPGdFthYSHGjx+foCsiIqJ0VOP2AgD2Hi4LG/TFUt4NZPrifIGU9hIa9GVnZwMAqqvDD6nUMnxaxi9YkyZN0KRJk/hfHBERUS3UuH0AgF8Pl+LSntbLlmIq78Yw1oWoLhLayNG+fXsAwOHDh8Oeo63P084lIiJKRoFMX2nYc2Jq5PBn+Limj+ItoZm+rl27AgD++9//oqamxrKDd+vWrQCACy64oEGvjYiITkMtWiTsqWtc/qDvUAxBX8RMH9f0Uf1IaKavXbt26NatGzwej+X+vPn5+SgsLESrVq3Qu3fvBFwhERGdVj78UP1IAK28e6K0BmWVbstzYprTx/Iu1ZOEb3Exffp0AMBzzz2H/fv367cXFRXh8ccfBwDceuut3I2DiIiSjk9W8OI7P6HgaDlqXF7YJPW9KlyJN9o2bIqiQKvqsrpL8RbX8u727dv1QA0A/ve//wEA/v73v2P+/Pn67e+9957+9TXXXIObb74Zb7/9NkaOHIlLLrkENpsNGzZsQEVFBYYPH44JEybE8zKJiChVPfSQ+nnWrAZ5upLyGqzaWIBO7Zqixu1Dm+ZZOHS8EmUV1pk+Oco2bMZ1fFzTR/EW16CvoqICW7ZsCbl93759Ee83c+ZM9O3bF0uXLkV+fj5kWcbZZ5+NsWPH4uabb2aWj4iIYrNhQ4M+nbZGr6rGgxq3F42zHertYTJ5+t67YQI6YwaQa/oo3uIa9A0YMAC7du2q031HjhyJkSNHxvNyiIiI6pWWjaus8fgzferbariALVr3rpYBtEmivraPKF6YQiMiIqojLXirqvaixuVFdqZdvT1MJs/nizynT3s8u03gmj6KOwZ9REREdWTM9Lk8PmRlnGKmTw5k+oyPTxQPp/02bERERLozz2zQp9OCsuKyGigKkJ2pvq36wlRmY23k0II+NXgU4njFlM4Y9BERUepYsqRBn05L2BWV1QCAXt4Nl+nzauXdMOv19EyfzZ/pUxRIcbtaSncs7xIREdWRVqYt1oI+f3k3Wvk23PHgTB+ruxRPDPqIiCh13HOP+tFAtCDO6y/XauXdsI0cUbZhCwn6GPVRHLG8S0REqWPz5gZ9uuCgLEvr3o2SyQs3py/QyKGu4+OsPoonZvqIiIjqKDi4C2T6rM/XGjjCBoUKM31Ufxj0ERER1VFwUJYddWRL5Dl92hw/rumj+sCgj4iIqI5Cgr5ow5mjNXL4b7bbmOmj+OOaPiIiSh1OZ4M+Xdjybl3X9AVl+rimj+KJQR8REaWO115r0KcLaeSIcWSLL8z05pA1fQz6KI5Y3iUiIqqj4IYNLdMXLlbTgr1wVdvAcGbB8vGJTgWDPiIiSh3Tp6sfDcSYibPbxKhdt1EzfSHDmZnpo/hheZeIiFLH7t0N+nTG4C7TYYMgCBCEGMq7YYJC6713ieKDmT4iohjUuL36vqlEGmPwlpmh7pIrCELYTJ8cpXtXezx271J9YNBHRBSDB19ej7f/syvRl0FJxhi8ZTrU4pkYIejT5vTFvA0bM30URwz6iIhiUFRSg2PFVYm+DEoy5vKumukTRSFsI4e2R68vSqaPO3JQfeCaPiKiGPhkBR4Py7tJr1evBn06LSiTREEf1yLGsKYvbPlXH9mi7b0b18ulNMegj4goBoqiwOXxJfoyKJoXX2zQp9OCtEE92+OcM5sCUDN9YYcz+6Jtw6aNbGF5l+KPQR8RUQxkRYGbQR8F0TJ2E649H21bNAIQuZEj+jZs/kYOlnepHnBNHxFRDGRZgcfL8m7SmzBB/WggWlAmCoJ+myiEX9MXdU6fL/ZGjqcWbcSPvxyt9TVT+mLQR0QUA1lmefe0cPCg+tFAtKBMFA1BnxjDcOZwxxVzeTd8Q4iMb34+jO2/FtXpuik9sbxLRBQDWVHg8TLoIzM90yeaM31hy7fayJYox8N1754oqUZJuQvtWqqlZG+YtYFEVpjpIyKKgZrpY3mXzKzKuxHX9GkjW6LO6fPvvRsUHL63ajdmLcrXs87hysREVhj0ERFFoSgKZAXwsLxLQXyW5d3wmb5ojRxaDBcu0+dy+1BR7YHLrb4WuUsM1QbLu0REUWjvu+zePQ0MHNigT+evxoYEfVYxnaIoMey9ay7vBj+OrChwuX16po/lXaoNBn1ERFFo2RaWd08Ds2Y16NMFyruB20TBupHDeFPUbdjC7L0ry2rgWFntAcBMH9UOy7tERFFopTivT+bcNDKx7N4N08ihZfGM9wumZQDtYUa2aN+WVboAMOij2mHQR0QUhTHQc7ODN7mNHat+NBDjNmyacI0cxuYNnxxmTp++DZt10Kc9bmmFO+QxiaJheZeIKArjG7jHKyPTkcCLociKGnZunZ7pE6Kv6fMaXkfRt2Gz3ntXe76ySjXoY6aPaoOZPiKiKIzZFjZzkJH1nD7r8q1xvEq0bdgkMfyaPgAoZXmX6oBBHxFRFKbyLps5yECWFQiCWtLViKJ1edd4W9juXb28az2nT7tfGcu7VAcM+oiIomCmj8KRFcVU2gX8a/qsMn2GQC9cQ5B2NynMnD4luLwbZm0gkRUGfUREURjfeLn/bpIbNkz9aCCyrJhKu0BgTd+XG/ZhxqyV+u1a0GeTxLCZPsVwDmCxpi+4vOtl0EexYyMHEZGfLCsorXShWePMoNsDX3v4JpvcHn20QZ/OZxH0Sf7u3Zc/2AIAKCl3Ibdxht6x67CL4Rs59MYQ9fuQNX2KuXvXyxFCVAvM9BER+c39cAsmzVyOGrfXdLuxVMdMHxlZl3fVYK19qxwAwP7CMgCB9XcOmxS2kUNR1EyhFkiGjmxRP2vlXe69S7XBoI+IyG/5d/sBQN/XVGMa2cKgL7lde6360UDClXdlRUGHNuagT3sd2e2iaVCzkaIoEIXACJiQoM//vdvDvXep9ljeJSIC9G2tgNDOSnMjB99kk1p1dYM+nSyHb+Ro0igDALD/SDkA824b4cq7ajdwINOnhBnOrOHeu1QbzPQREQHYvPu4/nVw9oQ7clA4smLejQNQv1eUwOtGL+/qa/rCl3dlf3lXGwETbk2fhpk+qg0GfUREAH7YeVT/OtxAXIAjW8hMLe+ab9PW9GkB2oHCMiiKEsj02SJ074aUd0Ofz4hr+qg2kqa8W1hYiNdffx3r16/HkSNHoCgK2rVrh4svvhi33norOnTokOhLJKIUduh4hf51SKbP1MjBN1kKsCrviv7yrlbCrXb5cKy4Wv/ebhP1TGDwesBAeTfwvel4SKaP5V2KXVIEfTt27EBeXh7KysrQtm1bDBo0CACwbds2vPvuu/jkk0/wxhtvoE+fPgm+UiJKVcbmjeD1VsasjIfl3eR23XUN+nSyEhq4Cf4dOYwBWuGJSv08h00K3BdBQZ+/G1gLJIPX9ClBv3OwvEu1kRRB3xNPPIGysjKMGzcOf/7zn2G32wEAHo8Hjz32GD788EPMnDkTy5YtS/CVElGqcnm8sNtEeLxyaCMHhzOfPu67r0GfzrJ7VxD85dxAQOb2+vSByzab+tknK/DHfzpFURtBYl/Tx0wfxS7ha/pcLhc2bdoEALjrrrv0gA8A7HY77rnnHgDArl27UN3AXVlElD5q3D40ylT//QnOnhizLR6WdwlqwOaTFcvyriQKkGVzxtj4y4TDbr3FmnabKMIwpy/0eU3fM9NHtZDwTJ8oirDZbPB6vRHPy87ORmZmZsRziIjqyuX2oUkjB0oqXBaNHIGv2ciR5IYMUT+vXl2vTzP3gy0or3KbBilrBEHNyMmKggyHBJfbB49X1jN9WnnXqpkjUN4NfG86Hhz0yQoURdEzg0SRJDzTZ7fbcfHFFwMAZs+eDY8nMCvL4/HgH//4BwBg7NixfFETUb2pcfuQnWWd6eOOHBSssKgSR4uqIg5n9skKMh1qgKdm+tTXlV0r71pk6YLLuyFr+ixGvbDES7FKeKYPAGbOnIlp06bhvffew9q1a9G9e3cAwNatW1FWVoa8vDzcf//9lvctKytDWVmZ6bbCwsJ6v2YiSh0+nwyvT0ajTJv/+/DZFe69S4D6i4FXlsMPZ/aXfjPsWtDng09Wv9aCPqtZferjGcq7Edb06WtQfbL+mESRJEXQ16FDB7z99tt44IEHsHbtWlPQ1r17d/Tr18+01s9o0aJFmDNnTkNdKhGlIC17l+1f08dGDjJ6bsmPuLhHWwzq2V6/TQu2rLp3JX8jhywryHDYDOdra/r83bvhyruiAEEv7wYdN9yQnWlDaYWbHbwUs6QI+n766SfcddddyMnJwdy5c9G7d2/99qeffhp33XUX7rrrLtx5550h983Ly8OYMWNMtxUWFmL8+PENcu1EdPrTxrXojRxB+6L6FGb60tk3Px9GZoZkCvq8Phlen2JZ3lUzfeovDxmm8m5gTh8Qfk2fIAj6Lh+RBoU3yrT7gz6Wdyk2CQ/6ysrKcMcdd6C6uhrvvPOOaQjz8OHDcd5552HUqFF45ZVXcN1116FTp06m+zdp0gRNmjRp4KsmolSiZe8a+df0Ba+10t5oJVFgI0eyGzcurg8nywq8PhnlVW7T7R6vuiRAlhVIwcOZRX8jh3FNn0+GbNiGTXvsYIqsjnwJt6bPeJdwa1CJwkn4IoDVq1fj5MmT6Nmzp+WuGx07dsSFF14Ir9eL/Pz8BFwhEaW6Gj3T51/TF2YdVaZDYtCX7G6/Xf2IE22v5Yoqj+l2r08t16qZOfN9BG1HDlmGwyZBEIIyfVL4TJ+i+Ee2xDCnT3u9MuijWCU86Dty5AgAoHHjxmHP0TJ5JSUlDXJNRJReXG51ZFSWPqfPuqSWmWGDm3P6kltVlfoRJ9rfd3DQF8j0IXRNnyhAkQOlX7tNMgd9Eeb0+fzl3VjW9OmZ6TD7+BIFS3jQ17p1awDA9u3bTeNaNB6PB9u3bwcAnHnmmQ16bUSUHkIyfWHKu5kOiY0cyW7ECPUjTrRt9yqqzeVdr08dwWLVyGEc2SKJgr/L1hdo5Igwp0/RGznUWX1Wc/oc/jWB+hpUrjOlGCU86Lv88suRlZWFw4cPY9asWXC7A/9jud1uPPnkkzhy5AiaNm2Kyy67LIFXSkSpSu/eDZM50cu7GTbuvZtmtNdGuUWmz+O13pFDLe+qryNRD/osGjnCzOnTHk/wdwEbyYqCLP8vJ9lhdpAhCifhjRwtWrTAY489hocffhhLly7FihUr0K1bNwDAtm3bcPz4cTgcDvztb3+LWAImIqorrXs3JzNyI0emw4YTJdwOMp1o5d1qlxdeX2BXDa9/2LL13rvQ5/RJhqBPb+TwZ/rCzenTYkhRFEJKwIqioEmjDJRWuJHbOAMAy7sUu4QHfQAwZswYOJ1OLFq0CD/88AO++eYbAECbNm1w4403YsqUKTj33HMTfJVElKq0NX3ZWeEaOdTPjbPtqKz2cturNGJs3Kms9qBpTgYURYHHJ0NR1K7cRiFBnxqs6Zk+SYTXK+trRW1RRrZoQaSWMTTyyUDf81tjxvU99KCRY4QoVkkR9AFAt27d8MwzzyT6MogoDWmZvuwojRxNGmXA65Ph8viQ6Uiafz6pHhmDvvIqN5rmZECWFWhJOo/XF1LeFcXAcGY90+cLlHcdERo5tG3YAEASref0SaKAns5W2Pq/EwCgb+9GFA3/1SKitFcTNJw5XHm3SSMHADXjw6AvSU2eHNeHM3ZrV1R5cKCwDK2bZZuOS1bDmRXFYk2f+li2CCNbtG3YtMexWtOnZQL1UjOHM1OM+K8WEaW9wDZskef0aUFfRZUHLZpmNeAVUsziHfQZGndW/VCALzfsw9//OFi/zeOVw3TvArIsQxJF/8gWn56l03fbsAjWZCXQGKKViY0UQ9AnSepnNnJQrBLevUtElGg1bh8cNjGQgYmS6auoDh0vRUnixAn1I06M5d0t/z0OADhZVmM6HlLe1Rs5YGrk8PkUSJIISfS/ziwaOYzrRbWMofGYsbs3UhcwkRVm+ogo7bncXmQ4bBBFdTaaN0qmL3hLLkoiN96ofl69Oi4PZyzvHjlRCUAt7+vHw2T6FP+OHKIowGYTUe3y6nP7/DGf5Zo+47BnSRRgjAu1843HAcDrZXmXYsNMHxGlPZfHhwz/HqmSJEbP9FUx05cu3BZzGY1Bn2Ujh78sqzdySIE1fWp5N3yGzljeFYKGM2tfa8f1NX1s5KAYMegjorRX4/Yhw+4P+kQhdE2foXsXYHk3nWjlXWMyr7Im8PevKNAzd5rg4cwOu7qmzycrkCRBX4tnNadPUcLP6dO+DG7kYHmXYsWgj4jSnsvtQ2ZGINMXvDBee3POybZDEEK35KLUpZV3tUHIAFBZ7TWdY1XeBdSuWvNwZn951x/Vhe/etV7Tp5d3/U+nBY8edu9SjBj0EVHac8WY6ZNEAdmZdlSyvJs23B4fBAHIzcnUb6uqMf/9WzVyAGpXrXFki9cnQxQEPSgMN6dPOy5GWdPHTB/VFhs5iCjtuTxe5GSp6/VskgBfUObEZ3izzcmys7ybzP7wh7g+nMvjg8MuISfbrt8W/PcfLtOnfa2t6XO5fchw2PQMXbgdOfTyroCg8m6YNX3M9FGMGPQRUdqrcfvQomn08q4kCmiczaAvqf32t3F9OI9XhsMmoXG2Q8/YVUUJ+oxb9EmiCJt/R44qlxfZmbZAeTfMnD7BOKfPqrzLOX1URyzvElHaUzMwgfJu6EBc9bMoCMjJcnBkSzIrKFA/4sTt8cFhF/GbQZ0x/foeAMyNHAAgWXTv6l+L0IPF6ho16NO6dy0bOeTAKBYpKOusZ/pY3qU6YtBHRGnP5TGu6bPI9BkyLI2y7RzZkswmTlQ/4kQr7/Y4pyWuGdgJkijE0MgR+FrbkUOWFZRXuZGdadePRyvvBr8WtddhYG/eQMMIUSwY9BFR2lOHM6tBn02ybuQQBPXNNifLbprTRqnN45X1XwgAwGGXQjJ9IUGfMdMnCPrOGaUVbnOmL2zQp2XyzK9FbRyfsbvXJglhy7s/7ToGj5dZQApg0EdEaU1RFHVki0Nd4iyJYshaK+PAXLWRww3FojRHqcfl8elBGwBk2KXQNX3B5V1DEChJgaCvolrN9AUaOUIDMvPeukGZPn1taeB8qzWoAHC8uBqPvbYB3209EtPPSemBQR8RpTWPV4asIFDelYSQHQ5kOfBGnJPtgNenBoqU+tz+8q7GbhfhDsqeRW7kCAR9igJkZwQaOay3YVNM3bnGX0CUoDV92jlWQV+NWy1BV9QwK00BDPqIKK39t6AEANAyV53DZpNEyBYjW7Q32sb+0R3s4E0PHo8MhyHT57BJIefEMrJFo5Z3IwR9CvQ1fcGl2+A1fdo5Vl3AWlmYv5yQEUe2EFFa+2Tdr8jJsuOSC88AoL5Jh2T6FEUfuKvN8yuvcqNlblaDXivF4N574/pwLo/PtBuHcX2fJtxwZsCf6TPcJyvTrgeFVo0cIeXdmkDTiD4vUoie6dM6el0eb8gxSl8M+ogobR0rrsKGbUcwZvA5+po+myToW29pjCW3rAz1vBoXMyhJaeTIuD6c29DZDQAOe2iBLNZGDkAt70oRgj5TeTdofWnwyBYg/Jo+ZvrICsu7RJS2tu0pgiwruKJvB/02SRJDFtgb1/Rp4zasZqxREti1S/2IE7dXht0Q6DmsMn1B76SmNX1SUNCXaYMoqluxuT2hAZmxvBu8vjR4ODMA2ETr8q52bvAvMJTemOkjorSllcCyMgP/FEqiEDL3TDbsh6q9oTPoS1IzZqifV6+Oy8MFN3JYBn0RundFUQxa02eHIAjIyrCh2hVaelUMneJ2STQNXg4MCQ+cb7OJIcsRAEOmzyKwpPTFTB8RpS3tjVEK6oYM3uHAWHLT3tA5siU9eLzm8q72tanEGlLeDXwtBZd3/b9ghAv6jFllSRLgMZZ3rdb0iSK83tDXolbydbm5po8CGPQRUdoKBH2BfwpF0Xo4s17ejTBug1KPyyObgjZtTV+mIxAIRuzeDSnvqt3f4TN9CBrZEjqnL3gOIDN9FCsGfUSUtqzXSIUZzhwS9DXQRVLCeH0yZFkJ2ZEDMHfxRizvCgLshjEvWqYvO8OGqhqLTJ9xG7agOX2Wr1dJhNdi1w2ZjRxkgUEfEaUtq/KuJAmhjRyGdVYCGznShtZoYQzatGDPbhNh86/VizicOSjTp3V/Z2VGKO/q3buC5Y4cwSNbrLqAtQwhGznIiI0cRJS2ZH9wJwWtzwpp5LAq7zLoS06PPBK3h9ICpgyL7l016BPg9UUe2WLckcNhl/RAMSvDhpNlNSHPaZzTZ7OJlsOZxaCg0m0xPihQ3uWaPgpg0EdEacsXplxmObIluJGDa/qS0/DhcXmYk2U12LbnBABYdu/aJBGSJALwRRzObJzTl23oEs8KW94NZAqDfwGxWtMXfjgzy7sUikEfEaUtOVx5N5Y1fcz0JafNm9XPvXqd0sO8v2o3Pl2/FwBMO2poWT8t0wdEbuSQJEHP7mVnBN5ys8OVdw1r+oJ/AbFa02e3Wa/p0+7HRg4y4po+IkpbVm+ikmid6dMCQ+1cNnIkqXvuUT9qqai0Guu3HNK/P1FSrX9tVd61SYY1fUL4NX2iIOj3Cc70Vbu8IaN/FMNrTZJEKEogI60ll43PZ5dEeCyDPm04M4M+CmDQR0Rpyyere+oGb2AfuqYv8EarncpMX2pZmX8Azyz+QS+VGtfbGRs5Amv6JH95N0qmTxQN5V27fntWhg2yrIRk4ozlXS2TqF2T9kuKYHjntttFuCMEfSzvkhGDPiJKWz5ZgRi0h5Zk0Q0pK4r+Rss5fanJ7ZWhKIHM2Mkyl37MYZnpE2ATw5R3jWv6RHX5gCCYM31aqTe4xBtc3gUCnbhW3bsOmxSmvMs5fRSKa/qIKG0Zu3I1kihAlhUoihLYcs3QyKGV3rgjR2rRAiuPV53NV1xWgxuHnocB3dqiS8dm+nkOm7amL5DpkyLM6ZNEEYIgwC6J5kyf/+tqlxfNGgfua+zelfRMn7+8G2ZNn9trsYev/+fx+hT4fLJ+rZTe+CogorTlM6yf0gS/0QLm4JB776amwBo4GeVVbvhkBc2aZOD8Ts1N5X8902cT9D11I45s8b+esrPsaNLIod+uzeszdvAqihKyIwdgyPRZNB7ZbaLlLD6vIRPNbB9pmOkjorTlk+XQoM9f7vXJMuz+34uNw5nZyJHk/va3Ot3Nq2f6fKiodgMAWjTJCjlPH84sSXpAF7RCIKSRAwBmTrsYLZoGHs+qvKvFaUJQ0Kf9AqJYNHI47BK8PlnPTL+3cjcEwby1oMvjM2UZKX0x6COitGVV3tUWzxvHtvhMmT7/fZnpS06XXFKnu+mZPq+sN3E0a5IRcp7DNLLFunvX+IuE9ro558xc0zlZmaFBn6LP4VO/D9vIYXg6rUnE45XhsEvYuKMQkiSi7/mt9XPYzEEalneJKG1ZlndFLbsSSOUpimGMhp7pY9CXlL79Vv2oJS3Id3t8OFmqBn3Nm2SGnBco74qGTF/wyJbA18GvL41W3q2usQj69PWj5teiz2I4s9ZZrHXwen2yvmewhuVd0jDTR0RpS46wps/4pinLCkSbeU0fGzmS1J/+pH5evbpWd/MaGjlOlocP+mLZe1e0yPQF0zp5qwyZPp+eyQta0yeHb+TQMo8erw+AXZ/ZZ+xAZ6aPNAz6iCht+Sy7d83rqIAwO3Iw05dSZNmc6WuUZTdtv6ap7XBmKXjByqhduAAAIABJREFUn591pg+mx5OCyrvBmUAg0E3s8QQyfYIgmDLVHNBMGgZ9RJS21Eyf+U1ZX9MXtP2VHvRp5V3GfClFC5LcHh+Ky12WWT7AOJxZDNmlRWNe02f9fJmOWNb0mcu7eqbPOExcL++qgZ2a6RNY3iVLDPqIKG1ZZ/oE/ZjGuCOHdjobOVJLcCNHc4smDiBQTjVl+kLW9EXP9ImigKwMCVUuj36bHFLeNTcVyRZr+hyGRg5ADRBFUWB5lyyxkYOI0pblcGYptJFDLe+qX4ts5EhJWmDl8aqZvmaNrTN9mQ4bJo24AIN6nhFo5AgezmzakcN6TR/g33+3JnRkS6C8GybTZ1rTJ/mvO7Am0euVzUEfM33kx0wfEaUtqzl9NotGDvPIFjZyJLUXX6zT3byyVt6VUV3j1dfcWblpmBNAoPwa/Boy78gRKeizm+f06eVb9XubNjMyeEcOQ5CpDYjW1u15/btv+LimjywkXdBXU1ODxYsX48svv8T+/fvh8XjQokULdO/eHXl5eejbt2+iL5GIUoRPVvRsjcZqZIssB7ZkEy3Kv5REevWq091kbWSL1weX24vMCEGfJmz3rhBj0JdpM3Xvar9ICP772GxBc/r04c2Bx7DbzeVdj1eGJKqZPodNhNsrs7xLuqQK+goKCnDLLbdg//79aNWqFQYMGABJknD48GGsWrUK559/PoM+Ioob4566GsliOLOsKPr+qqKe6Wugi6TaWblS/Tx8eK3upmX6XG4f3F4ZmY7Qzt1gYcu7MYxsAdRdOczlXXMmL6SRQwndhs1hC5R3FUVR99qVZfh8CrIybXBXuFneJV3SBH1VVVWYOnUqCgoKcO+99+KWW26BJAX+pysuLkZJSUkCr5CIUo3VcGa9pBY8p08f2eK/jVFfcnrySfVzLYM+Lcgvr1IbK2IJ+mJr5Ii8pq+sskr/XmsYF/ThzEGNHBZr+rQdOdxenz5myONVA78Mhw2i4Gamj3RJE/S98sorOHDgACZMmIDp06eHHG/WrBmaNWuWgCsjolQly4q+WF4jBs1GA4Lm9Pk/KyzvphRtRE95pbrvboYjPuXdSJk+h10yrbcLzOEzP76WhbRc02co73r8Y1u0TJ9NFJDhkJjpI11SdO+63W689957AIDJkycn9mKIKG34LMq7wYvnAXMZWMvC+JjpSylePdOnBn2xZfrM2V+N3uktmLN+wTKCgr7gkSzaLyS+oPKuaFHedXtk/WdQFMDjkyFJAjLsNgZ9pEuKTN/27dtRUlKCNm3aoEOHDti+fTtWrFiBkydPokWLFrj00kvRr1+/RF8mEaUYWVb0TIlGshjOrChKyDotjmxJLVpgVVapBX3R3x61pp9wmT4x3GRmP4ddhMtjzigDoXP6PEFz+oyBpF2f0+fTM32AOqZFEkX1OVjeJb+kCPp2794NAGjTpg2efvppzJ8/33R87ty5GD58OJ599llkZ2ebjpWVlaGsrMx0W2FhYf1eMBGlBJ8sQ5TM/wxq66hM27DJQYvzBYGNHClGW8OpZfoyapPpC7OmL1JpV30OcxZO34ZN694NzvTJ5uOAMeiTTa9Zl9sHUSvvMugjv6QI+kpLSwEAO3fuxM8//4y8vDxMmDABubm52LhxIx5//HGsXLkSjz/+OJ5++mnTfRctWoQ5c+Yk4rKJ6DRn1b0b2OQ+kIFRy8CBc0SBw5mT1rx5dbqbr07lXeu9d/XybJSgz2EX4fb4oCjqSKDgOX2B4czBc/qMjxHYhs2U6XN7IYkCJIcNNe5AhzClt6QI+mT/P64ejwejRo3Cn/70J/3YsGHD0Lp1a9x0003497//jTvuuANnnXWWfjwvLw9jxowxPV5hYSHGjx/fMBdPRKctq+5dMahjEjA3cmjnsHs3SXXpUqe7ac0Sge7dGMq74Ro5wuzJGyxDD9hkZNil0PKu/lpUr01RlJB1gpIoQBAAjyco0+eR0SjTBoddMg2A1iiKgv8WlMB5Fhsk00lSNHI0atRI/3rcuHEhx3v06IFu3bpBURTk5+ebjjVp0gRnnnmm6aNt27b1fs1EdPqzGs5slekL3q5NEBj0Ja1PPlE/ail4LEptyrshvzhombpYgz5/iTekvGsLndMX3BgiCALsNsnUvQv41/RJIrIybKhxhZZ3t/9ahHv/sRb7jpSFHKPUlRRB35lnnmn5tdU5J06caJBrIqLUV5vhzMFjOFjeTVLPP69+1JIxyAcQcRs2TeczmqJTuybIyXaYbhdjXNOnlWa1NXfBI1uC15da7RUNwL/zhg9eb+A16fb4IIkCMh02y0xfZbWa0dTK2ZQekiLo69q1q/51uAHMxcXFABDSyEFEVFdqeTeoe1d7ow0azmzM2ogCd+Q43VVUe/DNz4f1741BPhDbmr5uZ7fA7Puu0DN2GiHGNX1aNlHL9GnNJIJhPJAkCnpA6gsT9Nltoprp8xnX9KlBX1amDdUWa/q0TLW2fRulh6QI+tq0aYOePXsCADZs2BByvLS0FDt27AAAdO/evUGvjYhSl/omar4tuGMSMO+9CzDTlwrWbT6EpxZtRHFZDYDQTF8sw5nDEYXYgj490+cJyvQZ7idJYiDTp4RmpgHAblfLu8ZMn1bezXRYr+nTflwvg760khRBHwDcdtttAIB58+Zh69at+u0ulwszZ85EeXk5unXrht69eyfqEokoxchWmT7JYhu24EYOruk77Xn8gZZW3jQ2QUiioI9CqQvtpRJrI4creE2fIbCzSYK+pk9RQgdBA/7yrsdn3kXGn53OzrDB5faZXs9AIMhlpi+9JEX3LgAMHToUU6dOxfz583HzzTejZ8+eyM3Nxc8//4xjx46hTZs2eOGFFyJONyciqg1ZlkMaOSSLjkn1zTaokcP/JnqsuApvLf8Fd9zYE3Zb9JIgJQctCKqs9pq+B2Ir7UYS68iW4EYOWS/vBs6xSWKgkSPsmj6tkcMcwEmSgEz/2kSX24vsTLt+THsuY/MHpb6kCfoA4IEHHkDv3r2xZMkS7Ny5E9XV1TjjjDMwZcoUTJ8+Hc2bN0/0JRJRCrHchk0KXTwPIGRki5aV2banCKs2FmDM4HPRsV2TBrhqimjx4phO04K8imo3FEUxletPpbQLxD6c2eHfDUZr5NC3WQvK9PmiNHIE1vQFBX2iqDekVLvMQZ9P5pq+dJRUQR8AXHXVVbjqqqsSfRlElAaCGzSAwNZa2ptiYL/TwDmiELhdmzNqtVieEqBDh5hO08qbldUeU2kXOPVMH6AGfMFLB4JpwaXbEyjfAuagTzJm+sKu6dO6d81ZO0kMZPpqgnbl0DN9PgZ96SRp1vQRETU0n6xADCrviv5ht1p5Vwv+wo1s0Y67LGahUQK8+676EYXs0zJ9npAmjlgGM0cjCkLsmb7g8q7hndkmilEzfQ6bBI9H1vfo1a/Bv6YPAKprzL+UsHs3PSVdpo+IqKFYlXcBNdtnXDyv3mbdyKEFfcz0JYlXXlE///a3EU8LrOnz6EFVVoaEapcvpsHM0YhC7Rs5LMu7NiHicGbAUN61zPSpzxH8+mR5Nz0x00dEKamotBo//XIs4jlW5V1AXQCvl3ct1vQZGzm0gCG4fEbJTQuwKqo9elClrX+LX3m3tjtymOf0AeZfQCKt6QsezgzAP7IlsKbPSI4S9Pl8sj7OhlIHgz4iSkmfrPsVTy74Xn8jtaJuwxb6z6BNFELX9AnWjRzaeTUWs9AoeWnBemW1Rw+AtAApM4bdOKIRBMEyi2ykZRT1Rg5//BXSyKH/AgJIFo/psEtwBw1nBtTXsRbIBr8+fVG6dxd/sROTHl+O0gpXxJ+BTi8M+ogoJZVXeSzHWGi0jk3L8q4k6mv6LLt3DY0c2nk1LO+eVgLdu4FGjqzMOGf6pMhBn00SIQiGkS0WTUPGRg5FCR0mDqiZPq9Fpk+UBFP3rlG0TN+m3ccBAMeLqyP+DHR6YdBHRCmpskbdW9RqNwIA0CZ0WL0xS2Lk8q5VIwfLu6cXY/eu9nWgvBuPRo7oc/oEQYDDLoWs6RNMmb5A0OeLsKbP7bFa02cc2WI+Fm1NX+NsdbxLRTX35k0lbOQgopSkbShf4/ahicWbpTZqxXpNn3lMBmAxnDmokYPl3STxwQcxnaZn+qo8+tdasBeXRg4xenkXUNf16TtyWHSK2yRBH+kSqXvX7ZVDRs9IoqBnLWub6cvJdgBQM+aUOpjpI6KUpAd9Li8emvsN/v72T6b9dLU1XVZvzMZ1VNrncHvvalkiZvqSRMuW6kcU2t9fRU2gkSM7jpk+QRAs14sGc9glQ3lXvS10711D0Bcm0+f1+uDx+vTh4oAa9EmSCIddCvmlJDCyxfp129gf9FVUMdOXSpjpI6KUpAV91W4v9hwswfZfi2C3ibjzpl4AAm96Ycu7QTtyGN+/JSHQyKEdD1dGpga2cKH6efLkiKdpf2+VVe5AI0c8u3djaOQA/Jk+d3B5N3DcNKdPCdO9axchK+ovHpkOGyr8r30ti52VIYWObPHFVt4tY9CXUpjpI6KUVOUfRltV7dWzcBu2HtGP+yzW6mksy7umkS0IGdniYqYvOSxcGAj8ItD+/qtcXj3wyW7gRg5ADfoCO3KEZp8lSdB3zVAU69erwxYo4Ro7j7VMY1aGLbS8G2U4s8M/TqaC5d2UwqCPiFKOoih6tuNkWaD70PgGpwVrViMwbKKoB3WyxTorUeRw5tOd9vevKEBZpZrN0poeTnXvXSC24cyAuiuHy6O+dhRtZIvhfvagTnKrh7Tb1LfyqhoPMuyifo6W6ct02EJHtvgfM9w2bFomuzzGTN+JkmocKCyL6VxKHAZ9RJRy1EXt6ptZkX/AbG5Ohino0zN4FuuuREkwraMCLIYzB49sYXn3tGLceq2sUp1Fl5OlljQb+T+fClEULH+hCJbhCGT6fBblXUkS4DX8AmK9pk/NylXWeGG3SXqGT8s0Wmf61M/eCCONAKC8MrZM3+IvduLZJT/GdC4lDoM+Iko5VdWBN6riMvUNvWmOA16fHFKWteretRnX9FktrufIltOe9vcGAKUVajarc/umeGBSP/S7oM0pP/7g3meiX9foj2Mc2WJV3rUZM31h1vRpZemyChdskgCbP+gTxUDQVxM0siVa9672S02smb6ySreeMaXkxUYOIko5FYag76Q/09c0JwNAOTw+GRmipGd6wg5nlrXyn0V5V+COHKc72RT0qb8Y2EQRg3q2j8vjT7j2gpjOMzZyKBbrR4PXl1oFfbmNMwAAJ0pr0KJplt7BK4mBNX3HS8xDlrXXf7juXe31rWVBo3F7fBxQfhpg0EdEKUcbzAyoe/ACWtCnZjYy7FLU7l0tA2LV8GFq5ODIluTy+ecxneaTFdgkAV6fomeoYmm8iDd1CzVtGzar4cyCPn9PlhU9i2eU639ta8e1c7TgLzNDCgnIomX6tAA01uxdjduLGpcXSpgB0pQcWN4lopRTacz0lWqZPnXumMdfSotY3pVEPZgLuyNH8HBmZjmSQ3a2+hGFLCto0kh9TZT4M33RdtCoDxkO48gW9baw5d0wa/q0TB+gNnXoa/q08q7DhuqacHvvhinvGrap84Vp9jByuX2QlfCPR8mBQR8RpZyq6sAb3Mly9Q0915DpA6yDOY1o3IYtyo4csi9Q3tWyI5RAc+eqH1H4ZBmNsrQBxOovCVZZtPqWYRjOHCjvBo43yrKjxq2WTsOVd3Oy7HqAZ5NE2PU1ff7ybqYtfKYvTECnBaCKYl4uEY62LpHzKpMbgz4iSjkV/vKuw/7/2XvvMEnO+t73W7lzT9yZ2Zy0q11pldMijjBClkg+gHDAiGCudeAx9r1wrkkyYCGMZREO4GvgkIQk0LGMLVlCwkRJSEIBacWuVrsKm8NsmJw6d1e4f7z1vl1VXdUzO9PTXTPzfp6nn53tru6u7q7u91vfX5LY4kbDuyyUZtVz+mqbM09XyMFdjpDw7/9OLtNgmBar1qWiZiYtVhoNnchhWZZveHdFVwIAcHokFziGTRAEdnwrsghZpjl95F9NkaAbFssNBKZ3+pwnMDMJ8dL0Bp7mEG646ONwOIsOGt7tSkcAkBw8OlaK5eqx8G7tz6DkE96VPH36qoUc1UWTuxwLB8OwoCoiFFlErkBETaucPtMCqSz3Ce+uWEZE38nhLEzL3c7FCQ3xypLIjmmao0hnCVNHEZi+ObPpEH200KUeJSb6+HcgzHDRx+FwFh25QgWyJLCcrZgmQ1XIzx0L7/pUSlIk0ZE8HzCRgzolziH3fCrHwsE0LUiiSMaW5d1jy5oJnXxRqpjMXXMKu+VdcQDAyaFsYE4fUE1fIE6fO6dPo8/hOD5ZeLdSv3oXmN7psywLJVvs8Sr2cMNFH4fDWXTkihXEowqbsBCLKmxqgdfp8xN93uR5wL0Qk5Yt7vAvwKdyLCQMOz8uqkko28dEK6p3qQtXKuu+qQQRTUZXOoITw9nAnD7A4fTJImR7G1rQwZ7DIfAMR06fXy6q5TiuxzP1nT6nS8nDu+GGiz4Oh7PoyBUqiEcUNoc0pslsagENcdGwrN/UBMlZyOEzGksUhJqWLQB3+hYSpmFBEgV2YgC0JryrOk5G/MK7AAnxMqcvSPTVdfrIa/Rz+izL3aia3W5ZSMYUyJKAEU+PPy9OocedvnDD+/RxOJxFR65QQczp9EUcTp/hCe/69emTRMdEjulbtggCWTx5Tl8IeOyxGW1mmCZEUWAnBkCLwruOkxG/8C4ArOhO4PGdJ5BOaIGj3WghhyyJkEWP6PNx+pwOdUU3awSvZZF81662KIbH64s+p5gs8BOfUMOdPg6Hs+jIF3UkIgoi9mIXjcgsd6pS8RZy+I9hq5m9K7hz+uiaaRgWYhFSBcpdjoWDYdY6fVILnD7FkWvqd6wBxOnLFXWMZ0qBjY9peNft9NnhXZ+cPsMj+ryYFjmZ6W6LYXgiX/c1OMVkiac4hBou+jgczqIjV6wgGpHZgh53On06De/WKeRwjGHz2050tGwxTQtxu/UHz2cKAV/5CrlMg2EXcrjDu813+hRXeNf/mFzRTSp4CyUdPsXmAKrhXVK9K7geZ3qnr/a4tSzSCqa7PVozws2L82SnUOLfgTDDRR+Hw1l0lCsGNEWq5vRFZLa4lj3Vu35OnyQKrJDD8tnOWchhmCbi9sB73q4iBPz0p+QyDYZpQZLcTp8YpKjmERbe1Q1WMet18zav6WACbrpCDpfT52nZ4jw+veFdL5ZlQRSA7rYoRieLdadyOMUk/w6EGy76OBzOoqOim1Bk0o4DIAPn6eJaO4bNr0+fAL3ORA6n06cbVaePuxzhZSpXxs+fOepyaCVRYCkAgtCanD5XeJcda+5tElEF56zrtG+bgeizj2m5TnjX2YfPT/QZpgVBJE6faVoYmwqu4OWFHAsHLvo4HM6ig4q+qEYWO99CjnrhXVGEaVquKQne6t1qc2YLyZgKQQCyhZkNp+c0F8MwcdtdO/Cte3fj2MAUAMC0Czmo0+cn/ptBtZDDZG1S/I7JS7f2AABG7VnSXjpSEXz4j8/Ha89fXp3IIQWHd505fbqPi2dZFgnvtpE5xvXy+pxikqc4hBsu+jgczqKDiD6JOX2xSLU5c7nimbQRMIYNIAujn+hzNmc2TROKJCIZUzGV5aIvjNz3m4PYc2gEAFj7EcO03KKvBfl8AFy5pgar3g0WfTv3DQU+1pu2r0VnOsoqcVlOX53mzOS5/UQfaWfU3R4FgLoVvE4xySvYww1v2cLhcBYdVaePFnLIbCFkzZlpn76AQg6yjRUc3nW0bBHt6R8zmVHKmWei0ZqrDp+aRFSTUCgZGJsiTpnh6dMntyC0C1RFX7liwrJqQ7uUFd0JbF7djjduXzPtY9JjvWYih8vpM1k/ynrVu11ttuirU8xBK3ZjEZn3qgw5XPRxOJxFhWWRwfKKLCKi0ZYtCgRBgCKLM6veta8zDNM/vCs6CzmIeEgnNEzmpp9Ryplnfv7zmqt03URXWwz9gxmM2eFRWr1Li31aUcQBVMew0ckYQYUagiDgKx+5akaPSV3L6gxeEbIk1jh9EVVCrqjXrd6NajKSMQXD49OHd9MJjU+lCTk8vMvhcBYVND9JkUWs6E6gIxXBmt4ku47N3q3bskWwH8sCTXdyOX3OiRwGEQ+puIpJHt4NJYZpQVMltCU0jE45RZ+AqJ0C0Ip2LYBjIkfFgGlagX34zgRFclfvAiSvz92ypZrrF+T0UR1MevUFO300j68toXGnL+Rwp4/D4Swq6AKmyCI601HcdfN17DZVrs5ZNerm9NHwrrN3WvV2URBYc2ZaBZqKq8jw8G7r+Yd/IP9+9rPsKl03IYsCOlIRFt41acuWCM3pa40HIjtaCZmWfz7fmSJ5wrsACfG6mzOb0FQZQCmwZQvdl+72KAbH6jh9FQOiKCARUwILTTjhgDt9HA5nUUELNRSfRVw+4/CuFTyRg7VsMVl4dypfdiXIc1rAI4+QiwPdNCHLIjrSESZKTNOEKFRbtrSiXQsANhO6Yo9ha4T2rOb0VR9MU6Wali001y+okIMe891t9Rs0l8qkL2ZUlXnLlpDDRR+Hw1lU0AVMthdTJ6ossjFs1epdnz599nV6nZw+ZyGHJIlIx1WYpoVsodLAV8NpBIZhQRZFdKaJ02eaFkwL7kKOFoV3JVGALAmo2MdaI5w++lpc4V1FQqlSFWSGYTHB65fTZ9ozpQHi9OUKFeSL/sd2sawjopJm6LxlS7jhoo/D4SwqKgZZdGhVpBNVkVifvvrhXXKd6azeDZzIUQ3vAsAUL+ZoCrph4mv37MSpkey021YM2+lLRTCZLaFsixxRcrZsad1yqMgSyhXTrpidu+hLxTWoisSKRIAAp69OTp/lCDVXe/X5u32ligFNlRBRJT6RI+TwnD4Oh7OocOb0eZFlEWU7md20W7YENWcGPE6f4K3ehd282YQkCUjZs08ns2WsXNbAF8TxZWSigEef78fWdR1Y3pWou61hh+A7UhFYFlgFr3P2bqvCuwA5Vsu6AVEQAidunAlXX7IK523sYuFbgDp97ubMmkJee2Ahh70rrG3LeAFrelM125bKBiKqTJy+ku7KB+SECy76OBzOoqKe6FMd1bv1nD7J0ZzZ8nP67L9Nq9rklzt9zYWKcZrDyejsrNlWN6o5fUC10bAkCqxlSyudPpp2oMgiGtE5RpFF9HXFXddpqoTsZDU8S1u2AMGiz1nIAdRx+uycvogqwbTI4zldRk544KKPw+EsKvQ6ok+RxRlN5HAWcvgVfFATwzBIQ11JFJGOE6ePN2huDvRzqclHu+++mm11mtOXskWfPVJMFAVoitSyubsURZFQ0YljPF8Ombd61zQd4V2/MWymxVzH9lQEoigE9uqrhneJpCiUdC76QgrP6eNwOIsK6lqoPoUciiyxfK661bu266M7W7Z4+vQB1Z6AkigglSBOH+/V1xxMJvpqBYsX3SCCijp9Qw6nTxRJBa/cYqevrBuuitlG4+3TZ5gWZFmEKAq+vfUsq/rdkEQBXelIoNNXLOvQVInNuubFHOGFiz4Oh7OoqBfe9TZnFgX/vmhs9q5hwaTNmcVa0ccqhSWBhbf4VI7mQEV72Sv6broJuOkmmKaFZ/acgmVZMOwJLckYEea0nyJ196Ka3PKcvopusmNyPvBz+iRBQF9nHP2DmZrt6Rg2Snd7LHD+Lg3vJmI8xSHshFb0ffWrX8XmzZuxefNm3H777a3eHQ6Hs0Cg4T7ZN6dPYi1bSC6e/08gLeQwTGchR/V2KgCp6KOPk0poPLzbJKo5fR5X6ZlngGeewZ6DI7j1zh3Yf3wcFZ1UWEuiAFEAGxVGP7eI2mrRJ6GiG/YUjPly+uQap0+UBGxc2YZDJydrtndW7wL1e/UV7UKOng5S5VuvkTOntYRS9L344ov4/ve/z6t/OBzOtDy28wQms1VnoWJM5/RVw7tBC6xzDButYhQ81btAVfRRwZCOq5ji4d2mYNgWbFB4lzquxZIBw27OLAgCFEVCsUSOAfq5daajSNk5ma1AVUiu6XxWvWqKhLI96g2g1bkCNqxMY2Si4PoOOW+ndLdHMTpR8H2/S2WS00dF38AoF31hJXSir1wu41Of+hQ6Ozvxhje8odW7w+FwQsyxgSn8r//zezz028PsurrhXUVk4UA6Ps0Pmt9lmmQih1cc0rWQCkgqEtuSGhvzxZlfaNi9xumzydlNsiuGaY9hI5+pKovM6aOf2yfeewk+dP22ed7jYJjTZ85vTh8AltNKj/+NK9sAAAdPTLi2tzzh3fUr0jBMC8dOT9U8dqlCwruxiIJkTOVOX4gJnej753/+Zxw6dAi33HILkslkq3eHw+GEmF37hgEAew+PsuuY6JP8CjmcLVvMQNFHRZ4eMCVBEqpOIFB1jLrSUT57tEkwp8+n8hQAm4xS0Q3odtECQI4BmttGBVZbUmP5fq2A9OkjTl8jWrb4QXv20ddOne71K9IAgEMn3CFeb1HJplXtAID9/eOe7SxUdIOdZPV2xjAwmpufF8GZM6ESfbt378Ydd9yBt771rbj66qtbvTscDifk7No/BADYf3ycOT6VSp2JHLajAtQP71Knz6DhXa/Tx8K7njBhWwSZfNmVO8WZH2hVdcXbp2/lSmDlSub0lStEuMv2Z6TIEgolt9PXashx2biJHH7Qnnwle8YvcfpExKMK+rriNU5fbSFHFG0JDfuPu0Uf6WVZ/b71dMS40xdiQiP6SqUSPvnJTyKdTuPTn/50q3eHw+GEnHLFwN5Do+jrjKOimzjQTxatejl9qiySPD3TqhveZX36TFpR6d7OW71LCwK60qSJ7ehk8HB6TmMwDFq96xHYd98N3H03ckUi7IoslGuHdxURRSr6Wli84URVRFQqxryKPhreLZUN2Gl97GRmbV+qpoLXsix2cgOQnNaNq9qw/7i+bRoJAAAgAElEQVRbHHrTKXo74xgez7Pqak64CI3o+9rXvoYjR47gs5/9LDo6OmZ8v6mpKZw4ccJ1GRgYmMc95XA4YeCVo2MoVwy869pNAIC9h0cATD+GDQAbbj+jQg6f7ZzhX6Da4oWJvgke4p1vAp0+m7zt9BXsog3q3ipydT6sNF+x1DOkGt6dPyHKwruOYg768lNxlTmjFNOnZ+Cm1e04MZRBvljdln0HHE6fblj8xCekhGIix86dO3HXXXfhmmuuwZvf/OYzuu9dd92Fb3zjG/O0ZxwOJ6wcHyDOxIWbl2F1bxKvHiVhp2rvPB+nT6mOnTLqFXLQli2GCcPyc/rgei4qHrqmGVfFaRzVPn0ep++jHwUAZM/5MwBVp48Kc1UWWfPg+WqPcqZUCzncIdVG4nT6aD4kPW5jEaVG9HkLOQBg0+o2WBbJ/9u2sQuA8ySLPH5vp922ZTSPZe2x+XkxnFnTctFXLBZx0003IZFI4Oabbz7j+7///e/HO97xDtd1AwMDuOGGGxq1ixwOJ4RMZEsQBSAV19Ce1KrVmroJWRJ8F3Tq/lVstyPI6XHP3q11X2r79Nk5ffaYL+5yzD+BEzleeAEAkFt/PQCgYId5qROlKlI4w7vznNOnKWS5L5UdTp/9XPGojLJu2gUZRLz5pTV0tZGTmglniyRWOEWdPjLzd3Ash23ompfXwpk9LRd9X/3qV3H06FHceuutWLZs2RnfP5VKIZVKzcOecTicMDOZLSGV0CCJAlRFQiZfFX1+oV2AuDwAmeJACjn8H1tyOH2mz3aCJ6ePisSIJiMRVTDCnb55xwgSfTb0JKDgCeUqsliT09ZqFFmCblgwjPlrzhyxR6QVyjp7/fS4TUQUAECuoKMtSbZzjmGjRLXqbF0KLWai37muNvvEh7cuCiUtF30PP/wwRFHEAw88gAceeMB12+HDpPfWPffcg8ceewyrV6/GP/7jP7ZiNzkcTsiYyJTQliANdVW78SwAl1vhRZYlto1hmnWqd+2cPdqnb5pCDqdj1NXG27Y0g8CJHDZM9NkCRZHt8K5SPTZC4/TZgqlUMeZtDFvMFnaFYgWGnYdHj+NY1BZ9xQrakuQ75a3eBaqir+gSfe4cWkUmc4ypw8oJFy0XfQBgmiaee+65wNv7+/vR39+PqanappAcDmdpMpEpsQVKU6rD5Gfi9FV0097OXxxSMRjUskVkffpqRV9nOoIRHt6ddwJn79qw6t2Sx+lz5HqGqZADIKJvvoRoLEKW+3xRZ0Uw9LiOU9HnyOvzmw4SUf2cPnchB0DEYb7ERV8Yabnoe/TRRwNv+9SnPoX7778fn/jEJ/CXf/mXTdwrDocTdsazJfR1k/whzen0GXVEn+3ylCsGyvYUAT9Ynz7Tv8q3dgxb9fm62qI1jW45jaea0+dx+jZtgmla7HigAoVV7yoO0ReSPn2Ko3FywhZgjYa6dPmSzt47KjDjkVrR5zcdRJFF4uL5OX0OMR2LyK5tOOEhHKc5HA6Hc4ZMZoPCu/VEn53TVzFRrpjs/14kJvoCwrv23ZjTJ7nDuxPZUq0Y4TQUM2j27ne/i6mvVTs6FFnLFlq9WxX6YcnpY+Hdsj5v+yRLIhlBV9SZS1rj9BW9Tl/t40Q1t6DTfVokRTWZh3dDChd9HA5nwVEo6SiVDYfoE1Gy+7Xpuuk7go1sV+1VVqoYrvwuJ3Td1WnLlprZu8E5fWl7n6Zy5dm8NM4ModPXyj59+pzipeBpzuxy+kIi+pzh3flq2QKQvL76Tl9VqHnHsFGiHhfPrxm6VxhywkPLw7scDodzpkxkSMsIZ06faVrQDbOu06d5wrtBok8QBMiSQHL6fGbv1gvvxh25U53p2b5CznRQp0/3Ntr+4AcRz5aAPtKyheb00fBjGJ0+mltarhi+QqtRRCMy8sWKozlztWUL4AnvBjl9qsT6HAK1ffoAEt6d5Cc9oSTUou+2227Dbbfd1urd4HA4IaNG9Dkaz5Z1w5VU7sQ5laBeTh9AnCEa3q3p08ecPnv2riO8S6sknW4Tp/FQ4QIQt0kT7c9y/35I+QrQR/5LJ3JIjubMlLA4fTTNoFiev0IOgIixvCO8S58rqskQBb/wro/T5wndBoV3B0Zz8/IaOHODh3c5HM6CYyJLWqI4c/oA4pTUz+lzOn1moNMHkAXRMEjD3MCWLYa7OTPgrpLkzB/O2a4VT9sW06yG3VkhB20p4mrZEo4lkLqPlgWs7EnO2/PENAUFR3iXHreCIJDQr8vpCwjvat7wrrtPn982nPAQjiOew+FwzoCJLAkdUaePLpqlaUQfcwRZTl/wT6Akio7Qofs2Vsjhk9NH86Py3OmbV2jbEaC2bQsVhOmEVp0NK9LwbvicPufxunFl27w9TyxCXDrWssUh6uJRBdkZFHJENJnlSQL+s65jEYWLvpDCRR+Hw1lw0PAuLZrQztDpK5WnD+/KklCt3p2mkMM55zfKnb6mYBgOpy9A9NGTAsDh9DlFX1hatrhE3/wlgpL+eRX23nlPVtwtW/yng9Q4fX7fAU1GoWS4QvAvHxnFkVO8lVGr4aKPw+EsOCYyRSRjCltoqINXrpj1q3ftxbVQInlN04d3Ld8qRroY6j7hXe70NQeX0+cM715wAYbXboIkCkjGqj3vqMBRQljIQY/DiCphxbL5C+9G7Zw+b3NmgDh9zhMVy8KMcvr8nT57cofDEfzeA3twx0MvNeiVcGYLF30cDmfBMTRecLk4NExLwrtGoNMnCGROb9ae06sGTOQASCGHbpp1J3L4tWyJaNzpawaunD6n0/f1r+OJ930csYjsEnj0BMEZ0p/PStkzgR6v61ek57eQQ7NFHyvkcFSdR+Wa6l2/XYlqskvM+Yk+vxm9xbKBoXE+qabVcNHH4XAWFMPjBezcN4SLz+5h1zn779WbyAEAmiIiky+zv4OQRAGmYcHwm8hRI/rceWJRTebVu/OMM3RY9jTCLlfI/GXnccAmcjiEoCSFYwmk+7lx1fzl8wEk1043TCbanLmqsYiCrGcMW1Ahh25YrHI9KLwLuE98KrqJ4YkCLIdDy2k+4TjiORwOZ4Y89ORhAMAfvXY9u66mereOmNOcTt80LVt0OobNs/gJ9sNXfCZyAKRXX77Anb75xF2963D63vMeXPMvn4Yii67RYGwiRwibM6cTGi7Z0oOrLlgxr89Dw65U3DlPZhJRxZWSYFqA4PP+RDTynaGtcCq6AVkSXaFg+jyuyR2GiXLFQCbPT4ZaSaj79HE4HI4Ty7Lwq2ePYfu2PizriLHrawo56jg4qiJhynb66ok+1py5TnjXr3oXAKIRBfkSX9zmEzMovHviBBKjGTIn1un0ybXNmcMi+mRJxM03XjHvz8NEny283OFdhfXwk0QhsHo35gjdpuKqr7Nedfqq3wH6GY1MFJCKq417UZwzgjt9HA5nwVDRTeQKFaxf7q5w1BxVuaR6N1jMkZy+6UWfJIm10x5svBM5vLdzp2/+MeqEdy3LguoJ77JCjhA6fc2CijHm9LncOVL0UrCFWnB4197OdvF0n2p59lg+Vb4jEzyvr5Vw0cfhcBYMtEqTVutSqHjL05Fb9XL6VImFmOq2bBEdTt80zZllqXbR407f/GKYVXev4pm/a1qoCe8qPk5fWKp3m0XMFmz0pMeZlpCgo9jsPDwzoHqXhnfpeDu/Fkl+hRxU9A2P5+f+Qjizhos+DoezYChR0ad4RR/5KaNhq/qFHBJbjOo2Z66T08datlCnz3N7LCK7htdzGk+9Qg7LsiB7wrs0lEmPDVHwFzWLmag3p8/TnBmozt+1zODqXaB6glUvvDs+VcIL+4dgWRZrbzTMnb6WwkUfh8NZMFDR5w3LUhFIK2briT7nfWeU0+czkYOulRXdhCjUOkZkIgF3+uYTd3jX4fRt346ja84hTp9D4ImsT599XUhGsDWTmpw+v5nRtugLcvqooHM6fbVON9nmvt8cwN9/9xmM283UAWBwLI9Hdhxn32VOc1l6Rz2Hwwk9k9kS9h0bq7m+VPYP70qSCEkU2II1ndNHqS/67Jy+en36DNNXPMQiMguTceYH07RYRW7F6fT90z/hJ2+60RZ95PN1ihL6mYdlGkczocIuWyDhXV+nz5HT52eEekO3fjl9iky+j5l8BZYF1iIJAJ7ecxpf/7dd2PHyQINeFedM4KKPw+GEjp88cQif+fbTNT29ygHhXYAIwZmEd50h3XrhXdlZyOFZ/SQW3jV8xUM8qqBUNmDYIa1yxcC37tuNyWypZlvO7DBNCxGVCBBvTh/NM6PHgbMfH53KstSKOIBq5a1fy5Z4jdMX3KcPqIo+v5w+QRDYdgBcRU00LD86WZzbi+HMCi76OBxO6JjKlVEsGzVTLYJy+gDi4NDKwEQsuCWEplYXo3qFHJIkQDcsmGZt+NY5e9dPPMQ8eU/HBqbw86eP4sWDI4HPxzkzDNNChI7fc4Z33/lO3PjDm6FIEnP4nE6fQp2+JSj6NFWCKIAVMrlm7zpy+izLChzDFvEVfbXfIxriBaruYZs9K1sQgPEpLvpaARd9HA4ndNAFxeuM0fCun0OnKhIGxnIAgI5kJPCx3U5fvepdEUZQeNcxe9dX9Hlck7LtRDmrGTlzwzTtYg1JcId3R0cRy026nD7Z4cbSil5pCeb0UQcuZ4db3U5ftXqXGux+1c2qLEIUBYfoM3z7YrqcPlv0vf11G3DzjVegMx115flxmsfSO+o5HE7oKdrd/ic8oo+KJ6dbR9EUkTmDHelg0TfTnD5JEqCb/i1bnIUcfqO8vBMJqCjh83gbBw27K7LEjguKRVu2UNHnCD+KogBZEmuKc5YK8ZjK8k2dok6SRERUiTl9AHyrdwVBQFSVULRPwCqG6Xp/KfTEB6ie/HS3R3HJlh50pDTu9LWIJXrYczicMENng05my67rS5XgVitUwIkCGWsVhEv01cn9kyXb6bMnFDhhOX1G7W1AbX4U7VFW4PN4G4ZhWpAkAaoiup0+kHw0l+jzKDxVEZdk9S4A1zQM77Ebt0ex0cLooJY2sajiOrb9cmg3rW7Hmt4kgGrvPxpmb09GuNPXIpbmUc/hcEJNYHiXOn1+hRz2demEVjdfi4pDVRbr9mmTJNHRssW/ehfwzw2LRd05fTTnLM/Duw2DOrCKJLrHsKHW6fMW29Dq0qWIU/R5Hex4VEHW4fQFfT3SCY258H7VuwBw49vOxf/884sAVMO7dLv2VATjGe70tQI+e5fD4YSOqtPnn9MXVMgB1A/tAtV2L/VCuwCZyKEbJiRJ8AnvOkVfcGgr73H6eHi3cRiGBUkUoSju8K519dV4ofIqFFliuWbePnKKLC1Z0Zd2ir6a8YHEwTNZeNf/PWpLaBizw7MVo7ZPH4VNyim6J+W0JzVM5crQ69yXMz/wd5vD4YSOgr1I1Ob0+ffpA6pCsL1OEQdQHcM1neiTJBGGWX/2rvdvCq0qpdXGlQrN6ePh3UZBCmyIY+ucyKH/3afx4yv+DIpjIofscfpUWVySffoAIBWvpj4EhXetacK77UkNE3Z4Nii8C1RFXrVpusTub1m1J3Wc+YeLPg6HEzoKtqM3VZPTZ0AQap0boCriOqdz+uzt6rVrAYhQ0APDu9W/21O1+YN0/3SDrJ50Ri8P7zYOwzAhiSIimuw749VdvevN6ZOWZPUuAKQT0zl9erWQI+AtakuS8K5pWnVFH3P6Ch6nL0W+o+NTXPQ1m6V51HM4nNBiWRYb8eTn9GmK5OtAzNTpq4Z36//8sUIOn+pd52LZ0xGrua/ERB9tzkwLObjoaxS0lU48orgcVOW/vxWf+8/PE9En0ekbtRMjgkKXi51UnfBuLCojW5i+kKMtocE0LWTy5cA+fUBV9FGnr1rIQU6UeF5f8+Gij8PhhArdMNlcVb+cPr/QLlAVcR0+zpvfdjMJ75oWceu8a59zMeztjNfcl4YTddt1qrZs4eHdRmHYDmw8StwpRr4AVS+5nD5vHzlVkSAu2fCus3rX/b4kaPWuWb+Qo80WbRPZEnTdCHb67Ov9CjkAYIw7fU2HF3JwOJxQ4Sx2qG3ZYgSKNVbIkZomp0+ZYSEHm+ta24B5OqePhXdNKvp4c+ZGQ2bvivac46qYpkUI9ap3U3F1ybquzpw+v/CuYVrsOA1yQ6mbPjZZhGkFjz2s5vTVFnIAwAR3+poOF30cDidU0KavXekIxqaKrpy6kh3e9YOFd6cRfTPN6XO6IPVatvR21Dp91dm8RICUK7w5c6MxTAuqYod37SppOj4MABRJCszp+6vrz2PicKnhbtnivi1mj2LL2BM7AsO7tmgbtsce+k3koPdXZJF9Psx5lSUkYwqrAOY0Dx7e5XA4oYLm8/V0xmFa1QUIIOKpcU7fdDl9jgpdb06f4789nbVOnyCQqQ80p89ZyGEtUbHRaGjT7FhURlk3cXokhz/+1E9ZKJGMaPMXfe2pCDrT0abvcxigjctFUagRdQnaVNyezRvU1YaJvnFb9NVpcq7KIitgcn4OyZiKbJ6nOzQbLvo4HE6oKNg9+mjY1JnXVyoHO33nbezCa89fPr3TN8M+fc7k/3otW2ioygup/rVFn13IYZoWa+PCmRs0p48KlX3Hx1HWTezbdiV2rL8UqhIc3l3KxKMKRME/dBunTl+hdjavk0RUgSwJGJ7IA4DvGDaKokgsR9ApDmNRhVeztwAe3uVwOKGC5lot7yJh09+/OoTVvSkAJLwb9Zm7CwBnr+3A2Ws7pn38M2nZQvEufk6HJCgE5nT6nH3kCkUdkYDXwJk5VaePCJXTIzkAwJN/+Od4YtdJXFKnZctSRhIFJGKq78kHnSSTsR24oGNbEASkE1rV6avz/jpHHbpEnyazUW6c5sG/CRwOJ1TQaRwXbl6GCzZ14wcPvYSHnzsOwG7ZElC9O1NmXsjhcPpm0d5DlsVqnz7HmDDubjQGVr1rO30Do0T00d6OiiQ5mjPzpc5JOqH6O332e5m1UyrqDS1pS2rVnL564V3H98z5OcQiMi9sagH8m8DhcEJFoUQciGRMxeduvAKpuIpXj40BIOHd6cTadMxU9NUL71KiWvBjyKIAw3BX7wK8bUujIE4fqd4Fqk7f+778Ydz675+2q3fJ5+OdyLHUScU132M6EaWir77TB5BefdWcvuDvgco+A/es65invyKnOfAYA4fDCRXU6YtoEiRJRDyioGgLwXKd6t2ZIokCtm/rw7nrO+tuV6+QAwBuvvEKrO1LBd9fFlkBh1v0cXejEZgmaZpN89BOjWQBAIZZncghiQJEUeBOn4dUXPWdPUxddOpG1xN97ckIS1+o5/Qpiui7TSwi8+9CC+DfBA6HEypoTh/N3dNUCaUKuY706Zv7z9bf/cVluOyc3rrb1GvZAgCXbOlBV1twBagsiaw5szMszRe6M2dgNIcv/eh51voGAAzLgiRVw7u0pyMNqVOR0ZWOTDuab6mxvCvOKnCdsP6S9nFbL7x7yZae6v3qVu+S475W9Cm8mr0FcNHH4XBCRaGsQxCqroOmSijZvftKFRNak4og3IUcs7m/yCaLVHSTtcoolHhI60zZe2gUv33hJE7beXsAYBomRKFayEGhIoIKkX/52Ovxtqs2NG9nFwDvvu5sfPGvX1tzvXd8YD2n7zXn9bG/64lD6vR53daYJpNq9jKvZm8mXPRxOJxQUSwZiKgyW3A0RUKxbMCyrIaEd2eKM6dPmk0hhySwsG5FN9BmD7pfqpMg5gINkzsFgmk7fVHN/ySAOkuxiFIze3epoyoSEjG15noq3irM6Qs+7gVBwM03XgFVFrG8OxH8XHJAeNcW67ywqbnwnD4OhxMqimXdVSARUWVkCwWU7YWoEeHdmeB0+oR6Vkbg/Z0tW0wsayd9B/kid+bQ2cXONiOGndMniYIrP+zJTVcCAN5bp7iA4w9pKl7tLylM81W7ZEsP7vviH9XdhhZM1Yg+W6zni5VpG6pzGgcXfRwOJ1R4+9jR8C51eebasmWmuHL6ZuH0SZIIw9GyJRaRIUsCz+mbBTTHzOX02X36AFoJSt7Xn13wZgDAX9bJM+MEI4oic/rqhXdnSnBOHxV9/PvQTLjo43A4oaJQ1hFxhOw0RUKprLMk/maFd52LVFDLlrr3l0TmTFUqBlRZQlTjbSpmQ8Uh+gbH8rAsi/XpA4B4RMaIva1WIRNceMXu7HCmJczisK8huHrXDu/y70NT4aKPw+GEimLJcOVpRVQJpYrBBFTTcvrE+i1bpr2/JEAvVmfvKoroamjLmTlM9FV0fOu+3TAMk7RsoaLPzg9LxlTcdOenIQgCxP/vT1u2vwsZSRRYOH02x70XZ58+J9zpaw38VIjD4YSKQll3iT4a3qVO31ybM88UeQbNmae7P8vpq5hQZQkbV6ZxsH+Ct6k4Q5xO31S2hEy+AsMT3gWAnk6SN9kArbJkkUTRkdPXANHHnb5QwUUfh8MJDeWKgZGJAnMBAOLslXWTOQJNy+mrM3t3JpAxbNXqXUUWcdaqdoxnShidLDZsP5cCrHq3YqBQIicALqfPFhC9HbboA1d9s0VyhXfn/j4qLKfP/b3lTl9rCEV4t1Kp4Pnnn8fjjz+O5557DkePHkW5XEZ7ezsuvPBC3HDDDbj88stbvZscDmeeuffRA5jIlHDtZWvYdVTkZex5oK1w+mbVskUks3dN04JuWFBlEWetbgMAHOgfr9vYmeOGipBi2UCxrEMUBVdOXyxKlrLezjgA7vTNBUl0VO824H3Ugpw+Wr3Lq9mbSihE344dO/CBD3wAANDd3Y1LL70U0WgUhw4dwi9/+Uv88pe/xIc//GF85CMfafGecjic+WIyW8K9jx7AVReuwPmbutn1tBlzJkdEX/Ny+uYY3pXJ4kldKlkWsW55GpIo4ED/BLZvW96wfV3ssJYtZQPFkg7R/mzoZ0RnxvbYTl8jHKqliiSJqNhV542o3mVOnyenT5JEaKrEnb4mEwrRJwgCrrvuOrzvfe/DJZdc4rrtZz/7GT72sY/hW9/6Fi6//HJcccUVLdpLDmdhcWoki2y+gk2r21u9KzNiZKKAim7itee7xRAVeWMZEhJ1hn7nk0ZM5NB1k7lUqiJBUySs6U3hQP9Eo3ZzUbN7/zBW9SYdTp+OQtmAKNjhR/tzufbyNVi5LImoJuGRc65GezKCza3a6QWOJAoo2fOvG1G9S3P6/Ea1xTSZ5/Q1mVCIvu3bt2P79u2+t735zW/GU089hXvvvRcPPvggF30czgyo6AZu+d7vkC/quOvm62blVDWbIuvD5/5ZouHd0Qki+hLR2kkC84FzisNsnCNSyGGhQgtQ7EVvw8o0nnt5oDE7uYgZzxTxme88jQvO6kbUFvrZfAWmacEEcaKo09fbGUdvZxy79w/jkXPegHXLU3h/y/Z8YSNLIir6PDh9fqLP0VSb0xwWRCHH1q1bAQCDg4Mt3hMOJ1wYdujQy4NPHMapkRwmsiUcG5hq8l5Nz75jY/j77zztmrBA/454CjXo/2nxQyLmnrU6X8hzLeSwq3epS0UXve62KCazZZY3xfHnd3uJMDZMi72HE5mSaxuvGI9GZKQKU2grhu+YXyiIogDdaGDLFprT59M3kTTV5k5fM1kQou/o0aMASL4fh8MBiiUdt/1wB/7iH36FU8PZmtvv+81BbLbDui/sH2727k3Lfb85iF37h3HQEeakIaVIgNM3MllAVJOa1nR37i1bSE5f2c5Ho45HW1IDQHIYOcE88+IpAEBvZ4xN5JjwvGfOCmsAiGoyPvXQF/EXd36uKfu4GCHNmanTN/fHY336uNMXCkIv+oaHh3H//fcDAK699tqa26empnDixAnXZWCAh044i5sv/uh5PP3iKZTKBj5/++9cZ8uGaSGTL+Pis5dhVU8idKJvMlvCcy+R7+iRU5Ps+mLAmDWa0zc6WUC8SaFdwB3enU2YS5ZEGD5OHxV94xku+oLI5st48SCZsVGuVIthvELZ60TRfM9GhCWXKq4+fY10+nxFH3f6mk0ocvqC0HUdH//4x5HJZLB9+3ZcffXVNdvcdddd+MY3vtGCveNw5h/Lsmp+eE8OZ/H8K4O44Y1nY8vaDnzm20/j8V0n8abtawE4HDNNxvlndeNXzx63+8S1dgC9ZVl49Pl+7HhlEIZJWpgcPlkVfXSuam14l/xMTWbLWNuXatr+SqIAQQAsa5YtW2QRplV9XbTVTFuCDJfnTl8wrxwdg2ESt6msG6x6d9Ku4Kb4OX0Ab9kyF1z9KeexTx9gO328ZUtTCbXou/nmm/HMM8+gr68PX/7yl323ef/73493vOMdrusGBgZwww03NGMXOZx547Hf9+P2B1/CNz9xNVLxqsP1yI7jEAXgDy9bjY5UBMvao9j56iATfUWHeLpw0zL89MkjePXoOLZt7GrFy2D85InDuP3BvQCA8zZ2QRSFAKfPP7wLNC+fj0Jdj9mEd+m0CLqoeZ0+b34ap8rYFHlv2pMaShWDuaWm6Z5k4hUl9ASBO32zxzV+sAGxQFa9K9V+JvGogmy+zE5uH3ziEPYfn8DH3nPx3J+Y40tow7tf+MIXcO+996K7uxt33nlnYD5fKpXCypUrXZfe3t4m7y2H01hODGXwzXt3k0KM09WkdMMkbtlFZ/egMx2FIAi46Owe7D4w4mprARCn79wNnRBFAbv2D7XkdVCOnp7CHQ/txfZtffiPf3oLPv+h12D98jSOns6wUBJ1KL19+Jz/p/3YmgVdqGYj+qjIK3DRN2Me2XEc+4+PYyJLinaWtcdQdog+L5LncxFFgVy45ps1c01r8KLWcfq622IolAxk8iTE++LBETy+6wRG+HzqeSOUou+2227Dj370I3R0dODOO+/E2rVrW71LHE5TueeX+5ircXo0x64fHMthdLKI7dv62HUXbV6GQknHq8fGAADFUtXpi0UUbF7djt0HWmtG9YwAACAASURBVJvXd/T0FEwLeO+btiCiypBEAetXpKEbJk4MkUKUYtmAJAo1uT8up6+JOX1AdQGcbcsWACjYOUt08YtqMjRVqilK4AC3P7gXP3niECYyJcQjMuJRpa7o8xPjT21/G15985/N964uWlxOXyPCu3Vy+mgz7cEx8htHizqefYnn5c8XoRN9X/rSl3DHHXegra0Nd9xxBzZu3NjqXeJwms7hU5O4YNMySKKAAYfooz+KznDv+Wd1QRIF7NpH3Lyipwr2/LO6cbB/Atm8Ox9qpoxNFXH7g3tZXtVsKNpul7Ox8voVaQBgeX2lilGTzwd4nL4mh3erTt+Z35cKRm94FwDaEhp3+jxYloV8UcfIRAETmRLakhGoikgKOWbo9AHAm/75k7j0c3x602yRXU7f3B8vHdcQ1WT0dsZqbqPXDY7lAQA5+wTp2b2n5/7EHF9CJfq+8pWv4Pbbb0c6ncYdd9yBs88+u9W7xOE0nYpu4NRIDmuXp7CsPYaB0Ty7jYYKacI6QCrglnXE2A9n1ekj21ywqRumBVYNSfnaPTvx+dt/N+3+PPD4ITzw+CHsOTg669fkt9+daVLQQMVPsaTX5PMBRDzRhagVOX3ALMO7tmBk4V3FIfqSXPR5KesmDNPCyGQR45kS2pIaNEVGqXxmTt+q8gTaJlqbzrCQEV05fXNXffGognv+4U24aPOymtuo00d/43IFIvr2HBphf3MaS2hE39e+9jV873vfQyqVwg9+8APWkJnDWWqcGs7BNC2s7kmitzPmcvoKxVrxBJAfVvojWc3pIw7ZptXtEATgyCl3w9pHn+/HjpcH8TvHWfW//XofPve9Z9j/dcPEb37fDwAsfDwbqNPnFHVUlNL9LZWNmnYtFHp9s8O7tLfY3MK75PWpjpymtoTGw7seaOuOsckCxqeKaEtqUBURpYrBmgV7kfws2Pe+l1w4s0IWG5vTB5ATN7/HikUUJGMqO2HNFyukL6Nh4ehp3mB7PghF9e4jjzyCb3/72wCA1atX4+677/bdbv369fjgBz/YzF3jcJpGNl/GPb/eh9U9pC3J6t4kejvjeHL3SbZN3idMCgCJiI/os0WVIotoS2gYnXQnR3ekNIxNlfCte3djeVcc6YSG//OLV13b7Hx1CBOZEmRJxCtHZy/68iUdmip5KgMFRFSJOWFB4V3yWiTkCpXmF3KIsy/kqBveTWrYd3y8AXu48Hnx4DB++8IpvP11GwAAumFhYDTHnCGa0yeJAmvjQmlEdSnHjbNlSzOKoHs6YxgczcGyLOSKOi7YtAwDo3mcGs7inPWd878DS4xQiL7JyWrbhr1792Lv3r2+21122WVc9HEWLbsPjODBJw6jIxWBKAAruhPo7Ywjk68gawsevzApAMRjCkaniKhjLVu0qoDqbItidKrouo9uWNi6rgOnRnL4+L/8Fqt7kuw2w7QgiQKe2XMayZiC7duW48ndJ9n1Z0qxbNTsM9lHmb2mYlmvmcZBoXl9TQ/vSrMP7zKnLyCnbypbmvX7uZjY8fIgfvHMUbz+4pXsOtMiwjhf1G2nz0I6oWIyW4amSqz3oa/Tx5kTjS7kmI6ejhgOn5xEqWzANC2s7Uvh6RdP4dRIbvo7c86YUIi+66+/Htdff32rd4PDaSnjGSLKxqaKWN4Vh6pI6OuiOS85bFzZFhjeTUQVZO22BzSU6hRQnamIK0wMECG2aXU7/vbdF+M79+/BC462LqWyjlhEwUS2hO72GM5Z34lfPXsMv372GDavace65Wm27fGBKfznYwchiSJW9STw2vNXoKst6n6uko6oj6CLukSf4bsNUA3vJmNNDu/SQo5ZLH6sZQsN7zoKUtqSGkwLyOTKrIXLUoUKuKFxtxPdltSgG9W5u4mogslsGemEhiE7HNiInDOOG6nBhRzT0dsRw7N7T7O2Lcm4it7OGE5z0Tcv8NMkDickOMdyrbJdt97OOABg0E50LvgIOgCIu8K7dpNjh8joTEcwOll1+kzTQrliIKLKWNYRw2f/8nL8+61vwV+98zzXY+SLFcQjCras7QAAfPPe3fjqv+50PfcTu07ikR39eO6lAdz+4Ev43/e9WPPaCiXd5TxSoqrMCk/q5fTR19vs8C5dAGfjxtH75IoViKLgegzWq4/n9bF0BCrkKO3JiG+7nlRMYX34uOhrPHKznb7OOHTDQv9gBgAQj8jo60rg1EjtTHHO3OGij8MJCeNTRSSiCuJRBZtWtwMgok8UgCOnSQpEvlRBVJNqFrt4VEFZN1GuGCjY+XPObTrTUWQLFZQqRGCVK7UjzyRJZA4idQvzRR2xCGm38OfXbsZ5G7vQP5hxtW+ZypWRTqj40S1vxFuuXIcXDgyz56EUSrpveDcaqTp9pbIxbXg33qKcvlnN3rWdvslsGfGI4nqMFd0JAMDLR2ZfEb1QGR4v4KdPHoZlkfy8InP63KKPFnJQ4nZoP6opzDX1HY/3t39LLpxZIbpy+poT3gVImyqAFHcs74rj9EiOHSOcxsFFH4cTEsYzJfR0xvDdm67B9a8n/SmjmoxNq9ux81USei0UdUS1WuFDxVCuWEHJJ0xK26PQYg4qyrzOGhWBTqcvFpEhCALefd3ZuO6KNTBMizVUBojoo30DL9vai3LFwB5Pe5hiWUfEL6dPlVAoO3L6fNxA5362yumbXcsWKvpKNfu9ti+F9SvS+MUzR5fcwvbI88fxnfv34NAJuz+jfazRCs64XaTUltBcbnXSdvoimsSOB9FntBf+6I/IhTMr3NW78/98XfZvU9XpI6KvWDZc0Q9OY+Cij8NpAb/83VH89ZcfdTlmE5ki2pMRpOKqq0HqxVt6cKB/AhOZUqBjxkRfoYJCWa8Rc1XRR0K8zvm8TmhLFeq+5Yo64pGqYFnbRyqLne0UiOgj4cpzN3RCUyU89/KAy+0r1MvpK1Zz+rwj2Kr7JSGqya58o2Ywl5w+WgWZyZcRj7pfuyAIeOMVa3Dk1BT221W8lmXhm/fuZv9frNAw7tN7TgGoHmv0+tW95BgjTl9tY+6oKledPj8xvm8fuXBmhbN6txnh8840yf89TkVflIR3AeDUMA/xNhou+jicFvD0ntM4PpBxjRsaz5TQ7pPUf8nZPQCAnfuGiHiK1IqnhEP0lXwqZekP66g907I659a9HRVmpbIBy7JQKFYQc7hUy7sTkCXRNQ94KldC0l6QVUXCBWd14+dPH8Wf3vRTHBsg2xVK/tW7UU1GsazDsiyUKsE5fat7k9iwMu1723wiM6dv9ve1LBKy8vK6i1ZClkiFNABk8hX84pmj+O0LJ2u2XUwM28cgfd3OQg5FFtHXFUc8QoSd6jN3OaLJ7OTAV5R86EPkwpkVYpNz+mIRGVFNqjp9UQXLu0kuM6/gbTxc9HE4TcY0Leyze979+tnj7LoJewqBl/Ur0mhLavj9K4MolHTE/Jy+CBV9OsvpcxLk9GmecCoNrxbK5HFMqxpuA4iQWdWTwJEApw8A3n3d2Xj9xSthWsCA/aMdWMhhV+/qhgnTtAJz+v7sms34pw+/1ve2+URuQMsWwD8XMRZREIsobLTeVI6EshZ71eLweAGSKODEUBb9gxlWyKEbJuIRBde/fiM+8q4LAfiP4Itq0zh9nDnR6DFs0yEIAjpSUSb+YxEF3e0xpBMqntp9av53YInBRR+H00Qquon+wQxyRR0ruuPYtX8IQ+N5ZPJlGKaF9mSk5j6iKGDTqnYcH8wgXwwK75LrmNPnEU+xiIKoJrNefSWfCl+gWiVbskUfAEQ9LtWavhRz+izLcuX0AUSkvuvazWR/isTFKwaEpSOajGJJDww3txppDuFd5+IZlIsYUSUmejI5Un29mN0Ny7IwPFHAJVuIe73v2Bj77AFS2LOmN4Xt25YD8Ig+Z04fdfqaoUqWGM3u0wdUT0ppw3ZJFPD2123Ezn1D2DeHSUCcWrjo43CaxPhUEe/6zM/wrft2AwA+8NZzYFnAnoMjbA5re8q/ZxttuRIU3qVOUrZYQdEnp6/6GO5CDq/IchZy0BYwcc/zre1NYXSyiGyhgnxRh2FaLtEHADG72KRQrEA3yEzVoPAu7VcH1BaWtBqa1D4bR2k6pw8gOZT0s8jkyXswOErG8C1GpnJllCsGNqxsAwBkCzpLNQBqJ804q3dTCRWiKCAZU9lx0uwcz6WANA9j2KaD9vWMaTJ7zrdcuQ7JmIr7fnOwKfuwVODfGA6nSRzon0C5YuDlI2NIJ1RcsrUXmirh8KlJ1pi5LREs+jL5MqZy5WkLOYoB+XMdqQjGWHjXv99fxNGyhYYdvflo9Kx8IlNkQsUr+pjzWKw+jl/oNmov3rRKTwsI77YK5vTNSvRV7xMs+iTmdNHwblk3MeaZnrJYGLYbMK/pTUIQaOFR1emLeSrTVU/17q1/dSX+8LLVDqevCTu9xGj2GDag+pvi/J5ENRmXbFmGgycmmrMTS4Rw/cJyOIsYWvHaltCwbWMXJFHA2r4Ujpycwkbb+WhP1YZ3ASLYAATm9GmKBFkSiegLcPqSMRXHB8k+sPCut3pXcTh9Rer0uRfihD0VI5uvMDHkFX2KLEGRReSLFSZqon45fbazQ53OsIV3WU7fHPr0AbUOFiXiGCk2ZYd3AZLX551qshigvfh6OmKIajImsyWXq+l9n5zhXUUWsXFVm+t6X6fvM59p9G4vKVzNmZukqjvt3zfvb01vZxyP7TyBim66xhhyZg8XfXPAsiz811NHcM1lqwMT0DkcyrHTU1jWEcNXP3IV+wFbtzyN375wEuO2s+NXvQtUq28B+IZ3BUFAIqow0efn9MUiMnKFansUoFb0iaIAVZFQKOnI29vGPO1GqMCbypeZGPKKPsCeElLUWaNnv/6C9HszYTudQS1bWkUjZu8C9XL6ZPbaqWsKAKdHc9i2seuMnzPMnBjKsFGA3e0xxKNKjaNZI/pUt+ijqPVy+q65plG7vCQRpeaHdztpeNfzW9PbGYNlkZMF2tCcMze4dJ4DJ4ez+M79e7Dj5cFW7wpnAXDk9BTW9qaQTmgsZLp+eQq5QgWvHhuHqki+Yg2ohj+A2rm7lHhURiZfJv3ufByzeFRh7l1QIQd5fOI+5UtkW2/IjVZRZvNlFpJ0Vu+yx4nIyBcq1dFxAdW7ADCepU5fuE6eqOsx5/CuT8sWgLz/1fAumWwiS8Kiq+CdzJbwf3/lN7j7F69CUyUkYwriEYXlmFIR500lUBV/0cdy+vw+lxdeIBfOrHCPYWvOc7Lwrufz7+kgrVu8c8M5s4eLvjlAf5BozhKHE0RFN3ByOIs1fUnX9etWkN5zz+w5jS1r2wPPrJ2izy+8CxBRN54pwbLg2wg5EVVQKhvQDbPap89nO02VUSjrzBX0NhZO2uHdTL6CKbsAI+nr9MnIl/TAecFAVfSx8G7ARI5WIc0hvOtMiK+X0+cs5GhLaOjpiKF/MLOoJnUcOjkJ3bBQ0U0sa49CEATEowprIdTdRo7v2kKO6vEg+zl9fqrkox8lF86skJo8hg2oRjK835O+Lir68jX34cwOLvrmAF18i2Uu+jj1OTGUhWlabKIFZW1vCoJAQoEfesd5gfePRxWo9qLnFyYF4HJO/HLjYhFHsUfZgCKLvk5J1M4zyxcrEIRasUbmyIIVloiiUFPhS5+PhpvJ/6cXfaGr3p1DIYcoCuz9rVvIUao6fcm4is1rOvDsSwP47Heedk1sWcgcspPxL9nSg/PP6gZAjocJ2+Gl+YteF1t1CD2X08f79M0bUpPHsAFAOqFBloSa70l7UoMqi9zpayDhiqUsMGilI3UyOBwAuP3BvRgaz+Om91/GrqNFHGs8oi+iybj28jXYsLINq3rcLqATQRDQmY7i9GjON6cPIMJiZKLIHtfvdsCez1sxAosmIirpnZcrVhDT5BrBI4okfzCTK7N2LX6OQDyq4NRwtq7TF/GKvpDl9PV2xrGsffYFFZIkwjCNwPBuxNGyZSpXxsplCXz4j89Hb0cM//qrfdi1fxiXbe2d9fOHhcMnJ7GsI4abb7yCXRePKqBmJmvZ4XmfBIHkmJYrBhS5emyw2btc9DUcp9PXLFEtiQI+dsMlWLfc/fsoCAJ6OuNc9DUQLvrmgCyJUGSRzQ7lcCzLwhO7TmAqV0FFry5U/YMZSKLgm4z8N39ywYweuyMdwenRXGB4NxlToRsmAH+B5RzVRip8AypKNZJnli/qrhFsrseKqcjmK6gYpm8RB0Bcm1xRR8F2shZiTt91V6zBtZevmfX9FUlAuRLs9EVUImhM00ImT5pca4qEP37DJjzwxCE88+LpBSX6LMvC4FgeumFi5bLqScyhk5PYsMI9Rs8phKuiz68yXbRFX9WB6uuKIxFVfE9uOHOjFX36AODK85f7Xt/bGePh3QbCw7tzJKqR/CcOByDTFMamStANE4dOTlavH86htzPmqug8U2hbg6BCjj+4eCX72y9MShfUfEFHqWwEumoRlczDzdtOnx+pmMrCu0GiLx5VUChWCzn8mzOTfRgez9szOMO1iAuCMCc3SZZFCELwZ0Y/g1LFQMbxXiqyiMu29uLZl04zIb8Q+NHPX8H/uPVh/NUXH8VPnjgEAMgXKzg9kqsVfc6ZznbuVtqnIIjm7ymO785rtvXhR7e8MXTO8GKgFTl99ei1nb7FlOPaSrjomyMRe3YohwMALx4cYX/vOzbO/j45nMXyObYc6EjXF31b13XinPWdAPxz+txTO4zAogmaZ5Yv6jXhNkoipiBTqGB4PI/OlH/4M2YXcuSLFYiCf+hWkSXIkgDLAras7Vh04TpJFBGLKIGvK8KaUxdrJpu85rw+ZPIVvHRotCn72ghe2D+M9cvTuGxrL25/cC92HxjGYfvkh07hoDjzQLeu68QtH9yOCzZ11zymqpCxXM73UBCE4BOoW28lF86skB1OXxi+jr0dMRTLBiaz5ek35kwLF31zJGbPDuVwAGDvwRF0pCLoaosy0WeaFk6N5ObcZ2rlsiRUWWQtU/z43I1X4G/+5HxsWdtRc5tzake5Euz0RTXi9OWKlcCwZDKmYmyyiOGJApZ3x323iUdIztZEpoSIY7ySFxrSpYJ1MSHLYuB7CFQdWTqpglZGA8CFm5ZBlgTs2j80vzvZICq6iSOnpnDBpm58/D0XQ1UkPPfSAE4MZQEAq3vdOavO9yWiyrho8zJfcawp0pk15n3Na8iFMyskMVxOHw390yK1obE8fvHMUe78zZJwxVIWIBFV4k4fBwDJZ9pzaATnbeyGbprYd5yIvpHJAsoVY85O3zWXrsKFm7oD3TeAOM/XXbHW9zaaQ5W35/PSAfZeyGgw0px5RXdA/mBcZY11aWjOC93P0cli3Vy9aERGtlDB1nWLUPSJQt3XTvMqmehzOH0RTcZZq9qxN+ROX7li4P7HDmLLug7ohomNq9oQ0WR0pSMYnSoiHiXV3h2eaTPO47heq54zFn1PP03+5cJvVrDRg63XewCqEY6xqSI2APjVs8fw44f3Q5ZEXHPZ6tbu3AKEi745QpLVK9NvyFn0nBzOYjxTwraNnSiUdDy1+xSGxws4NUycjhUBjthMkSQRyzpis75/VJMhCEDWbtnSmQ5w+lSZjWELEphJZz5WgJilOYRHTk26+gx6iagyZEnEWavaArdZqMiyWDNlwAkN7w5PENHnzY88d0Mn7vvNQRRK/lNWwsCOVwZx9y9eRV8nOb7p59ieimB8qohEVLFbcriFG3X6hIDQP0VVJFfl7rT83d+Rfx97bOb34TBoIUcYXD4ALH2E9nQcsR2/7/1kDy7c3O2aVsSZHh7enSPRiMyqEzlLmz22I7NtQxcuO4dUXD62sx8nh0m7gVaPERJFgfXOKwVM7QCI02dZpIVIV4BYSzjCkEFOH3UWxzMlrO1L+24DkF5cZ69tdzXiXSx0t0Xrfu7V8C6pTkzFvKKvC6Zp4ZWjY+y6V46M4T9/cwBP7T41D3tci2HWD6O9coTs2+nRHBJRBT32iUlHKoKxqSJGJ4s1Lh9QzenTFKmuwFAVkc9dbSLU6QuL6GtPaRAEsMjC2GSRNH4v6q4cas7MCOep4wIiovJCDg6B5vP1dcUhCALOWd+Jh587jou39CCiSr4LX7OhP5alshEYdnQ6SudtrE2sB6phyGRMdQlAJ06Ha62n/5aTj7zrwkXbZPfTH7gMQPBro5/B4BgRfW2e2cu0uGXvoRFctHkZAOC2H+7A2FQRoijgns1vCnRjdcMkU2B6g997L5ZluRb7na8O4bYfPof/990X44pz+3zv8/KRUSTtau6Nq9rY/YnoKyGmKSxE54Q6fdO16YlHldC6nIsR+l0My1dSlkSkExpz+samili7PI2XDo8ik+PFHWcKP32aI7yQgwNU8/m2behii941l67GqZEcHn2+H8u7EqE4c45Hbaevotdp2UKuj2oyzlrtH3JN2sUkQUUcgLsP29o6wmNZe2zRhmgUuX4+GnX6BkZzUGWxRtxENRlr+1I4dIJUwGbyZYxNFXHp1h6YpoXdB/ydDsuy8PV7duFvvvwb7N4/PKN9/cFDL+ET//Jb1xSQXfuHUCgZuO2uHfjl747VJM8XSzoOnZzEG7evwesuXInXX7yK3daRiqBcMXByJOsb3qeib7opLO990xb8zz+/aEavgTN3aBheCIvqQ9U1BojoW92ThCiQaMTweGHGxziHi745Q1u28Eqipc2B/gmWz0e58vzl2LiqDeuWp/Cn12xq4d5ViUcVltMXNJGDFhds29AV2BaDVpnWC106G+16J5FwCFR4j0wU0JbUfE8M2pMapnKkeXX/YAYA8IeXrUFUkwIre3/+zFE8vusEFFnEd3+yZ9pefy8dHsX9jx3Eq8fG8cDjh9j1R05NYnVvEts2duEb//ECbvvhDhzsn8DR01MwTQv7+8dhmha2ruvEx95zMa6+xC36AKBUNgLCu0T0Tefi9XbGsX5FcHoAp7GIIXP6ADJ7fNQuiMvkK+hsiyARUzGVK+P+xw/iltt/t6D6WbYS7pnPkagmwzDJIPGZ5CTlCsFtMDgLk+deGsAXf7gD8aiCS7b0sOujmoyvffR1LdyzWuIRBSeGsrCsYIeFLsLnb+oKfBwq+oLy+YBqdWZbUqsJW3IINLRpWmT+qB/JuIp+u+0JFX3rV6SxbUM3du2rFX2maeHeRw/gnPWdeNtV63HrnTvwxK6TLkHmxDAtfPs/X0R3exRrelP48cP7ce3la5CKqzhyagqXn9OLv/6TC3Dfowfw44f34+kXTwMA/u4vLsXxwQwEATjbp0WQU+j5iT7Vrspt+Lzlr3+9sY+3xGBOXwgiE5SOVAT7j48zt68zFUUqTkSfaZH1d2A055oCw/GHO31zhC6QM8nre2LXCbz7sz/Dfz15GPc/dhDPvTww37vHaQIP7ziOZFzFNz/++tCHKeNRhf1wBi2261ekcd7GLlx5nv9YJABY1h7FGy5dhdfU2SaiShBFoW5od6nj/AyChHEqprLcpf7BLDRVQndbFBdt7sbAaB4nhjKu7V89Nobh8QKuvXwNrji3D8mYij0+Ce/HTk/h/scO4vGd/Th6egofeOs5ePtVG1AqGzg+kMF4poSpXBlrl6cgiQL+9JpN+O5Nb8BH33UhAOD4QAYnh7LoaouyEX9OnHl8fjl9ADkJCXKcZ80FF5ALZ1ZUc/rCI/o601FMZsss97UjHUEqTvJI6dxuekLEqQ8XfXOEjpGaiejb8cogTAv49v178IOHXsI3/+MFGNySXvAMj+expjcVesEH2KPR7GM15TPyCiBn1f/4V1fWfT2SJOKj77oIq3qCz6wFgcwa3rYx2DFc6jjzKtvqOH2Fko6KbqJ/MIOVyxIQRQFXbOuDKov4t1/tx8ETE3jpMKkef2LXSaiyiCvO7YUgCNiytgOvHB3DnkMj+Mrdv4dpV+P+26/34QcPvYR//vELWNuXwpXnLXf1RDtyiuQRrlteDa12pqN4w6Wr0ZbUMDiWx+BYnlXreml3iNigIqZ4VGn8vOWHHyYXzqwIW/UuUD1+Dp2YAEBGUibt8O54hpzE9g9mW7Z/Cwke3p0jUY2c4RbL07dtefnIGC4/pxfnbuhCoVjBv/5qH144MIyLz+6Z9r6c8DI0XqgZMRVWaJ5dVzqC7dv8qzEbyb987PV1alc5oihAVSSUK0ag00dD6dl8GccHMzh3A8kb7UxH8Y4/2IgfP7wfT+4+ifakhh989lo8tfsULt3ay8LrZ69tx3MvD+D2B/fi0IlJ3Pi2c5FOqNh7eBSd6QjGMyW8/y1bIYoCE2rjmRJG7N6B63zyMXs6Yhgcy2NgNM+qir3EIgqimoRCyWBzo738j7ef65pC0hC+8AXy7zXXNPZxlwi0T58YIkuIFgLt7yeijzp9B/rHkSuSk9j+Ie70zQQu+uYI7SRfKNZ3+kYmChgay+Nt/209/vtVG1DRDTz428N49Pl+LvoWMMWSjqlcGcvaZ980uZnQMNwNb9zSlGH1i7UVSyPRqOgLcPpow+ah8TxGJgpY5chbeufVZ+HJ3ScxmS1jLFPCRJZcnCPt6Eg+WgE8nikiV6xgIlPCX//x+XjdRStZmko8qkCRRYxPFTE2VURXOuLbkqenI4a9h0YwNlVCT2fwsd+RiuD0SA6pgNfGf/vCRxidPir6DvRPkFGUUQWpuIrxTAm0hpKHd2dGiLT8wmSmOX20gSkdNaXIEq66cAV+t+c0iiUd//XUETz/yuD87iyn4dBJCsvawx/aBYArz1uBv3jLVrw+IKmf03zoiWNQIQdt2PzKUTLWb+WyasV0VJPxvz/5BrznTVtgmhYOnyTCztkiZeOqNpf4Hs+UsPcQyfE7Z32nq3pWEIjbN5Yp4uRwFisDwvc9HTGMTZFcqt46U2I6UlG0JSNc/C8gwtanDyDHW1STMDSWR0c6AkEQkIprTPCl4ipOSWLqzgAAIABJREFUDGVZ6gInGC765ggTfeVg0XdqJItHnj+OiCphnaNJ7eXn9qGsm9i5bwjf/8le/OChvXVbv/z62WP48cP7GrfznDkzZE9S6F4gTl93exTvvPosvgiHCOq4BoZ3bafvoB3a6u10V0wLgoCOlObaxin6IqqMLes6WKX1RKaIvYdH0ZbQXAKS0p6KYGKqhIHRXM1zUXo6qtcHbQMAl53Ti9eeH1zswwkfUgird2MRBX/zJ6Q4h+b3peLV4qFtG7tQKhsYmSjg9EiOmSycWnh4d44w0WeHd03Twpfvfh6Xbu3F1Zeswgv7h3DL95+Fbph4++s2sC8UAGxd1wFZEnH3L16FbpjoH8zi2EAGawN6mj3wxCGcHMri2svWoD0E0x2WGpl8Gff8ah/W9qVw7eVrAJB8PgALJrzLCR+0ejWwkMN2+g7aSex+85fpQniAiT638/zZ/+tylMoG3nfLLzE+VcK+o+PYsq7Dd2HvSEVw4Pg4MvkK+gJCtz0dUcffwcf+21+3IfA2TjiRxfCFdwHgqgtXYnSyyNY+ZyHatvWdeGr3Kdtg6ceLB4Zx599fh7t/8Sou3NSNczfwYjIKF31zhIq+ou30PffyAJ7cfQovHhxBd1sUt975HFZ0x3HzjdvR7QkBRlQZW9d14MWDI9BUCZWKgSd2ncDavq01z5MrVNA/mIFlkRYhf/KGcDT7XSrsOTiCL939PGsPEI8ouPL85Rgez0MShcCWFBzOdNBm2MFOH3E0To1kEY/Ivu1R2h2iTxBqHysWURCz26MMTxQwOJbDVReu8H2+tqSGEXvk1XROn6pI4evB+J3vtHoPFjRhbM5MeccfbGR/01xXAFhrV5hPZMt2PmoJQ+MF/PvD+/GTJw7hCx96jW8vyaUID+/OkYgjpy9frOA/HtnPmkZ++ttPIRlTccsHawUf5fyzyGzTizYvw3lndePxXSd9O4sf6B+HZZHZqb9+9jjvPt5Edrw8gM9852kkogq+/P/8N2xZ24Gv3rMTJ4ezGBoroLMtysOlnFmjqRJEAYEzjCOqDFUWYVn+Lh8AtCerrVbaElrgJJX2VAT7jo/DtIIFnbO9Sl9A8+3u9ihEgbh8YXOEsHkzuXBmhSAIkEQhfJ+rB5r2IIkCS1OYypYwmSU9LWnjcsu08NV/3cnz/Wy46JsjqixCFAX88Gev4M8+/TPsPz6B97zxbFx53nKk4io+/6HX1O13dtHZpN3BZVt78UevXY+hsTwe+u3hmu32HSdJ3De+7VycHs3h89//HfLFyvy8KI6Lf/v1PvR2xPC/PnIVzl7TgU++7xKosoiv/etOnBzOLJgiDk44iagSUgmt7okDdTWC0ggUWWTb+M25pbQnNVbsESToqIAEgkO3siSiqz2Gvjr5fC3joYfIhTNrJFEIVXNmP+jx3pbUkIypEEUBE9kSJrMkGkNHFL7z6rNwejSHPYf851QvNXh4d44IgsDOIC4/pxfbt/XhDy5aiT+8fA103WROYBAbV7bhqx+9ChtWtEEQgEu39uCeX72Ki89ehtW9KViWhYlMCa8eHcfKZQlcc9kamBbwzf94AXf/4lV88O3bmvEylyz7j49j//EJfOgd21jfs850FB9+5/n40t3PA0DgeCsOZyZced7yaaeWJOMqRiaLdfPnOlKR/7+9O4+LquofOP5hWGQVRFlkcWcQUZBFTMQVLMuocMnMBfXJbHnSFktbTK18rH5mi0urmqlZZmompokJWC5ooCgg5gKiMoCg7Otwf3+MM4Ezg4AgoOf9evFC594z58xlzp3vnJX8ovJav2S2szLV3K/0baHX7sakEGtLE817XpeXJ/hiZd4Ct5T86CPV79DQ5i1HK2ZoKKOFx3xYmBojM1B9kZHJDLC2MCGvsJz8G7vXnDiTjUxmwGNDuvPrgfP8fjgNbzc7cvJKbqxJaYqySrrnemlE0NeIXn7St8ZNUl8Xy83cXNtp/j0zzIs5n8Xw2oo/8XW312ypBBDcTxVc3N+/M6dTc/ntYCqjh/agg41oaWoqEX9dwKyNkVZgN8jHmY52FsSnZNGvl2MzlU64Gwz2cbnlOerJHPq6d0EV9KVm5Nc6vlS9+LKpif6xeLY3Wvpqm5UL1FgLULi7GMoMNGP7WiqZzABLcxNsbrxfrS3bcDm7EOWNLzVFpZU4tjfH3NSYoX4u7D6UxvWCMt764iC2bU2Z/YQPs5buZ0T/zkx72LPFv97GIoK+RrDgqftoZ9Wm1m/FdeVga87SWYP5aOPfnE2/TteO1owK7EpqRj4jB3TRnDd+hDv7/07n/zYcY7i/K5IEHWzMcO+sCiCPJWfi0cX2ljfue93l7EIuZxXi425HxF+pJKfmIHdtx5jhbiirJGITFQR6ddT5t+3hYkOPVrITh9C6Wd2iexf+HYtXW/euzY1WvI4dLPSO2VK39DnainvHvcrIUNbix/QBBHk7aSZxtLUw4cKV/BrHnTqoxvo9FNiVnX9eYOnGY1zKKiQzt5gjpxQUlVayPfocp1NzGT/CHb+e9rW+7oLicj79IZ6xwW707Kx/Ysj/rT9GX7kdI26s8tCSiKCvEfh7NO6q8g625nz4wqBbnvPUI73ZtDeFFT+d0DxuKDPA2Eim2RZuXLAbg/o6s3H3aUKDuuEtt2vUsrZmkiSx9EZwbWVuTEFxBeamRvx9OovQQd24qCigsKSCvm7imgnNS71Ac23jR9UtfO3b1t69C/rH84Fq6RizNkZ0caq9y1m4e8lkBi1y9u7Nnh3jrfm3jWUbCopVXbtmbYwoKavUDGFwdbCiXy8HjiapNkCoqKxie8w52lm1YfKDHmzam8Kibw7jI7fjtcn+OidVKZVVfLj+GMfPZONib6k36MvJKyHm+GXyispE0Cc0rlFB3Rg5oAvZ11VjFDJzi/k7OZP8onKG+buy90gaP+37h10HUykqqeBIooJnx3jxUGDX5i76HZN8IZeouHSmPeypNb4y6UIuZ9OvM6BPR7KvlzB7vBwjIxkLvz5MwtmrpGWovjV6iaBPaGbqQeu1jum70V17q4kcQK0TMAwNZayYM6zlLcUi3DFGhi1/9u7N2lr+G6i5udqQcPYqHe3+fZ+HDenB0aRMhvu7sv/vdLJyixns48yI/p0Z5u/KroMXWP3LKb7/PaXGWHlFThHt2poS8ecFjp/JxsTYkPTMQr3lOHUuB1BteyhJUou7ji0q6Pv111/ZtGkTKSkpVFVV0bVrV8aMGcOECROQtaTdn1sQQ0OZpgvXvp05faotQunRxZasayWkXslj2YuD+XZnEht3n2aYn2uNrZfuVoXF5bz/3VFy80tR5BYz7WFPXB2sNAN3f4k5h5W5MS9P8NUEhOUVSkxNDDmapCDjahGuDlY1lrAQhOYQEtCJ9jZmepd1AejqbI2xkQwXe91bp8G/6/nV1tIHtY8dbPHWr2/uErR6hjJZi5+9e7Pqi5u7d25Hwtmrmu5dgN7d2zMvvB/ebnacv5xHaka+5vPSyFDGI4O6c1FRwK6/LvBwUFecOliSk1fCcx/+QVentlzKKsTfw4E2JoaaGfC6qGcJF5ZUkHWtpNYvas2hxURSixYtYs6cOZw6dQp/f38CAwNJTU3lnXfeYdasWVRViXXp6svIUMa7MwP56o0RuLm2Y8pDHuQXlbPzz3+XhElT5HM5W/+3ltYo6UIOTy+J5Okl+7heWMZjQ7oTdzqLF5bu55VPo1HkFHHkVAaHTmYwamC3Gi2AJsaG9JXb8eeJKySez8HbTazkLjQ/x/YWPFhtTK8uvbq258fFD+ldExSgm5M10x7uRZC37oWZ7wqurqofocEMDQ0waDHRQd20rRb0DerrjHundsg7/TtJ0sDAgIFeTliaGdP7xiQkrx417+8TH+iJsZGMZRvjKC2r5LeDqVQqqzibfp2yciXTQz1xtbciM6eI8gqlJt326LNsizqLskri1LmrmtZ29S46LUmLaO7Zs2cP33//PXZ2dmzYsIEuXboAcPXqVaZMmcLevXtZv3494eHhzVvQVsjYSIaxkap1wL2zLf4eDvz8xz+EBHRi11+pbI5MwcaqDe/MDGT55uP49XRg9LAemv1AWwJdTeSXswuxtjAhKTWX9buS6d29PWOHu5GeWcCib45g184Mb7cOeLvZMXJAFx64rzOnzuXw7c5Ennl/H4aGMro5W/N4iJtWfoP7unD4lIJuztY8HNTtTr1MQbhtxka111uZzIDRw7Tf83eVH39U/R4/vnnL0Yq1hsWZb2Zzo3vX3NSIrk7WLJ09WO+5jwzuTscOFlot3u3amvLyk768v+4ob31xkIycIgJ6OTIioBMlZZW4OljRycGKKkn1GdTVyZrc/FLW7kyiqkpiz+E0LmcXMenBnny/J4Vzl64z0Ktl7T3dIoK+L29smzNnzhxNwAfQoUMHFi5cyOTJk/n666+ZPHmy6Oa9TdNDPXlh6X5eXBZNbn4p/h4OHEvO5JVPY1Aqq0hJu8aJf7J575nAOi8505T2HE5l7c4k5kz0o1dXW6LiLhETf5nE8zlYmBpRVqHExsqUPYfTiDudRXFpJU52Fix5LqjGNj0u9la42Fvh427P7kOpnLt0nZmjvXR+SAb1dcLP46FGmY0tCMId9vnnqt8i6GswQ0NZq5jIUZ16L15rPXtYV9exgwWPDNa9L/SAPk68/KQfq3ecIr+onNBB3TQ7ZwG4OKi6jNMzC+jqZM2+oxepqpKY8pAHCWev0tbChKG+rvx5/ApJF3K5er2EDjZmVCqrqFRWYWrSvGFXswd9CoWCxMREjI2NGTlypNbxgIAAHBwcyMzM5Pjx4/j6+jZDKe8erg5WPDq4O1ujzjIu2I3JD3rwyQ/x/HEsnXlT+lFWUcnHm+JZuzORpx7pzeXsQsxNjSksLmfHgfO0MTZkUF/nJt3HMDO3GLM2RmzYncxvB1ORyQxY8+spLEyNOZ12jY7tLZjykAdnLl6jtEzJ3PB+pCsKeOvLgyBJvPdsYI2ArzoHW3PCR2nvbVydgYGBCPgEQbhntcqWvhsTj6z13PvrY4ivC4FeTihyVOO6q3O2s0RmAAlnr1KprGLP4TQ8u7VnXLCcccFyzXnundux53Aa0979nZB+nUg4m013FxvemBpw2+W7Hc0e9CUlJQHg5uaGqanuAfN9+vQhMzOT5ORkEfQ1gikPeTDQ2wk3VxsMDAx4fqw3owZ21Yx/OHPxOjtizhN3OotLWYUYGaq25JHJDKiSYMeB8wzq60yf7u1Jzcgn5eI12hgb0tXJmlPnrtLD1Yb+nh3p7mxNBxszLmUVcOp8Drn5pTjamuNga4GhoQGlZUowUE04qais4sLlPCKPXiQq7pKmrKOH9sCtkw0ffKfa/WLORD8G+zhr3ZA8utrywfNBlFcq6XyL3Q0EQRAE/VpCL099qYO9urT01YWxkUwr4APVuG+H9hbsOZzGnsNpAIQ/pN2QMO1hT/p7OhKXksXOPy9gb2vOuODmH1rR7EHfpUuqD3gnJ/393h07dqxxbnX5+fnk59dckFGhUDRiCe8+hoayGgNcTYwNa/z/6cf60MnRii1//MO4YDdKSispLqtk6qhemLYxYtPvKew9ksaB45cxa2OIm2s78grL2H0oFY+uthxMyGDf0XRANfW/Uln7Rtcy2b9b2RkZGjB2uBumJqogMsDTEUmSGOrngqu9FUN89e9e0MNVLJQsCIJwu2QyAySp9vt2S2NhZoyhzKDRgr7ajBnWg4uKAkICOtHWwkTnCg8WZsb06+VIv16OjBzQBTsbsxbRg9TsQV9xcTEAZmb6Z5xZWKgGWxYVFWkdW7duHStWrGiawt2jZDIDHgrsqnc9v+mhnkx5yIPsayXY25prlkCpVFZhZCijrEJJ6pU8zl/J50p2IZ0crOjdvQN27cy4er0ERU4RkgSmJkaUlleScPYqVubGdHO2pruLjWbLKTUDAwNeedKvyV+3IAiCACPvU+3x3poYGBjwxP3ud2R7wAfu61Kv81tS71OzB323Kzw8nLCwsBqPKRQKJk6c2EwlujcYGcq0Zj6puwTaGBvi3tkWdx0rlju2t9DaGs7H3b7pCioIwr1ly5bmLkGrN9SvdS5588QI9+YuQovX7EGfublq4cKSkhK956hb+NQtftW1bduWtm1bThQtCIIgNKMOYm1NQdCn2UdrOjurFgm9cuWK3nPUY/TU5wqCIAiCTt9+q/oRBEFLswd9vXqpZr38888/lJaW6jzn5MmTAHh4eNyxcgmCIAitkAj6BEGvZg/6OnbsiKenJxUVFezevVvreGxsLAqFAjs7O3x8fJqhhIIgCIIgCK1fswd9AE8//TQAS5cuJS0tTfN4Tk4OixYtAmDGjBliNw5BEARBEIQGavaJHAAjR45kwoQJbNq0idDQUAIDAzEyMuLQoUMUFhYSEhLCpEmTmruYgiAIgiAIrVaLCPoAFi5ciJ+fHxs3biQ2Npaqqiq6devGmDFjmDBhgmjlEwRBEARBuA0tJugDCA0NJTQ0tLmLIQiCILRWu3Y1dwkEocVqUUGfIAiCINyWG2u/CoKgTfSZCoIgCHePVatUP4IgaBFBnyAIgnD32LxZ9SMIghYR9AmCIAiCINwDRNAnCIIgCIJwDxBBnyAIgiAIwj3grpy9q1QqAVAoFM1cEkEQBOGOqqxU/b50qXnLIQjNyNHRESMj7RDPQJIkqRnK06SOHTvGxIkTm7sYgiAIgiAId9y+fftwcXHRevyuDPpKS0s5deoUdnZ2GBoaNmleCoWCiRMnsnHjRhwdHZs0L0EQVES9E4TmIepe66Cvpe+u7N41NTXF39//jubp6OioM6oWBKHpiHonCM1D1L3WSUzkEARBEARBuAeIoE8QBEEQBOEeIII+QRAEQRCEe4DhwoULFzZ3IVq7Nm3a0L9/f9q0adPcRRGEe4aod4LQPETda73uytm7giAIgiAIQk2ie1cQBEEQBOEeIII+QRAEQRCEe4AI+gRBEARBEO4BdVqcefjw4Vy+fBmAGTNmMGfOHL3nzpkzh19//RWAgIAA1q9f3wjFvD1XrlwhOjqaAwcOkJSUxNWrVzE2NqZLly4EBwczdepULC0tGy3dnS6nWmZmJqtWrSImJobs7GxsbGwYMGAAzz33HF27dtU6Pycnh5iYGGJiYjh58iQKhQIjIyNcXFwYNGgQ06dPx87OTm9+BQUFfP7550RGRpKRkYGlpSW+vr7MnDkTLy+vRrkmQu3OnTvHunXrOHLkCAqFAkmSsLW1xdHRkb59+zJo0CAGDhzY3MWsVUREBD/99BPJyckUFhZiYWGBu7s7YWFhPPbYY8hkjfPdVNQvob6qf/bps3LlSkJCQhr0/JcuXSI4OBhnZ2f++OOPBj3HzUpKSjh06BAxMTH8/fffXLp0iYqKCuzt7fH392fq1Kn06tVLZ9rJkycTGxur97mDgoJYvXp1o5SzoKCAAwcOcODAAeLj47ly5QqgWvR5wIABTJ8+nc6dO+tNX15ezurVq4mIiCA9PZ02bdrQp08fpk6dyqBBg7TOv53rkpiYyMGDBzl16hQnT57UvCe2bNlCnz59GuFq3Dl1mshR/Y1vb29PVFSUzu3NCgsLGThwIKWlpUDLCfomTJhAXFwcRkZGeHh44OrqSl5eHidOnKCwsBBnZ2fWrVuHq6tro6S70+UE1Yf/k08+yfXr1+nWrRs9e/YkNTWVpKQkzMzMWL16NX5+fjXSqAN0mUyGm5sbXbt2paSkhJMnT5Kbm4uNjQ2rV6+md+/eWvllZ2czYcIE0tPTcXZ2xsvLi8zMTOLi4jA0NOSjjz7iwQcfbJTrIui2a9cuXnvtNSoqKnBwcMDd3Z22bdty7do1EhMTuX79Op6enmzdurW5i6rXvHnz2LZtGzKZDF9fX+zt7cnKyiIuLo6qqiruv/9+PvvsMwwMDG47L1G/hPpSf/YFBQXpDdAnT56Mp6dng56/KYK+n376ibfeegsAZ2dnevbsiZGREadPnyYtLQ1DQ0MWLlzI448/rpVWHfTpe71yuZzp06c3Sjk//vhjvvjiCwC6dOmCXC5HqVSSmJiIQqHA1NSUTz/9lKFDh2qlLS4uJjw8nISEBGxtbenXrx/5+fnExsaiVCqZN28e06ZNq5Hmdq7Lc889x759+7Qeb41BH1IdDBs2TJLL5dLo0aMluVwuRUdH6zzvhx9+kORyuTRmzBhJLpdLkyZNqsvTN7nZs2dLa9eulXJzc2s8npOTI02aNEmSy+XSxIkTGy3dnS6nUqmUQkNDJblcLr3//vs1jn333XeSXC6XgoKCpOLi4hrH3n33XWn58uWSQqGo8XhhYaH00ksvSXK5XAoODpYqKiq08pw5c6Ykl8ull156qcbxvXv3Sj179pS8vb21nldoPFlZWZK3t7ckl8ultWvXSpWVlTWOK5VKKTY2Vvr888+bqYS3duDAAUkul0t+fn5ScnJyjWOJiYmSr6+vJJfLpd9//71R8hP1S6gv9Wff4cOHm+T509PTJblcLg0bNqzRnnPr1q3S66+/LiUmJtZ4vKqqSlqzZo0kl8slT09P6fz581pp1fWgqV5vdV988YW0ZMkS6cKFCzUeLy8vl/73v/9Jcrlc8vf3l65du6aV9p133tHEGIWFhZrHjx8/Lnl7e0vu7u5ar/92rsuXX34pffzxx9LevXuljIwMzfsiISHhNq5A86hX0LdhwwZJLpdLL774os7zxo8fL3l4eGhuhC0l6KtNRkaGJJfLJblcLl25cqXJ0zVUbfn98ccfklwul0aMGKH14S9J/1bkDRs21Dm/4uJiycfHR5LL5dLRo0drHEtJSZHkcrnk6+srFRQUaKWdN2+eJJfLpQ8++KDO+Qn1s3nzZkkul0vjx49v7qI02NKlSyW5XC7Nnz9f5/H58+ffsfeRqF+CLq0x6LuV8PBwSS6XSytWrNA6dieDvtoolUrp/vvvl+RyubRt27Yax65duyZ5enpKPXv2lC5evKiVdvny5ZJcLpdmzZpVrzxruy43a81BX70Gy3h5edG9e3f27dtHfn5+jWPnz58nPj6+1mZwgIMHD7Jo0SIeeeQR+vfvT+/evRk2bBhz587l3LlzOtPMmzcPd3d3tm7dyunTp5k1axYDBw7Ew8ODb7/9tj4vQYujoyPt2rUDQKFQNHm6hqotv8jISAAeeughnd3ujzzyCIDO5ml9zMzMNOOU9OU3fPhwnWOgQkND652fUD85OTkA2NraNih9cXExX3/9NWPGjMHX1xcvLy9GjRrF8uXLKSoq0jp/+fLluLu7s3z5ctLT05kzZw6BgYH06dOHUaNGsWbNGiorK+tVBhMTkzqdp37fNyVRv4TGcuDAAZ555hkCAwPp3bs3QUFBvPzyy6SkpNSarrKykq+++ooHH3yQPn36EBgYyNy5czVj3RqLh4cHoBqj2lLJZDLc3d0B7XJGR0dTUVGBj4+PzqEY6voRExNDRUVFnfNsDdelMdR7hPTo0aMpKytj586dNR7ftm2b5nhtFixYwJYtWzAyMsLf358hQ4ZgbGzM9u3bGTNmDMeOHdObNi4ujnHjxpGUlERAQACDBg3CzMysvi+hhtzcXE0AW1uw2ljpGqq2/JKTkwH0ji1QP56UlFTn/CoqKjTjOBuaX1pams4AQrh9HTt2BODQoUOcOXOmXmkVCgXjxo1j6dKlXLlyBR8fHwYOHEheXh4rVqxgwoQJ5OXl6Ux76dIlxo4dy5EjRwgICKB///6kp6fzwQcfMHv2bKqqqupcjqCgIEA1NvH06dM1jiUlJREREYG5ubnmJt6URP0SGsN7773HU089xYEDB+jUqRPBwcHY2dkRERHBuHHjiI6O1pv2pZde4rPPPsPJyYmQkBBMTEzYvn07Y8eO5fz5841WxrS0NKD2z629e/fy3nvv8fbbb7NixYpaP5ebir5y3qp+dO7cGWtra4qLi0lNTb3t/O42dZq9W92jjz7KsmXL2LZtG08++SQASqWS7du3Y2Njw/Dhw2sdkDp37lwCAgJo27at5jFJkvjxxx9ZsGABb7/9NhEREToHbv/0008888wzzJ49u9Fm9K1ZswalUomnpycuLi5Nnq6hasvv0qVLgGpwqi7qAOHatWsUFRVhYWFxy/y2bNnCtWvXsLOzw8fHR2d+Tk5OOtNaWVlhaWlJYWEhly9fRi6X3zI/oX6Cg4M1kx7CwsIYOHAg/fr1w9PTkz59+mBlZaUznSRJvPjii5w9e5ZJkybx6quvYmpqCkBpaSnz589nx44dLFmyhPfff18r/fbt23nggQf4v//7P80WTKmpqUyZMoXIyEg2bdrExIkT6/QafHx8eOGFF1i+fDlhYWH4+flhb2+vmbDQo0cP3n33XRwdHRt4lepO1C/hdm3atIn169fj5ubGp59+Svfu3TXHIiMjmT17NnPmzCEyMhJra+saaS9fvkxpaSnbt2+nR48egGp26ptvvsmOHTt47bXX2LJly22XMSUlhejoaAwMDBgxYoTe826egLl8+XJ8fX1ZtmyZ5v3elGJiYjh9+jSmpqYMHjy4xrFb1Q9Qtdzn5eVx6dIl3NzcbplfXa/L3aDekZOdnR2DBg0iISFB0x37559/kpWVxcMPP3zLLpuQkJAaAR+AgYEBTzzxBD4+Ppw7d46zZ8/qTNutWzdmzZrVaAHfwYMHWbNmDTKZjHnz5jV5uoa6VX7FxcUAels9zc3NNf+uS8tASkoKH374IaCagXjz31SdX/Xn1ZenaIloGpaWlnz77bf07t2byspKoqOjWbp0KdOmTSMgIIAnnniCXbt2aaWLiYkhPj6evn378uabb2oCPgBTU1MWLVpE+/bt+fXXX3W29pmZmbFgwYIae2526dKF2bNnA7Bu3bp6vY7//ve/fPTRR5iZmXH06FEiIiI4duwYxsbGDBgw4I58oRL1S7iVKVMuDVD9AAANPklEQVSm4O7urvWjfr8olUpWrlwJwCeffFIj4APV59748ePJz89nx44dOvN47rnnNAEfqIY/zJ8/H0tLS06ePMnff/99W6+hqKiIOXPmUFlZyejRo+nZs6fWOX5+fixevJg9e/Zw4sQJ9u/fz7Jly3BxcSEuLo6pU6dq3p9NJTMzkzfffBOAp59+mg4dOtQ43tj1oy7X5W5S75Y+gLCwMKKioti6dSuvvvqqpms3LCysTukVCgVRUVGcP3+ewsJCTZfQ1atXAVXLga7oPDg4WOeYmoZISUlh9uzZKJVKXnzxRQICApo03Z0uZ0MpFAqeffZZiouLGTduHI899liT5ic0XPfu3fn555+Ji4sjOjqaEydOkJSURF5eHvHx8cTHxxMTE1OjxS4mJgaA+++/X+eXJ3Nzc3r37k10dDQnT57UdMGqBQYG0r59e610oaGhvPXWW6SlpZGZmYmDg8Mty19RUcGCBQvYunUrkyZN4sknn6Rjx45kZGSwceNG1q1bR2RkJBs3bmyy1gVRv4S60DdWXb1MT3JyMtnZ2bi5udUI3Krr168fGzdu5Pjx40yePFnruHpsaHVt27Zl2LBh/Prrr8TGxmotC1RXFRUVzJ49mzNnzuDh4aFZuuRmL774Yo3/Ozk54eTkxODBgwkLCyM1NZVNmzbxn//8p0HluJXCwkKeeeYZsrKyCAoK4tlnn22SfNTqel3uJg0K+oYPH46NjQ2//PIL//nPf9i3bx9yuVznelM3++yzz/jyyy9rHfRdWFio8/HamnPr49y5c0ybNo38/HymT59e5zdWQ9M1dTnNzc3Jy8ujpKRE5/Hq38xq63rKzs4mPDycy5cv8+CDD7Jo0SK9+d38vPryrEtXl3B7fH198fX1BaCqqorjx4+zcuVK/vzzT7Zt28aQIUM0a7qlp6cD8OGHH2pam/TJzc3Vekxfy5uJiQl2dnZkZmaiUCjqFPR98803/Pzzz4wfP77GzbZbt27Mnz+f8vJyNm/ezCeffMIHH3xwy+erL1G/hLp6+umn6d+/v97j6nr1zz//aCYg6KOrXrVt21arB0xNPaygoRMGKysrefnllzlw4ADdu3dn9erVtbaS6WJlZcWUKVNYvHgx0dHRTRL0FRUV8dRTT5GUlIS/vz8rVqzQ+8UUbr9+NMZ1aY0aFPSZmJgQGhrK+vXreeONNygvL2fMmDG3TLdnzx5WrlyJhYUFCxcu5L777sPOzk7TxfTKK6+wc+dOJD3rRVfvimqoCxcuEB4eTk5ODhMnTmTu3LlNmu5OlNPZ2Zm8vDwuX76ss2k6IyMDABsbG72VICcnh/DwcFJTUwkODmbp0qV6W1WdnZ1JSkrSO6ussLBQE7g3VqAu1I16keOvvvqKcePGkZiYSGRkpCboUyqVgGrhdH1j1NSa+m+n7iHQ1cIBqtbDzZs3c/DgwUbPW9QvoTGpe6scHBwIDAys9dxu3brdiSIBqvo+Z84cfv/9dzp37szatWt1ttTXhbrcTTG7tbi4mJkzZxIfH4+3tzdffvml3uEU6vtWbbOa1QGyvntcY16X1qZBQR+ounLXr1/P/v37MTIyqtMMu927dwPw8ssvM27cOK3j6tkzTUU94Dw7O5vHH3+c+fPnN2m6O1XOXr16kZSUxMmTJwkODtY6fvLkSc15uuTm5hIeHs65c+cYOnQon3zyCUZG+t8avXr1Yu/evZrnvVlCQgKgmkXVmNvUCXVnaGhI//79SUxM5Nq1a5rH1d2kI0eOrPOEi+r0bUlVXl5OdnY2QJ1a+eDfm7a+94i65UPfTOKGEvVLaGzqyUZ2dnY6J0DdSn5+PgUFBTonYKnrXF3rlZpSqeTVV1/lt99+w8XFhXXr1tX7Oaq7fv060PityyUlJcycOZOjR4/Su3dvVq9eXev7Wl3P9NWPtLQ08vLyMDMzo0uXLlrHG/u6tDYNnhHh6emJr68vNjY2jBw5sk5RsvrmrWs23rlz5zRTsZvCxYsXmTJlCllZWYwePZp33nmnTls7NTTdnSyn+oNo165dmpac6tQDh3XtD6n+QPrnn38ICgpi+fLlt5yMo85v//79Orvi1XsvN3Q/SuHW9LWGV6dugap+Q1PPhFN/Aauvv/76S2f3VEREBFVVVXTq1KnOs23t7e0BOHHihM7j8fHxgP4u5YYQ9UtoCl5eXtjY2JCcnNzgxgtdEzwKCgqIiooCqNd406qqKl577TUiIiJwdnbmu+++u+1xsb/99htAnYZx1VVpaSkzZ84kNjaWXr16sWbNGr0rD6ipl3mLj4/XdKtXp64fQ4YM0aprTXFdWpvbmga7adMmjhw5wkcffVSn89XNwz/99BPl5eWax3Nycpg7d269F3etq/T0dKZMmUJmZiZhYWEsXry4ToFbQ9OBatyjekHppi7n0KFDcXd3Jy0tTetvsWHDBmJjY7G3t9daQ/H69etMnTqVM2fOMHDgQFatWlWnBXPd3d0ZOnQoBQUFvP322zX+bpGRkWzfvh0zMzPCw8Pr+MqF+vr+++95/fXXNa0+1VVWVrJ582b27NkDqBYVVgsJCcHT05PY2Fjefvttzbf36rKzs9m8ebPOfEtKSnjnnXdq1N+LFy/y6aefAqpZjnX1wAMPAKrZjjevcXfq1CnNc1Yvv5qoX6J+tSTGxsY899xzKJVKnn/+eZ31sry8nH379undhGDVqlU1jlVUVLB48WIKCgrw9PTE39+/TmWpqqri9ddfZ+fOnTg5ObFu3bpbDuUAOHLkCLGxsVpfKEtKSvjwww+JjIzEyMhI5yQU9QYK9VnNoqysjGeffZYjR47g4eHB2rVrtZay0cXGxobHH3+cqqoq3njjjRozdE+cOME333yDgYEBM2fOrJGuodflbtPg7t2GCA8PZ/v27URFRXH//ffj5eVFWVkZsbGxdOzYkZCQEM1q9I1p1qxZZGRkYGJionmj6DJjxowaU+0bmg7+HeNRWzdOY5VTJpOxbNkyJk6cyOrVq4mKitJsCJ+YmIipqSkff/yx1hiJt956i5SUFAwMDLC2tmbBggU68xs7dqzWDee9995jwoQJREREcPz4cby9vTXrq8lkMv73v//dU03md1pFRQVbt25l69at2NnZ0bNnT6ytrcnLyyMlJYWsrCwAnnrqKQYNGqRJJ5PJWLVqFTNmzODHH39k586d9OzZk44dO1JWVkZqaipnz56lffv2Ojcef/TRR4mOjiYkJARfX1+Kioo4cuQIZWVlDBs2rF5dxs8//zxHjhwhMTGRMWPG4O3tjaOjIxkZGSQkJFBVVUVAQAAzZszQSivql6hfLU14eDhXrlzh22+/Zdy4cbi7u9OpUyeMjY3JzMwkOTlZsxPOzZ8XTk5OeHp68uijj3LfffdhZWVFfHw8GRkZtGvX7paTrqrbsGED27dvB1St5OqlZG7m5+dXY5hVcnIyS5YsqXE/ycnJITk5mevXr2NiYsLixYt1rqzRkPq4bNkyzXhdR0dHvd3iISEhWq3ar7zyCgkJCcTGxjJixAj69etHQUEBhw8fRqlUMnfuXK3hFg29LgBRUVGsWrVK83/1/fWNN97Q1Hs7Ozu9z9mS3NGgz9XVlW3btvHxxx/z999/s3//fhwcHBg/fjzPP/88ixcvbpJ81d3K5eXl/PLLL3rPCwsLq1EZG5ouNzcXhUKBra0tw4cPb/JyAvTo0YMdO3awcuVKYmJi+P3337GxsSE0NJTnn39es+WTrvwkSdK5pptaQECA1oeSnZ0dW7du5fPPPycyMpK9e/diaWnJ8OHDeeaZZ/Dy8qrz6xbqb+zYsbi4uHDw4EESEhI4c+YMubm5GBkZ4eDgQFhYmM5gAlQ32C1btrBlyxZ+++03zpw5Q0JCAjY2Ntjb2zNt2jS9C5S6urqyZcsWli1bxuHDhykoKMDV1ZUxY8YQHh5erzU0LS0t+eGHH/j+++/ZvXs3Z8+eJSEhAUtLS3x9fRk1ahSPP/641geJqF+ifrVUr7/+OiEhIWzatIm4uDiioqIwNTXFzs6OoUOHMnz4cJ110sDAgE8++YSvvvqKX375hStXrmBpackjjzzC7Nmz6zXEofoY2NjY2FrPrR7cqNf3PHXqFMnJyeTl5WFkZISzszMPP/wwkyZN0vk+h393oxk7dmyDyrl//3695zk7O2sFfRYWFmzcuJHVq1ezc+dO9u/fT5s2bbjvvvuYNm1ajS+6uvKrz3UB1T1H1zCU6rshtZZWQwOpLoODhHrZuXMnr7zyCm+++Wa9ursEoaVavnw5K1as4L///S8vvPBCs5ZF1C9BaDkyMzMZPHgwI0aMYMWKFc1dHOEWGmdrC6GGv/76CxcXF5544onmLoog3HVE/RKEluPQoUMYGhry0ksvNXdRhDq4o92794olS5Y0dxEE4a4l6pcgtByPPfaY2FmmFREtfYIgCIIgCPcAMaZPEARBEAThHiBa+gRBEARBEO4BIugTBEEQBEG4B4igTxAEQRAE4R4ggj5BEARBEIR7gAj6BEEQBEEQ7gH/D/rLvWwkvrCVAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"tags": []
}
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nn_ZriL0P8Di"
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DnUbQCQXP_eZ"
},
"source": [
"https://www.dw.com/en/israels-clever-coronavirus-vaccination-strategy/a-56586888#:~:text=To%20date%2C%20Israel%20has%20administered,40%25%20of%20the%20country's%20population."
]
},
{
"cell_type": "code",
"metadata": {
"id": "UR0BM7TysujG"
},
"source": [
"cad_start = \"2020-12-01\" # 13 confirmed cases\n",
"cad = cad[cad.date >= cad_start].reset_index(drop = True)\n",
"cad[\"days_since_start\"] = np.arange(cad.shape[0]) + 1"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "loi3CtjSsuoz"
},
"source": [
"## Data for Regression"
]
},
{
"cell_type": "code",
"metadata": {
"id": "Os_M7r4Tsuo4"
},
"source": [
"# variable for data to easily swap it out:\n",
"country_ = \"Israel\"\n",
"reg_data = cad.copy()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 204
},
"id": "3RjDFEbA91X-",
"outputId": "1c99ed59-922f-4b3b-9954-383c39bbeef9"
},
"source": [
"reg_data.head()"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" country | \n",
" date | \n",
" confirmed | \n",
" deaths | \n",
" recovered | \n",
" daily_confirmed | \n",
" days_since_start | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" Israel | \n",
" 2020-12-01 | \n",
" 338389.0 | \n",
" 2882.0 | \n",
" 324396.0 | \n",
" 1198.0 | \n",
" 1 | \n",
"
\n",
" \n",
" | 1 | \n",
" Israel | \n",
" 2020-12-02 | \n",
" 339968.0 | \n",
" 2886.0 | \n",
" 325255.0 | \n",
" 1579.0 | \n",
" 2 | \n",
"
\n",
" \n",
" | 2 | \n",
" Israel | \n",
" 2020-12-03 | \n",
" 341406.0 | \n",
" 2895.0 | \n",
" 326706.0 | \n",
" 1438.0 | \n",
" 3 | \n",
"
\n",
" \n",
" | 3 | \n",
" Israel | \n",
" 2020-12-04 | \n",
" 342101.0 | \n",
" 2896.0 | \n",
" 327162.0 | \n",
" 695.0 | \n",
" 4 | \n",
"
\n",
" \n",
" | 4 | \n",
" Israel | \n",
" 2020-12-05 | \n",
" 343826.0 | \n",
" 2909.0 | \n",
" 327749.0 | \n",
" 1725.0 | \n",
" 5 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" country date confirmed ... recovered daily_confirmed days_since_start\n",
"0 Israel 2020-12-01 338389.0 ... 324396.0 1198.0 1\n",
"1 Israel 2020-12-02 339968.0 ... 325255.0 1579.0 2\n",
"2 Israel 2020-12-03 341406.0 ... 326706.0 1438.0 3\n",
"3 Israel 2020-12-04 342101.0 ... 327162.0 695.0 4\n",
"4 Israel 2020-12-05 343826.0 ... 327749.0 1725.0 5\n",
"\n",
"[5 rows x 7 columns]"
]
},
"metadata": {
"tags": []
},
"execution_count": 7
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "j_hdR3EG12jx",
"outputId": "76b47c84-f6bd-4f8b-cc0d-4fbd701b38a8"
},
"source": [
"reg_data.shape"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(147, 7)"
]
},
"metadata": {
"tags": []
},
"execution_count": 8
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "JkO0Z8M0supC"
},
"source": [
"## Change Point Estimation in Pyro"
]
},
{
"cell_type": "code",
"metadata": {
"id": "aIUed4Ny3-oq"
},
"source": [
"!pip install pyro-ppl\n",
"!pip install numpyro"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "3ZS9fTPxsupD"
},
"source": [
"import torch\n",
"\n",
"import pyro\n",
"import pyro.distributions as dist\n",
"from torch import nn\n",
"from pyro.nn import PyroModule, PyroSample\n",
"\n",
"from pyro.infer import MCMC, NUTS, HMC\n",
"from pyro.infer.autoguide import AutoGuide, AutoDiagonalNormal\n",
"\n",
"from pyro.infer import SVI, Trace_ELBO\n",
"from pyro.infer import Predictive"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "T2N23l-dzDQH"
},
"source": [
"# First method"
]
},
{
"cell_type": "code",
"metadata": {
"id": "_iXFlXZNzB_W"
},
"source": [
"# we should be able to have an empirical estimate for the mean of the prior for the 2nd regression bias term\n",
"# this will be something like b = log(max(daily_confirmed))\n",
"\n",
"# might be able to have 1 regression model but change the data so that we have new terms for (tau < t) \n",
"# like an interaction term\n",
"\n",
"class COVID_change(PyroModule):\n",
" def __init__(self, in_features, out_features, b1_mu, b2_mu):\n",
" super().__init__()\n",
" self.linear1 = PyroModule[nn.Linear](in_features, out_features, bias = False)\n",
" self.linear1.weight = PyroSample(dist.Normal(0.5, 0.25).expand([1, 1]).to_event(1))\n",
" self.linear1.bias = PyroSample(dist.Normal(b1_mu, 1.))\n",
" \n",
" # could possibly have stronger priors for the 2nd regression line, because we wont have as much data\n",
" self.linear2 = PyroModule[nn.Linear](in_features, out_features, bias = False)\n",
" self.linear2.weight = PyroSample(dist.Normal(0., 0.25).expand([1, 1])) #.to_event(1))\n",
" self.linear2.bias = PyroSample(dist.Normal(b2_mu, b2_mu/4))\n",
"\n",
" def forward(self, x, y=None):\n",
" tau = pyro.sample(\"tau\", dist.Beta(4, 3))\n",
" sigma = pyro.sample(\"sigma\", dist.Uniform(0., 3.))\n",
" # fit lm's to data based on tau\n",
" sep = int(np.ceil(tau.detach().numpy() * len(x)))\n",
" mean1 = self.linear1(x[:sep]).squeeze(-1)\n",
" mean2 = self.linear2(x[sep:]).squeeze(-1)\n",
" mean = torch.cat((mean1, mean2))\n",
" obs = pyro.sample(\"obs\", dist.StudentT(2, mean, sigma), obs=y)\n",
" return mean"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "2BgfDg1DzCGj",
"outputId": "beb5a7de-89f8-4bc7-ec9e-4a4dea3a7d63"
},
"source": [
"tensor_data = torch.tensor(reg_data[[\"confirmed\", \"days_since_start\", \"daily_confirmed\"]].values, dtype=torch.float)\n",
"x_data = tensor_data[:, 1].unsqueeze_(1)\n",
"y_data = np.log(tensor_data[:, 0])\n",
"y_data_daily = np.log(tensor_data[:, 2])\n",
"# prior hyper params\n",
"# take log of the average of the 1st quartile to get the prior mean for the bias of the 2nd regression line\n",
"q1 = np.quantile(y_data, q = 0.25)\n",
"bias_1_mean = np.mean(y_data.numpy()[y_data <= q1])\n",
"print(\"Prior mean for Bias 1: \", bias_1_mean)\n",
"\n",
"# take log of the average of the 4th quartile to get the prior mean for the bias of the 2nd regression line\n",
"q4 = np.quantile(y_data, q = 0.75)\n",
"bias_2_mean = np.mean(y_data.numpy()[y_data >= q4])\n",
"print(\"Prior mean for Bias 2: \", bias_2_mean)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"Prior mean for Bias 1: 12.849834\n",
"Prior mean for Bias 2: 13.6347475\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "oOntjj5JzCOK",
"outputId": "35f86ad5-f305-4833-e7b2-502ca4399048"
},
"source": [
"model = COVID_change(1, 1, \n",
" b1_mu = bias_1_mean,\n",
" b2_mu = bias_2_mean)\n",
"# need more than 400 samples/chain if we want to use a flat prior on b_2 and w_2\n",
"num_samples = 400 \n",
"# mcmc \n",
"nuts_kernel = NUTS(model)\n",
"mcmc = MCMC(nuts_kernel, \n",
" num_samples=num_samples,\n",
" warmup_steps = 200, \n",
" num_chains = 1)\n",
"mcmc.run(x_data, y_data)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"Sample: 100%|██████████| 600/600 [19:50, 1.98s/it, step size=9.91e-04, acc. prob=0.666]\n"
],
"name": "stderr"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "K_Pr089SzhIE"
},
"source": [
"# Save the model:\n",
"import dill\n",
"# with open('israel_new.pkl', 'wb') as f:\n",
"# \tdill.dump(mcmc, f)\n",
"with open('israel_new.pkl', 'rb') as f:\n",
"\tmcmc = dill.load(f)\n",
" \n",
"samples = mcmc.get_samples()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "YpBMddYCzhOA",
"outputId": "ba0c8844-bbe0-45a9-acdc-c61162f808ad"
},
"source": [
"# extract individual posteriors\n",
"weight_1_post = samples[\"linear1.weight\"].detach().numpy()\n",
"weight_2_post = samples[\"linear2.weight\"].detach().numpy()\n",
"bias_1_post = samples[\"linear1.bias\"].detach().numpy()\n",
"bias_2_post = samples[\"linear2.bias\"].detach().numpy()\n",
"tau_post = samples[\"tau\"].detach().numpy()\n",
"sigma_post = samples[\"sigma\"].detach().numpy()\n",
"\n",
"# build likelihood distribution:\n",
"tau_days = list(map(int, np.ceil(tau_post * len(x_data))))\n",
"mean_ = torch.zeros(len(tau_days), len(x_data))\n",
"obs_ = torch.zeros(len(tau_days), len(x_data))\n",
"for i in range(len(tau_days)) : \n",
" mean_[i, :] = torch.cat((x_data[:tau_days[i]] * weight_1_post[i] + bias_1_post[i],\n",
" x_data[tau_days[i]:] * weight_2_post[i] + bias_2_post[i])).reshape(len(x_data))\n",
" obs_[i, :] = dist.Normal(mean_[i, :], sigma_post[i]).sample()\n",
"samples[\"_RETURN\"] = mean_\n",
"samples[\"obs\"] = obs_\n",
"pred_summary = summary(samples)\n",
"mu = pred_summary[\"_RETURN\"] # mean\n",
"y = pred_summary[\"obs\"] # samples from likelihood: mu + sigma\n",
"y_shift = np.exp(y[\"mean\"]) - np.exp(torch.cat((y[\"mean\"][0:1], y[\"mean\"][:-1])))\n",
"print(y_shift)\n",
"predictions = pd.DataFrame({\n",
" \"days_since_start\": x_data[:, 0],\n",
" \"mu_mean\": mu[\"mean\"], # mean of likelihood\n",
" \"mu_perc_5\": mu[\"5%\"],\n",
" \"mu_perc_95\": mu[\"95%\"],\n",
" \"y_mean\": y[\"mean\"], # mean of likelihood + noise\n",
" \"y_perc_5\": y[\"5%\"],\n",
" \"y_perc_95\": y[\"95%\"],\n",
" \"true_confirmed\": y_data,\n",
" \"true_daily_confirmed\": y_data_daily,\n",
" \"y_daily_mean\": y_shift\n",
"})\n",
"\n",
"w1_ = pred_summary[\"linear1.weight\"]\n",
"w2_ = pred_summary[\"linear2.weight\"]\n",
"\n",
"b1_ = pred_summary[\"linear1.bias\"]\n",
"b2_ = pred_summary[\"linear2.bias\"]\n",
"\n",
"tau_ = pred_summary[\"tau\"]\n",
"sigma_ = pred_summary[\"sigma\"]\n",
"\n",
"ind = int(np.ceil(tau_[\"mean\"] * len(x_data)))"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"tensor([ 0.0000, 3897.4062, 3952.1562, 4050.7188, 3615.7812, 3728.2812,\n",
" 4274.7188, 3263.0000, 4358.2188, 3862.7188, 5077.4062, 3452.1562,\n",
" 4076.4688, 4237.3125, 5129.4062, 3726.9062, 4248.5312, 5507.0625,\n",
" 3093.2188, 5924.8125, 3792.3750, 4752.2500, 5327.9062, 3826.3750,\n",
" 5517.8750, 5089.8438, 5393.5938, 3654.0625, 6585.0938, 4046.8125,\n",
" 6048.1875, 5093.4688, 5010.3750, 5921.5938, 5961.1562, 5405.5000,\n",
" 5872.9375, 4662.8125, 5232.2188, 6545.6875, 6311.2812, 6468.8125,\n",
" 5882.4375, 6132.3438, 6062.4062, 5963.0938, 5833.5000, 7093.5625,\n",
" 5992.8125, 6615.5625, 6426.8125, 7143.6250, 6419.0000, 7113.8125,\n",
" 6659.2500, 6437.5000, 7942.4375, 7400.3125, 7771.3750, 6535.2500,\n",
" 8666.5625, 7089.3125, 7544.8750, 7469.2500, 9253.7500, 7147.1875,\n",
" 8828.0625, 7230.2500, 8460.3750, 8569.5625, 8478.3125, 6977.1875,\n",
" 10170.6250, 8898.0000, 8932.1875, 9536.5000, 9103.0625, 8215.5000,\n",
" 4393.4375, 2070.9375, 1486.7500, 785.4375, 2811.0000, -1774.1875,\n",
" 2213.8750, 685.4375, 190.2500, 2669.4375, 676.5625, 1182.3125,\n",
" 712.6875, 328.8125, 3157.6875, 1514.1875, -311.6875, 1048.6250,\n",
" 824.2500, 1488.9375, 2428.9375, -1355.3750, 2221.2500, 1756.7500,\n",
" 884.0000, 1032.4375, 1387.6875, 1140.3750, 165.7500, 1973.0625,\n",
" 139.8125, 3071.9375, 1674.8125, -712.4375, 943.3125, 2401.2500,\n",
" 1380.5000, 1195.8750, 1257.1875, 1332.1875, 865.0625, 647.5625,\n",
" 1585.5000, 744.6875, 818.7500, 1711.7500, 210.3125, 82.3125,\n",
" 1919.6250, 2726.4375, 1110.5000, -447.6250, 2122.6875, 1868.1250,\n",
" 821.1250, 333.0625, 1625.2500, 1127.5625, -213.6875, 3544.0625,\n",
" 766.8750, 1607.6250, 84.9375, 588.5625, 356.3125, 4072.9375,\n",
" -906.2500, 1906.3125, 1913.1250])\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "gX5DsOiAzhZX",
"outputId": "12fc7431-ebbc-47c7-e4d0-2db463382e37"
},
"source": [
"mcmc.summary()\n",
"diag = mcmc.diagnostics()"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"\n",
" mean std median 5.0% 95.0% n_eff r_hat\n",
" tau 0.53 0.01 0.53 0.51 0.55 98.34 1.00\n",
" sigma 0.02 0.00 0.02 0.02 0.02 26.54 1.04\n",
"linear1.weight[0,0] 0.01 0.00 0.01 0.01 0.01 41.28 1.00\n",
" linear1.bias 12.62 0.01 12.62 12.60 12.64 38.73 1.01\n",
"linear2.weight[0,0] 0.00 0.00 0.00 0.00 0.00 217.67 1.00\n",
" linear2.bias 13.45 0.02 13.45 13.41 13.49 196.52 1.00\n",
"\n",
"Number of divergences: 0\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 331
},
"id": "zoqAEPyhzhmt",
"outputId": "452bf684-de2f-4198-dd94-8f62dc9cf2de"
},
"source": [
"print(ind)\n",
"print(reg_data.date[ind])\n",
"\n",
"sns.distplot(weight_1_post, \n",
" kde_kws = {\"label\": \"Weight posterior before CP\"}, \n",
" # color = \"red\",\n",
" norm_hist = True,\n",
" kde = True)\n",
"plt.axvline(x = w1_[\"mean\"], linestyle = '--',label = \"Mean weight before CP\" ,\n",
" # color = \"red\"\n",
" )\n",
"\n",
"sns.distplot(weight_2_post, \n",
" kde_kws = {\"label\": \"Weight posterior after CP\"}, \n",
" color = \"red\",\n",
" norm_hist = True,\n",
" kde = True)\n",
"plt.axvline(x = w2_[\"mean\"], linestyle = '--',label = \"Mean weight after CP\" ,\n",
" color = \"red\")\n",
"\n",
"legend = plt.legend(loc='upper right')\n",
"legend.get_frame().set_alpha(1)\n",
"sns.set_style(\"ticks\")\n",
"plt.tight_layout()\n",
"sns.despine()\n",
"plt.savefig('/content/sample_data/israel_weights.pdf')\n"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"78\n",
"2021-02-17 00:00:00\n"
],
"name": "stdout"
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVxU9f4/8NfsLAMCGoq7chW1lFREMUxDS8wFNUuza5b3lle/xe9almkm7ubW4na9VDctLc1EUTH15lJ5XTBb3JdMBWQHWQdmPb8/DufIwCxnhtkY3s/Hw8fIOWfOfI7ZvH1/treIYRgGhBBCiIcRu7sBhBBCiCkUoAghhHgkClCEEEI8EgUoQgghHqlJBiidToesrCzodDp3N4UQQogZTTJA5ebmYujQocjNzXVvQzZtYn8RQogTpf3vNtL+d9vdzbCZ1N0NaNJmznR3CwghTcDIxzq5uwl2aZIZlMdQqdhfhBDiRNUaHao1jW9IgzIod3r6afb1xAm3NoMQ4t0WfXoGALBiZqybW2IbyqAIIYR4JApQhBBCPBJ18RHiJgaDATk5OSgsLKQlD8SpJvT3BQCcP3/ebW3w8/NDeHg45HK54PdQgCLETW7dugWRSIRu3bpBLpdDJBK5u0mEOIXBYEBeXh5u3bqF7t27C34fBSh3eukld7eAuFFZWRl69+4NsZh62ol3E4vFaNmyJbKzs216HwUod6IA1eRRcCJNhT1/1+n/DncqLGR/EUIIqYcClDtNmMD+IsQDfPjhh0hKSuJ/Pn78OCIiInDz5k3+2PTp07Fr1y6L93nllVeQkZFh9fOmTJmC48ePmzyXkpKC27ddszXP1atXcfDgQbvf//XXX2PLli0Nbsf69euxcuVKm993//59TJo0CQkJCfj0008b3A5zKioqsGTJEjz55JNISEjA+PHjsXnzZgDsf6+oqCgkJCTg6aefxuuvv46SkpIGfyYFKEIIAGDAgAFIT0/nf05PT0dkZCR/TK/X4/z58+jfv7/F+3zyySdo3759g9qyZ88e3Llzp0H3EOrq1as4dOiQXe/V6XR4/vnn8ZKN3fWOnLV5+vRpBAYGIjU1FX//+9+d0gaGYfDqq6+CYRikpaUhNTUVX3/9Nfz9/flrBg4ciNTUVBw4cAAikQj/+te/bHoOU2gMihAPceznDPw33XrmYY8no9sjLspy0OjduzeysrJQWFiIFi1a4Ny5c3jttdeQkpKCF154AVeuXIFSqUT79u2Rn5+PpUuXIjs7G2q1GiNHjsQ//vEPAEBcXBw2b96Mrl274o8//sDcuXNRVVWFbt26ISMjAzNmzMATTzwBgA2CycnJyM/Px4gRIzB79mzs3r0bly5dwtKlS/HRRx9hzpw5GDhwoFFb4+Li8PTTT+PUqVMoLy/H1KlT8de//hUAcOHCBSxbtgwqlQp+fn5499130atXLxQVFeHNN99EUVERACAmJgYzZszAunXrUFFRgYSEBPTr1w/z58/H77//jjVr1qCyshIAkJiYiCFDhiArKwvPPPMMxo8fjzNnzuC5555DYWEhVCoV5syZA71ejzVr1uCnn34CAAwaNAizZ8+GRCLBO++8A4lEgtu3b6OyshKpqan1/htkZ2fjxRdfRH5+Prp06YLly5cjICAAGo0GH374Ic6dOweNRoOIiAgsXLgQFy9exKpVq/j2v/fee+jYsSOSkpL4LPZvf/sbxo4da/TndubMGXTt2hULFy40ed/agQdgg2B2dja2bt0KmUwGAFAoFJgyZUq9ZxCLxejfvz9++OEHi3/fhKAARQgBAPj4+KBXr15IT0/H448/jqqqKgwaNAjLly8HwAaT6OhoAMCcOXMwc+ZM9OvXDxqNBi+99BJ69uyJxx57zOieb7/9NqZOnYqEhARcvHgRzz33nNH5nJwcbN++HZWVlRg2bBgmTJiAZ555Bnv37sW0adP4QGZKUVERUlJSUFhYiLFjxyIqKgqdO3dGYmIiVqxYgZiYGJw6dQqJiYk4cuQI9u/fj/bt2/PdcaWlpWjWrBkSExNx4sQJrFu3DgA7uzIpKQnJyckIDQ1Ffn4+JkyYgAMHDgAASkpK0LNnT8yZMwcA2zXH2blzJ65evYqUlBQAbHfnzp07MXnyZABstrZt2zb4+fmZfKbz589j7969aNGiBebOnYtNmzZhzpw5+PTTTxEQEIBvv/0WALB69WokJydj1qxZ9dr/z3/+E126dMHGjRuRn5+P8ePHo0ePHujatSsAtquOu8+mTZvM3re2y5cvo0ePHnxwskSj0eDYsWN45JFHrF5rDQUoQjxEXJT1LMfZoqOjcfbsWfj7+6Nv376QSCTo0KEDbt68ifT0dDz11FNQqVRIT09HcXEx/77KykrcunXLKEBVVFTgxo0bGD16NACgZ8+eiIiIMPq8+Ph4iMViBAQEIDw8HBkZGejYsaOgtk6oGb9t0aIFhgwZgvT0dIhEIshkMsTExABgu51kMhlu376NyMhIbNmyBStXrkR0dDRiY03vS/frr78iKysLr7zyCn9MJBLh7t27CA4OhkKhwIgRI0y+9/Tp0xg3bhy/GHX8+PH4/vvv+QAVHx9vNjgBwJAhQ9CiRQv++ZYuXQoAOHbsGCoqKnD48GEAbBDo1q2b2Ta88847AIDQ0FAMHjwYZ8+e5QMUl03Zel9rTp06hYSEBABAnz59MH36dLvuUxsFKHeaMcPdLSDESP/+/bFo0SIEBASgX79+AIB+/frh9OnTOH/+PObPnw+DwQCRSIRvv/1W0L+oLS1AVigU/O8lEgn0en3DH8KM3r17Y8+ePTh16hRSU1ORnJyMr7/+ut51DMMgIiIC27dvr3cuKysLvr6+di+qthScLGEYBklJSXzgbYjabRB634cffhhfffUVdDodpFLTYWPgwIF8FucoNEnCnSZOZH8R4iF69+6Ne/fu4ciRI3x3XlRUFLZv347AwEC0a9cOSqUSffv2RXJyMv++nJwcFBQUGN1LqVSiS5cufNfY5cuXcePGDUHt8Pf3R3l5ucVr9uzZAwAoLi7GDz/8gP79+6NTp07QarU4c4bdvfv06dPQ6XTo1KkTMjMzoVQqMXLkSMydOxeXL1+GwWCAUqk0+qzevXvj7t27/D0AdlyLYRir7Y6JicHevXuh1Wqh1Wqxd+/eeuNnlpw4cYLPTFNSUjBgwAAA7NjRli1bUF1dDYDNTm/dumW2Dd988w0AoKCgAD/88AN/n7qE3jcmJgYtW7bE+++/D41GA4DNtrZt2yb42exBGZQ7ZWayr+3aubcdhNRQKBSIjIxEXl4eWrZsCYDtmsvLy0N8fDx/3Zo1a7BixQq++87f3x/Lli3DQw89ZHS/lStXYt68eUhOTkbXrl3RtWtXBAQEWG3HxIkT8f777+Ozzz4zOUkCAIKDgzF+/HiUl5dj+vTpfPfhunXrjCZJfPzxx5DL5UhPT8eWLVsgFothMBiwaNEiiMVixMTE4D//+Q/GjBmD6OhozJ8/H5s2bcLq1auxfPlyaLVatGvXjp9Sba3dGRkZGDduHAAgNja23ribJVFRUZg1axby8vLwl7/8he+qe/XVV7FhwwZMmDABIpEIIpEIr732GsLDw+vdY/78+ViwYAH/32b27Nno0qWLyc8Tel+RSIRPP/0Ua9euxdNPPw1fX3ZvP+4znEXECPlngZfJysrC0KFDcfToUbRt29Z9DRkyhH2lelBN0vnz59G3b193N8OpKisr4efnB5FIhD/++ANTpkzBoUOH0KxZswbdt/ZMQdJ42Pp3njIoQojT/Prrr1i1ahXfPbZkyZIGByfSdFCAIoQ4TWxsrNnZcg1x7Ngxh9+TeB6aJEEIIcQjUYAihBDikaiLz53efNPdLSCEEI9FAcqdnDxFkxBCGjPq4nOn69fZX4QQQuqhAOVOf/sbMHUqcP++u1tCCAB2fVFsbKzRlkMpKSmIiIhw+q4BjiK0PlNKSgoSExNNnrNWI4pqN7kGBSh30unY4FRW5u6WEMILDQ3FyZMn+Z/37NmDhx9+2I0tso099ZnqakiNKEu8uXaTM7hkDOr+/ft4++23kZGRAblcjg4dOmDx4sUICQnBb7/9hgULFkCtVqNNmzZYvXo1mjdvDgB2nyOksZq76WS9Y7GRbTDysU6o1uiw6NMz9c4PjWqPYdHtUVqhxvtfnKt3/umYThjUu43gNowbNw4pKSkYPHgwMjMzoVKpjHZsMFebyN/fH/v378cXX3wBrVYLgC3LwW1EGhcXh4SEBJw6dQoFBQWYNm0aX8OptokTJ/I1nBYuXIhz584hLS0NOp0Ojz32GI4fPw4/Pz8kJyfjyJEj0Ov1aNmyJZYsWYKHHnoI69ev5+szaTQaLFmyBOnp6QgJCUH37t1RWFjIb2paUVGBf/7zn7h58yYCAgKwfv16SKVSkzWi6qLaTc7nkgxKJBLh73//Ow4fPoz9+/ejXbt2WLNmDQwGA9566y0sWLAAhw8fRlRUFNasWQMAdp9rVJreLlOkEYiOjsaNGzdQWlqKPXv2GJVnAGBUm2jfvn0IDQ3lN46NjY3FN998g7179+KDDz7gayZxqqursXPnTnzxxRdYu3YtXxCwtgEDBvAbtZ4/fx4KhQL5+fm4ePEiwsPD4efnh9TUVGRmZuKbb77Bnj178Pjjj+P999+vd6+dO3ciOzsbaWlp2LJlCy5dumR0/uLFi5gzZw7S0tLwl7/8Bdu2bUNwcDASExP5LMNUcOLa9sEHH+DQoUNQKpXYtGmTxT+fAQMGGN03KioKS5cuRZcuXbB//3589tlnWLNmjdGGulztpuXLl1v8c6/NntpN3bt3t3qtO7gkgwoKCjIqE/3oo4/i66+/xqVLl6BQKBAVFQUAmDRpEoYOHYoVK1bYfa6usrIylNXpQsvNzXXWowp35gxw7hxQU/uFEABYMdP8rgs+cqnF882UCovnhRKJRBgxYgTS0tKQlpaGHTt24PLly/x5SzWEMjMz8eabbyIvLw9SqRSFhYUoKCjgN5F9+umnAQBt27ZFYGAgcnNz621MGhMTg82bN2P06NEICgpCdHQ0Tp8+jaysLH5X7mPHjuHSpUv8pqx6vR5KpbLes5w9exYJCQmQSqWQSqUYOXIkzp8/z5/v06cPwsLCAACRkZE4deqU4D8nqt3kfC6fZm4wGPD1118jLi4OOTk5aN26NX8uJCQEBoMBJSUldp8LCgoy+rytW7diw4YNzn8wW+3cyWZQNV0hhHiScePG4dlnn0W/fv0QHBxsdM5SDaE33ngD77zzDoYNGwaDwYDIyEio1Wr+vJD6T3369MGVK1dw4sQJxMTEIDo6Grt370ZWVhY/qYFhGMyYMYMvWmgvZ9Sjaqq1m5zB5ZMklixZAj8/P5N9z84wdepUHD161OiXqUJkLve//7GvJSU0i494nHbt2mHWrFmYOXNmvXOWagiVl5fzFQJ2797N1w6yhVwuR48ePfDJJ59g4MCBiIyMxC+//ILr168jMjKSb8NXX32F0tJSAGw2ce3atXr3io6Oxv79+6HT6aBWq/Hdd98JakPdGlGmUO0m53NpBrVy5UrcvXsXmzdvhlgsRlhYGLKzs/nzxcXFEIvFCAoKsvtcXYGBgQgMDHTug9njzh0gNBTIzwdu3AAefdTdLSLEyEQzxTQt1RCaO3cuZs6ciWbNmmHQoEEm/58UIiYmBhcvXkTPnj0hkUjQvn17tG3bli+lPnbsWJSUlPD/0GUYBs8//3y9Lq9Jkybh2rVrGDlyJIKDg9G5c2fBn1+3RlRdVLvJBRgXWbt2LfPXv/6VUalU/DG9Xs8MHTqUOXfuHMMwDLNx40bmnXfeadA5ITIzM5muXbsymZmZDnk2m6lUDAMwTGgo+7p0KcPcucMwxcXuaQ9xi59//tndTWgSysvLGYZhGLVazUybNo355ptv3NyipsvWv/MuyaBu3ryJf//73+jYsSMmTZoEgB0k3bhxI1atWoWkpCSj6eIAO/3RnnONQlYW+6pUAgUFbAZ1+DAwfDhQp7+fENIwL7/8MjQaDdRqNQYOHMhPrCCezyUBqkuXLrhuZkufPn36YP/+/Q495/G4Uu8KBSCVAnl57m0PIV5s165d7m4CsRPtJOEONYvyIJezASo/373tIYQQD0QByh0KC9lXiYQCFCGEmEEByh2Ki9nAlJgIdO/OBijaVYIQQoxQgHKH4mIgKAjo3Rvo1IldrFtR4e5WEUKIR6EA5Q7FxUCzZsBvvwFVVewx2tGcuNmHH36IpKQk/ufjx48jIiICN2/e5I9Nnz7d6qSDV155hd/81JIpU6bg+PHjJs+lpKTg9u3bAlveMNZKa1gjtLxHQ9y5cwdjx47F2LFjsW/fPqxfv96uRdDm/PTTT5g0aRKeeuopjB8/HtOnT+cntsXFxSE+Ph5jxozBqFGjkJaW5rDPtYYq6roDl0GtXw9w+wJSBkXcbMCAAVi8eDH/c3p6OiIjI5Geno4uXbpAr9fj/PnzePfddy3e55NPPmlwW/bs2YPg4GB06tSpwfey5urVqzhx4gS/T6AtdDodnn/+ebveZ24bIlOOHDmC3r178/+AiIiIwLRp0/iFyw353JMnT+Ldd9/Fxo0b0bNnTwDsn0lBQQEiIiIAAOvWrUPXrl1x5coVTJo0CTExMQgJCbHps+1BAcodiouBkBCgtBQQ1ySxJnZ1Jk3MF18A//mPc+49bRrw4osWL+nduzeysrJQWFiIFi1a4Ny5c3jttdeQkpKCF154AVeuXIFSqUT79u2Rn5+PpUuXIjs7G2q1GiNHjsQ//vEPAOy/uDdv3oyuXbvijz/+wNy5c1FVVYVu3bohIyMDM2bMwBNPPAGADYLJycnIz8/HiBEjMHv2bOzevRuXLl3C0qVL8dFHH2HOnDkYOHCgUVu5UhSnTp1CeXk5pk6dyu8qceHCBSxbtgwqlQp+fn586Y6ioiK8+eabKCoqAsDuFjFjxgyTpTV+//13rFmzht9tPTExEUOGDEFWVhaeeeYZjB8/HmfOnMFzzz2HwsJCvryHXq/HmjVr8NNPPwEABg0ahNmzZ0MikeCdd96BRCLB7du3UVlZidTUVKNnOn36ND766COo1Wro9Xr84x//wMiRI7Fv3z5s3boVBoMBv/zyC7/x7qRJkyAWi/Hll19CLBZjxYoVuH79OtRqNfr374+5c+dCIpFgypQp6NatG37//Xc0a9as3j8gNm7ciJkzZ/LBCYDZ3c179OgBf39/ZGVlUYDyWsXF7NhTaSk7kw+gDIq4nY+PD3r16oX09HQ8/vjjqKqqwqBBg7B8+XIAbDCJjo4GwNZ5mjlzJvr16weNRoOXXnoJPXv2xGOPPWZ0z7fffhtTp05FQkICLl68iOeee87ofE5ODrZv347KykoMGzYMEyZMwDPPPIO9e/di2rRpfCAzpaioCCkpKSgsLMTYsWMRFRWFzp07IzExEStWrEBMTAxOnTqFxMREHDlyBPv370f79u357rjS0lI0a9YMiYmJOHHiBL95allZGZKSkpCcnIzQ0FDk5+djwoQJOHDgAACgpKQEPXv25EuJrF+/nm/Tzp07cfXqVaSkpABguzt37tyJyZMnA2Azk23bthltAsvp0aMHvvrqK0gkEhQWFmL8+PGIjY3FmDFjcPfuXT4IAmwGtWPHDr4W1Lvvvot+/fph2bJlMBgMfKDn/rwzMzPx1Vdfmczarly5ggULFpj9c67tzJkzUKvV6Nixo6DrG4oClDtwXXwZGQ8CFGVQ5MUXrWY5zhYdHY2zZ8/C398fffv2hUQiQYcOHXDz5k2kp6fjqaeegkqlQnp6Or9RKgBUVlbi1q1bRgGqoqICN27c4PeA69mzJ99lxImPj4dYLEZAQADCw8ORkZEh+MuP28m8RYsWGDJkCNLT0yESiSCTyfgdvwcOHAiZTIbbt28jMjISW7ZswcqVKxEdHY3YWNOlSX799VdkZWXhlVde4Y+JRCLcvXsXwcHBUCgUGDFihMn3nj59GuPGjeO73saPH4/vv/+eD1Dx8fEmgxPA7ik6b9483L17FxKJBKWlpbh9+zYeFbBP57Fjx3DhwgV8/vnnANi6Wy1btuTPjx492qYuxboSExOhUCigVCqxfv16l+1vSgHK1XQ6oLwc4P4Di8XsjhIUoIgH6N+/PxYtWoSAgAD069cPANCvXz+cPn0a58+fx/z582EwGCASifDtt98KKoonEonMnnNGuQtzevfujT179uDUqVNITU1FcnIyvv7663rXMQyDiIgIk1UPsrKy4Ovra/GZLDEXnABg4cKFiIuLw4YNGyASiTB8+HCjUiWWMAyDTZs2oV27djZ/bo8ePXDhwgWLRQu5MShXo1l8rsZ15SmVwFtvAc89x87oowBFPEDv3r1x7949HDlyhO/Oi4qKwvbt2xEYGIh27dpBqVSib9++RtVcc3JyUFBQYHQvpVKJLl268F1jly9fNqoWa4m/v7/Vchd79uwBwGYeP/zwA/r3749OnTpBq9XyFXlPnz4NnU6HTp06ITMzE0qlEiNHjsTcuXNx+fJlGAyGeqU1evfujbt37/L3ANhxLUbAWsWYmBjs3bsXWq0WWq0We/furTd+Zk55eTnatGkDkUiE//3vf7h7967Za/39/VFRa1ggLi4OycnJfIAvLi5GJrelmhUzZszApk2bjIpSXrt2DSdPnhT0fmeiDMrVuEDk5wd068bWgwoKogBFPIJCoUBkZCTy8vL4LqKePXsiLy8P8fHx/HVr1qzBihUr+O47f39/LFu2jB/A56xcuRLz5s1DcnIyunbtiq5duyIgIMBqOyZOnIj3338fn332mclJEgAQHByM8ePHo7y8HNOnTzeacVZ7ksTHH38MuVyO9PR0bNmyBWKxGAaDAYsWLYJYLDZZWmPTpk1YvXo1li9fDq1Wi3bt2mHz5s2C2p2RkcFvSBsbG1tv3M2cN998E4sWLcL69etNdofWNm3aNLz44ovw8fHBl19+iXnz5mH16tVISEjguznnzZtnNqOq7fHHH8fixYuxePFilJSUQCqVom3btnjzzTcFtduZRIyQfxZ4maysLAwdOhRHjx7li6u5zPXrbGD66CPA1xe4epUtXnj/PvD990CHDq5tD3Gb8+fPo2/fvu5uhlNVVlbCz88PIpEIf/zxB6ZMmYJDhw6hWbNmDbpv7ZmCpPGw9e88ZVCuVjuDSk5mF+i2aQPk5Li3XYQ4wa+//opVq1bx3WNLlixpcHAiTQcFKFfj+o1rpofyv68p40yIN4mNjTU7W64hjh075vB7Es9DkyRcjcugasowA2ADFLflESGEEAAUoFzPXAYlcDopIYQ0FRSgXI2r/SSu9Ufv78+uj6IgRQghPBqDcrWafcAglQLvvWe8ozltd0QIITwKUK6mUrGvvr7shrG5uQC3wJHWQhFCCI+6+FxNpQJEIsDHBzhxAvj9d3bKOcBugUSIG8XFxSE2NtZoy6GUlBRERERg27ZtbmyZcELrM6WkpCAxMdHkuYbUiGqqtZucgTIoV1OpALmcDVJffsmug+I2g6QMiniA0NBQnDx5EoMHDwbAbin08MMPu7lVwtlTn6muhtSIaqq1m5yBApSrqVTs5rC1cRkUjUGRIUPqH3vuOWDmTPbvjqkvzJdeYn8VFgI1O3wbmTEDmDhRcBPGjRuHlJQUDB48GJmZmVCpVEY7Nmg0Gnz44Yc4d+4cNBoNIiIisHDhQvj7+2P//v344osvoNVqAbBlObidxePi4pCQkIBTp06hoKAA06ZN42s41TZx4kS+htPChQtx7tw5pKWlQafT4bHHHsPx48fh5+eH5ORkHDlyBHq9Hi1btsSSJUvw0EMPYf369XxpCo1GgyVLliA9PR0hISHo3r07CgsL+dIaFRUV+Oc//4mbN28iICAA69evh1QqNVkjqjaq3eQaFKBcrbKyfoBSKtlX6uIjHiA6OhpfffUVSktLsWfPHowdO9ZoI9FPP/0UAQEB+PbbbwEAq1evRnJyMmbNmoXY2FiMGjUKIpEIf/75J1566SX8+OOP/Hurq6uxc+dOZGVlYfTo0Rg3bhxf04gzYMAAnDlzBr169cL58+ehUCiQn5+Pe/fuITw8HH5+fkhNTUVmZia++eYbiMVifPXVV3j//fexdu1ao3vt3LkT2dnZSEtLg16vx5QpU9CqVSv+/MWLF7Fv3z6EhYVh/vz52LZtG2bNmlWvRlRdVLvJNShAuZqlDIoW65ITJ8yf8/OzfL5FC8vnBRKJRBgxYgTS0tKQlpaGHTt2GAWoY8eOoaKiAocPHwbAZlTdunUDwH65vvnmm8jLy4NUKkVhYSEKCgr4TILrMmvbti0CAwORm5uL8PBwo8+PiYnB5s2bMXr0aAQFBSE6OhqnT59GVlYWBgwYwLfh0qVL/Kaser0eSu4ferWcPXsWCQkJkEqlkEqlGDlyJM6fP8+f79OnD8LCwgAAkZGROHXqlKA/I6rd5BoUoFzNVIDy8WFfKUARDzFu3Dg8++yz6NevH4KDg43OMQyDpKQkvuuutjfeeAPvvPMOhg0bBoPBgMjISKOaRkLqP/Xp0wdXrlzBiRMnEBMTg+joaOzevRtZWVn8pAaGYTBjxgy+aKG97K1HRbWbXINm8bla7QC1bBnw8ssUoIjHadeuHWbNmoWZM2fWOxcXF4ctW7agumb/yIqKCty6dQsAW9OIqxCwe/duu2avyeVy9OjRA5988gkGDhyIyMhI/PLLL7h+/ToiIyP5NnDdkACbxV27dq3evaKjo7F//37odDqo1Wp89913gtpQt0ZUXVS7yTUog3I1lerBNketWrFrobhZfRSgiAeZaGZixauvvooNGzZgwoQJEIlEEIlEeO211xAeHo65c+di5syZaNasGQYNGoSgoCC7PjsmJgYXL15Ez549IZFI0L59e7Rt25afCTd27FiUlJTwkywYhsHzzz/PdzVyJk2ahGvXrmHkyJEIDg5G586dBX9+3RpRtVHtJtegelCurgfVrh3Qti3w738Dhw4BN28Cr78OREcDU6YAdWbtEO/VFOpBeYKKigoolUpoNBrMmDED8fHxePbZZ93drCaJ6kF5utpdfI+R93sAACAASURBVLt2seugXn+dzaIogyLE4V5++WVoNBqo1WoMHDiQn1hBPB8FKFfjFurWRQGKEKfYtWuXu5tA7ESTJFxJr2cLE9adxQewAYqKFjY5BoPB3U0gxCXs+btOAcqVuI1izQUo7jxpEgIDA/Hnn39CrVajCQ4FkybEYDAgLy/P4hR6U6iLz5W4qaamApRCQV18TUx4eDhycnJw7do16HQ6dzeHEKfy8/OrtyjbGgpQrsRtBssFqDVrAG5VO3XxNTlisRht2rRBmzZt3N0U4mVWfXEOv1zPx4r/i8X1u/fR5iF//JFViozccvzvQjY2zH4Cv1zPR5+IUISG2JbVuBJ18blS3QwqOPjBPnw0SYIQ4iAanQESyYOvd6WfHL4KKZop5ahS66DWCNsxw90oQLlS3QwqNRXg9v6iMShCiINodQZIawWos5dycPVOMQL82BnE+SWN47uGuvhcqW4GtW8fuw4KoC4+QojDaHV6SCUi/uezl3OhqtahWwd2X8X7ZY3ju4YyKFeqm0HVJpNRFx8hxCHqdvFxAv3ZDKq00nEVfp2JApQrCZnFR9ONCSENpNUajDIoDhegyihAkXosZVByOWAwAHbs/kwIIbVpdHqjMSiOv68MYpEIZRXCSoO4GwUoV+IyKHNbHQEPghghhNip7iQJjkgkgp+PtNFkUDRJwpW44MMFow0bgHPnjI+pVGwJDkIIsZNGq4ekVhffP8b3wo2MEgCAn4+MxqCICRUVgK8vIK75Y/f1fRCYagcoQghpgLoZlFwmgUzK/uzv23gyKApQrlRZ+aBYIQDs3AmcOMH+nrr4CCEOotHpIRU/+Hr/6bd7uHirEACbQTWWMSiXdfGtXLkShw8fxr1797B//3507doVAFv+WC6XQ1EzcWD27NkYNGgQAOC3337DggULoFar0aZNG6xevRrNmze3es5jcRkU58iRB+ugZDL2laaaE0IagGGYerP4fr2eD1U1u9+jv48UldU66BvBTvouy6CGDh2K7du3m9x3bN26dUhNTUVqaiofnAwGA9566y0sWLAAhw8fRlRUFNasWWP1nEerm0HVxmVQFKAIIQ2g0xvAACbXQQGArw/7j+Gqas/foNhlASoqKgphYWGCr7906RIUCgWioqIAAJMmTcKhQ4esnqurrKwMWVlZRr9yc3Mb+DR2qptB1UYBihDiABotmxmZmsUHAAqZBACg1np+BuURs/hmz54NhmHQt29fvPHGGwgMDEROTg5at27NXxMSEgKDwYCSkhKL54KCgozuvXXrVmzYsMFlz2KRpQyK6+LLyADu32c3kiWEEBtptOxGsKYW6gIPAhR3nSdz+ySJ7du3Y9++fdi9ezcYhsHixYsdev+pU6fi6NGjRr+2b9/u0M8QTEgGde7cg3EpQgixkbom8Jjr4lPIJUbXeTK3Z1Bct59cLsfkyZMxY8YM/nh2djZ/XXFxMcRiMYKCgiyeqyswMBCBgYFOfgqB6mZQn30GnDnD/p4LULSTBCGkAUxlUIkTe+P63fsAanfxeX6AcmsGpVKpUF5eDoCdeXLw4EF0794dAPDII4+guroaP//8MwBgx44diI+Pt3rOo1VUAOZKHnNdfFqt69pDCPE61sag5DL2uKYR1IRyWQa1dOlSHDlyBIWFhXj55ZcRFBSEzZs34/XXX4der4fBYEB4eDiSkpIAsNVGV61ahaSkJKOp5NbOebS6AWrrVuDuXWDAgAcBijIoQkgDqPkM6kGAOnouAwX3qxDRIbhRZVAuC1Dz58/H/Pnz6x3fu3ev2ff06dMH+/fvt/mcRzIY2F0iageoH398MN4klbI7TFCAIoQ0gIYfg3rQxXf5zyJ+HZREIoZMKm4UAcrtkySaDK6UhrkuPpGI3eWcuvgIIQ2gMZFB1eWrkNIsPlILt4WRuWnmAODjQwGKENIg3BiURGw5QKkbwRgUBShX4UptmJtmDrABirr4CCENoNFZXgcF1AQoyqAIz1QGpVA8mBzB/UwBihDSAKa6+GRSidHPfj6No4vP7eugmozaGZS6ZifhTZserIMCaAyKENJgahPTzGc804tfBwVQBkXq4gIUjUERQpzI2lZHAOAjl/BjVZ6MApSrmApQ//43kJb24GcagyKENJBGq4cIgFj8IEAdOn0H567k8T8rZBJodZ6fQVEXn6vU7JhhFKDS04333aMxKEJIA6m1eshkYohEDwLUjYz7/DooAFDIpdDpGRgMjDuaKBhlUK5CXXyEEBfQaPWQSyUWr+E2jK3WeHZNKApQriIkQNEkCUJIA2m0Bsiklr/a+R3NPXwtFAUoVykvZ7cy8vExfw2NQRFCGkij1VsNUD4yLoPy7ABFY1CuUlEBKJXslkacZs0Afa2/IDQGRQhpILVWD7nMuIvP31eG2sNNcj6D8uwuPgpQrlJezgao2j74wHgdFDcGxXj2wCUhxHNpdfW7+P425hGjdVA+8saRQQnu4vv++++h03l2tPVoFRVAQIDla3x82F3PaRyKEGIntZBJEo2ki09wgFq3bh1iY2OxePFi/P77785sk3cylUF9/DGwZ8+DnxUK9rW62nXtIoR4FbaLz/irfd9Pf+L0xRz+Z4Wc7Tzz9Fl8grv49u3bh2vXriE1NRWvv/46fH19kZCQgDFjxqBt27bObKN3MJVBXbhgvA6Km0BBAYoQYieNVo9AP7nRsTvZpcbroGReOIuvW7dumDNnDn744QckJSXh0KFDePLJJ/HCCy9g3759MBg8f+sMtzGVQdXFZVDcXn2EEGIjtab+JIm6Gss6KJsnSWRkZGDfvn3Yt28fRCIREhMTERYWhu3bt+PIkSPYsGGDM9rZ+AkdgwLY4oaEEGIHdqGulXVQjWQMSnCA2r59O1JTU3H37l2MGDECq1atwqOPPsqfHz58OAYOHOiURnoFWzIo6uIjhNiJ2+rIErFYBKnE88u+Cw5QP/74I15++WUMHToUcrm83nlfX1+sX7/eoY3zKqYyqNBQdvEuh8agCCENpNHq+QyJExSgMNo8FgBkUjGq1Z7dxSd4DCo6OhojRoyoF5w+//xz/vexsbGOa5k3MRgeLNStbcUK4G9/e/AzBShCSAPo9Qbo9Ey9dVAvPt0DT0Z3MDomk3p+BiU4QG3cuNHk8X/9618Oa4zX4qrpCu3iozEoQogduIBjbZIEwGVQnh2grHbxnT59GgCg1+tx5swZMLV2OcjKyoK/pc1PCaukhH0NDjY+vmoVkJMDDBjA/kwZFCGkAbgihHUX6u4+fhP3y9SI6PDgO0gulaDawzMoqwHq3XffBQBoNBrMmzePPy4SifDQQw9h/vz5zmudtyguZl9DQoyPX79evx4UQNPMCSF2eZBBGXeO3cuvMFoHBdR08Xn4GJTVAHXs2DEAwNtvv41Vq1Y5vUFeyVyAqosyKEJIA3Dl3mVWtjoCAJlMXC9oeRrBY1AUnBrA1gBFY1CEEDtwO0MorEwzBxrHLD6LGdSIESPw3XffAQAGDx5sVEK4thMnTji8YV6ldoDSW+jzpXVQhJAGUNfKoKzN0JMLuMbdLAaoJUuW8L9fvXq10xvjtWoHqIKCB8c7dADy8h78LJEAUikFKEKIXWrP4qsdfEKD/VBSYTy2LZOKodbowTCM2eTD3SwGqKioKP730dHRTm+M1youZrMjX1/j4wsWGNeDAgCZjLr4CCF24cag6m51NOmpCKN6UAAboPQGBjq9QdCYlTsIHoP6/PPPcfXqVQDAb7/9hiFDhiAuLg6//vqr0xrnNYqL2exJyL9SZDKaxUcIsQs3BiV0HRQAj54oIThAbdmyhS+rsXbtWrz00kuYMWMGli9f7rTGeYX794F799jy7nUtXgx8+aXxMbmcuvgIIXbhZ/HVmSSx48h1HD+faXSMy5o8ecNYwXvxlZeXIyAgABUVFbh+/Tq2bNkCiUSClStXOrN9jV9ZGfDnn6YD1N27xuugAApQhBC7ceNOijpddvn3VSbXQQHw6Jl8ggNUWFgYfvnlF/zxxx+IioqCRCJBRUUFJBLP7Lv0KJWVQPv2wq6lMShCiJ3KVBoAgAGMlSsfBKgqbwhQb7/9NhITEyGXy7Fu3ToAwPHjx9GzZ0+nNc5rVFYCQUHCrpXJKIMihNilUqUFAIgFjHdz2yF5RYAaPHgwTp48aXQsPj4e8fHxDm+U11GphAco6uIjhNhJqzNALBbVK61hCt/F58FVdW2qqFteXo7bt2+jktudu0ZMTIxDG+VV1Gr2l6kAFRHBbhZbGwUoQoidNDo9pJL6walNqBL3y+qvgwKAKg/e0VxwgEpJScHixYvh5+cHH25LHrCbxh49etQpjfMKpaXsq6lJEm+/bXodFLf7OSGE2ECjNUAqqT85+5knuphcBwV4SRffhx9+iI8//hiDBw92Znu8DxegqIuPEOJkWp3eZIAyhZ9m7g0BSq/XU8Vce3DZkKkANXcuUFj4oB4UQJMkCCF2M5dBfXHwCsoqNUb1oKQSEUQAqjx4DErwQt1XXnkF//rXv2AwGJzZHu9jKUDl59fvzqMMihBiJ43W9BhUSbkaFTUz/DgikQgKucQ7uvi2bNmCwsJCfPrppwiq82VLu5lbwAUgU2NQpnAZFMMI2xqJEEJqaGzo4gMAH7kU5ZUaJ7aoYQQHKNrN3E72jEEBbJCqu7ksIYRYoNbo+ckPQshlYlRWaa1f6CaCAxTtZm6nkhJALAaUSmHXcwGqqooCFCHEJhqtAX6+wlcPyWUSfoNZTyQ41Go0Gnz44YcYOnQo+vbtCwA4efIktm3b5rTGeYWSEsDPz3R3Xa9eQOfOxsdkMvZVpXJ+2wghXkWt1UNmoouvY+tmaNXcv95xhVzi0ZvFCg5Qy5cvx40bN7BmzRq+uFWXLl3w9ddfO61xXqGkBPCv/xcDAPD//h8wbpzxMS5A0X58hBAbqbWmu/jGDOqMmJ5h9Y77yCUevZOE4AD1/fffY+3atejduzfEYvZtLVu2RF7tirBmrFy5EnFxcYiIiMCNGzf447dv38bEiRMxfPhwTJw4EXfu3GnwOY9TWspmUDodu3u5tcBTu4uPEEJsoNbYNklCIfPssu+Cn0Qmk0GvN36Q4uLiejP6TBk6dCi2b9+ONm3aGB1PSkrC5MmTcfjwYUyePBkLFixo8DmPU1bGBqjKSuDwYUBTa8bMG28AmzcbX08BihBiB73eUFMdt/7X+mf7LuG703fqHfeaMaj4+HjMmTMHmZls0av8/HwsXrwYI0eOtPreqKgohIUZp5dFRUW4cuUKRo0aBQAYNWoUrly5guLiYrvPmVJWVoasrCyjX7m5uUIfu+G4AGVKaSkbuGqjMShCiB24sSSpiQBVWaU1uWOEj1zq0WNQgqd7zJo1C2vXrsWYMWNQVVWF4cOHY8KECfi///s/uz44JycHLVu25OtJSSQShIaGIicnBwzD2HUuJCSk3uds3boVGzZssKuNDlFWBrRrJ/x6yqAIIXbgxpJMTZIwR1EzBsUwDD+3wJMIDlAZGRno1KkTpk+fDr1ej2HDhiEiIsKZbXOIqVOnYlydiQi5ubl44YUXnP/hDGM5gzKFAhQhxA5cV51t66AkYBhAozNAIfO84rNWAxTDMJg3bx727t2LVq1aITQ0FHl5edi4cSMSEhKwfPlyuyJvWFgY8vLyoNfrIZFIoNfrkZ+fj7CwMDAMY9c5UwIDAxEYGGhz+xyiqgrQam1bz0Sz+AghdrDUxWcOF5SqqnUeGaCsPsnOnTuRnp6OnTt34vjx49i5cydOnDiBHTt24Oeff8aOHTvs+uDmzZuje/fuOHDgAADgwIED6N69O0JCQuw+53G4bY7MZVDR0UC3bsbHaAyKEGIHS118XdsHo21oQL3jPnKJ0Xs9jdUAlZqaivnz56NXr15Gx3v16oV58+YhNTXV6ocsXboUjz/+OHJzc/Hyyy/zEysWLlyIbdu2Yfjw4di2bRsWLVrEv8fecx7FWoCaPh2oO8mEuvgIIXawlEHFx3REvx4t6x1XyD277LvVLr5bt26hX79+Js/169cPb7/9ttUPmT9/PubPn1/veHh4OHbt2mXyPfae8yj3awqE0RgUIcTJ1HZMkpDLuJpQnjmTz2qA0uv1UJrZR06pVFL5DUu4DMrcGNTMmew1tetBSaXstkjUxUcIsUE1P0mi/ljSv3ZfQGWVFhEd+hod58egGmsGpdPpcObMGTAMY/J83cW7pBZrXXxqNTuJojaRCFAoKIMihNjEUhefVqeHTl8/meDGoDy1aKHVANW8eXPMmzfP7HmPnJzgKawFKHN8fSlAEUJsYk8XHzcG5all360GqGPHjrmiHd7JWhefOT4+1MVHCLGJPdPM5R7exSf8SYjtysrYSQ9S4fVZALC7n1dUOKdNhBCvVK3WQSIWQSIWvi7Vp7HP4iMNUFFhvtQGADz+OLvDeV1KJRvcCCFEILVGz3fZ1fVw5+YouF9/2EAqEUMqEXlsVV0KUM5UUWF5/GnqVODMmfrHAwIoQBFCbFKt0ZvdDWJov/a4fvd+veMikQh+PjJUVntmBkVdfM5UWWk5gzLHzw8oKnqwjooQQqyo1uj4MSVb+CqkHptBUYByJmsZ1N/+BqxdW/+4jw9QUEBZFCFEMEsZ1Lqdv2LPiT9MnvPzoQDVNFkbgzJHqQSqqx3fHkKI17I0BmWJn4+MAlSTZC2DMsffnw1QZhZHE0JIXdUa+3Yk91NIUUEBqglqSAbFMLQWihAiWLVGb9cYlJ+PFJXVFKCanoZkUNz7CSFEALVGZ1cXn68Hd/HRNHNnspZBPfUUcPt2/ePce8rLndMuQojXsTRJondEKPKKTffI+Cmk0OoM0Gjty8CciQKUsxgM7DRzSxnUxImm10Fxu8dTBkUIEchSF9+gR9uYXAcFsF18AFBZpfW4AEVdfM7CjR9ZyqCqqgCNpv5x6uIjhNjAYGCg0ZrPoDRaPbQ606WRuADliRMlKINyFi64WMqgXnuNXev0+OPGxymDIoTYQK1lN4o1Nwa1OeUCVNU6PBLevN45P4UMADxyogRlUM7CBRd7ZvHRGBQhxAbVNaU27Jpm7luTQakoQDUdXICytdQG8CCDop0kCCECqGtKbdgzhhTgJwcAlFaoHdomR6AA5SwNyaCUSraybmmpY9tECPFKXC0oe6aZPwhQJsbD3YwClLMIGYMyRyJh30ebxRJCBHjQxWf7V7qPXAKpRITC0irkF6tQrvKcQEUBylmEZFBjxgAxMabP+ftTgCKECKJW12RQZrr4+j/cCt06hpg8JxKJEOivwP2yavxyPR9VHlR6gwKUswgJUAkJwMCBps/5+z8oGU8IIRZYmyTR/5EwdDcToACgmVLuUZkThwKUswjp4rt/3/xUcqWSMihCiCDcGJTczBhUhUpjsax7M38Fyj1wFh+tg3IWIRnU7NnsTL1hw+qf8/cHMjOd0zZCiFfhZuCJRCKT5/+z/zJU1To82vUhk+cD/eXILvS8dZeUQTlLRQUgFgMKhX3vpzEoQohAXPYjEZsOUNYEKuUemUFRgHKWiooH08XtoVSy2yWpPW9tAiHEs2i03Doo+77SmykVqFLroDeY3g7JXShAOUtl5YMFt/bgugaLihzTHkKI11Jr9BABkErsDFD+7Fqo6prZgJ6CApSzcBmUvbj3UoAihFih1uohk4rNjkFZE+jPDkVYmkjhDjRJwlmEBKhnnwVu3jR9jjIoQohAaq0eUqn5fCM2so3FSRCBSjaDogDVVAgJUPHxQFCQ6XMUoAghAmlqMihz+nQLhf9dmdnzfBefxrMCFHXxOYu1aroAkJsLFBebPkcBihAikFqjtzj+dL+s2uJC3GZKz+ziowDlLEIyqHffBT7/3PQ5GoMihAiktpJBffndVXyfnmH2vNJPDhGAKpok0UQ0dJKEXM6W6qAARQixolqjsxigrJGIRfD3lVEXX5PR0AAFACEhQGGhY9pDCPFa1Ro95FLbS23UpvSTURdfk8AwbIDS64GqKvvvExxMAYoQYlW1umEZFAAofeW0DqpJ0GgAnQ64d4/9vb0oQBFCBFBr9ZDZUU0XAHR6A/KLVfD3lXpcBkXTzJ2B2yjWx8fydVOmANevmz8fEgJcuuS4dhFCvA7DMKhW6yG3kEE9EdUO9/JNr4NSa/W48Ech/Hw8bwyKApQzcAFKLrd83ZAhloMYZVCEECs0OgMMDGOxi69neAurY1RKXxmq1TowDOPoJtqNuvicQWgGdecOuxbKnJAQoLQU0HreLsOEEM/AVcCVWQhAecUq3C+vtngff18ZDIxnrYWiAOUM5eXsq7VSG0uWANu3mz8fHMy+0lRzQogZXECx1MW387/XceJ8lsX7KH3ZnSY8qewGBShnEJpBWRNSU6KZuvkIIWZw40YyO0ttcJR+bICqqPKc0u8UoJyBC1D2FivkcBkUBShCiBmqai6Datg6KH8ug6qkDMq7OSpAUQZFCLGC6+Jr+Dooz8ugPGIWX1xcHORyORQ1X+izZ8/GoEGD8Ntvv2HBggVQq9Vo06YNVq9ejebNmwOAxXNux41BURcfIcTJHgSoBu4kwQUoGoOqb926dUhNTUVqaioGDRoEg8GAt956CwsWLMDhw4cRFRWFNWvWAIDFcx5BaAb1yivA00+bP8+V4qAARQgxQ0gGNXxAB0R1b2nxPnKZBBKxyOKu567mMQGqrkuXLkGhUCAqKgoAMGnSJBw6dMjqOY8gdB3UgAFA9+7mz4vFQEAAkGV59g0hpOmq5mbxWZgkEdEhBO1aBli8j0gkgo9C6lGz+Dyiiw9gu/UYhkHfvn3xxhtvICcnB61bt+bPh4SEwGAwoKSkxOK5oDoFAMvKylBWVmZ0LNfS2iNHKC8H/PzYAGPJtWtAZiYbqEyprGSzsLw8x7eREOIVhHTxZeWXo6CkChEdgi3ey0cuQWUVBSgj27dvR1hYGDQaDZYtW4bFixfjySefdMi9t27dig0bNjjkXoIJKVYIAKtXA2VlbOl3c5RK80UNCSFNXpVaB6lEDIlYZPaalON/QFWtQ2xka7PXAIBCJkFlNQUoI2FhYQAAuVyOyZMnY8aMGXjxxReRnZ3NX1NcXAyxWIygoCCEhYWZPVfX1KlTMW7cOKNjubm5eOGFF5z0NBAeoIRQKoH79x1zL0KI11GpdfBRNGyCBEchl/DT1j2B28egVCoVymtmvTEMg4MHD6J79+545JFHUF1djZ9//hkAsGPHDsTHxwOAxXN1BQYGom3btka/WrVq5dyHqqhgu/gcgcugKEgRQkyoUuvgY+dO5nWxAYoyKF5RURFef/116PV6GAwGhIeHIykpCWKxGKtWrUJSUpLRVHIAFs95hPJyx2ZQxcVsV2Cw5f5jQkjTU63WwUfhmK9yhUxKXXy1tWvXDnv37jV5rk+fPti/f7/N59zOEdV0OUolW/Sw2vJGj4SQpklVrYOP3DEZlI9cAo3WAK3O0OCFv47g9gDllSoqgJaW1xwAAF5/Hbh82fI1XKCjLj5CiAkVVVp+ka05o2I7IyO33Oq9FDVdhRVVGgQHNHCjAQegAOUM3DRzax591HpmxAUomslHCDGhokqL0GDL3zed2zSDVmewei9FTSZWodJ6RIByfw7njYTO4vvtN+DWLcvXUIAihFhQqdLA38dyrvHnvVLkFFZavReXQXnKWigKUI7GMMID1Pr1gJnxNx518RFCzNAbGFRW6+DnY7mL78DJP3HmUo7V+/EZFAUoL6VWA3q9Y6eZAxSgCCH1cFPC/X0dM1rjI2fvU+Eh+/FRgHI0bidzR00z5wIddfERQurgdh63lkEJRRmUt+M2inVUBiWRAIGBlEERQurhajdZG4MSSi6jAOXduI1pAwMdd8+gIApQhJB6HJ1BScQiKOQSj6kJRdPMHa2khH0NCHiQTZnz1lvAxYvW7xkcTAGKEFIPl+n4+cgsZj3jn/gL7uRYXwcFAP4+Mo+pqksBytFKS9lXIQGqW7cHAc2SoCCgoKDhbSOEeBUuKFnr4msbGoDKKmGbwPr5SD0mg6IuPkfjApSQLr4zZ4CrV61fR118hBATuNl2flZ2krh+txiZecIyKD+FFMVl1R5RWZcClKPV7uKz5pNPgIMHrV8XHMzO4mOYhrWNEOJVylVayKRiyK3sm3f4zF38fFVY4VMfhRRFpdWo8oCyGxSgHK12F5+jNGvGrq9SqRx3T0JIo1dSXo2gAAVEIvPFCm3lq5BCrdU77H4NQQHK0fLyAB8fdrGuo3CFGIuKHHdPQkijV1KuRpBS4dB7+vlIodZQgPJOhYWAXA5oHNh/y9WBKix03D0JIY1eSYUaQQGOD1A6vQE6vfXNZZ2NApSjlZcDvr6OvSeXQVGAIoTU4owMylfBTrjwhA1jaZq5o5WVCd9F4r332B3NraEMihBSh8HAoLRSIyiDmvhkBG5nlwq6r1/NlHWVB0ySoADlaLZkUB07Arm51q+jDIoQUke5SgODgREUoFqG+KGkXC3ovlyA8oTS79TF52hlZcID1IkTwO+/W78uIAAQiylAEUJ4hSVVAIDmzax/31y8VWhDBuU5XXwUoBzNlgzqyy+B77+3fp1Ewk41p1l8hJAa+ffZABUabP375vjPmfjthrDdaLhdKShAeSNbMihbBAdTBkUI4RXcZ9dFWiv3biv/ml0pPGFHcxqDciSVil1QyxUZdKQWLYSNVxFCmoSsggrIpWJotDqotY6bEu6jkEIEzwhQlEE5ErehqzMCVGgokGO9ZDMhpGnIK1LB31eGiiqdQ9csiUVsyQ3q4vM2XBecMwJUq1ZAdjbtx0cIAQAUlVYhwE/ulHv7KKQekUFRF58jcQFK6D58y5YBv/wi7NqWLYHKSnYShiOLIRJCGqXismq0aynsu2bKiO64dU/YLD4A8JFLPCJAUQblSLZmUK1aASEhwq4NDWVfs7NtbxchxKtUa3QoV2kFz2t8+gAAC95JREFUZ1DBgT42ZVs+cikqqdyGl7E1QB06BJw7J+zali3Z13v3bG8XIcSrFNRMMRcadH65lo+bmcJrylEG5Y0KCtgFtUKnme/aBfz4o7BruQBFGRQhTd6DAGW5UCHn5O/3cOmW8HWUCrmUJkl4ncJCdr2S2Al/rFwXH2VQhDR5ucWVAIBAB28Uy/GRS6DRGdxeF4oClCNxAcoZ/P3Ze2dmOuf+hJBGI6ewEjKpmN/1wdF8FOx9yyvdOw5FAcqRCgqcF6AAoHNn4M8/nXd/QkijkFNYiYeCfR1aSbc2H7kEALshrTtRgHKknJwHXXHO0KkTcPu28+5PCGkUcosqERrk2C2OavOtyaBKK4TtgO4sFKAchWHY8aFWrYS/Z80aYPp04dd37swGKIP7K10SQtyDYRjkFKkQGiJ8z89pox9GfExHwdf71+xoXlxGAco7lJSwe/GFhQl/T3Cw8CnpOh27o7lGQzP5CGnCisuqodHq8ZANGZTST85nRUJwNaGKy6r5Y+UqDfKLVS7t9qMA5Sjc7DpuOrgQqanAqVPCrq2sBPLz2d/TOBQhTVZuEbeLufAM6uylHFy9Uyz4erlMAh+5BPdrBaiqah1+uZ6PKhdW2qUA5ShZWeyrLRnUvn3A6dPCr+fGt27eFP4eQohXySmsAACEhgjPoM5ezsU1GwIUAAQFKFBUK0C5AwUoR+Gmf9syBmWrkBB2EfDly877DEKIR8spUkEsFiEk0MepnxOkVKC4lAKUd7h5E5DLbcugbCUWA+HhwM8/A/eFb1tCCPEeOYWVCA32hVTi3K/vkEAf5NcURXQXClCOcuMG8Je/sOXZnaljR+DiRbZyLyGkycnMK0fbUIEVExqgVXN/FJVWo0rtujGnuihAOcqNG0DXrs7/nPBwdsZgqfCt8wkh3kGvNyArvwIdWjk/QLVszo5x3SuocPpnmUMByhG0WuDWLaBDB6CqSvj7NmwAXn/dts+KiGBfaRyKkCYnu7ASOr0B7VvZVhPuH+N7YVRsZ5ve0yrEHwBwL58NUFqdAQYXF0ylAOUIFy6w65O6dGFfhfL1ZcetbNGzJ/t6/rxt7yOENHoZueUAgPY2ZlBymQQyqW1f9y1D/CCXSXAj4z4u/1mEWR/9gB3/vU7roBqds2fZ18hI2963cydw4oRt7wkMBFq3Fl6JlxDiNW5nl0IsguBKupyffruHi7cKbXqPTCrGI52bY99Pf2LhJ6chFotwv0yNPSf+sOk+DUEByhF+/JFdoNu2rW3vO3LEvkyoc2f2fVr312shhLjOldvF6NymGRQy2yZj/Xo9H39kltj8eeOGhEMsFiEoQIGFfx+Ann9pgZO/ZyO3qNLme9mDAlRDqdXAwYPAqFGAk3YWrqdnT3YW39Gj7HTzu3dp2jkhXk6r0+P63WL06NzcZZ/5aNdQbFnwFDa+FYeQQB/0iQiFSAR8e8w1mwU06gB1+/ZtTJw4EcOHD8fEiRNx584d1zfi22+B8nJgwgTXfebDD7P78n3wAfD778DatTRpghAv9/PVfGh0BvTu6sSKCSYEB/hAXpOxKX1lGPRoGxw9l+GSNVKNOkAlJSVh8uTJOHz4MCZPnowFCxa4tgH37wPvvcdmNE895brPlcmAWbOA//4XeOIJYP16YPBg4I032D37CCFehWEYHPzfbQQFKNC760NubcuIml3Rdxy57vTPck45RhcoKirClStX8PnnnwMARo0ahSVLlqC4uBghISH8dWVlZSirs6j1Xs3Grrm5ufZ9+Jkz7PjRkSPsBq47drA7jOfmstlUaSl73NorVzZDyLWA8bH4eHZN1LVrQFERWyxx/Xpg1y7gySeBvn2BMWNc1+1ICHGKy38W4cjZu7j8ZxGef6obcnLYagZFpdUoKihEroJd2lJUUIpcRZXJV1VZIarUeuTmZtc7b+69OYE6aFQPtlPiPi8sUIfHHw7AwRO/4W5mJnp3DcXjvdtA3MDvmlatWkEqNQ5JIoZx8cR2B7l06RLmzJmDtLQ0/tjTTz+N1atX4+GHH+aPrV+/Hhs2bHBHEwkhhAh09OhRtK0z0azRZlBCTZ06FePGjTM6ptFokJmZiY4dO0Li7K2JnCQ3NxcvvPACtm/fjlbO3KDWxbzxubzxmQB6rsakMTyTqXY12gAVFhaGvLw86PV6SCQS6PV65OfnI6zOZq2BgYEIDKy/6rpzZ9tWVXuqVq1a1ftXhzfwxufyxmcC6Lkak8b2TI12kkTz5s3RvXt3HDhwAABw4MABdO/e3Wj8iRBCSOPVaDMoAFi4cCHeeecdbNq0CYGBgVi5cqW7m0QIIcRBGnWACg8Px65du9zdDEIIIU4gWbhw4UJ3N4LYR6FQoH///lAoFO5uikN543N54zMB9FyNSWN8pkY7zZwQQoh3a7STJAghhHg3ClCEEEI8EgUoQgghHokClAcQsiu7Xq/HokWLMGzYMDz55JNGsxctndu4cSNGjhyJ0aNHY/z48fjpp59c8UgAnPtcnD///BORkZEuXWLg7Oc6ePAgRo8ejVGjRmH06NEoLLSt0Jw9nPlMRUVFePXVVzF69GiMGDECCxcuhE6nc/ozAQ1/rpMnT2L8+PF45JFH6v0dE/L30xmc+Uzu/L4wiSFuN2XKFGbv3r0MwzDM3r17mSlTptS7Zs+ePcy0adMYvV7PFBUVMYMGDWIyMzOtnvvxxx8ZlUrFMAzDXL16lenbty9TVVXV6J+LYRhGp9Mxf/3rX5k33niDef/9913yTAzj3Oe6cOECM2LECCY/P59hGIYpKytjqqurG/UzLV26lP/vo9FomAkTJjBpaWlOfyZHPNedO3eYK1euMB988EG9v2PW/n42xmdy5/eFKZRBuRm3K/uoUaMAsLuyX7lyBcXFxUbXHTx4EM8++yzEYjFCQkIwbNgwHDp0yOq5QYMGwdfXFwAQEREBhmFQUmJ7ZU1Pey4ASE5OxpAhQ9CxY0enP4+rnmvLli2YNm0aHnqILakQEBDg9GnBzn4mkUiEyspKGAwGaDQaaLVatGzZ0qnP5Kjn6tChA7p3715vl21r72usz+Su7wtzKEC5WU5ODlq2bMlvWiuRSBAaGoqcnJx617Vu3Zr/OSwsjC8XYulcbXv37kX79u1dslmks5/r2rVrOHnyJF566SUnP4kxZz/XrVu3kJmZiRdeeAHjxo3Dpk2bwDh5JYizn2nmzJm4ffs2YmNj+V99+/Z16jNxbWroc1m7vz3vawhnP1Ntrvy+MIcCVBORnp6Ojz/+GGvXrnV3UxpMq9Xivffew6JFixrtbvTm6PV6XL9+HZ9//jm+/PJL/Pjjj0hNTXV3sxrk0KFDiIiIwMmTJ/Hjjz/i559/dnqmQRrGU74vKEC5We1d2QGY3ZU9LCwM2dnZ/M85OTn8v2wsnQOAX3/9FW+99RY2btzosl3cnflcBQUFyMjIwKuvvoq4uDhs3boV33zzDd57771G/VwA0Lp1a8THx0Mul0OpVGLo0KG4cOFCo36mbdu2YcyYMRCLxQgICEBcXBzOnj3r1Gfi2tTQ57J2f3ve1xDOfibAPd8X5lCAcjOhu7LHx8dj165dMBgMKC4uxvfff4/hw4dbPXfhwgXMmjUL69atMyrk2Jifq3Xr1jh79iyOHTuGY8eOYerUqfj/7d0xioNQFIXht5C0QsqkSmUliAkhRZDUKVyHBAQX4CqyDgkkkM4qhRZZhzzOFIJMMZOBmTg+4f/ASm5xmndAL3o4HEyWZZPOZUz3TuFyuRhJpm1bc7vdzHw+n3Sm2WxmyrI0xnT/Yrter8bzvEEzvSvXK7+d+4uhM411XnxrtPUM9Oq6VhzHCsNQcRyraRpJUpIkqqpKUrexlqapgiBQEAQ6n8/9/Kt7+/1eq9VKu92uvx6Px+RzfVYUxb9u8Q2Zy1qrPM8VRZE2m43yPJe1dtKZns+njsejttut1uu1TqeT2rYdPNM7ct3vd/m+r+VyqcViId/3VZblj3NTzTTmefEVvsUHAHASj/gAAE6ioAAATqKgAABOoqAAAE6ioAAATqKgAABOoqAAAE76AHe7NMqJsuLJAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"tags": []
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "iRBkqA2Qzh1B",
"outputId": "cadad0ad-c40e-4548-c278-d8c076afdd46"
},
"source": [
"print(w1_[\"mean\"])\n",
"print(w2_[\"mean\"])"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"tensor([[0.0120]])\n",
"tensor([[0.0014]])\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "1JY4rN5G4ycf",
"outputId": "a524f7c3-cad8-415f-82e8-92b653737910"
},
"source": [
"1 - 14/120"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.8833333333333333"
]
},
"metadata": {
"tags": []
},
"execution_count": 18
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 437
},
"id": "XJJeKcyVziAD",
"outputId": "695a0ad4-3632-47c0-8289-e7f09ef3253f"
},
"source": [
"start_date_ = str(reg_data.date[0]).split(' ')[0]\n",
"change_date_ = str(reg_data.date[ind]).split(' ')[0]\n",
"print(\"Date of change for {}: {}\".format(country_, change_date_))\n",
"import seaborn as sns\n",
"\n",
"# plot data:\n",
"fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(7, 5))\n",
"ax = [ax]\n",
"# log regression model\n",
"ax[0].scatter(y = np.exp(y_data[:ind]), x = x_data[:ind], s = 15);\n",
"ax[0].scatter(y = np.exp(y_data[ind:]), x = x_data[ind:], s = 15, color = \"red\");\n",
"\n",
"ax[0].plot(predictions[\"days_since_start\"],\n",
" np.exp(predictions[\"y_mean\"]), \n",
" color = \"green\",\n",
" label = \"Fitted line by MCMC-NUTS model\") \n",
"ax[0].axvline(19, \n",
" linestyle = '--', linewidth = 1.5,\n",
" label = \"Start of Vaccination: Dec 20, 2020\" ,\n",
" color = \"red\")\n",
"\n",
"ax[0].axvline(ind, \n",
" linestyle = '--', linewidth = 1.5,\n",
" label = \"Date of Change: Feb 17, 2021\",\n",
" color = \"black\")\n",
"\n",
"ax[0].fill_between(predictions[\"days_since_start\"], \n",
" np.exp(predictions[\"y_perc_5\"]), \n",
" np.exp(predictions[\"y_perc_95\"]), \n",
" alpha = 0.25,\n",
" label = \"90% CI of predictions\",\n",
" color = \"teal\");\n",
"ax[0].fill_betweenx([0, 1], \n",
" tau_[\"5%\"] * len(x_data), \n",
" tau_[\"95%\"] * len(x_data), \n",
" alpha = 0.25,\n",
" label = \"90% CI of changing point\",\n",
" color = \"lightcoral\",\n",
" transform=ax[0].get_xaxis_transform());\n",
"ax[0].set(ylabel = \"Total Cases\",)\n",
" # xlabel = \"Days since %s\" % start_date_, \n",
" # title = \"Confirmed Cases in China\") /\n",
"ax[0].legend(loc = \"lower right\", fontsize=12.8)\n",
"ax[0].set_ylim([100000,1000000])\n",
"ax[0].xaxis.get_label().set_fontsize(16)\n",
"ax[0].yaxis.get_label().set_fontsize(16)\n",
"ax[0].title.set_fontsize(20)\n",
"ax[0].tick_params(labelsize=16)\n",
"\n",
"plt.xticks(ticks=[19,46,78,121], labels=[\"Dec 20\",\n",
" \"Jan 15\",\n",
" \"Feb 17\",\n",
" \"Apr 1\"], fontsize=15)\n",
"ax[0].set_yscale('log')\n",
"plt.setp(ax[0].get_xticklabels(), rotation=0, horizontalalignment='center')\n",
"print(reg_data.columns)\n",
"myFmt = mdates.DateFormatter('%m-%d')\n",
"sns.set_style(\"ticks\")\n",
"sns.despine()\n",
"plt.tight_layout()\n",
"ax[0].figure.savefig('/content/sample_data/israel_cp.pdf')\n"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"Date of change for Israel: 2021-02-17\n",
"Index(['country', 'date', 'confirmed', 'deaths', 'recovered',\n",
" 'daily_confirmed', 'days_since_start'],\n",
" dtype='object')\n"
],
"name": "stdout"
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAFgCAYAAABEyiulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd5xU5b3H8c8p03e2s4W69CJiCWJUjF4wF2MQrzFRrhoVSzQmhJgoGr1RYwM0Gg0QTTEBy000VcUEk0sSsEvEhvS27LK9785OO+c894+ZHdgAOuguwy6/9+vl68DMnDm/I7pfnuc8RVNKKYQQQgjRp+iZLkAIIYQQh04CXAghhOiDJMCFEEKIPkgCXAghhOiDJMCFEEKIPkgCXAghhOiDJMCFEEKIPsjMdAGHSywW44EHHmD16tV4PB4GDRrEY489lumyhBBCiE/kqAnwH/3oR8TjcVauXImu69TX12e6JCGEEOIT047Uldhqamr4+c9/zvr169m0aRORSIRVq1YxePDg/T5bXV3NggULePXVV1FKceqpp3LrrbcycOBAAMLhMKeddhpr1qwhKyvrcN+KEEII0eOO2Gfg5eXl/OUvfyE7O5vJkycf9HPhcJjLL7+cHTt2sGjRIu6//37Ky8u57LLL6OzsTH1XTk4OP/vZz7jggguYPXs2//jHPw7XrQghhBA97ojtQj/ppJN47bXXAPjtb3/LK6+8csDPPfvss1RUVLBy5UqGDRsGwNixY5kxYwbPPPMMc+bMwbZtqqqqGDp0KN/5znfYvn07l156Kc8++yxDhgw5bPckhBBC9JQjtgWu6+mV9ve//53jjjsuFd4AQ4YM4cQTT2TVqlUAlJaWomkas2bNAmDkyJGMGzeODz/8cL/va2tro7Kysts/5eXlbNq0CcuyeuDOhBBCiE/viG2Bp2vbtm1Mnz59v9dHjRrFypUrAcjPz2fq1Km8/PLLTJ8+nbq6OrZs2cKYMWP2O2/58uUsWbLkgNc62DP4o8aZZyaO//xnJqsQfVh82zZUJHLA9z4/Zw4Af/vVrw56vub14ho1qldqE6Kv6fMB3traSnZ29n6v5+Tk0NbWlvr9nXfeyW233cbDDz8MwM0338yIESP2O+/yyy/n/PPP7/ZaTU0Nl1xySQ9XLsTRR0Ui6AcbSGoYAAd/H3A6OnqjLCH6pD4f4OkaPHgwy5cv/9jPZWdnH/AvBEIIIcSRpM8HeHZ2dreWdpeDtczFp1BQkOkKRD9WkJeX6RKE6FP6fICPGjWKrVu37vf69u3bGSXPynrW73+f6QpEP/bso49mugQh+pQjdhR6uqZNm8Z7771HRUVF6rXKykrWrVvHtGnTMliZEEII0XuO6BZ41yjy9evXA7BmzRry8/PJz89nypQpAFx44YU8/fTTXH/99cybNw9N03jkkUcoKSnhoosuyljt/dL3vpc4LliQ2TpEv3Tb/fcDcO/8+RmuRIi+4YgO8Hnz5nX7/Q9+8AMApkyZwpNPPgmA3+9n+fLlLFiwgPnz56OU4pRTTuHWW28lEAgc9pr7tddfz3QFoh97Y926TJcgRJ9yRAf45s2b0/rcwIEDWbx4cS9XI4QQQhw5+vwzcCGEEOJoJAEuhBBC9EFHdBe6OMIczcvIil43qKQk0yUI0adIgIv0PfVUpisQ/dgTyWWOhRDpkS50IYQQog+SFvhBLF68+KC7kh21vv3txFFaSqIXfOeuuwB46PbbM1yJEH2DBPhBzJ07l7lz5wKJld0OtGXpUefddzNdgejH3tuwIdMlCNGnSIALIYQQh8B2HBrDYZRSAGiahpY8egwDn8uFqff+E2oJcCGEEAKwHIeIZRGzbeK2janreE0Tl2FgOw6W41DT0cH6ujoiloWmad3O7/qdoxQTBgzguF6eWSEBLoQQol+wHIemcBiXrhP0eDB1HctxiNk2GmDqOpqmEY7HCcXjdMZitEajtEYitEajdMbje0M52bpmn99rmoYC8n0+8ny+g9bRHo3SHov16r2CBLg4FGPGZLoC0Y+NHj480yWII4ijFLFkK7irO9pOtpBbo1Gq29up6+wk3+ulKBCgMx5nU0NDIqw1DaUUrmSAs29LuSuYATQNt2HgNgz8Lhc5Xu9hvstPRwJcpO9nP8t0BaIfe0x2uevXOuNxlFLomoauadhKpbqlbaWI2zbNkQg1HR20RCLEbBsgEcSGgcswCMfjqe9zGwY+06S6o4OdLS3omkae14vLMFLnOUph9PCz6PpQDe/XvkVbrIUsVxC36aU53EBdqIq6UDV1oT00R5q4+bSFTB06tEev/e8kwIUQQqTNTnZJQ6JLWtc0wpZFOB6nLRqlpqODhs5OPKZJrseDpmlUt7cTsaxES1gpFHsHfimlINliNnUdn8tFjsfTLXjtZMhnu937PXf2uVwHrFPTNIx/+2yX5nADO5o3EYp30BkP0RZtpilcR1O4gZgdwXIsLMfCduJYyiJux7GdOK3RZqo7Kg74nabuYoC/hKLAQEbnH0tRoPTQ/+UeIglwkb6vfS1xlJa46AXXJfebl5b44Wc5DvWhENXt7RjJgVsKaI1EaI/FiFoWllLELSvRJQ2p0E38MhHMWmsr3gcfxLd1K3ZZGbW6jtq9G79tk2vbUFaWOHfnTtD1RHd212u7dh30fQMw9nlNlQ2jxYzRVruLyNASwrpFuL6KsFsRNhwiRbmEDZtIWyNhlyJi2oRz/IR1i3JXC9VZe1vyXVyOTn7cjSfiYCoN09EwXV5MpeHpjGIqjeK4zvlqHMe15VO4vZ5wWSlhwyZvey15MRe6AsryaTds8hZcDUVF8NvfQnFxr/y5SYCL9G3ZkukKRD+2defOTJfQp6W6o2tq4NJLUe+/T8fEiTS7XLSWl2ObJrZSREeOJKrrxCorMTUNdzxO66hR2JqGp7wchgzB0jSoqMDjOLhtG9eQIbgBfefORKv2YMG7adPeZ8wffsh+w7w2bty/8ORrnabDrvp32Z0Tp3WkTZvHIWYoTGcPLkej9XiHmiyL2iyLmqxNRM2uZ9k7DvBvoxoA3QGfpeGL6/isEF5LZ3SDi/M2ZjG60U1O1MAX1wjGdLJiOhoHbrF3FwGqEr98d/c+r1t778fthnAYXn8dvvIVWLMmje89dBLgQgiRYREr8cPfYxipAVgx2yZaXU3siiuIbdiASg4itbdsodXno8XlonP0aCKaRqS6GjVkSCI8t29PfOnAgdDcjKYUXtNEUwoNMLZuxaUUHsfB0XVsTaPg/fcxuoK3uXn/Ag+0yM6+YbxxIzHDocOj6HQ5hNwOHcl/mnw2DX6bVq+NrYHSFA7gaBA3FPUBi7qATaPf7vb1hgMeSyNuKOIGZEd0ijtMhra4OGmPj5IOk9yIngznREh7LQ2flTzGdVwOaYZyL7GsXl0ASwJcCCF6iVKKsGXRHo0StixilkUs2VKO2zaRujoa7rmHaHk5avBgdMC7axeRsjIcTUPftg2lFKqwEK2xMfGlBQWYXS3jzZvxOw7ZjrP3/UNhdw9NB0W7x6HVa9PSdfQmjq0eh3aPTadL0ZEM6ZDbIZT8ddw4+GUMB3IiBoYCXYGuNDQFpqMxoNNgSqWbge0mZS1uylpc5IcNfJaWCl+FymwQ70MBUcMgZhgoTUu95mgadvIvRLauUxQKgWnC8cf3Wi0S4EIIwd5Ry12jo22lUgt7tEQiNHR24jYMsj0e3LpOKB4nlJzr6zHN1JzjrnM6YjFC8fjeZ8YtLeg/+hH6zp3oQ4agKYWxZQtZ8Th5jgONjSggrusE33vvU+00pVC0eB0a/BaNPhtdafgsDcPRUq3jmiyLyuw4VUGLZm+ihdzmcXAOcmFfXCMY1QnEdQIxnbywweA2F4G4RiCWeC0QT3RFByyDQEkZAdskf1stufGu58NliS/7qGfgWcn33Xvf1z7unIO9f5DXLMOgze3GHjoUl+Nglpejhg7F0jTsigos00yc07WFckUFmq6jlEIbPJhsy6Jw61b0YcMA0LdvxwW44nGyhw/Hb9sEKyrglFMSz8B7iQS4SF8v/k1SiOMmTDjkc+K2TWM4jNswyPV60fcZddy1gIflOHhNE3dyelHEsmiNROiMx+mIxWhPLubREY1i7zNnWCPRskIp9OTALkcpyltasJMjpl1d85OT4d81RcpoacG1YAF527ZhJH/Id3s+fKBu6uQ13V2Bvw9bU4RcDu3J58KOBlHToSZgU5tlEXI5KA0ipsPOvDhb82N0ePb/nn+XFzEY2OFmqMonp81NbkMnOYEici03OZVN5MZMciMGOSUjcCvj40O0fBeMGgV33gn5+R97/Z4Qt23CycF1XX/6tlJYtp36s1TJxwcqOfLd0DTKcnPJcrtpj8UIxWK4DCO1DKrXNPEYBkZylL2+z3xxr2l2++8skyTARfpkFzLRiz5uF7K4bROOxYi0txOJx6np6KCyvR1HqdQUpEK/n4hlEYrFiDtOasqRUgq/242habRHo6lR06Zh4NJ1PKZJgd+f/g/mpqZESG3bduDWnqZBNJrooj7QwC2gw21TnWVRnZV4BtzmsWn3OLQlu6rb3V2/TrSY1UeUZjigo2EonbIWF9PahjD0zK9QNGAUBf4iHOUQsTqxHIuAK4uAO0hRYCBZ7uz07vcwsR2H1mg0NU1NA3RNQ9M0nORfkhSgKZXqvvYZBgMCAQJuN7bj4CiFz+Ui4HLhMozUebqmYeo6bsMgz+vt8fnhmSABLoQ4otiOQ0NnJ3va21Mtp4hlEbYsvJEI1W43Golu6wKfL/WD2HYcQvE4pq6Tt8/rXWK2jVKK0mDwE9emGhvpvPt/cDZtwLQTLfT23R/Q5rFpy3MSoeu1aUuGb13AoiInzp5sC4+lkRcxMB2oybIIuVW379YUBC0XwQgENT/ZlotBzTGyfflknXYW2bkDyfbk4DY86JqB2/BQHBhIcdYg/K6sT3xPPU0plVpPPGbbiV6NrvdIrheebAkHPR40oCMWw06G7PDcXIoCARSkHklYjoOuaRT4fOR4vbh0HTvZm9HVs3I0kgA/CNkP/AAuvTRxfOqpzNYh+qVL5s0jEo8zb/584o6D3+VCT6497TIM/G43pqahsg4cVoauk+V2H/T7P+oHve1YhK1OwvFOwlaIcDxEuKmGtqd+zrbwTrYURNkdjNLotYidoOCEj78fb1yjIGwwtNXFidU+YoaixWsTN+DYWCmlUT8lFe2U5I+g+Nt3ECwZjq4dGa1CJ/n8P558BKFIBHNXAGuaRsy2cbq6prtOTIZqns9HcSBAlsdDtsdDwOVK/Xk6ShG1beqSK6gBTBgwgAGBAPk+X9q7eB29sb2XBPhByH7gB1BZmekKRD/UFomws6WFjeXlaIDf5cJMs1UVt2O0RJrI9xVi6CZKKdqizdR0VBKxwsSdGDE7StyOEbbCVLTtYGfzJmpDe+iMh1KBHbOjB77AyMRc4rIWF+Pr3Azo9JEfNtAVWMku7WBMJzuqE4wa5ER1glGd7LiJ2+3f/1nxYX4+7ChFNNka1pLPcl3JbmQFtEWjhPfdwANSjyP8ydD1mWbqWXDXdyog6HaT6/Xic7lSgW/qOtnJTUQ+is/lItfrZUxhYS/eff8nAS6EyIjOWIwdLS3UdHQktmxM/tDvCm9b2TRGG6mJ1FITrqU2UkNzZx3NNSYdsTZ2t26jvGU7trLQNZ0CXzFhK0RHrO2g1zQ0kyE5IxgUHIZfufGtW4+vEXx2Nv64hs828IVtfNHEAiD+uM6wFhde+yCBpOswdmziJ2ld8hk4Csb3bFDbyef5+r8Fbcy26YzHidr23mfvyV2zuuT7fOT7fKnR9e3RKHWRCAoYnJ3NqPz8VM+FRqKnwnUUd0v3JRLgQojDynYc9rS3s7WxEZeuU+DzpQKnw+pg6ZZHebXhdXZ07MBW3ecpe3UPPncQvyuLwdllfHbwdAb4S2gK11EbqsJr+hmSPZySrMH4XAHcuhu34cHVEca99KcUbdiDGxNUZXKgmQn2IQzk0nXwehNheQit6W5LjibFbLvb5hwRy0p1VWv7BLGjFG7DSHVl7/OlZHs8DMrOZoDfnwpeQ9MwdB1D0/C7XAccrNXVYj6anx/3BxLgQojDpiMWY3NrK23RKLn7jARe1/QOm9o202l1sn3XDo7PPY5Lyy6m1FdCibeEYm8xJd5ici2DlnS3Hd13pPi+o8JJc5/mrrB2nL2jy0eNQt1xB1ZubrduZdg7jxxITVHr8u97TCvAa5qUZGUlnvMrRa7PxwC/n2yPJ7HkaXJ1Nn9yNHVXi9tyHFyGkdpI5JPomhYl+jYJcJG+U07JdAWijwrH43xYV0dbdTVGMEiB3w9AdbiaBzc9zOq6NfiH+Dk19xTu/Y+7yDrYqGor/NEXOmhop0nXsX0+woaBNXIkzo03onJzUy3jrkVZ/PF4osX8bwO7uuYM5/t8TCouZkAggMcwUoO3QvE4nfE4fpeL4AF21uriIhHw+9I0DY9p4kn/bkQ/JwEu0ie7RIlPoLq9nVcrKlBKMcrnw3a7sRyLZ3b/lse2JXa2u370dfz3WRfhNbzpf/GB5mLvs1jKvstbOpqGo2lETZOIYSSmMWkaeDxojoPS9UQQDxuGdsMNlA4enHoub+p6KpzzfT7yvF48yXDtCnSj6/s+gqFpZCdHZQvREyTAhRC9QinFpoYG3q6upsDnw+dyoWkaG1s3cd+GhWxq28zUAacyf/yNlPo+eu9kp7UVli/HbmoiZhjYmkZ82zY6TTPRvb17dyKA/f7UQC4Al+PgtixcgNvtpiASYXBbG3mdnRiTJmE//TTxwkKitk3EsvAYBgV+f9pTmdL9nBC9QQJcpO+CCxLH3/8+s3WII14oFmNddTW7W1spzcrC0HXC8RC/2L6UX+/5I/mefBYedy/Tiv8j1XKdn9wPfOG999KZ3PiDUAh+9zv03bvRHQevx0N0xw5cjkNeLMYxHR3kJUdUd7pcREyT7GiU7GgUr1JogUAizI8/vlf3ZRYiEyTARfo+yW5H4qjiKMWOpiberq7G1HUGBoNomsZrFf/HI2/eQX2omi8NOZ9vjv56t+fcnZE423bXELdsXlj1Pl9a/w+Kt2/Hb1l4QyHM5IAuJysL99atB7x2QXif5+OGAaeeKqEt+jUJcCFEj2iNRHirqoq6jg4GBAK4DYOGzloWv3Una8pXMjx3LPcf/z2OKZ6cOqczEmflWzupaQlhxR0MdL76/G8Y1liBoT5+Mw4gEdaTk9+5YYO0tsVRQwJcCPGpWI7D5oYG3q+txedyMSg7G0c5/GnTk/xi3QPEnRhXn3gTF064mgG799AWibNq7W7qW8NY2GBDjuPHTG6gObCl+uDhrWlw8smJX0tYi6OcBLgQ4hNr7OzkjT17aItEKAoEMHSdxs46FrzyHd6ufpXjik5lcOdlbH0jm59v3sBJ8Wa2t1lYysHWFAHHjU+52Xf8dk1uKUO6WuD/vnDK/PkwdWrG7leII4kEuEifrAcvSLS460MhtjY1UdHaSo7XS2kwiFKKl8tf4oevfY9QLMRo6ypyK6fRbDk4yqairoMRRoQ4GmiQ6/hwqb2LiQwdegyaBmtm/BcXv/EM7Ni+/2pnHR2ZuWkhjkAS4CJ93/9+pisQGdbQ2cmru3enFiMZmNya8609q3l83Y/Y0vQefmcoEyM341ODiLK3K9xBEdccDMdF0PFhJIPcYyY21vjvCy7j4hnjCPrdcKm0soX4OBLgQoiPpZRiS2Mjb1dVpVrcAFvrtnP7X2+ixn4HjypkRGwOhdbn0P/tR0tMs1AofI4L3fEnVy6DoSXZe0NbCHFIJMBF+r7whcTxL3/JbB3isIpYFmv37KG8tZWSrCxMXae5I8SdKxaxPvIbNAyGxS6l2Jq+X3A7moPmgqDycOyAIobHGtnZalNaGNgvuGdecQUAK5YtO4x3J0TfJQEu0hf+mHWoRb9THwrxyu7d2EqRbXh4/Ln1bGp8h63G44T0CvLtkyiLXYpbdd+RS6GwdJvBA4LcPft0Jg4cgKZpxNavR8868Drn4UjkcNySEP2GBPhBLF68mCVLlmS6DCEyomvzkc2NjZjK4E9/386Ommp2uZ6lzvwHbpXP2MgN5Nknps7Rks+zLRxy8jx8e9ZnOH3E0NS64UKIniX/Zx3E3LlzmTt3LgCVlZVMlxHY4ijQtZLayzsr+NPqbbQ0xdCAavU6O71PEtfaKLFmMCR2AQZ7Nx7RNEVRkZ8vfm44hVk+Th40iIHZh7DPthDikEmACyEA2N3Yyvzl/2RnUyteZWBZilZtG7vdv6bd2ELAHs646I0EnLJUa1sBefluZn5uBJMGFjE0J+eQNgMRQnxyEuAifTNnZroC0QuUUuxobuaGZX+nuj6E6RiEaGWX50kazTdwOTkMj86hyDoTDR09OXr8ov8cQ9iJU+D389nBgz/1NplfnDath+5IiKODBLhI3403ZroC0cPC8Th/37aLx158l7q6CCYGTca/2OH5JTadDIr9F4OsL+I3AygXqdHjmplY+/y4khLGFxZi9ECL+ztf+1oP3JEQRw8JcCGOQtXNHdy2/GU21Nejo6FZGhGtit3u39BivkvAGcZ4+38IMITSkr1TvmzHob6zkyBuzh41igK/P9O3IsRRSwJcpO/MMxPHf/4zk1WITyFu22xtauKWJ1ZTVR/CcHQsoux2/4Za8+8YeBkSu4hTCi7k0rMnpuZpK6Vo7OwkZttMLC5mXEEBLsP4mKsdmumzZwOw6je/6dHvFaK/kgAX4iiglGJPWxv/2F7Os3/fTF1dBBcGIX0XWz1LiWi1FFtnMdQ6n5HFg7j2/EmpczvjcZrDYcpyc5lUXEzwUz7rFkL0DAlwIfq5mG2zrrqa7U1NPP/P7TQ1xIA4la4/s8f1J1wqm+Os28hVEygtTnSXQ2JKWV0ohN/lYvqIEZQcZAEWIURmSIAL0Y81hcP8dfN2/nfVJlqbYliWQ6P+Drt8TxHV68i3pnBG7lzmfGFKt2VN47ZNbSjEMQMGMLGoqMe7y4UQn54EuBD90J6mdr63fDWbG5twKR1lQYgayt1P0WK+h88ZyIToLUwacEq37nJHKTrjcVojEU4ZPJiR+fkfcRUhRCZJgIv0XXhhpisQH6OhtZPv/epl3qmuRgEuZRAjwh7Xc1S7VqJjUha7mCGczaABOanu8tZIhM54HEPXyff5mDJyJEWBwGGt/ctf/OJhvZ4QfZ0EuEjf9ddnugJxAM3tERYuX8vmqiaatA5CVgxTmWhAo/EGu92/JqY3UxifSpk1m1HFQ7q1uhtCITymydmjRpHj9aJrWkbu4+tf/WpGritEXyUBLtLX2Zk4ytzfI0JXcH+4q4FWLUKHHsFUOm5cxGljh+cXNJvvEHDKOCY+j2w1ptsgNdtxqA2FKAoEmDp0KN4MbzrSmdztzu/zZbQOIfoKCXCRvnPOSRxlHvgRYcGyt3inopYmIwSAR5loaDQb77HD/XMsLURZ7GKmFHyZS88+JjVIzXYc6kMhHKU4triY8YWFR8Ta5efOmQPIPHAh0iUBLkQfFLUs3q6pokkL41YGOjohvZzd7mdoNT7A7wxmetZdXH/O2d1Gl4diMZojESYMGMC4wkL8LlcG70II8WkclQFeWVnJ7NmzGT58OKWlpdx///2ZLkmItDS3R7jjV6/xdm0VDgofJnHC7HI/k9inWwswZ9LNzJ40B7exd8EVRynqQyG8LhczRo5kwGEeoCaE6HlHZYADnHHGGdx7772ZLkOItCmlmP/4atbVVKM7Gi7NoM21jq3mMuJaK7NGX8bVn7mBoCen23nt0Sht0SjjCgs5trgYt8zpFqJfOGoD/JVXXuHiiy9m9uzZzJo1K9PlCHFQFY1t3PXk62ysbyCcHGFuaa1sdj9Bk7mWEXnjmH/qMsYWTup2Xty2qQ+FyPP5ZOMRIfqhwx7g0WiU++67j9dffx2Px8Pxxx/P3Xff/Ym/b9GiRbz00kvs2bOHF154gTFjxqTe27lzJ7fccgstLS3k5uayaNEiysrKKCoqYuXKlWiaxlVXXcXpp59OXl5eT9xe/3bFFZmuoN/rGlm+s6qNAQM8NDqdbK1vQikwlY4Lk3rzZcrdT+MQZ5Lnqzw48/uY+t5n2V0bjzhKcdKgQYzIy+uR7T5722Vf/nKmSxCiTznsAf7AAw/g8Xh46aWX0DSNhoaG/T4TjUZpaGhg0KBBqddCoRAdHR0UFxd3++z06dO57LLLuOSSS/b7njvuuIOLL76Y8847j+eee47bb7+dJ554Ard776CeyZMnU1FRsV+AL168mCVLlnza2+1fJMB73cLla9lY3kQzIbbWRNHRcCkDDY0YrWzz/JJmcx05zjhOC36L686ZngpvpRQtyQVZRublMamkpE8NUrtcAlyIQ3JY/1oeCoX405/+xLx589CSi0UUFhbu97mtW7dy5ZVXsmPHDgDa29u56qqrWLNmzX6fnTx5MqWlpfu93tjYyIYNG5g5cyYAM2fOZMOGDTQ1NREKJabdKKVYv349JSUl+50/d+5cNm/ezObNm1m1atUnv+n+pKEh8Y/occ3tEW5e8jLrdzbSSAcdegyPMnErE1DUmv/gff/3aDE+4HjPlfzhihe56ctfSI0wD8ViVLW3U+D3c87o0Xx2yJA+Fd4ADU1NNDQ1ZboMIfqMw9oCr6ioIDc3lyVLlvDmm28SCASYN28ekydP7va5iRMncvfdd3PttdeyYMECFi5cyKxZs/jKV76S9rWqq6spLi7GSA7YMQyDoqIiqquraW5u5qGHHsLlcjFjxgyKiop69D77ra4WkswD7xH7dpdrJEK4Se8kmgxvDY1WfT3lnv+lU68gaI9havZcvn7Of6Jrib97245DXShEwO3mrBEjKO7DO4ZdlFzpT+aBC5Gewxrgtm1TUVHBhAkTuPnmm3nvvfe47rrr+Nvf/kbWv/3gmTJlCjfddBOXXHIJV111FZdddlmP1TF16lSmTp3aY98nxCexcPlaNpU3E3dsOvQIHUYUDfAoFzGtmbrgM1Tar+JVRZzmu5n5X5xDdiAxNazrObelFJOKixl7hCzGIoQ4fA5rgJeWlmKaZqpb+7jjjiMvL4f/JhoAACAASURBVI+dO3dy7LHHdvtsQ0MDixcv5rrrrmPFihWcffbZTJo06UBfe9Br1dbWYts2hmFg2zZ1dXUH7G4X4nDqanl/sLOBkB6l3YygAW5lAA41rpeodP8eTdlccfwN/PfEa7vN6Y5YFo2dnYzIy+PY4mKy9hnTIYQ4ehzWv7Ln5+dz8skn8+qrrwKJUeKNjY0MGzas2+fq6uqYM2cO11xzDTfccAOPPPIIN9xwA+vWrUv7WgUFBYwfP54VK1YAsGLFCsaPH0++bI8oMmzBsrd4e3cNtWYr7XoEtzLwYBJz7+RD3x3scj/FscWf4VfnvcTlx32rW3i3RiK0RSKcWVbGKUOGSHgLcRQ77KPQf/CDH3DrrbeyaNEiTNPk/vvvJzs7u9tnotEo8+bN46yzzgISz8SXLl16wBHr99xzD3/9619paGhgzpw55Obm8uKLLwJw5513csstt/CTn/yE7OxsFi1a1Ps3KMQBdLW6t1e1UGe1065FU0ugWnTQkPMndsT/SoGviBunLOVzw76QGugJe59153q9/Mfw4WR7PB9xNSHE0UBTSqlMF3Gkq6ysZPr06axatYrBgwdnupzMeeaZxPGiizJbRx80f/Ea3quop4kQtuYku8uh0fUKFZ5niNPBBeOv4Irjv43f1X08SFM4TNSyOLa4mLEFBbj68EpqsfXr0Q8y0O7ZZG/ZhclHbAfidHTgnjixV2oToq85aldiE5+ABPch2Xef7nqrg7AWw1A6HmUS0SvZ6VlOq76Jcfkn8N1T72FU/oRu53c96x4UDHLiwIH9vtX9UcEthNifBLhIX0VF4jhkSGbrOMLtv093FIPE6HKbCLvdv6Pa9ReCniA3nriAL4y+MDUtDBIjzBs6O9E1jc8NG8bg7Oxu3en9VUVVFQBDBg7McCVC9A0S4CJ9X/1q4ijzwD/SwuVreWd3Yp9uB4Un2V3ebP6LXe6niGqNnFV2Ad88+VZyvN0HVcaS65ePyMvjhNJSvObR87/oFd/5DiDzwIVI19Hz00GIXrR3kFor9VY7bVoElzJwYRDR6in3PEmz8Q7Dc8dyw2cf5djik7qdr5SiKRwm7jicOmQIZbm5R0WrWwjxyUmAC9EDFix7i/cq6mkmhKXZeJSJQ5RK15+pcr2IrunMmTSfi4+7er+NR1qjUUKxGMPz8ji2qIhgP3/WLYToGRLgQnwKze0R7vjVa7xVsYeobmEqA7cyaTJfp9z9DDGtidMGn823Pvt9igJ7n+3ajpNocds2g7Kz+dywYeT7fBm8EyFEXyMBLsQnFLEs5v1iFR/W1aNpGl7lIkYrO7y/osl4m7EFk/jGSY/t113eEYvRGokwfsAARuXn9/vR5UKI3iEBLtL33e9muoIjQkNrJ9/71cusr68jbtu4nMQgtQbjVXZ5nsLRolx53C1cPOlqDH3vnG2lFPWhEB6XixmjRlHo92fqFo5IN1x9daZLEKJPkQAX6Tv33ExXkFFKKepCIb7x+N/YWdeK6Ri4MAnp5exyP0m7sZl8fTQPnruUstzR3c6N2TZ1HR2MKijgxNJS3H14MZbeMjO58qIQIj0S4CJ9mzcnjmPHZraODChvaOV7T6xme1MzxMGtTCxClLt/T635f5gEOMn7DW6b+U1yAt7Uebbj0BqNErUsThs6VEaXf4TN27cDMHbkyAxXIkTfIAEu0nfttYnjUTQPvDMeZ2N9PXf+76vUNHRiODqgqDP/yW73s1h0MNr9BX54wb1ke3JT54XjcZojEVy6ztCcHMYWFpLr9R78QoLrb7sNkHngQqRLAlyIA4jbNlsaG/mgrg5T12lrjmM6Bh36Dna6lxMydpDtjOGU4Nf5xjnnEPTs3RWsqbMTpWn8R1kZRYEAhuzTLYToBRLgQvybmo4O3tqzh85YDK/m4pmXthC2Wil3P0uduRoX2XzWewP3XTi3W3d4zLZp6OykOBDglCFD8LtcH3EVIYT4dCTAhUiyHYf3a2vZUF9Pns9HSTDIo394h7WNz7Hb9zscIgy0zuaU/Mu4/OwTU+FtOQ6NnZ2Yus5JAwcyIi9PWt1CiF4nAS4EiTndb1RUUN3RQZbh4ckVG9nUuI6txjJC7nKy7QmURS8jzxzKN7/02dR5zeEwEctiUnExowsKZHS5EOKwkQAX6fuf/8l0BT1OKcWetjbWVlVhOQ6lwSBL/vAGrzT/jFrXP3A7BYyOzCXfPglD1yktDAB7t/osDQaZfhRs9Xk43PrNb2a6BCH6FAnwg1i8eDFLlizJdBlHln42T7c9GuXtqir2dHSQ7/Xic7lYu2cNK9q+Q9RoojR2DoPj5+PSvLhcBqWFAb7y+dFUt7fjM01OHzqUITk5Mi2sh0yfOjXTJQjRp2hKKZXpIo50lZWVTJ8+nVWrVjF48OBMl5M5776bOB5/fGbr6AF72tp4dfduTMMg3+ejM97Bj9+4h5d2PIPPGciI6DUEnVHousbQ4iDXnj+JlkiEiGVxQkkJI/PzMeU59yGLrV+PnpV1wPfe3bABgOMnTDjo+U5HB+6JE3ulNiH6GmmBi/R9+9uJYx+dB247Dm3RKLtbW1lfV0eh308s5nDXb5/i9dCPidDAQOscBscuQMeNrsHQ4mCq1V0YCDBt+HDpLu8l373rLkDmgQuRLglw0e9FLIv1tbXsaGnBdhx0TaMkK4uYHeG7z81na+xFvKqYY6L/Q9AZkzrPNHXO/8+RWMrmxNJSRuXny+hyIcQRQwJc9FtKKcpbW/lXVRWOUhT4fBi6jlKKN/b8g6Vv3c2e2C5K4v/JkNiFGOxtWStdEcwzGZWfz/jCQnwyp1sIcYSRABf9ku04vF1dzZbGRooCgdT0rm1NG3j0X/exrvpVgvpAjoncStAeD4Cmgcc0iGOTl+9l4X+fwTGlRZm8DSGEOCgJcNHvxGybNyor2dPWxqBgEE3T2N60kcfXPczre/6KqbIYZV9OYexMUIn/BXQNBhVnMeP0YeQGPJxZVkaBbPcphDiCSYCL9N13X6Yr+EhOck73e7W1hGIxSoNBWiPN/GzdQv689Vlc+BkcP5+S2AxMAnvPQ6FMxUVnj2H8gAGU5ebKMqgZcPdNN2W6BCH6FAlwkb5TT810BQdV1dbG29XVtEej5Pp8FAUCrNz2ex5dey/tsVYG219kYPRcdBXodp6FjaMrThxQynnjxsnUsAw69TOfyXQJQvQpEuAifa+9ljgeQUEejsd5t6aGHc3N5Pt8DMzOZnfrdh56/Tbeq32TAmMskyLz8dnd5+8rTYGp8GDymeJS7pxzqoR3hr329tuABLkQ6ZIAF+m79dbE8QiZB17V1sbrlZUoYGAwiK0slr/7CE99sBSv6eM7p9zLv1YPI2bvXatI0xSOqSjO9/P9r5zK8YNLJLiPEN9/4AFA5oELkS4JcNHnWI7DB8ldw/J9PnwuF9ubNrLo1ZvY2vQh08rO5fJjb+EvqxuwrLbUeY7uUFTo4+5LpjJuwAC8pvznL4Tou+QnmOgzQrEYu1pa2NTQkNp4RCmbp95fwvL3fkzQnc1dZz7G6cNm8NM/vs/u2nYcBQ4OluYwvCiHRZeeyciivEzfihBCfGoS4OKIZzsOmxsbea+mBl3TyPP5cBsGO5o3sejV+Wxp/ID/KJvJVZNuY8U/61j119eJWzaWUsQ1Cx2dYiPIb759nnSXCyH6DQlwcURriUR4q7KSxnCYokAAQ9dpj7by2L9+xHObnyLozuHOM5ZyRtk5qVa37SRa3I6myLb9BDUvE4bI5iNCiP5FAlyk7+GHD9ulmsNhNtTXU97SQsDtpjQYxHZsnt/8vzz+zg/piLUyc8zFXHn8DehOFj/94/vsqm7DwSGm2fgcN3nKR8DtYfjAbG65/KTDVrv4ZB68/fZMlyBEnyIBLtJ3GLYR7RqgtrG+Hq/LRWlyJbUP6v7Fj9+8g21NG5hUPIW5U+5gVH5i28mulndcs3FQ5NsBApqH8WX5LPrm6b1es+gZH7WNqBBifxLgIn3/93+J41ln9crXh2IxXquspCEUoiQYRNc04naMZe8+zK/XP8aAQCm3n7GYM4d9kY5wnJ/+8X2qG0JELYsIFl7HJNcJYGIwvixfWt19zKpXXgFg+tSpGa5EiL7hEwd4S0sLlZWVjBkzBrfb3ZM1iSPVPfckjj0c4KFYjO1NTWxsaMBtGJQGgwBsaVzPQ6/fxubG9/ni6Iv4xknfx+dKrKT2vy9tYndtO1HHwtEc8mw/fuXB0HXGDcuTlncfdN+SJYAEuBDpSivAf/KTnxAOh/nud78LwNq1a7n22msJh8MUFxezbNkyysrKerNO0Q8ppdjU0MC7NTWYuk6h34+h63xYt44n31/Mm3v+SbYnlx+c+SifG3Y27Z0xfroi0eoOW3Fi2HiUSa4dxKMZeDymPO8WQhw10hqW+/zzzzNkyJDU73/4wx8ybtw4li5dSkFBAY888kivFSj6J6UUH9TV8XZVFUWBAAMCATQNlr37MN/8ywVsbvyAq0+8iae/tJrPDTsbSLS6y2vbaLOiKAWFdpBCJ4hHNxlXls+z932RRd88nbygN8N3J4QQvS+tFnhtbS3Dhg0DoKmpiffff59ly5Zx8sknE4/Huaera1WIjxG3bTpiMXY2N7OxoYHSYBBD1+mItXHfyzfweuXfmTHyAuadfBc+V2I7z/bOGP/70ia2V7cQ12yyHT9Bx4OhadLqFkIctdIKcMMwiMfjQKL73OPxcOKJJwKQn59Pa2tr71Uo+gXbcfhXdTU7mprQAE3TKA0GqQ9V8cdNy1mx5TdErDDfOvkH/NfYr6JpWurcJ1duYHtdC5qmMcDOxqNMdF2TZ91CiKNaWgE+atQonn/+eU444QR+//vfc9JJJ+FK7pdcXV1NQUFBrxYpjhA//eknOs1yHF6vqKCyrY2SrCw0TSNmR/nVOw/y6/U/RaE4c9g5/Pex16WmhrV3xnhq5UZ2N7ZiWQ5B20dAedBJBPu4YXnS6u5nfnLvvZkuQYg+Ja0A/8Y3vsH111/PCy+8gGmaPP7446n3Vq9ezQSZv3l0GDv2kD6ulKI1GuXd6mpqQ6HU6PIP69Zx/2vz2d26nf8c+SWuPP47FGcNAhLB/fTKjWyra8FRiqDjI89xYySHa0jLu/8aO3JkpksQok9JK8BPP/10/vznP7NhwwbGjx/P0KFDU++ddNJJjBs3rtcKFEeQF15IHM899yM/5ijF9qYmNjU00BGL4TYMirOyCMc7efydH/KHjcsoCpSy6KxlTBl0Rrdzn1q5ka11TfhtD0HHi4kBgK6Bxy3Pu/uzFcl1Bmb20joDQvQ3ac8DHzJkSLeR6F1mz57dowUdDpWVlcyePZvhw4dTWlrK/fffn+mS+oYHH0wcPyLAY7bN2j172NXSQoHfn2p1v1vzBotevYmajkrOH3cZV594E35XFrB3kFplQzshO0a25SdLedCS3eXS6j46/OgXvwAkwIVIV9oBXltbyy9/+UvWrl1La2srjz76KGPGjGHZsmWccMIJHHfccb1ZZ48744wzuFeeufWo9miUV3bvpi0aZWByCdSYHeWX7zzIsx/+gkHZw/jx2c9ybHH3FvQTKz9kR10rKMi3s/CpvQsD6Zo87xZCiANJK8C3bt3KJZdcgq7rHH/88WzcuDE1Kr2qqooPPviAB7taZ33EK6+8wsUXX8zs2bOZNWtWpsvp05RS7Ghu5l9VVXhMk+KsLBzlsHrXn1n27iOUt25l1phLuG7yrVhxM7UEakGuh7CyaGiIkOP48SkXOvp+3eUyr1sIIfaX1kIuCxcuZMSIEaxatYolS5aglEq9d8IJJ/Duu+8e8oWXLFnC2LFj2bJlyyGfu69FixYxbdq0A37Xzp07ueiii5gxYwYXXXQRu3btAqCoqIiVK1fyy1/+kmeeeYbm5uZPVcPRylGKulCINeXlvFFZSZ7PR67Xy5uV/+TK52bwg9XfxFE2901/nBtOuQefy59ajKXdirGzoY1IHRTZ2ckR5nqiu1wWZRFCiI+VVgt83bp1PPjggwQCAWzb7vZeYWEhDQ0Nh3TRDz/8kHfffZdBgwYd8P1oNEpDQ0O390OhEB0dHRQXF3f77PTp07nsssu45JJL9vueO+64g4svvpjzzjuP5557jttvv50nnnii29rtkydPpqKigry8vG7nLl68mCXJtZnF/ipaW3mnpoaOWAy/y8Wg7GzC8RAPvnUvK7b8mqE5I/n+537MGcPOoTNip1rdMcsijIXPcZPr+FOjy7tId7kQQqQnrRb4votq/Lvm5ma83vRbSbFYjLvuuos777zzoJ/ZunUrV155JTt27ACgvb2dq666ijVr1uz32cmTJ1NaWrrf642NjWzYsIGZM2cCMHPmTDZs2EBTUxOhUAhIdP2uX7+ekpKS/c6fO3cumzdvZvPmzaxatSrt++vXnnwS9cQTbGpoYE15OS5dZ2AwSK7Xy9tVr3D18+fw4pbfMHvitfz83BeZNvxcDN1IbTwSjscJY5Ht+Mh3At3CW9c1JgzPl1b3UWzZQw+x7KGHMl2GEH1GWi3wSZMm8Yc//IFp06bt995f/vIXTjjhhLQv+MgjjzBr1iwGDx580M9MnDiRu+++m2uvvZYFCxawcOFCZs2axVe+8pW0r1NdXU1xcTGGkZiGZBgGRUVFVFdX09zczEMPPYTL5WLGjBkUFRWl/b1Hs0hpKZvq6/mwqoqSrCwMXacpXM+j/7qX/9vxHIOzy3j47N8wqXgKsHd0+c7qVuKag9IUBXYWAdx4PCZDirMAjYradpkeJhgycGCmSxCiT0krwK+//nrmzJnDlVdeycyZM9E0jddee40nnniCv/3tbzz99NNpXeydd95h/fr13HjjjR/72SlTpnDTTTdxySWXcNVVV3HZZZeldY10TJ06lamyZWFalFJUtrWxpbER7x/+gAaUXnABbdEmnvnw5/xp0xNYjsVlx32LS469nmhUS3WXa0DYihPV7FSXuUs3ZEqYOKBnV6wA4MJkr5kQ4qOlFeBTpkxh6dKl3Hfffdx6660APPjggwwaNIilS5emPYVs7dq1bN++nenTpwNQU1PDVVddxYIFC/YL1IaGBhYvXsx1113HihUrOPvss5k0aVLaN1ZaWkptbS22bWMYBrZtU1dXd8DudnFgMdtmXXU125uayPF6OfF3v0MDFh6v8cibtxO1wkwfMYvLJn2LXNdgfvX8JnbXtOEosHCwNQdT6RQ4WXiVCw1NnnGLg/rpU08BEuBCpCvteeBnnnkmZ555JuXl5TQ2NpKbm8uIESMO6WJf+9rX+NrXvpb6/bRp03jssccYM2ZMt8/V1dVx1VVXcc011zBr1iw+//nPM2/ePB544IHUJiofp6CggPHjx7NixQrOO+88VqxYwfjx48nPzz+kmo9W9aEQb+3ZQ0cslprTDYrKtnIWvXojJ5ScwjXHfZ81r8d5/NlaNGqJWTa2UsQ0G0PpFNhZeJSJhiaLsQghRA9LO8C7DBs2LLW1aHNz836jt3tCNBpl3rx5nJVckWnixIksXbr0gKPd77nnHv7617/S0NDAnDlzyM3N5cUXXwTgzjvv5JZbbuEnP/kJ2dnZLFq0qMdr7W9aIxE+qK2lvK2NHI+H4qws4naMNeUr8TWuJxzv5KJjruGaE+fzi+c2sLu2HcdJTCt0cIhpNgHHQ47jw9B0fB4TBfKMWwghepim9p3UfRDPPvssbW1tXH311QBs3ryZa665hvr6esaPH89Pf/pTBgwY0OvFZkplZSXTp09n1apVHzn4ri9rjUTY1NDAjuZmPKZJnteLpmms3PY7fvb2IpojDaxZ5sbjDODmSx/AASzLxlGgUMQ1Gw2NHNuHT7kxtMR8blmIRewrtn49elbWAd+bnlyWedVvfnPQ852ODtwTJ/ZKbUL0NWlNI3vyySe7TRVbuHAh2dnZ3HrrrXR0dPDjH/+41woUve/Dujpe3LKFyrY2irOyyPf5iNoR7ln9XRa9ehN2ZwHHxm8mYI/AVEEicZtYfG93eUyzCTo+yox8CtwBjhlewLI7ZsiUMCGE6EVpdaFXVVWlnne3t7ezdu1ali5dyhlnnEFubi4PydzNPmtTQwPv1NRQmpwWBvDm7tdYsPp7tNoVDIr/F4Pj56Ohc+usYanz4tjYmkOW8jDAzGL0kDxpbYtP5Zmf/CTTJQjRp6QV4I7jpBZzefvtt4HEyHRIjPZubGzspfJEb7Edh53NzbxdVUVpVhadEYtf/OVV3mh9nDrjVdxOPuNiN5Jr7x353+oP4qCIa3FcymSAE2TSsAEyME30iEIZYCrEIUkrwMvKyli9ejWnnHIKL774IieccAI+nw9IjBjPycnp1SJFz3CUYltTE7uam2mORLCUoigQoCPWyi3P3c2W6AqUrhgUm8XA+LkY7NOa1hTnbHgZULx27NkElJuRg3JlYJroMct/9zsALv/ylzNciRB9Q1oBfuWVVzJ//nz++Mc/0tbWxiOPPJJ674033mDs2LG9VqDoGaFYjDf37KG6vR0XBn/8v+3UNHYSznqTdbGfY6kwhdapDI5/Ca/qvjKdpdmUDPDzzbr3yfZ6MO77eYbuQvRnT0iAC3FI0grwc889l9LSUt5//32OPfZYTjppb6ursLAwtTCLOPJ0xuPsamnhzfI9PLd6Oy1NseQKaR1sdy+nIfYqQXssw6NX4FeJEfaaBh7TwEGRnefiqrOPZdro4WSvWJrZmxFCCJGS9jzwyZMnM3ny5P1e/9a3vtWjBYmeEbNt3q+p4d2qWp5fs536ugioxDiGZmMdu7xPEtUaGRw7n0Hx/0LbZ0LCsJJsvnzWaCIqzpiCAk4oLcXU05qwIIQQ4jA55IVcGhsbiUaj+70+UDYiyLjm9ggLl69l854mGvUOYsrGp5nELQeURkSro9z9FM3mO/icQUyI3Ea2s/fxh65rlBb5mXXWcDAUny0ZzIi8vI/cjU4IIURmpD0K/eGHH+aZZ56hra3tgJ/ZuHFjjxYmDq4rqHdWtXXb0UuhaI530qR3otsaLgyiifXRqHL9mT2u59HQGRqbTRnnoBkmRYU+QKOmOUROnpsvTxvNaUOHUBoMSqtbCCGOYGkF+PLly3n66ae55pprePjhh7nuuuvQdZ0XXngBXde55pprertOwd7g3rSrieTqpWzZ3QJAVIvTondi6TYuZaCjo3BoMF+j0vVHonod+dYUhscvYXRxGRfPGEfQ7wagqbOTuONwfEkJo/LzU/PB9/PnPx+O2xRHqRd+9atMlyBEn5JWgP/hD3/gG9/4BpdffjkPP/wwn//85znmmGP4+te/zpVXXkl1dXVv13nU6QrrHXta0TUNRyl0TSMSs1LhDYllTDv0KK16J6bS8SgXAC3GB+xyP0lErybgDGNM/HscU/DZbsEds23qQyEGZWczeeBAstzujy7K7++t2xUCf3JqqhAiPWkFeEVFBRMnTsQwDEzTJBKJAOByubj88su55557mDt3bq8W2l8drDtcg/3C+t85KFr1TkJ6FI8y0TUNlwk7jd9TYfwJnxrIab6buemLV5AT6L5CWls0Smc8zsmDBjEiPx89nefcXStlXX/9J75fIQ7m0SefBODrX/1qhisRom9IK8CzsrJSA9eKiorYuXMnn/nMZwCwbZvW1tbeq7AfOVBYb6to3q87/OMoFBEtTrsRZkChl1L81LeEycpvY7fvl1TUv8U5oy/kW1N+gMfcf2nT+lAIr2nyhVGjyPEewtKnzz6bOEqAi17wu+QughLgQqQnrQCfMGEC27dv5/TTT2fq1KksXrwYr9eLYRg8/PDDTJgwobfr7BcWLl/LpvJmHEelHdb70jTQ3YpGLURunpuv/ednKMoOEI6HeOr9pfx2w+OYERc3n/YAZ4/afzGMuG1TFwoxJCeHkwcNwmMe8iQEIYQQR4i0foJffvnlVFRUADB37lw+/PBDbrzxRiAxfez73/9+71XYj+ysakvtnf1xNA18bjP17DuubIJFBqeeWsLA3CyCHg8A/6p6mR++dgu1oSpmjLyAa06cT4G/+0pqSimaw2HijnNoXeZCCCGOWGkF+Gmn/T97dx5ew/U/cPydVbYmEiESe7WuPa6ENCRF7ESUVqkl9tiqgi+iao8tFKV2VbXVltYSiqLWqi0pWqRKKnuIILLn3szvjzA/VxY3kbgS5/U880TmzJz53JvrfmbOnDmnufzv8uXLs3v3bsLDw0lNTaVmzZoYGRkVW4ClSQ0HS/kK/EX6evBelbI8uwdew8ESv/5NeMfcmP8ePuRKXByqrCzKm5ujr6dHYvoj1gUHEPTPj1S1qsnyjrupX8FJo87UzEwS09PJkiSqWFrSyN7+5R3VBEEQhBKhUG2oenp6VKtW7eUbChr8+jfJtcPas2T94lScMU+ecDI0jFS1mnKmphgbGPAk/TG7rq8n8MZG0lQp9Kznw8BGYzXudauzsrifkoKpkRHODg7Yv/MOZuIkSxAEoVTJM4Ffv36dgQMHMmfOHNq0aZPrNkePHmXKlCls3ryZWrVqFVuQpYX1OyZaTb2ZJUlcv3+fP2NjKWdqSllTUyRJ4nhYEN+cn0Zi+kNaVOtIf8cx1LDWnEgmKSODx2lpNLCzo46tLUYGBkX3Ak6cKLq6BOEFx7Zv13UIglCi5DnU1pYtW1AoFHkmb4A2bdpQr149Nj99/EN4dQmpqZz47z+uxsZib2GBqZERCan3mXlyFLNPjcbhnaqs63KAGS1X5kje95OTUUsSHd57j4Z2dkWbvAVBEIQ3Sp5X4OfPn2ekFo8LdenShRUrxCxVr+pRWhpX4+KITEzEzMgIB0tLVFmZ7Pr7e3648g0Z6nSGNp5Iz3pDMdDX/LOpsrK4l5yMg4UFH1Spgklx9S5ftCj759MOjIJQlBavXQvAOB8fHUciCCVDnt/09+7d0+o+d5UqVYiLiyvSoN4mGWo1N+7fYWYn8QAAIABJREFU5/r9+5QxNMTewgI9PT0uRZ/m2wuzuPv4X5pWasGoJlOpalVTY19JkniQkoJKkmhUsSKKcuXyHga1KAQFZf8UCVwoBgeOHwdEAhcEbeWZwE1MTEhOTn5pBcnJyZR5+kiTUDD3k5M5Ex5OhlpNBXNzDPT1iU2KZOVFf06HH8bhnWrM9VjPB5U9NGYEU2dlkZCaSqZazbvW1jSws8Nc9C4XBEF4q+SZwN977z3++OMPWrRokW8F586d4/333y/ywEqzLEninwcPuBwdjbWpKdampqiz1Oy+/j3fhSwE9BjaeCKf1B2EscH/nxxJkkR8SgpZkkStcuWoaWODpTh5EgRBeCvlmcA9PT1ZuHAhHTt2pGHDhrlu8+eff7Jjxw4mTJhQbAGWRjfj4wmOicHewgIDfX3CH98m4Owk/r5/GZdKLRnnOocK5przq6erVMSnpFC9bFka29tjKh4LEwRBeKvlmcB79uzJwYMH6du3L59++ikeHh44OGQnlejoaI4fP87OnTtxdHSkZ8+ery3g0iA5IwMLY2Mk1Gy9tpof/vwGUyMzJrt9Tdt3u2k0lz+76gZwq1qVqlZWGuWvlZgtSihGpgUZl18QhLwTuKGhIevXr8ff35/t27ezdetWjXJ9fX26devGl19+iYF4XKnAwh7eYNWlqdxK+JsW1TryhctMbEzLa2yTmplJQmoq1cuWRWlvr/vBWH75RbfHF0q1oI0bdR2CIJQo+T5vZGpqypw5c/D19eX8+fPyvN/29vY0bdqUChUq5Lf7GysyMpJevXpRo0YN7O3tCQgIeG3HzlRnsvrSQn64sgLLMmWZ2XIVH1broLGNKiuL+8nJmBoa0rJ6dRzeeUd3V92CIAjCG0mrB4bLly+Pp6dnccfyWrVo0YI5c+a89uMevXOUDX9+Q8vqXRn7wQwsy5SVy9RZWTxITQVJQmlvT01r6zdrMJbZs7N/islrhGIwZ9kyAKZ88YWOIxGEkqEYHxp+s505c4bevXuzb9++13rctjXbsqfnOca4zNdI3o/T0rifkoKiXDm6KBTULuphUIvCsWPZiyAUg+O//87x33/XdRiCUGK89gmhR44cSWRkJPr6+piZmTF16lTq1KlT6PoWLFjA4cOHiYqKYv/+/RpjsoeFheHn58ejR48oW7YsCxYsoHr16lSoUIFDhw6hp6fH4MGDcXd3x9rauihe3ksZ6hvi8E4Vop48kdc9TE3FUF+fzu+/L08TKgiCIAj5ee1X4AsWLGDfvn3s2bOHQYMG8eWXX+bYJj09naioKI11ycnJuY741rp1a7Zu3UqlSpVylE2fPp3evXtz+PBhevfuzbRp0wAwNjbG1NQUExMTnJ2d5bnOn7d8+XIUCgUKhYLWrVsX9uW+1KO0NAz09fGoUUMkb0EQBEFrrz2Bv/POO/K/k5KScu2cdevWLQYNGsSdO3cAePLkCYMHD+bUqVM5tnV2dsbe3j7H+gcPHnD9+nX53r2npyfXr18nISFBHmFOkiT++usvKlasmGP/0aNHExoaSmhoKMeKodlYlZVFbFISBnp6eNSoIUZSEwRBEArktTehA0yZMoWzZ88iSRLr16/PUV6/fn1mz57NsGHDmDdvHvPnz8fLy4sePXpofYyYmBjs7OzkR9wMDAyoUKECMTExPHz4kMWLF2NkZET79u1fe296PT090lUqlPb2vG9j8+bd685LuXK6jkAoxcq9pttYglBa6CSBP+v9vWfPHgICAli3bl2ObZo2bcqECRPo06cPgwcPxtvbu8iO7+bmhpubW5HVV1C1ypWjjq1tybvqDgzUdQRCKbZz1SpdhyAIJUqeCbx27dpaP3usp6fH9evXC3zwjz76iGnTpvHw4cMcncji4+NZvnw5w4cPJygoiA4dOuQ5pGtu7O3tiYuLQ61WY2BggFqt5t69e7k2t79uYvxyQRAE4VXlmcBHjRpV5IOHJCcnk5iYKCfR48ePY2VlRdmyZTW2u3fvHoMHD2bo0KF4eXnRtm1bxowZw8KFC2ncuLFWxypXrhx16tQhKCiIrl27EhQURJ06dbCxsSnS1/RWmTw5++e8ebqNQyiVpjwdUGnOxIk6jkQQSoY8E/jo0aOL/GCpqamMGTOG1NRU9PX1sbKyYvXq1TlOFNLT0xkzZgxt2rQBsu+Jr1ixgvj4+Bx1+vv7c+TIEeLj4xk4cCBly5blwIEDAMyYMQM/Pz9WrlyJpaUlCxYsKPLX9FY5d07XEQil2B/BwboOQRBKFD1JkiRdB/Gmi4yMpHXr1hw7dozKlSvrOhzdadky++eJE7qMQijBMv76C30Li1zLWvfqBcCx7dvz3D8rKQnj+vWLJTZBKGm07sSWkZHBqVOnCAsLIz09XaNMT0+PUaNGFXlwgiAIgiDkTqsEHhcXR+/evYmKikJPT49nF+3PN32LBC4IgiAIr49WA7kEBARgY2PDiRMnkCSJnTt3cvToUYYPH07VqlU5evRocccpvAkqV85eBKEYVKpYkUq5DKokCELutLoCv3z5MhMnTpQHPNHX16dy5cqMGTOGrKws/P39WSWe4Sz9tmzRdQRCKbZp6VJdhyAIJYpWV+CPHj2iQoUK6OvrY2pqSmJiolz2wQcfcOHChWILUBAEQRCEnLRK4HZ2djx69AiAqlWrcubMGbns6tWrlBEDk7wdfH2zF0EoBuNmzWLcrFm6DkMQSgytmtBdXFy4cOECbdq0oWfPnsyaNYubN29iaGjImTNn6NmzZ3HHKbwJ/vxT1xEIpdiVQozmKAhvM60SuK+vL48fPwagd+/eqNVqDh48SFpaGkOGDBE90AVBEAThNdMqgdvY2GgMQdqvXz/69etXbEEJgiAIgpA/re6Be3t7c/v27VzLwsLCinSmMEEQBEEQXk6rK/ALFy6QnJyca1lycjIXL14s0qCEN1StWrqOQCjF3q9RQ9chCEKJ8srzgYeHh2NmZlYUsQhvurVrdR2BUIqtFrPcCUKB5JnAAwMD+emnn4DsIVOnTZuGubm5xjZpaWncunULV1fX4o1SEARBEAQNeSZwfX199PWzb5FLkqTx+zNly5bls88+Y+jQocUbpfBm8PHJ/imuxIViMPzpfPPiSlwQtJNnAu/WrRvdunUDsnudz5gxg5o1a762wIQ30D//6DoCoRS7FRam6xAEoUTR6h745s2bizsOQRAEQRAKQOtObKGhoaxYsYILFy6QmJiIpaUlLi4ujBw5EoVCUZwxCoIgCILwAq0S+NWrV+nXrx8mJiZ4eHhga2tLfHw8x48f5+TJk2zZsoX69esXd6yCIAiCIDylVQJfvHgx77//Phs3bsTCwkJen5SUxMCBA1m8eDEbNmwotiCFN0SjRrqOQCjFHOvW1XUIglCiaJXAr1y5QkBAgEbyBrCwsGDo0KFMmjSpWIIT3jBivmahGC2eNk3XIQhCiaLVUKovo6enVxTVCIIgCIKgJa0SuKOjI6tXryYpKUljfUpKCuvWraORaFp9O/Ttm70IQjHw9vXFW8w3Lwhay7MJvXXr1qxYsYLatWszbtw4+vXrh4eHBy1btqR8+fLEx8dz8uRJ0tLS2LRp0+uMWdCVyEhdRyCUYlGxsboOQRBKlDwTeFRUFBkZGQA0bNiQHTt2sHLlSs6cOcPjx4+xsrISj5EJgiAIgo5o/Rx47dq1WbZsWXHGIgiCIAiCloqkE5sgCIIgCK9Xvlfgy5cvx9ra+qWV6OnpsWDBgiILSnhDiVnnhGL0QePGug5BEEqUfBP4jRs3MDY2fmkl4jGyt4SYJUooRnMmTtR1CIJQouSbwFeuXEnDhg1fVyyCIAiCIGhJ3AMXtPfxx9mLIBSDT0eM4NMRI3QdhiCUGFr3QhcEHjzQdQRCKfbg4UNdhyAIJYpI4ILwGmRlZREZGUlycrKuQ9EpSa2GJ09yLZsxdy4A/+RRDkBWFno3bhRHaIKgM+bm5lSuXBl9/YI1iueZwG/evPnKQQmCkC0+Ph49PT0UCkWB/5OWJlmpqejl8fr1DbO/jhTvvpvn/lJWFvqmpsUSmyDoQlZWFlFRUcTHx1OhQoUC7fv2fpMIwmv06NEj7Ozs3urkLQhCTvr6+tjZ2fH48eMC7yua0AXttW6t6whKLLVajZGRka7DeKNZvjBdsSC8LYyMjFCpVAXeTyRwQXtTp+o6ghJNjJeQP/sCNh8KQmlR2O8G0Z4nCIIgCCWQSOCC9jp2zF6Et86+ffv45JNPivUYt/77j41bt+LRoUOe23gPHsx3330HQHR0NEqlkofF9PiZn58fs2bNKpa6hTffd999R79+/bTeXqFQcO3atWKMKCeRwAXtpaZmL0Kp1a9fP+rXr49SqZSXJUuW4OXlxe7du+XtPDw8OHTokMa+ua0riKysLLIkSevtHRwcCAkJ0Wq+hjeBh4cHCoWC0NBQjfWbNm1CoVDg5+ensf7UqVP0798fJycnmjRpQteuXVm3bp08zXNR1/ei8+fPo1Ao8PHx0Vj/YmLL6+/+LKFNmzZN/iw1aNCAOnXqaHy+Ll26REpKCv7+/rRs2RKlUknz5s0ZPHgw9+7de8m7+nYTCVwQBA1jx44lJCREXsaOHavrkEqNd999l127dmms2717NzVr1tRYt2vXLkaPHk2rVq349ddfuXjxIosXL+b27dvcv3+/2Op7kZGREZcuXeL8+fOFfcnMmjVL/izNnDmTmjVrany+nJ2dmTdvHnfu3GHHjh2EhISwf/9+vLy8RL+RlxAJXBCEl/rpp5/w9PQEYNSoUURHRzNx4kSUSiXjxo3LdR1ASkoKc+bMoVWrVri4uDB63DjuPZcw7oSF0bt/fxp/8AH/mzCBqKgorWOKjIxEoVCQkJAAZDd5f/nll0ycOBEnJyc8PDw4ePCgxj6HDh2ia9euODk50aVLF06ePJnvMVJSUvD19UWpVNKhQweOHz8OQEJCAvXr1+f27dsa27dr1479+/fnWd/HH39MUFCQfNV79epVUlJScHFxkbdJTk5m/vz5DBs2jAEDBmBjYwNAzZo1mT9/PpUqVSq2+l5kZGTEkCFDCAgIQCpA60hB/fnnn3Tu3Bk7OzsAbGxs6Nq1K+XLl891+2efx1WrVtGsWTOaNm3Kxo0b+e+//+jVqxdKpZJ+/fppnJxERETg4+ODi4sLHh4eLFu2TKPnd3BwMB999BFKpZJBgwYRHx+vccyEhAQmTZqEu7s7zZo1Y/LkySQlJRXDu6E90QtdEHRg05VNbAjZ8FqONUg5CG9H7yKrb8WKFXh4eDBx4kQ6PHe/Ord1U6ZMITMzk8DAQMzNzVkwdy7jJ01i84YNqFQqRoweTauWLfl+7VpOnD3LrNmzKVOmTKFjO3jwIN9++y3z588nMDCQKVOm8OGHH2JhYcHp06eZNWuWPEnT+fPnGTVqFIGBgdSoUSPX+oKCgli0aBGLFi3i6NGjjBkzhoMHD1KlShXatGnD7t27mTRpEgAXL17k4cOHtGvXLs/4KleuTO3atTly5Aienp7s2rWLjz/+WCPRhISEkJSUJJ8w5aeo68vNwIED+fHHHzl48CCdO3cuVB0v07hxY1asWEFqaiqOjo7Url37pY9dhoWFYWhoyMmTJzl37hzDhg3j9OnTLFy4kPLly+Pj48OqVauYNm0aKpWKYcOG0axZM5YtW8a9e/fw8fHBxMQEHx8fEhMTGTZsGKNGjaJPnz6EhIQwYsQI6tatC4AkSYwcOZLatWvzyy+/ADB58mT8/f2ZP39+sbwn2ngrr8AjIyNxc3OjX79+TBRTGGrP0zN7EUq1b775BmdnZ3mJiIgoVD0JCQn88ssvzJgxAxsbG8qUKcO4MWO4dPkyMbGxXLl6lfv37zPuiy8oU6YMjRo04CMvr1eK3d3dHTc3N/T19enevTvp6en8999/AGzevJmBAwfSqFEj9PX1cXV1xd3dPcdV+vOaNGlChw4dMDQ0pEOHDjg5OREUFATAp59+yr59++SruMDAQLp06fLSE5AePXqwa9cuUlJSOHz4MN27d9cof9ai8Oxq9GWKur4XmZqa8sUXX7BkyZI875e/qilTptC/f39++eUX+vbti4uLC7NnzyY9PT3Pfd555x2GDBmCkZERH374IWXLlqVVq1ZUqVIFExMT2rdvz99//w3AlStXiImJYcKECZiYmFC1alWGDx9OYGAgAL/99hvW1tYMGDAAIyMjmjZtqnEieu3aNW7dusVXX32FhYUFFhYWjBkzhqCgINRqdbG8J9p4a6/AW7RowZw5c3QdRsnyv//pOoJSw9vRu0iviovSmDFjGDx4sMa6ixcvFrieyMhIJEnS+CJEkjA2NiYmNpa4e/coX748xsbGANiVL4/i/ff55fDhQsf+fJOrgYEBZcqUkcefj4qK4sKFC6xZs0beRq1WU7Zs2Tzre7F5uVKlSsTFxQHg6uqKqakpJ06cwNXVlcOHD7N169aXxti2bVtmz57NmjVrUCqVORLrsybuuLg4qlat+lrqW716tfy+ODg4cODAAY3y7t2788MPP7Bt27Yc+xoaGuYYhCQzMxNA68GLjI2N6d+/P/3790elUnH69GkmTJjAO++8g6+vb6772NraatwjNzU1xdbWVuP3Z3/7uLg4bG1tNU6uKleuTGxsrFye2986PDwcyP7spKSk8MEHH2hso6enR3x8fKFPjl7VW5vAz5w5Q+/evenVqxder3jWLwhvm9w6F724zsHBAT09PU6cOIHF01HWnh8L/XJwMPfv3ycjI0NO4lHR0cUWs729PZ999hl9+/bVep8X78lHRUXJ95f19PT45JNPCAwM5OHDh1SvXl1ucs2PsbExnp6erFmzhm+//TZHuVKpxMLCggMHDjBCi+lVi6K+4cOHM3z48DyPYWBgwP/+9z8mTZrEZ599plFWqVKlHK00zxJf5cqVXxr/iwwNDWnVqhWurq5FNieHnZ0d8fHxmp+1qCgqVqwol+f2t37GwcEBKysrzp0790Z1rHutTegPHz5k6NChtG/fni5duvD555/LzTuFtWDBAvlxin/++UejLCwsjJ49e9K+fXt69uwpN6VVqFCBQ4cOsWHDBnbs2FFsz5GWOi1bZi/CW698+fLcvXs333W2tra0b9+emTNnyh2CHj58yMGnjxw1bNAAW1tbvvn2WzIyMjjy229s27Gj2GLu168fGzZs4MqVK2RlZZGens7ly5dzdER73sWLFzly5AgqlYojR45w+fJljfvA3bt35+zZs2zatKlAz8mPHDmSDRs20DKX/0/m5ub4+fmxZs0aNm/eLH8/hYWF8eWXX+ba0a+o68tNy5YtqVWrFj/++KPG+q5du7Jt2zb5fY2Pj2fhwoV4eHjIJ24vs3z5cvlxsqysLC5evMiFCxdwcnLSav+XcXR0pGLFiixatIj09HQiIiJYs2aNfLuhZcuWJCQksGnTJlQqFZcuXeLwcy1BDRo0oFq1agQEBJCYmAhkX7UfPXq0SOIrrNeawPX09BgyZAiHDx9m//79VKlShUWLFuXYLj09PceHKjk5WW66el7r1q3ZunVrrj0pp0+fTu/evTl8+DC9e/dm2rRpQPYZq6mpKSYmJnne41u+fDkKhQKFQkFrMQa4IGgYMWIEO3fupEmTJowfPz7PdXPnzsXW1paePXuiVCr5tG9f/rhwAchuXl25bBnBf/7JB+7uLP/223w7gL2qFi1aMHnyZGbNmkXTpk1p0aIFK1euzHcMak9PTw4cOECTJk34+uuvWbJkiUYzdIUKFXBzc+Pu3bt06dJF61hsbGxo1qwZhoa5N4L26NGDZcuW8euvv9K6dWuaNGmCr68v7733Xq49s4u6vrxMmjQpx6QbH330ESNGjGDKlCk4OzvzySefUKFCBebNm6d1vUZGRvj7++Pu7o6zszNTp07F29s7x62cwjI0NGT16tXcuXMHd3d3vL29adeuHYMGDQLAysqK1atXs3v3bpo0acKKFSvo0aOHvL++vj6rVq3iyZMneHl50bhxY7y9vbl+/XqRxFdokg4dOnRI6t+/f471165dk9q1ayfdvn1bkiRJSkxMlHr27Cnt3Lkzz7patWolhYaGyr/Hx8dLTk5OkkqlkiRJklQqleTk5CQ9ePBASkpKkiRJkrKysqRBgwZJcXFx+cYZEREh1apVS4qIiCjoSyxdWrTIXoQCu379uq5DeCOoU1KkrLS0XJcb169LN65fz7M8Ky1NUqek6Pol5DB37lxp3Lhxug5DKOEK8x2hs17oWVlZ/Pjjj3h4eOQoq1+/PrNnz2bYsGFcunSJgQMH0qlTJ40zopeJiYnBzs4OAwMDIPseToUKFYiJiSEkJITu3bvTq1cvmjdvXuA5WAVBECD7e2bPnj0Fuq8uCEVFZ53YZs+ejZmZWZ4f/KZNmzJhwgT69OnD4MGD8fYuuh67bm5uuLm5FVl9giC8ffz9/QkMDJQHDhGE100nCXzBggXcvXuX1atXo6+feyNAfHw8y5cvZ/jw4QQFBdGhQwcaNmyo9THs7e2Ji4tDrVZjYGCAWq3m3r172NvbF9XLePt8+qmuIxBKMWsrK12HUCBfffUVX331la7DEN5ir70JffHixfz111+sWLFC7s7/onv37jFw4ECGDh3K2LFj+eabbxg7dizBwcFaH6dcuXLUqVNHHnQhKCiIOnXqyM9ECoUwcmT2IgjFoEK5clQoV07XYQhCiaEnScU4wO0Lbt26haenJ9WrV8fExATIfk5wxYoVGttFREQQGhpKmzZt5HU3b94kPj4+R9O3v78/R44cIT4+Hmtra8qWLSsPQnD79m38/PxITEzE0tKSBQsW8O677xY47sjISFq3bs2xY8cK9VxjqZGSkv3TzEy3cZRAN27coE6dOroOQ+eefw48R1lWFkCerXIAUlYW+qamxRKbIOhSYb4jXmsCL6lEAn/q2TOmJ07oMooSSSTwbPkl8NA7dwBQ5HOSLRK4UFoV5jvirRwLXRAEQRBKOpHABUEQBKEEEglcEIQSa/r06bi4uKBUKottpqyC2rdvX4GGVS2MIUOGsGnTpmI9hvDmEwlcEATZ3bt3+fzzz3F1dUWpVOLh4cHkyZPlcj8/P2bNmvXKx1m+ciXDPv/8leq4fPkyBw4c4MiRI4SEhGg81ZKRkYGLiwt79uzJsV94eDi1a9cmNDT0lY6fFy8vL3bv3l1k9Xl4eHDo6fjxz6xfv75Ix8Z4mX79+lG/fn2USiVOTk60a9eOKVOm5DuO/KsICwtj9OjRuLm50bhxY7p168bx48c1trl//z7Dhw9HqVTi5ubG2rVrta4/IyODqVOn0qZNG5RKJW3atMmxv0qlYu7cubi4uODk5MSkSZNIedaRFwgICKBTp04olUpatGjBggULcpxErl69Gjc3N5RKJSNGjJDnBCgqIoEL2hswIHsRSi0fHx+qVavG0aNHCQ4O5ocffqBRo0ZFeoxnU02+qJy1NeWsrbWuJzIykooVK2KVy/PjxsbGeHl5yfM9P2/37t00bNgQhUKhfdACY8eOJSQkhMuXL7Nu3ToMDQ3p1q0bISEhRX6sJ0+e4Orqyp49e7h06RKjRo1i7NixGidd48ePx9zcnNOnT7NhwwY2bdrE/v37tapfpVJhY2PDunXruHz5MqtWreLHH3/UmKhl9erVnD17lj179nD06FGio6M1xnc3MjJi8eLFXLx4kW3btvHHH3+wbNkyuXzPnj1s2bKFDRs2cPr0aczMzJg4cWIRvDvPKeLhXEslMRa68KpKwljoCQkJUq1ataTw8PBcyzds2CDVrVtXqlevntSoUSPJ3d1dkiRJOnPmjPTxxx9LTk5O0gcffCCNGzdOSkhIkPfr27evNH/+fGnIkCFSI0dHac3KlVK9unWlOnXqSI0cHaVGjo7S4/v3cx37fON330lt27SRnJ2cpD69e0t/h4TIsdSvX1+qXbu21KhRI2nkyJE54v3nn38khUIh/ffff/I6lUolubm5STt37pSioqKkQYMGSS4uLpKTk5PUt29f6caNGxp1HDhwQOrataukVCold3d3afPmzS8tCwwMlDp37ixv16pVK2nNmjVS7969pUaNGkndunWTbt68KZfv3btX8vT0lJRKpeTm5ibNnDlTSk1NlSRJkkaOHCkpFAqpQYMGUqNGjaSxY8fK7+n69evlOn7//XepW7duUuPGjaXOnTtLBw8elMuexbNmzRqpefPmUtOmTaWAgIBc/8Z5efF4zwwYMEDq2bOn/PuDBw+kiRMnSm5ubpKrq6vk5+cnPXnyRC4PDw+XRo4cKbm6ukrOzs6St7e31jF0795d2r59u1yPQqGQYmJi5PKVK1dKffv2LdDret78+fM1xrRv0aKFtHfvXvn3S5cuSQ0aNJD/Ni/asmWLxnvRu3dvaeXKlfLvMTExkkKhyDOPFOY7QiRwLYgE/tT9+9mLUGC5/ud8NjnM88uKFdllycm5l3//fXb5/fu5lz/9gpPCwws1+UzHjh2lPn36SHv37pUnE3repEmTpJkzZ2qsu3DhgnT16lUpMzNTiouLk3r16iVNnjxZLu/bt6/UtGlT6dKlS5IqOVlKefRI+mbxYmnokCEayTojKUnKSEqSf98bGCg1c3WVrgUHS2lPnkjrVq2Smrm6ygnhxUSZm549e0pff/21/PvRo0clpVIpJScnSxEREdLx48ellJQUKTU1VZo5c6bUrl07Sa1WS5IkScePH5ecnZ2lM2fOSCqVSkpISJCuXLny0rLcEnjHjh2lO3fuSBkZGZKfn59Gojlx4oR069YtSa1WS2FhYVK7du2kb7/9VmP/X375ReN1PZ9Qw8PDpQYNGkj79++XMjMzpd9//11ydHSUgoOD5Xjq1q0rrVy5UkpPT5du3rwpNWzYUPrjjz/k+jw9PaU1a9bk+T7mlcB37twp1a5dW0pJSZGysrKknj17StOnT5duAEtmAAAgAElEQVSePHkiPXnyRPr888+lSZMmSZIkScnJyVKrVq2k+fPnS0+ePJEyMjKk33//Pb8/n+zevXuSo6OjFPL0BO7XX3+VmjVrprHNiRMnpCZNmmhV34vUarXUvXt3+T14/PixVKtWLenff/+Vt0lNTZVq1aqV4yTvmVGjRklTp06Vf3dycpJOnjypsY2rq6t09OjRXPcvUZOZCCXQJ59kL0KptXnzZho2bMi6devw9PTE3d2drVu35rtPkyZNaNCgAYaGhlSoUIHBgwdz/vx5jW06deqEk5MTenp68iBOL7odHs7t8HD595/37qV3r17Uq1sXYyMjBg8ciKmpKb/99pvWr+fTTz/l559/Rq1WA9nN556enpiZmVG5cmVatWolTy3s6+vLf//9R2xsLADbtm2jb9++NG/eHAMDA6ytreXhnPMry81nn31GjRo1MDIyolu3bvz1119yWYsWLXjvvffQ19enevXqfPbZZznev/wEBQWhVCrx9PTE0NAQV1dXOnbsyE8//SRv88477zB8+HCMjY1RKBQ0bNiQv//+Wy7fv38/Pj4+Wh/zmQoVKpCVlUViYiLXrl3j1q1bfPXVV1hYWGBhYcGYMWMICgpCrVZz4un4ERMmTMDCwgIjIyNcXV1feoy0tDTGjBlD27Zt5ds5SUlJOeYat7S0JCkpqcCvAbLvZ6emptKnTx8ge/pqyH7fnjExMcHIyCjXY2zevJmQkBBGjRolr0tOTtbY/1l9hY0xNzqbzEQQ3nr5DYhjZpZ/ua1t/uVVqhRqwJ1y5coxceJEJk6cSFJSEjt27GDWrFm8++67eX7Z/vXXXyxZsoSbN2+SmpqKlMvYUA4ODgWOJTYujsqVKmmsq1SpkpxgtdGxY0fmzp3LyZMnqV+/PqdOnWL79u0AJCQkMH/+fC5cuEBiYqI8AlxCQgIODg5ERUXRuXPnXOvNryw3z8+5bWpqqtEZ6uzZs6xYsYKwsDAyMjJQqVQac46/TGxsbI4BpqpUqaJxb9rW1hY9PT35dzMzMzlJvYq4uDj09PSwtLQkODiYlJQUPvjgA41t9PT0iI+PJyoqiipVquQ70t6L0tLSGDlyJFZWVsydO1deb2FhkSMRJiYm5kjq2liyZAnHjx9n8+bNmJubA8g/nzx5Is9WmZaWRmZmZo5j7Nixg1WrVrFx40bs7Ozk9ebm5jx58kRj2ydPnhQqxryIK3BBEHJlYWHB4MGDKVu2LDdv3gTQSALPjBs3DkdHRw4fPkxwcDABAQE5tnnxS1ubL/GKdnZERUdrrIuOjqZixYpavwZTU1O6dOnC7t27+fnnn3n//fdp0KABkD0vw8OHD9m1axfBwcEcO3YMQD4BcXBwIPy5FoHn5VdWEBkZGYwaNYquXbvy22+/cfnyZcaOHatxEpTbe/68ihUrEhUVpbEuKiqqQO9TYR06dAhHR0dMTU1xcHDAysqKixcvcunSJXm5du0adnZ2VKpUiYiIiFxP8HKTnJzM0KFDMTU1ZdmyZRgZGcllCoWCBw8eEBcXJ6+7ceNGgTsmBgQEcOjQITZv3qyRfC0tLbG3t+f69evyuuvXr1OmTBmqV68ur9uyZQvLli1j48aN1KpVS6NuhUKhsX9sbCwJCQlF2nlSJHBBEAB4/Pgxixcv5tatW2RmZpKRkcH27dtJTEyUp8ssX7484eHhGl/CSUlJWFpaYm5uTkREhFaP89ja2hIdFZVnj3SAj7y82LZ9Ozdu3iQzM5PvN20iOTmZls+G9NXSp59+ysmTJ9m2bRs9evTQiNvU1BQrKyuSkpJYuHChxn69e/dmy5YtnDt3DrVazaNHj7h69epLywri2ftsbW2NiYkJoaGhOW5ZlC9fnrt37+ZZR+fOnQkODubgwYOo1Wr++OMPDh48SLdu3Qocj7bCw8OZPXs2Fy9elHtWN2jQgGrVqhEQEEBiYiKQfYV+9OhRAFq2bIkkSSxevJjk5GQyMzM5d+5crvUnJSUxZMgQrKysWLp0qUbyhuwWhqZNm7Jw4UKSk5O5desWW7du1fj7+vn50a9fvzxfg7+/P8eOHWPTpk0ayfuZTz75hLVr1xIbG8ujR49YunQpXl5e8i2g77//nlWrVvHDDz/kSN4APXr0YOvWrdy6dYvk5GQWLVqEq6trkQ7HLRK4IAhA9mMx8fHxjBo1iqZNm9K8eXMCAwNZvHixfO+xR48ePHz4kKZNm9KqVSsAZs2axdatW2ncuDG+vr5aNS13aNcOGxsbmrdsSZPmzXM0NQJ06dyZwQMH8sW4cTRr2ZJjx4+zduXKHPcVX6ZOnTrUrl2bR48e4eXlJa//4osviIuLw8XFha5du+Li4qKxn4eHB1OnTmXu3Lk4Ozvj5eXFtWvXXlpWEObm5syYMQN/f3+USiVz5szRiBFgxIgR7Ny5kyZNmjB+/PgcdVStWpWVK1eybt06mjRpwuzZs/H396dx48Zax9G5c2dWr16d7zZLlixBqVSiVCoZPHgwKSkp/Pzzzzg5OQHZrSqrVq3iyZMneHl50bhxY7y9veWrUDMzM77//ntu3bqFh4cHzZs3Z926dbke69dffyU4OJjTp0/TtGlT+bjPx/j111+TlJRE8+bNGTBgAH379tV476Kjo2natGmu9UdFRbF582aioqLo0KGDXP+QIUPkbYYPH84HH3yAl5cXHh4eVKxYkS+//FIunz9/Po8fP6ZHjx7y/s9/9j/66CN69+7NgAEDaN68ea4nia9KTGaiBTGZyVM7dmT/7NlTt3GUQGIyk2z5TWaS8PgxADb5zAsuJjMRtJGWlkbHjh0JCgqS72e/6QrzHSE6sQnaE4lbKEb5JW5BKAgTE5MCPa1QUokmdEF7ERHZiyAUg4zMTDLyuScuCIImcQUuaO9ZhxAxH7hQDMKenhzmNx+4IAj/T1yBC4IgCEIJJBK4IAiCIJRAIoELgiAIQgkkErggCIIglECiE5ugvVwGkRCEomJna6vrEAShRBEJXNBely66jkAoxcpaWuo6BEEoUUQTuqC90NDsRRCKQVp6Omnp6Vpvv3v3btzd3VEqlfz++++FOqaHhweHDh0q1L4lnUKhKNTwr8KbQ1yBC9obNiz7p3gOvNTq168fISEhGBkZoa+vT7ly5WjSpAmDBg2iZs2aWtXxbOjhc+fOYWNjo/Wx7z6dUUub58AzMzOZPXs2q1evzndO6StXrrBq1SpCQkJQqVTY2dnRtm1bhgwZUuAx1d9E58+fx9vbGzMzM431Z8+ezbHuVR04cIDNmzcTGhqKtbU1x48f1yjv3Lkz0c/NHqdSqVCpVJw9e1arz8GePXvYtm0bd+7cwdjYmCZNmjB58mSNWdV+++03FixYQExMDDVr1mTGjBnyPOwnT55k/fr1hIaGoqenR/369Zk8eTLvvfcekD286sSJE/n777+JjIxk3rx5dO/evSjeGp0RV+CCIGgYO3YsISEhXL58mXXr1mFoaEi3bt005pfWtQcPHpCWlpbv1IynT5+mb9++KBQK9u3bJ7+ejIwMQktRS5KZmRkhISEaS1EnbwArKyu8vb354osvci0/cOCARgxeXl40a9ZM65O45ORkxo4dy+nTp/n1118xNTXVONbdu3fx9fXF19eXixcv8tFHH+Hj4yNPhPP48WMGDBjA8ePHOX36NPXr12fw4MGoVCoge1rWxo0bM3/+fI0pQUsykcAFQchTtWrVmDlzJk5OTixYsEBev3DhQjw8PFAqlbRt21ZjCsyPP/4YgNatW6NUKuWyyMhIPh87lmYtWtCiTRsWLFqU79Cp5/74g4979cK5WTO6dOvGoSNHALh69SodOnSQj/HiLGLPzJo1Cy8vL8aOHStPF1mpUiUmTZqEs7OzvF14eDh9+vRBqVTSvXt3jeS+b98+unTpQuPGjXF3d2fWrFmkpaXJ5R4eHqxduzbP/ZOSkhg/fjxNmjShTZs27N69G4VCQWRkJJA99/i2bdvo1KkTzs7OfPrpp1y5ciW/P4nWUlJSmDNnDq1atcLFxYXPP/+ce/fuaWwTEhJC586dcXJywsfHh/v37+dZn5ubG506dcLe3v6lx05KSuLgwYP0LMD8CX369MHV1RVTU1PMzc0ZPHgwV65cISMjA8i+Qm/cuDEdOnTA2NgYb29vLC0t+fXXXwHw8vKidevWWFhYYGxszLBhw4iNjSXi6Qh/ZcqUYcCAATRp0iTH9KQllUjggqAjLVu2zLGsXLkSyP7yza1848aNAMTHx+davuPpjHERERHyuqLQqVMnrly5QmpqKgDvv/8+27dvJzg4mJkzZ7JgwQIuXboEQGBgIADHjh0jJCSEPn36kJaWRv/+/alfty4nfv2Vn3bs4Mq1a6zJYzrJiMhIho8ezUBvb/44dYovJ01i8ldfEXLlCg0bNiQoKEg+xvnz53PsHxYWRnh4OJ6eni99bXv27MHf358LFy6gUCjw9/eXy6ysrFiyZAmXLl1i8+bNnD17lu+++07r/f39/Xnw4AG//voru3bt4uDBgxr7bt++nU2bNrFs2TIuXLiAt7c3Pj4+PHr0CID9+/drnGwUxJQpU4iJiSEwMJBTp05hZ2eXYzrS3bt3s3btWk6dOoW5uTkTJkwo1LFedODAAczNzfHw8Ch0HefOnaNGjRoYGxsDEBoaSr169TS2qVu3bp6tKefOncPCwoJKlSoVOoY3nUjggiC8VIUKFcjKyiIxMRHInuu4QoUK6Onp0axZM9zc3Pjjjz/y3P+3336jTJkyDB86FGNjY8qVK8ewIUPY9zQRv+jAwYMoHR3x7NQJQ0NDXD/4gI4dOvDz3r1axZuQkCDH/TKfffYZNWrUwMjIiG7duvHXX3/JZS1atOC9995DX1+f6tWr89lnn+U4Ychrf7VaTVBQEGPGjKFs2bJYW1szatQojX23bNnCF198IR/D09OTKlWqcOJpP5MuXbrIJ0Z5SUlJwdnZWV6mTZtGQkICv/zyCzNmzMDGxoYyZcowfvx4Ll68SExMjLzvkCFDqFSpEubm5kyaNIlz584RFxf30vfsZXbs2EH37t0xNCxcN6srV66wdOlSvvrqK3ldcnJyjn4LlpaWJCUl5dg/PDycqVOn4ufnJ58AlEaiE5ugvef+Mwmv7kQ+nQHNzMzyLbe1tc23/PkkUBTi4uLQ09PD8umjXps2bWLXrl1yMkhLS8u3aTUqKoq7d+/S1M0N9PSA7ObjLLVa3sb+uWQbGxdH5ReunKpUrkywlvfhn913vXfv3ks735UvX17+t6mpKSkpKfLvZ8+eZcWKFYSFhZGRkYFKpaJq1apa7f/w4UMyMzNxcHCQy1+8GoyKimLKlClMmzZNXqdSqXI0defHzMwsR5K/evUqkiTJtxqeMTY2JiYmRv5bPR9PxYoVMTQ0JC4uTr7lUBjXr1/n+vXrfPPNN4Xa/+rVqwwbNoyZM2fi5uYmrzc3N5fvdz+TmJiYI9bw8HD69+/PgAED6NGjR6FiKClEAhe016aNriMQdOTQoUM4OjpiamrK5cuXWbJkCd9//z0NGjTAwMCAESNGIEkSAPr6ORv2HBwcUCgU7N66Fb1cygEsLSzkf1e0s+P8xYsa5VFRUVTUMrHUqFGDqlWrcuDAgXx7qecnIyODUaNGMXnyZLp27YqJiQkbN25k9+7dWu1vbW2NkZER0dHRcpJ5vpc2gL29PRMnTqRVq1aFijEvDg4O6OnpceLECSyee19fFBUVhZOTEwCxsbFyT/1XsWPHDpo1a0aVKlUKvG9wcDAjRoxg6tSpOW5/KBSKHP0Dbty4wYcffij/fufOHQYMGIC3tzdDhgwp3AsoQUQTuqC9P//MXoS3Rnh4OLNnz+bixYtMnDgRyO6gZGBgQLly5dDT0+Po0aMaz2Hb2Nigr6/P3bt35XUtW7bk8ePHbNy8mdTUVLKysoiMiuL0mTPyNilpaaQ87SDWqWNHgv/8k18OH0atVvPHhQscPHSIbl5eWsc+bdo09u7dy7Jly+TOWbGxsSxcuPClzdKQ/ahaRkYG1tbWmJiYEBoaqtFZ72UMDAzo1KkTy5cv59GjRzx69IgVK1ZobNO3b1+WLVvGrVu3kCSJlJQUzp49+8rN2La2trRv356ZM2cSHx8PZN9WePEe/IYNG4iOjiY5OZmFCxfi4uKSZwJXq9Wkp6ejUqmQJIn09HTSX3huPzU1laCgID799NMc+58/f16jA9+LLl68yLBhw5g+fXqufRc++ugjLl++zJEjR8jIyGDLli08fvyYtm3bAnD79m28vb3p379/nsk7IyOD9PR0JElCpVLJr6ekEglc0J6vb/YilGpLlixBqVSiVCoZPHgwKSkp/Pzzz/KVmru7O56ennTv3h1XV1eOHz9O69at5f1NTEz44osvGDVqFM7Ozmzbtg0zMzN++OEHrly9SrvOnWnq5sbIL74g4rkv84joaCKeXqFWrVKFFd98w7rvvqOpmxv+8+Yxe8YMlI0aaf063N3d2bJlC3///TedOnWicePGDBo0CGNjY2rXrv3S/c3NzZkxYwb+/v4olUrmzJmDVwFOIAC++uorrKysaNOmDR9//DFtnrZiPbsv27t3bz777DPGjRuHs7Mz7dq1Y8uWLXJrxr59+1AqlQU65jNz587F1taWnj17olQq6dGjR45+Ct27d2fo0KG4u7vz+PFjFi5cmGd9e/fupWHDhowfP57o6GgaNmwoP4P9zMGDBylTpozG5+GZmJgYqlWrlucJwrJly0hKSmLKlCny50+pVMqtFtWqVWPp0qV8/fXXODs7ExgYyJo1a+T74uvXr+f+/ft8++23Gvs/f7LWoUMHGjZsyL///svUqVNp2LAhq1at0u4NfQPpSc8+KUKeng1McezYMSpXrqzrcHTnWY9mMZBLgd24cYM6deroOgydy0pNzbMJPfTOHSD/gVykrCz0TU2LJbbX4cKFCwwaNIhr166h97QvwNvi2a2Cjh076jqUN1JhviPEPXBBEIRiEh4ezsOHD2nQoAGxsbEsXryYjh07vnXJGyAgIEDXIZQ6IoELgiAUk9TUVPz8/IiJicHc3Bw3Nze+/PJLXYcllBIigQuCIBQThULBL7/8ouswhFJKJHBBe3Pn6joCoRSr9NykFYIgvJxI4IL2mjXTdQRCKWZRDBNwCEJpJh4jE7T3++/ZiyAUg6SUFJKeGwVNEIT8iStwQXvPOt+Ix8iEYhAVGwtoNx+4IAjiClwQBEEQSiRxBS4IOvLr7ds8eDo9Z3EqZ2pK25dM6PE2SUhIYNy4cVy7do169eqxadMmncQxbNgw6tevz+jRo4mOjqZz584cP34ca2vrAte1evVqrl+/zrJly4ohUuFNJRK4IOjIg9RUKuYz0URRic1lusW8REREMGfOHEJCQjAwMODjjz9m7Nix8gQlKpWKgIAA9u7di0qlok2bNkyfPh2zpx3QDh48yLx584Ds+aifnw3Lx8eHT7p2pe1LJsVJTExk5dq1HD12jAcPHmBlZYVjw4YMHTyYerVr89NPP7FhwwZ5TvCC2rFjB1lZWVy4cAEDA4NC1VHUHBwcCNFypjU/Pz/MzMw0ZjAbPnx4cYUmvMFEE7ogCED2ZBUjRoygevXqnD59msDAQE6ePMn69evlbVavXs3Zs2fZs2cPR48eJTo6Wk7YarWaGTNmsH79etauXcv06dNRP50udN++fZiZmdHGwyPfGFJSU+nTvz9Xr13jm6+/5sLZsxzcu5c2Hh4cPXasSF5nZGQk7733XpEl78zMzCKpRxAKSiRwQXtLl2YvQqkUFhbG7du38fX1xdjYGHt7ewYMGMD27dvlbXbv3s2wYcOwt7fH2toaX19f9u7dS1paGg8fPsTY2BiFQkGdOnUwNDTk0aNHJCQksHLlSqZOnZrv8as4OHDqxAnuP3jA6uXLqVe3LkZGRpiZmdGlc2d8R4/W6nWkpKQwY8YM3N3dadasGePHjychIQGAUaNGsWfPHnbu3IlSqeT777/Psf9PP/2Ep6cn3377La6urri5ubFixQp5gpHz58+jVCrZtWsXHh4etG/fHoCbN28yYMAAXFxc8PDwYO3atTw/1cT27dvx8PDA2dmZGTNmyCc3kH1SoVAo5DglSWLr1q106tQJpVJJ69atOXToEN9//z379++X4382leby5csZNmyYXF9ERAQ+Pj5yLMuWLZNn3Xp2rL1799K+fXsaN27MyJEj5bm2JUli8eLFuLm5oVQq8fDw0PgMCG8O0YQuaK8AM0EJJY8kSfLy/LqoqCiSkpLIysoiJiaGevXqyeX16tUjPT2d//77j1q1aqGnp8fNmzeB7HnBbWxs+N///seIESMoV64cWfnc8zczMeHcH3/woZsblpaWhX4dc+fO5fbt2/z888+YmJjw5ZdfMnHiRNavX8+KFStybYJ+0Z07d0hKSuLEiROEhYUxZMgQKleuTNeuXYHsIVKDg4PZv38/+vr6xMfH4+3tjZ+fH+vWrSM2NpYhQ4Zga2tL9+7duXDhAgsWLGDNmjUolUq2bt3Krl27cHR0zPX4W7duZcOGDSxdupQGDRpw7949Hj16RIcOHQgNDc03fpVKxbBhw2jWrBnLli3j3r17+Pj4YGJigo+Pj7zdsWPH2LVrF1lZWXh7e7Nx40ZGjx4tt7Ds3r2bihUrcv/+fXlKUuHNIq7ABe0dPZq9CKVSjRo1qFq1KosXLyYtLY2IiAg2btwIZM8BnpycDCBP3wjZU4caGRmRlJSEvr4+ixYtYsaMGcyYMYNFixZx6tQpnjx5QuvWrfHz86PvoEHMCwjIdQ7mxKQkHjx4gF2FCoV+DVlZWezdu5fx48dja2uLhYUFfn5+nD59ukBzbJcpU4Zx48ZRpkwZateuTe/evdmzZ49cLkkSEyZMwNzcHFNTU/bs2YOjoyPdu3fHyMiIKlWq4O3tzd69e4HsqTg7d+5M06ZNMTIyYsCAAVSqVCnP42/bto2RI0fSsGFD9PT0sLOzQ6FQaBX7lStXiImJYcKECZiYmFC1alWGDx9OYGCgxnajRo3C0tKSsmXL0q5dO/7++28AjIyMyMjI4N9//yUjI4Py5cuLmfTeUCKBC9rz989ehFLJ0NCQVatWERYWRqtWrRg6dChdu3ZFT08PS0tLzM3NAeSmVoC0tDQyMzOxeNoZz8XFhe3bt7N9+3bq1avHwoULmTlzJmvWrMHBwYEtGzbwICGBn55Lhs/E3LuHmbk5cffuFfo1JCQkkJGRoTHtr4ODA4aGhgVK4OXLl5fn7AaoVKmSxv4mJibY2NjIv0dFRXHu3DmcnZ3l5euvv5avXOPi4nIkbAcHhzyPHxUVRfXq1bWO93lxcXHY2tpSpkwZeV3lypWJffqc/fOv8RlTU1P5BM3FxYWxY8fKtxCGDBnCjRs3ChWLULxEAhcEQVazZk3Wr1/PuXPnOHToEKampjRo0AAzMzMsLS2xt7fn+vXr8vbXr1+nTJkyuSabxYsX06dPH+zt7bl58yZKpRIA58aNufG0mf1FTo0bc/rsWY2ThIKwsbHB2NiYyMhIeV1sbCwqlQo7Ozut67l//z4ZGRny71FRURr7678wp7m9vT0eHh5cunRJXoKDgzlw4AAAdnZ2REVFaewTHR2d5/EdHBy4e/durmUvm4rUzs6O+Pj4HPFXLMBY8z179mT79u2cOXOG999/n/Hjx2u9r/D6iAQuCIIsNDSU5ORkVCoVZ8+eZdWqVfj6+srln3zyCWvXriU2NpZHjx6xdOlSvLy8MDEx0ajn8uXL/Pvvv/Tq1QuAatWqcfr0aTIzMzl77hxVq1bN9fhdvLwoZ2PDiNGjuX7jBiqVirS0NH45fJhvvv32pfHr6+vj5eXF0qVLefDgAUlJScybNw83N7cCJfD09HSWLl1KRkYG//zzDz/++KN8/zs3Xbt25eLFiwQFBZGRkYFareb27dtcvHgRAE9PTw4cOMClS5dQqVRs2rQpR0J/Xu/evVmxYgXXrl1DkiTi4uIIDQ0Fsq+cw8PDNfoqPM/R0ZGKFSuyaNEi0tPTiYiIYM2aNXTv3l2r13716lUuXbpERkYGxsbGmJqavjGP2wmaRCc2QdCRcqamBXpG+1WOo60jR46wZcsW0tPTeffdd/H396d58+Zy+fDhw3n8+DFeXl7yc+Avzm+dkZHBnDlzWLJkiXy1OGzYMMaNG0ezVq1wadKEnp98kuvxzUxN2fbDD6xYs4bRY8fyICGBslZWNHJ0ZOigQVq9hsmTJxMQEEDXrl1Rq9W4urqycOFCrd8DgHfffRczMzM+/PBDDA0N6dWrV74J3M7Oju+//55FixYxZ84cVCoVVatWZciQIQC4uroyYcIEJkyYwJMnT/D09MTV1TXP+vr06YNareZ///sf9+7do1y5ckycOBGFQkGPHj3w9fWladOmWFhY8Ntvv2nsa2hoyOrVq5k9ezbu7u6Ym5vTtWtXBmn5/iUnJxMQEMB///2HoaEhtWvXLvD7J7weelJep3GCLDIyktatW3Ps2DGNe2tvnZYts3+KsdAL7MaNG6IjEJCVmoqefu4Nf6F37gD5j4UuZWWhX4ATksJ41YFiBKEwCvMdIa7ABe2tWaPrCIRSrFo+vbIFQchJJHBBe1o+xiIIhWHyXK9pQRBeTnRiE7S3f3/2IgjF4FFiIo8SE3UdBt27dxfN50KJIK7ABe19/XX2zy5ddBuHUCrFPX1muuwrjMImCG8TcQUuCIIgCCWQSOCCIAiCUAKJBC4IgiAIJZBI4IIgCIJQAolObIL2Nm/WdQRCKVajShVdhyAIJYpI4IL2xBdskcq8fRspn/mxi4qeqSlGNWsW+3FelbGR0Ws5TkJCAuPGjePatWvUq1ePTZs2ab3vmzBK27P5xOvWrauzGPISHR1N586dOX78ONbW1roOp9QTCVzQ3o4d2T979tRtHKWElJqK/tNpOItTVqwVW3wAABuhSURBVAHGW4+IiGDOnDmEhIRgYGDAxx9/zNixY+XZt1QqFQEBAezdu1ceC3369OmYmZkBcPDgQebNmwfAlClT6NChg1y3j48Pn3TtSts2bXI9dsLjxwAY6umxcu1ajh47xoMHD7CyssKxYUOGDh5Mvdq1XzmJ7tixg6ysLC5cuFAiJ+kICQnRdQh5cnBwKFB8y5cv56+//mKNGOWxUMQ9cEF7q1ZlL0KppFarGTFiBNWrV+f06dMEBgZy8uRJ1q9fL2+zevVqzp49y549ezh69CjR0dFywlar1cyYMYP169ezdu1apk+fjlqtBmDfvn2YmZnRxsMjz+Pff/CAu5GR9Onfn6vXrvHN119z4exZDu7dSxsPD44eO1YkrzMyMpL33nuvRCZvQXieSOCCIAAQFhbG7du38fX1xdjYGHt7ewYMGMD27dvlbXbv3s2wYcOwt7fH2toaX19f/q+9Ow+rqtobOP7lMCnCQXFCvE5JUaESCCKTKUOQIplZil71qpfUNJRscCgvWmpOaDkAqS9RehUzshTFUMO8iugjlBVoKmp6FFDQjgc4cBjeP4j9eDygQMysz/OcB/a09tr7DL+91l57rW+//Ra1Ws3du3cxMjLCxsaGZ555BgMDA+7du0dubi6bN2/mgw8+eGwe9n33HbdzcojYsAHbZ5/F0NAQExMTRo4Ywdw336zWceTn5xMaGoqHhweurq7MmzeP3NxcAGbNmsXevXvZvXs39vb2REVFVZpGUlIS48aNw9HREVdXV9atW6e1/LPPPsPd3R1nZ2etkbry8vKYNWsWbm5uODg48Morr5CcnCwtj42Nxd/fv8rtAQ4fPoyvry/29vbMnTuXBQsWMH/+fGm5jY0Nv/zyC1Begg0KCmLFihU4Ozvj7u5OdHS0Vno7d+7E09MTR0dHQkNDCQoKYsOGDZUed3JyMvb29sTExDBkyBCcnZ356KOP0Gg00jppaWlMmDABR0dHfH192b59u7Tsxo0b2NjYSOd7/vz5LFy4kHfffZeBAwfi6enJgQMHADh06BCRkZEcP34ce3t77O3taz0OfGslArggCACUlZVJrwfnKRQKVCoVSqWSW7duYWtrKy23tbWlsLCQq1evYmFhgZ6eHufPn+f8+fPIZDIsLCxYtmwZM2fOpGPHjo/Nw9mUFIa4uyP/G72xLV++nAsXLvDNN9/w/fffo9FoePfddwHYtGkTI0eO5LXXXiM1NZUpU6bobJ+ens6MGTOYNGkSSUlJJCQkMGTIEGn5lStXKCkp4ejRo3zxxRds375dCtJlZWX4+vpy6NAhkpOT8fX1JTg4WCswPWr7a9euERISwjvvvMOZM2cYMWIE+x7TffHJkyd55plnOHnyJKtWrWLlypX88ccfQHlAXr16NatXryYpKYm+ffty8uTJR6anVqs5ffo0Bw8eJDY2lqSkJLZs2QKAUqlk6tSpDBs2jJMnTxIWFkZ4eDhxcXFVpnfgwAECAgI4c+YMM2fOZNGiRahUKnx9fZk+fToeHh6kpqaSmpqKmZnZI/MmaBMBXBAEAPr06UPPnj0JCwtDrVZz/fp1Pv/8cwBUKhV5eXkAWj+ybdq0wdDQEJVKhUwmY82aNYSGhhIaGsqaNWv48ccfuX//Pl5eXsyfP59/Tp3KilWrKC4urjQPSqWSrl261PoYSktL+fbbb5k3bx6dOnXC1NSU+fPnc/z4cbKysqqVRkxMDL6+vgwfPhxDQ0PatWvHwIEDpeVmZmbMmDFDqm0YMGAAv/32GwCmpqYEBARgamqKoaEhr7/+OiUlJZw/f75a28fFxTFo0CC8vb0xMDDAx8cHJyenR+bXxsaGUaNGoa+vj6urK5aWlqSnpwPlty78/f0ZOHAghoaGTJw48bFDIpeWlvLuu+/Srl07unfvzuuvv87evXsBSExMxMzMjH//+98YGRlha2tLYGAgX3/9dZXpeXh44O7ujkwmY/To0dIFn/D3iQAuCAIABgYGhIeHc+XKFYYNG0ZQUBAvvfQSenp6yOVy2rVrB6BVmlSr1Wg0Gkz/aozn7OzMrl272LVrF7a2tqxevZolS5YQGRmJlZUV2//v/8jJzSX2r4DwMLlcTlZ2dq2PITc3l6KiIq0gZWVlhYGBQbUDuEKhoFevXlUu79SpE3p6etK0iYmJdHGjVqtZunQpXl5eODg44OjoiEqlkqqUH7d9VlYW3bp109qflZXVI/PbuXNnrenHpffw9MMMDAzo2rWrNN29e3fp3GVmZtL9oWFfe/ToQWZmZrXyp6+vj7GxsZQ/4e8RAVyovj17yl9Ci9W3b1+2bt1KUlIS8fHxtG3blv79+2NiYoJcLqdbt26kpaVJ66elpWFsbEzv3r110goLC2PChAl069aN8+fPY29vD4CjgwPpD5RIpX337ImPpyfHT5yo9b1QCwsLjIyMuHHjhjQvMzOT4uJiraD0KFZWVlIVdE1FRUXx008/ER0dzdmzZzlz5gympqZatyUepWvXrty6dUtr3sPTNVGb9IqLi7UudhQKhXTuLC0tUSgUWusrFAosLS1rlb8HL2SEmhMBXKi+Tp3KX0KLdeHCBfLy8iguLubEiROEh4czd+5cafmYMWP47LPPyMzM5N69e6xfv56AgADatGmjlc7Zs2e5dOkS48aNA6BXr14cP34cjUbDiaQkevbsqbNvAwMD/jVpEh0tLJj55pukpadTXFyMWq3m4KFDfLJx42PzL5PJCAgIYP369eTk5KBSqVixYgXu7u7VDuBjx44lPj6e+Ph4NBoNeXl5pKSkVGtblUqFkZER7du3p6ioiPXr15Ofn1+tbQFefPFFTp8+zdGjRykpKeHw4cOcPn262ts/zN/fn7i4OFJTUykuLmbHjh1aFzeVkclkrF69mvz8fG7evMmWLVsICAgAYOjQoSiVSqKiotBoNKSnp/Pf//6X0aNH1yp/nTt3RqFQaDWSE6pPBHCh+j7/vPwl1Am9tm0pVanq/aXXtm218/T9999LLZbXrl3LRx99hJubm7R8xowZDB48mICAADw9PbG0tGThwoVaaRQVFbFs2TI+/PBDqYQ1ffp00tPTcR02jNLSUsaOGaOz7zt376IuKuK/0dHY2tryZkgIjq6u+I0cyaGEhEc+gvagBQsW8MQTT/DSSy/h4+ODvr6+TkvvR3n22WfZtGkTW7duZfDgwbzwwgscO3asWttOmTKFtm3b4uHhgY+PDx06dKhR6bRPnz6sXbuWlStX4ujoyL59+/Dz88PIyKjaaTzIxcWFt956i7feeovBgwdz8eJFnJycHplemzZtcHJyws/Pj5dffplBgwbx+uuvA+W3OLZt20ZCQgIuLi4EBwcTFBSEv79/rfLn5+eHhYUFrq6uODo6ilboNaRXVt26nVbsxo0beHl5ceTIkcc2AGnRhg4t/5uY2Ji5aJbS09N55plnGjsbja60oAA9WeXlhgsZGQDYPPFElduXlZYiq8EFSUswceJEXF1dmTlz5t9Oq6ysDG9vb+bMmSOVqh+UnJzMjBkzmnRnMS1VbX4jRAlcEAShCTly5AhKpRKNRsM333xDSkoKvr6+tU7v0KFDFBQUUFhYSEREBH/++afWY3FC8yW6UhUEQWhCTp06xcKFCykqKqJHjx588sknPPGIWonHiYuLY9GiRZSWlmJtbU1ERATt27evwxwLjUUEcEEQhCZk0aJFLFq0qM7S+/TTT6u9rrOzs6g+b0ZEFbogNBDR3EQQhMrU9rdBlMCF6vurD2Oh5vT19dFoNLVuTdwaPFnJs+SC0BpoNBoMDGoejkUJXKg+E5Pyl1Bj7du3Jysri9LS0sbOSpMlk8mkYUsFobUoLS0lKysLc3PzGm/bakrgEydORKFQSP04+/j4MHv27EbOVTOzeXP53zfeaNx8NEOdOnXixo0bXLhwobGz0qjKioqgiiB9/69xy80eNUZ6aSl6ohZDaGHatWtHp1p0ktVqAjjAwoUL8fb2buxsNF+7d5f/FQG8xmQyWaW9j7U2Rb/+iqyKAO0VFATAkQeGL31YqUqFkXieXhCAJlyFnpmZyYcffsjYsWOxs7PDxsamyi4Ab926RXBwMAMHDsTBwYHZs2dz8+bNBs6xIAiCIDScJhvAr127xsGDB5HL5Tg6Ola5XkFBAZMnTyYjI4OVK1eyatUqrl27xqRJk3T6IF6zZg0jR44kODiYjL96fRIEQRCE5qjJVqE7OTlJA89/9dVX/O9//6t0vd27d3P9+nXi4+OlIQBtbGzw9fUlJiaGKVOmALBy5UqsrKwoKyvj66+/Ztq0aRw+fBh9ff2GOSBBEARBqENNNoBXtzXq0aNHsbOz0xq/t0ePHjg4OHDkyBEpgFeMqaunp8eYMWNYvXo1N2/epEePHlrpKZVKlEql1ryK4fMeNeZtq1BcXP73MaMZCUJVNNnZyP5qrPaw4pISABSP+J6V5udjKD5/QitkaWmp86hZkw3g1XXp0iW8vLx05ltbWxMfHw9AYWEheXl5WFhYAHDs2DFkMlmlowRFR0ezsYphCydMmFCHOW/GKjnfglBXXpg8ubGzIAhNTmWDaTX7AP7nn38il8t15pubm0slaZVKRVBQEBqNBj09PczNzYmMjMTQ0FBnu8mTJ/Pyyy9rzSsqKuL69ev07t27VVe5Z2ZmMmHCBHbs2FGjIRJbOnFe6oY4j82beP/qV2XntNkH8Oro2LEjsbGx1VpXLpdXekHwdwYTaGksLS1b97CqVRDnpW6I89i8ifev4TTZVujVJZfLde5ZQ9Ulc0EQBEFoCZp9ALe2tubixYs68y9fvoy1tXUj5EgQBEEQ6l+zD+Cenp78/PPPXL9+XZp348YNUlJS8PT0bMScCYIgCEL90Q8NDQ1t7ExUJT4+nkuXLpGSksKvv/5Knz59UCgU5Obm0r17dwCeeuop4uLiOHToEF26dOHKlSssXrwYY2Njli1bJkZ/qmPGxsY4OztjbGzc2FlpUsR5qRviPDZv4v1rWHplTXiQYhsbm0rnDxo0iC+//FKavnnzJitWrODEiROUlZXh4uLCwoULRUMKQRAEocVq0gFcEARBEITKNft74IIgCILQGokALgiCIAjNUKvoyKU12LBhg9QFrJ6eHmZmZvTs2RN3d3f++c9/0rlz53rPQ0lJCdu2bSMxMZHLly8DYGtry9y5cxkwYIDWukVFRYSFhfHtt99SUFDAoEGDWLx4cb22W9iwYQPbt28nOTm53vZR4dq1a2zbto3U1FQuXbqEo6OjVruNCp6enlJf+xU6derEiRMn6j2PtfHg5+xBLi4ufP7559VKY/78+fz+++/V7lzpQZs2beLMmTOcO3eOvLy8SruXrOycVjh+/DhdunSp8X5bg4rz9v3332uNLVFffvnlF3bs2EFqairXrl1j1KhRfPzxx/W+35ZEBPAWxMzMjK1btwJw//590tLS2LlzJzExMWzdupV+/frV6/7VajVbtmxh9OjRTJ8+HYAdO3Ywfvx4du3apbX/jz76iEOHDrFgwQI6dOjAxo0bmTp1Kvv27WsRLVgvXrzIsWPHsLOzo7hiEJgq+Pv7M3HiRGm6si5+m5IHP2cPzmsIMTEx9OrVC2dnZ44ePVrpOhs3bqSoqEhr3gcffIBMJhPBuwqpqanSRc/+/fuZNWtWve8zJSWFs2fPYmdnR15eXr3vryUSAbwF0dfX57nnnpOmPTw8CAwMZMKECbz11lscPHiwXvtyb9OmDYcPH8bc3Fya5+Ligp+fHzt27GDFihVAeZ/Je/bsYfny5YwaNQqAp59+Gi8vL7777jteffXVestjQ/H09MTb2xuA4OBg7t69W+W6Xbp00XrfmrqHP2cNKTExEZlMxg8//FBlAH/22We1pm/fvs3ly5eZO3duQ2SxWYqLi8PExIQnn3ySuLi4OgvgGo0GmUxW6e/OxIkTmfzXwDWjR4+uk/21NuIeeAsnl8t55513uHbtmla1bGFhIatWreL555+nX79+BAQEcOzYMZ3td+/ezciRI+nfvz+urq4EBwdz//79Svelr6+vFbwBjIyMsLa2Jjs7W5pXMba7j4+PNK9r1644ODjw448//q3jra78/HyWLl2Kr68vdnZ2eHp6smTJElQPDXVpY2NDdHQ0YWFhDB48GBcXF5YsWaJTwntYdYfDbYm++uorRowYQb9+/Rg2bBhbtmypdL3Dhw/j5+dH//79CQwM5NKlS49Nuzbn9eDBg5SWljJixIgab9salJSUcPDgQTw9PXnllVe4fPky58+f11onNjYWGxsbzp07x/jx4xkwYAC+vr4kJCRorTdx4kSCg4OJiYnB29ubAQMGaH33H9SavyN1RZzBVsDZ2RkDAwN+/vlnaV5wcDDffPMN06dPJyIigv79+zNz5kzS09OldTZv3szixYtxcnJi06ZNhIaGYmpqSn5+frX3XVRURFpaGr1795bmZWRkYGlpSbt27bTW7du3LxkZGbU/0BpQq9WUlJQQEhLCli1bmDNnDqdOnWLOnDk660ZFRZGdnc3q1auZNm0aMTExREdH11le9uzZQ79+/Rg4cCDBwcFV3r9tSoqLi7VeFU+jbt26ldDQULy9vYmMjCQwMJBPPvmE7du3a21f0XfDG2+8wdq1a1GpVEybNo3CwsI6z+uBAwd47rnnpM6fBG3JycncuXOH4cOH4+vri6GhIfv376903ZCQELy8vNiwYQNPPfUUc+bM0Qn2KSkp7Ny5k7fffpuIiIgGu73SGokq9FbA2NiYDh06cOfOHQCSkpJITEzkyy+/ZNCgQQC4u7tz9epVwsPD+fTTT1EqlURGRjJ58mQWLFggpfXCCy/UaN/h4eHcu3dPayx1pVJZ6ZdaLpfz559/1uYQa8zCwoIlS5ZI08XFxfzjH/9g/Pjx3Lx5EysrK2lZ9+7dpcY1Hh4epKSkkJCQQFBQ0N/Oh6enJ8899xyWlpZcvnyZjRs3MmHCBPbt29dkf/ju3buHra2t1ryoqCgGDBjApk2bmDlzJrNnzwbAzc2NgoICwsPDCQwMlKpS7969y+bNm3FwcADKGzv6+PgQGxtLYGBgneVVoVDw008/sWjRojpLs6XZv38/crkcDw8PjIyMcHNz48CBA8ybNw89PT2tdV999VWmTZsGlH8Xhg8fTmRkJOvWrZPWUSqV7N27l06dOjXocbRGogTeSjzYX8/Jkyfp3LkzDg4OWqUoFxcXfv31V6C8UYtarf5b96YSExOJiIjg7bffbpLDse7du5dRo0Zhb2+Pra0t48ePB+Dq1ata67m5uWlNW1tbk5mZWSd5eP/99/H398fR0ZGxY8eybds2srOz+frrr+sk/fpgZmbGnj17tF4DBgwgNTWV/Px8/Pz8tD5XgwcP5s6dO1rnrGPHjlLwhvKLJFtbW86dO1eneY2Li0Mmk/Hiiy/WabotRVFREQkJCXh7e0vdTg8fPhyFQkFqaqrO+g/e9pLJZHh5eem8Z7a2tiJ4NxBRAm8FCgsLuXfvnvSlunv3Lrdv39YpRQFSCenevXsAtX787Ny5c4SEhDBu3Dj+9a9/aS2Ty+WV3kdXKpU699DrS0JCAu+99x6BgYGEhITQvn17bt++zaxZs3SqcR8eltbQ0LBeqnqhvG//Pn36kJaWVi/p1wV9fX369++vM7+ioV5V95pv3bolVWN37NhRZ3nHjh25fft2Hea0vPrc2dlZBJQq/PjjjyiVSp5//nlpWGZnZ2eMjIyIi4vTusiC8pqrB1X2nolz3XBEAG8FTp06RXFxsdRy2NzcnK5du7Jp06Yqt2nfvj1Q3oL34S/t41y5coXp06czePBg3n//fZ3lTzzxBJmZmeTn52NiYiLNz8jIaLCSenx8PHZ2djw4ls/p06cbZN+Po6enp1N12RxUXHxFRkZWGqD79Okj/Z+Tk6OzPCcnp06HAM7IyCA9PZ1ly5bVWZotTVxcHEClbT/i4+NZuHChVgvy3NxcOnToIE3n5OToXOQ3x89ucyUCeAunVCpZs2YNvXr1wtXVFSh/tCsqKgoTExP69u1b6Xb29va0adOGvXv38t5771V7f9nZ2UybNo2ePXsSFhZW6eMj7u7uQHkp+KWXXgIgKyuLs2fP8p///Kemh1grarVaZ6S6ffv2Nci+H+X3338nIyOD1157rbGzUmMVn5ns7GyGDh36yHVzcnJISUmRSng3b94kLS2tTh8niouLw9DQsMbtNlqL/Px8fvjhB/z9/XU+b+np6axYsYJTp05p3UJKSEiQfjNKS0s5cuSITidNQsMRAbwFKSkp4aeffgIgLy+P3377jZ07d1JQUMDWrVulYOrm5oa7uztTp04lKCgIa2trVCoV58+fp7CwkHnz5iGXy3njjTdYt24dGo2GIUOGUFRUxLFjx5g9ezZdu3bV2b9arSYoKAilUsnixYu5cOGCtMzIyEh6PtfS0pIxY8awfPlyysrKsLCwYOPGjVhZWREQEFCv56iidODq6srSpUsJDw/Hzs6OY8eOkZSUVGf7KSgokB7Ly8rKQqVSER8fD8Dzzz9P27ZtSUxM5LvvvmPo0KF06dKFjIwMwsPD6datW7N8LlYulzN79myWLVuGQqHAycmJ0tJSrl69SnJyslaNT4cOHXjnnXeYO3cubdq04dNPP8XCwuKxx3369Glyc3P57bffgPIqYAsLC6ytrXVK7wcOHGDIkCE6t0CEckeOHKGgoIBJkyZhZ2entczBwYHw8HD279+vFcC/+uorDA0NefLJJ9mzZw9//PEHYWFhtdp/bm6uVOulVCpRKBTSd8TPz6+WR9W6iADegty/f5+xY8eip6eHqakpPXv2JCAgQKcrVT09PTZu3EhERATR0dHcunULc3Nznn76aa0ewaZPn465uTlffPEFu3btwtzcHEdHR53HvyrcuXNHeqSkoie2Ct27d9fqeOP999+nbdu2fPzxx6jVapycnFi7dm299sKmVqulXs7GjRvHjRs3+OKLLygsLMTNzY21a9fWWck3JydHp1qyYrqi+09LS0tycnJYvnw59+/fp3379nh4eBASEoKpqWmd5KOhBQUF0aVLF6Kjo4mKisLY2JjevXszfPhwrfWsrKyYMWMGa9euRaFQ0K9fv2q9/xs2bNC61VHxJMHs2bN58803pfnp6elkZGRIreEFXXFxcfTu3VsneEN5O48XX3yR/fv3az2tsW7dOpYvX8769evp1q0b69at0+k4p7ouXryo9R25fv269N4+ePEvVE0MJyq0GsHBwWRlZRETE9PYWRGEZiU2NpYFCxaQkpJS5QW80PDEY2RCi3fx4kW2b9/ODz/8gJeXV2NnRxAEoU6IKnShxVu6dCnXr19n0qRJTJkypbGzIwiCUCdEFbogCIIgNEOiCl0QBEEQmiERwAVBEAShGRIBXBAEQRCaIRHABUEQBKEZEgFcEARBEJqh/wfW0QE+8IT2CwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"tags": []
}
}
]
}
]
}