
CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries ©2008 Association for Software Testing

Proceedings

Table of Contents

CAST Overview ... 2

Sponsors (See Sponsors directory on CD for more) ... 5

Speaker Bios .. 8

Day 1 – Tutorials
Schedule ... 13
Gerald M. Weinberg: The Tester’s Communication Clinic ... See session

Scott Barber: Performance Testing Software Systems ... See session

Hung Nguyen: From Craftsmanship to Leadership ... See session

Julian Harty: Mobile Wireless Test Automation.. See session

Day 2 – Sessions
Schedule ... 16
KEYNOTE - Gerald M. Weinberg: Lessons from the Past to Carry into the Future 16
Martin Taylor: Visualization and Statistical Methods .. 17

Michael Bolton and Jonathan Kohl: Testing and Music: Parallels in Practice, Skills and Learning .. 23

Diane Kelly and Rebecca Sanders: The Challenge of Testing Scientific Software 30

KEYNOTE - Robert Sabourin: Applied Testing Lessons from Delivery Room Labor Triage 16
Doug Hoffman: Lessons for Testing from Financial Accounting .. 37

Jeremy Kominar: Sleight-of-Quality: A Magical Approach to Testing .. 44
Morven Gentleman: Measuring File Systems .. 56

Day 3 – Sessions
Schedule ... 64
KEYNOTE - Cem Kaner, JD, PhD: The Value of Checklists and the Danger of Scripts 64
Steve Richardson and Adam Geras: Seeking Data Quality ... 65

Adam White: Software Testing To Improv .. 71

KEYNOTE - Brian Fisher: The New Science of Visual Analytics ... 64
Bart Broekman: Testing Fuzzy Interfaces - Can We Learn From Biology And Wargaming? 72
Adam Goucher: Lessons in Team Leadership from Kids in Armor .. 77

Scott Barber: Testing Lessons From Civil Engineering .. 82

Day 4 – Post-Conference Tutorial and Workshop

Gerald M. Weinberg: The Tester’s Communication Clinic ... See session

Cem Kaner, Becky Fiedler, Scott Barber: Live! AST Instructors’ Orientation Course See session

1

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries ©2008 Association for Software Testing

Program: Day 1 – Monday, July 14, 2008
Time Room: Terrace

3rd Floor
Room: Saint David

3rd Floor

Room: Saint
Patrick North

3rd Floor

Room: Saint
Patrick South

3rd Floor

Room:
Colony
West

7:30 – 9:00 AM Continental Breakfast (Room: 3rd Floor Foyer)

Registration

9:00 – 10:30 AM Jerry Weinberg: The Tester’s
Communication Clinic

Scott Barber:
Performance Testing

Software Systems

Julian Harty:
Mobile Wireless
Test Automation

Hung Nguyen:
From Craftmanship

to Leadership
10:30 – 10:45 AM Break (Room: 3rd Floor Foyer)

10:45 AM - Noon Jerry Weinberg: Continued Scott Barber: Continued Julian Harty:
Continued

Hung Nguyen:
Continued

Noon - 1:00 PM Lunch (Room: 3rd Floor Foyer)

1:00 - 2:45 PM Jerry Weinberg: Continued Scott Barber: Continued Julian Harty:
Continued

Hung Nguyen:
Continued

2:45 - 3:00 PM Break (Room: 3rd Floor Foyer)

3:00 – 5:00 PM Jerry Weinberg: Continued Scott Barber: Continued Julian Harty:
Continued

Hung Nguyen:
Continued

5:00 – 7:00 PM Break

7:00 – 9:00 PM
Birds of a Feather Proposal:
Teaching of Software Testing
(Cem Kaner, Becky Fiedler)

AST SIG Meetings
(SIG Leads)

Get your questions
answered about

AST (Michael Kelly)
Open Space

Confer:
The focus of CAST is on the "confer" part of the word
"conference". You will find colored index cards in your
packet. These are meant to signal the facilitator
when you have questions. When the speaker is
speaking, you may ask "Clarifying Only" questions.
But when the speaker is done, it's "Open Season" at
which point you can raise any of three cards:
• Green: this "On Stack" card signals the facilitator

that you have a question that relates to the current
thread of discussion.

• Blue: this "New Stack" card signals that you have a
question or comment unrelated to the current
thread.

• Red: the "Burning Issue" card. This is used when
you are urgently compelled to interrupt the speaker.
It can be a point-of-order, an argument, a problem
with the facility acoustics, or something you need to
get off your chest quickly because you've been
provoked in a way that's meaningful to you. Once it
is used, however, it is taken away (except when you
use it to flag facility acoustics problems).

AST annual meeting and elections:

The AST is a non-profit professional association
dedicated to improving the practice of software
testing by advancing the science of testing and its
application. Members and non-members may be
interested in hearing how the AST operates and what
its plans are for the coming year. The AST is run by
members who volunteer as a nominated, elected slate
of officers. The AST elections for their Board of
Directors will be held at 4:00 pm on Tuesday, July 15.
The AST Annual Membership Meeting where election
results will be announced and an overview
presentation is made to the membership will be held
from 4:00 to 5:00 pm on Wednesday, July 16.

Tutorials:
If you signed up for a particular tutorial, you may
switch to another, provided there are seats left in the
room for the tutorial-in-progress you want to join.

Sponsors:
In return for the support of our sponsors, we have
given them space in Colony West, with vendor
presentations taking place in Terrace 3rd Floor. See
the CD for additional Sponsor materials.

2

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Program: Day 2 – Tuesday, July 15, 2008
Sessions Room / Location

Time Room: Colony Ballroom
2nd Floor

Room: Saint David
3rd Floor

Room: Saint
Patrick 3rd

Floor

Room:
Terrace 3rd

Floor

Room:
Colony
West

7:30 – 8:45 AM Continental Breakfast and Networking (Room: 3rd Floor Foyer)
8:45 – 9:00 AM Opening Remarks

Registration

and
Sponsors
booths

9:00 -10:30AM

KEYNOTE - Gerald M.
Weinberg: Lessons from
the Past to Carry into the

Future

10:30 – 10:45 AM Break (Room: Colony West)
 Speaker Introductions:

10:45 – 11:45 AM
Martin Taylor:
Visualization and

Statistical Methods

Michael Bolton
and Jonathan

Kohl:
Testing and Music

Diane Kelly
and Rebecca
Sanders: The

Challenge of
Testing Scientific

Software

Vendor
Presentations

11:45 – 1:00 PM Lunch

1:00 – 2:30 PM

KEYNOTE - Robert
Sabourin: Applied Testing
Lessons from Delivery Room

Labor Triage

2:30 – 2:45 PM Break (Room: Colony West)
 Speaker Introductions:

2:45 – 3:45 PM
Doug Hoffman:

 Lessons for Testing from
Financial Accounting

Jerry Kominar:
Sleight-of-Quality

Morven
Gentleman:

Measuring File
Systems

Vendor
Presentations

3:45 – 4:00 PM Break (Room: Colony West)
4:00 – 5:00 PM AST Board of Director’s Election
5:00 - 6:00 PM AST Board Of Director’s Meeting

3

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Program: Day 3 – Wednesday, July 16, 2008
Sessions Room / Location

Time Room: Colony Ballroom
2nd Floor

Room: Saint David
3rd Floor

Room: Saint
Patrick 3rd

Floor

Room:
Terrace 3rd

Floor

Room:
Colony
West

7:30 AM – 8:45 AM Continental Breakfast and Networking (Room: Colony West)

Registration

and
Sponsors
booths

8:45 – 9:00 AM Opening Remarks

9:00 – 10:30 AM
KEYNOTE - Cem Kaner,

JD, PhD: The Value of
Checklists and the Danger of

Scripts

10:30 – 10:45 AM Break (Room: Colony West)
 Speaker Introductions:

10:45 – 11:45 AM
Steve Richardson and

Adam Geras:
Seeking Data Quality

Adam White:
Software Testing To

Improv
Lightning Talks

Vendor
Presentations

11:45 – 1:00 PM Lunch (Room: Colony West)

1:00 – 2:30 PM
KEYNOTE -Brian

Fisher: The New Science of
Visual Analytics

2:30 – 2:45 PM Break (Room: Colony West)
 Speaker Introductions:

2:45 – 3:45 PM Bart Broekman:
Testing Fuzzy Interfaces

Adam Goucher:
Lessons in Team

Leadership from Kids
in Armor

Scott Barber:
Testing Lessons

From Civil
Engineering

Vendor
Presentations

3:45 – 4:00 PM Break
4:00 – 5:00 PM AST Membership Meeting

Post-Conference Tutorial: Day 4 – Thursday, July 17, 2008
Time Room: Terrace

3rd Floor
Health Sciences Building of the University of

Toronto - 155 College Street - Room 106
7:30 – 9:00 AM Continental Breakfast

9:00 – 10:30 AM Jerry Weinberg: The Tester’s Communication
Clinic

Live! AST Instructors’ Orientation Course Jumpstart Tutorial
Hosts: Cem Kaner, Becky Fiedler, Scott Barber

10:30 – 10:45 AM Break

10:45 AM - Noon Jerry Weinberg: Continued Live! AST Instructors’ Orientation Course Jumpstart Tutorial
Continued

Noon - 1:00 PM Lunch

1:00 - 2:45 PM Jerry Weinberg: Continued Live! AST Instructors’ Orientation Course Jumpstart Tutorial
Continued

2:45 - 3:00 PM Break

3:00 – 5:00 PM Jerry Weinberg: Continued Live! AST Instructors’ Orientation Course Jumpstart Tutorial
Continued

4

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Sponsors

 The following organizations are generous sponsors of CAST 2008.

Gold Sponsors

Developsense, founded and run by Michael
Bolton, is based in Toronto, Canada. We teach
provide software testing, consulting, and coaching
services all over the world.

www.developsense.com

www.logigear.com

LogiGear offers innovative software testing
services, including integrated test automation and
global resource solutions. Since 1994, LogiGear
has created unique solutions that specifically
meet the needs of clients in many industries,
ranging from Fortune 500 companies to early-
stage startups. With facilities in the US and Asia,
LogiGear’s solution helps companies increase
test coverage, improve software quality, lower
testing costs and speed time-to-market. For more
information, visit http://www.logigear.com.

www.skytap.com

Skytap is the leading provider of cloud-based
virtualization solutions available as secure, on-
demand services over the Web. Skytap solutions
enable IT and development teams to rapidly
develop, test, deploy and manage applications in
a virtual environment, dramatically increasing their
ability to respond to business needs and shorten
time to market, while reducing overhead and cost.

Skytap Virtual Lab is an automated virtual lab
management solution available as a service.
Skytap’s Virtual Lab offers organizations the
ability to provision virtual labs in minutes,
automate the set-up and tear-down of complex,
multi-tiered environments, and better collaborate
across globally distributed teams using shared
virtual infrastructure.

www.rbcs-us.com

Rex Black Consulting Services, Inc. (RBCS)
delivers insight and confidence to companies,
helping them get quality software and hardware
products to market on time, with a measurable
return on investment. RBCS is both a pioneer and
leader in quality hardware and software testing -
through ISTQB and other partners we strive to
improve software testing practices and have built
a team of some of the industry's most recognized
and published experts.

RBCS' team of international consultants deliver
customized training, consulting, and outsourcing
services to companies that are looking to improve
their software testing and quality assurance
processes. Companies that have leveraged the
RBCS team have reduced development and
support costs while assuring the best quality
products are delivered to customers.

www.sqe.com

Software Quality Engineering assists software
professionals and organizations interested in
boosting productivity, improving software
practices, delivering more customer value, and
increasing ROI. Software Quality Engineering
hosts three of the industry's most recognized
software quality conferences including the STAR
conference series and the Better Software
Conference & EXPO. Offering a large variety of
software training, Software Quality Engineering
delivers software improvement methodologies to
organizations both large and small. Our team of
internationally recognized experts, with hands-on
software testing and development experience,
develop courses to help both software teams and
organizations improve the bottom line. We also
produce Better Software magazine and
StickyMinds.com-the most comprehensive
resources for helping you produce better
software-and provide research through our
various eNewsletters, books, and other
publications. Software Quality Engineering arms
you with the power of information.

www.SearchSoftwareQuality.com

Ensuring software quality requires more than just
identifying and fixing bugs - it requires use of the
correct methodologies, processes and tools
throughout the software development lifecycle.
SearchSoftwareQuality.com's mission is to educate
Application Development Managers, Test/QA
managers, Software Project Managers and
Business Analysts on the key activities, processes
and tools needed to produce and deliver robust,
high quality software on time, to specification and
within budget.

www.tacitknowledge.com

Tacit Knowledge is an enterprise software
consultancy with offices in San Francisco, New
York, Moldova, and Guadalajara. We develop
custom applications for both Fortune 500 and
startups, with a particular emphasis on software
stabilization and optimization, continuous
deployment, and agile program management.

QA Consultants is the largest Quality Assurance
and Testing consultancy in Canada and one of the
biggest and most established in North America.
This year alone QA Consultants has already
successfully delivered over 250 projects. NEW –
Many Fortune 1000 companies are now taking
advantage of QA Consultants latest offering - Local
Testing resources at Offshore prices.

www.QAconsultants.CA

5

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Silver Sponsors

www.edistatesting.com

Edista Testing Institute
Edista Testing Institute is setup as an academic
intervention built for enabling talent acquisition
and talent transformation in Software Testing. Our
core focus is to enable interventions of learning,
certifications, assessment, and community
development, and thus furthering the
development of the Software Testing Ecosystem.
The institute focuses on creating products,
providing services using the learning products and
engines, and amplify the same with the use of
technology.
ETI also contributes to the development of the
ecosystem through an online community
 Test Republic.

www.karennjohnson.com

Karen N. Johnson, Software Testing Consultant
Karen N. Johnson is a software testing consultant
located in Chicago, Illinois. She has extensive
experience in software testing and test
management. She serves as a Director for the
Association for Software Testing and is a program
co-chair for the 2007 Conference for the
Association for Software Testing.

testingReflections.com is your one-stop for
software testing blogs, aggregating many of the
best blogs and articles on software testing from
around the web into one convenient place.
Established in 2004, testingReflections.com now
contains nearly 4000 blog articles covering
functional testing, performance testing, unit
testing, test-driven development and just about all
things 'Software Testing'...

"testingReflections keeps up
with the most interesting
testing blogs so I don't have
to. I come for the feeds, and
stay for the comments." -
James Bach

 www.mentora.com

Mentora Group, INC. tests, hosts and manages
business applications. We specialize in
performance testing of eCommerce sites and
ERP suites from Oracle, PeopleSoft and SAP
using commercial and open-source tools. We host
and manage business-critical applications in
eCommerce, Healthcare, Insurance and Oracle
Apps. Headquartered in Atlanta, we have offices
in Boston and Washington DC.

www.perftestplus.com

PerfTestPlus offers advising, consulting and
training services as well as resources to bring
software testing expertise and thought-leadership
to organizations seeking to push their testing
beyond "state-of-the-practice" to "state-of-the-art."
Our testing services are designed and delivered
by name-brand testing professionals who
subscribe to our integrity driven, value focused
philosophy."

Workroom Productions is a London-based
consultancy, formed in 1994 by James Lyndsay,
specialising in software test strategy.

www.workroom-productions.com

Sirius Software Quality Associates provides a one
of a kind suite of tools designed from the ground up
to support exploratory and manual testing. Their
complete end to end solution, TestExplorer, covers
all aspects of manual testing, from charter
management to test recording and execution, with
integrated defect management, metrics, and trend
analysis. Sirius SQA also provides consulting and
training in support of all aspects of software testing.

www.sirius-sqa.com

SoftwareTestingHelp.com is a blog purely focused
on software testing and quality assurance. We have
many articles on manual and automation testing,
helping testing professionals in their day to day
testing life. SoftwareTestingHelp.com is now having
worldwide reader base of more than 4000 software
testing professionals. This is a testers community
helping each other to advance in their career and
learning advanced software testing practices.

www.softwaretestinghelp.com

Tejas Software Consulting
Danny R. Faught, proprietor of Tejas Software
Consulting, is an independent consultant, trainer,
and author who helps organizations manage the
quality of their software. Danny focuses on efficient
exploratory testing and practical test automation.
He is also the maintainer of testingfaqs.org, a
resource for test tools, conferences, courses, and
consultants.

http://tejasconsulting.com/

6

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Bronze Sponsors

Centro de Ensayos de Software

www.ces.com.uy

The CES blends academic methods, proven
industry practices, and the experiences of their
staff and alliances to deliver exceptional software
testing services including:
Consulting: We'll advise your company in testing
process improvement, testing strategy, test
automation.
Training: We develop and deliver custom training
for undergarduates, postgraduages, and
professional teams in various areas of software
testing.
Testing: We'll test your applications in an
effective and deliberate manner based on your
context and objectives while focusing on your
business risks and needs.
At the CES, we are dedicated to leveraging all of
the resources available through our staff, the
university, and our allilances to not only exceed
our clients expectations on individual contracts,
but to look beyond individual contracts to build
lasting relationships that benifit both the CES and
our clients.

Solution Delivery Partners Inc.

www.sdp-inc.com
SDP takes a simple approach to delivering client
success: Educate - Demonstrate - Execute. We
provide a unique educational experience for IT
professionals by breaking away from traditional
delivery formats. While SDP instructors will deliver
the fundamentals of IT throughout the course of
training, we specialize in interactive, customized
workshops to suit your needs. We then provide
hands-on mentorship programs to help individuals
apply knowledge gained to real-world
circumstances. Finally, through our strategic
partnerships we can assist organizations in critical
areas such as designing, building and delivering
business-driven technology solutions, software
tool evaluations and support (HP Mercury, IBM
Rational & Compuware), and web design,
development and testing. SDP is committed to
being your partner in success.

Inflectra™

www.inflectra.com

Inflectra™ is a privately held software company
dedicated to helping our customers - large
corporations, small businesses, professional
services firms, government agencies and
individual developers – with the means to
effectively and affordably manage their software
development lifecycles, so as to decrease the
time to market and increase return on investment.

SpiraTest™ is a powerful Quality Assurance and
Project Management solution that manages a
software project’s requirements, scope, use-
cases, tests, releases and bugs and issues in one
environment, with complete requirements
traceability throughout. Customers can track
every bug or issue back to the test case and test
step that being executed, and from there back to
the underlying requirement needing fulfillment.

TestersDesk.com from ValueMinds Solutions

www.testersdesk.com

TestersDesk.com is an Online Toolbox/Platform
for Software Testers. It provides Online Tools
FREE to use, that testers can leverage to
increase Test Productivity in the areas of Test
Design/Construction, Test Data Generation, Test
Diagnosis and many other miscellanous areas of
Test Engineering.

The philosphy of www.testersdesk.com is to
research-innovate-implement-consolidate a series
of system-independent online tools that Software
Testers can use, there by creating a one-stop tool
platform for the betterment of Software Test
Engineering. TestersDesk.com is a
complimentary function to everything and every
tool in Software Testing, and intends to provide
lateral support.

The Online Platform is developed by ValueMinds
Solutions, that also performs consultation services
and training (through the name TECHTEACH) in
Hyderabad, India.

Software Test & Performance Magazine

www.stpmag.com.com

 Software Test & Performance is the leading
magazine for test/QA professionals. STP is
published monthly and reaches more than 25,000
software development managers, project and team
leaders, and Test & QA managers. STP helps
readers improve the efficiency of their individual
and teams software QA and testing processes, as
well as help them improve the performance of their
in-house applications pre- and post-deployment.
Apply for a FREE subscription at www.stpmag.com.

NVP Software Testing

www.nvp-inc.com

NVP Software Testing, Inc., provides
industry-leading software quality assurance
and testing services, customized to address

client's business requirements. These
services are provided by qualified talent
utilizing modern industry standards and

proven best practices to provide exceptional
value to clients. NVP offers Consulting,

Management, Automation, and Training and
Mentoring services.

 www.quardev.com

Quardev Laboratories (www.quardev.com) is an
outsource software testing and technical writing
company in Seattle. Quardev focuses on onshore
solutions for rapid exploratory and testing and
technical writing contracts. Jon Bach, a recognized
expert in exploratory testing and Test Lead
management, is Quardev's Corporate Intellect
Manager and lead consultant.

7

 CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Listed in order of appearance:

Keynote Speaker Bios

Gerald M. Weinberg
Fifty years ago, in 1958, Jerry established the very first separate software testing group, to aid in
producing life-critical software for Project Mercury. Jerry will speak of many steps, done and not yet
done, needed to complete the task of creating a true software testing profession.
For the last 50 years, Gerald Weinberg has worked on transforming software organizations. For
example, in 1958, he formed the world's first group of specialized software testers. He is author or co-
author of may articles and books, including The Psychology of Computer Programming and the 4-
volume Quality Software Management series. He is perhaps best known for his training of software
leaders, including the Amplifying Your Effectiveness (AYE) conference and the Problem Solving
Leadership (PSL) workshop.

Robert Sabourin
Robert Sabourin has been involved in all aspects of development, testing and management of software
engineering projects since graduating from McGill University in 1982. He is the Director of Research
and Development at Purkinje Inc, a Montreal based International firm specialized in developing medical
software. Robert was the Manager of Software Development at Alis Technologies for over ten years. He
has built several successful software development teams and champions the implementation of "light
effective process" to achieve excellence in delivering timely commercial quality software solutions.
Robert is a frequent guest lecturer at McGill University where he relates theoretical aspects of Software
Engineering to real world examples and demonstrations. Recently Robert has completed a short book
illustrated by his daughter Catherine. I Am a Bug (ISBN 0-9685774-0-7) uses the style of a children's
book to explain elements of the software development process in a fun, easy-to-read format.
Robert has been the author of several papers and presentations relating to software development at a
number of international conferences.

Cem Kaner, JD, PhD
Cem Kaner is a Professor of Software Engineering at the Florida Institute of Technology. He is the
senior author of three books: Testing Computer Software; Lessons Learned in Software Testing; and of
Bad Software. He also leads the AST-BBST course series project. Prior to going back to school in 2000,
Dr. Kaner worked in Silicon Valley for 17 years as a programmer, tester, technical writer, human factors
analyst, salesperson, attorney, manager (testers, writers, programmers, projects), director, development
consultant, and free-lance teacher. He holds a Ph.D. (in human experimental psychology), a J.D. (law
degree), and a B.A. in No Declared Major (mainly math and philosophy). For his work on the law of
software quality, he was elected to the American Law Institute in 1999.

8

http://www.geraldmweinberg.com/�
http://www.dorsethouse.com/books/psy.html�
http://www.dorsethouse.com/titles.html#Q�
http://www.ayeconference.com/�
http://www.amibug.com/�
http://www.amibug.com/iamabug/p01.html�
http://www.kaner.com/�
http://www.kaner.com/books.html�
http://www.kaner.com/books.html�
http://www.kaner.com/books.html�

 CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Brian Fisher

Brian Fisher is an Associate Professor in the School of Interactive Arts and Technology (SIAT) at
Simon Fraser University and Associate Director of the Media and Graphics Interdisciplinary Centre
(MAGIC) at the University of British Columbia. He is also a member of the SFU Centre for
Interdisciplinary Research in the Mathematical and Computational Sciences, and the UBC Brain
Research Centre and Institute for Computing, Intelligent and Cognitive Systems. His research focuses
on the cognitive science of human interaction with information systems, with the goal of developing
new theories, methods, and methodologies for development and evaluation of technology to support
human understanding, decision-making, operation management, and collaboration. This is done in
collaboration with the US National Visualization and Analytics Centre and its regional centres for
applications in disaster relief and anti-terrorism and with the Boeing Company on understanding aircraft
safety, reliability, and maintainability data. In addition to his SIAT courses Brian has taught in Business,
Computer Science, Engineering, Kinesiology, and Psychology and is currently collaborating with the
SFU Business School to build an interdisciplinary graduate curriculum in visual analytics.

Session

Michael Bolton has been teaching software testing on five continents for eight years. He is the co-
author (with senior author James Bach) of Rapid Software Testing, a course that presents a methodology
and mindset for testing software expertly in uncertain conditions and under extreme time pressure. He is
also the Program Chair for TASSQ, the Toronto Association of System and Software Quality, and a co-
founder of the Toronto Workshops on Software Testing. He has a regular column in Better Software
Magazine, writes for Quality Software (the magazine published by TASSQ), and very sporadically
produces his own newsletter. Michael lives in Toronto, Canada, with his wife and two children. He can
be reached at

 Speaker Bios

Martin Taylor
Martin Taylor has been a software developer for 30 years. For the past 6 years he has specialized in the
development of Automated Testing Frameworks. He is currently the Sr. Test Automation Specialist in
the Engineering Services group at Texas Instruments calculator division.

Michael Bolton and Jonathan Kohl

mb@developsense.com, or through his Web site, http://www.developsense.com.

Since 1998, Jonathan Kohl has worked on a variety of software development projects, mostly as a
software tester. He consults on software testing, and teaches testing skills to a variety of audiences. He is
dedicated to pushing the craft of software testing forward. He is equally at home working on software
development projects, or training, teaching and mentoring testers who are looking to improve their
skills. He also speaks on software testing and development issues for software conferences, workshops,
and user group meetings. He supports and contributes to Open Source testing tools. He has a website at
http://www.kohl.ca.

9

mailto:mb@developsense.com�
http://www.developsense.com/�
http://www.kohl.ca/�

 CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Diane Kelly and Rebecca Sanders
Diane Kelly is an assistant professor in the department of mathematics and computer science at the
Royal Military College of Canada in Ontario. She has over twenty years of software development
experience in industry, mainly in the areas of nuclear power generation and bulk power transmission.
Most of her work has been with safety-related software. Her research interests blend her industrial
experience with software engineering in looking for useful and useable software engineering methods to
improve the quality and maintainability of engineering and scientific based software.

Rebecca Sanders recently completed a master's degree in computer science at Queen's University in
Ontario. Her thesis was The Development And Use of Scientfic Software. Diane Kelly was one of her
thesis supervisors.

Doug Hoffman
Douglas Hoffman has over thirty years experience in software quality assurance and has earned degrees
in Computer Science, Electrical Engineering, and an MBA. He is currently employed by Hewlett-
Packard as a QA Program Manager. He is a Founding Member and a past Director of the Association for
Software Testing. He has been a participant at dozens of software quality conferences and Program
Chairman for several international conferences on software quality. He was among the first to earn a
Certificate from ASQ in Software Quality Engineering (ASQ-CSQE), has been certified in quality
management (ASQ-CQMgr), and is an ASQ Fellow. He is active as a Fellow of the ASQ, participating
in the Silicon Valley Section, Software Division, and the Software Quality Task Group (SSQA), and is
also a member of the ACM and IEEE. He is current Auditor and Past Chairman of the SSQA and is the
Immediate Past Chairman of the Silicon Valley Section of the ASQ.

Jerry Kominar
Jerry Kominar graduated from the University of Guelph with a Bachelor of Arts Honours Degree (Co-
op) double majoring in Computer Information Science and Fine Arts. He is currently working as a QA
Team Lead at Research in Motion in Waterloo. His team tests public key infrastructure and other
security related products for the BlackBerry Handheld. He has been in QA for approximately 4.5 years.

Morven Gentleman
Morven Gentleman is a professor in the computer science department of Dalhousie University in
Halifax. His research areas include software engineering, concurrency, computer architecture, and
mathematical software.

10

 CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Adam Geras and Steve Richardson
Adam Geras has been in the IT industry for 19 years as a developer, architect, researcher, tester, and test
manager. His research at the University of Calgary centred on test-driven development from both the
developer and customer perspectives. Most recently Adam has been keen on using dynamic languages
for scripted and unscripted testing and is the author of PSExpect, an open source testing framework
based on Powershell, Microsoft .NET-based scripting language for system administrators (and testers!).
His job at Ideaca as chief methodologist is to promote project health awareness and project wellness,
with a testing slant.

Steve Richardson also works at Ideaca.

Adam White
Adam White is a manager of Test Engineering and Escalations at PlateSpin Ltd. At PlateSpin they test
their products through the use of context driven testing; meaning they use the right techniques and tools
when it is the right time. He is continually developing his ability to find flaws in enterprise software and
deliver facts to stakeholders. He am a student of the context driven school of testing under the tutelage
of Michael Bolton and James Bach. He just got married and has a web site at
http://www.adamkwhite.com.

Bart Broekman
Bart Broekman has been a software test practitioner since 1990. He started his testing career at Philips
Data Systems in the test team of an operating system kernel. Five years later he joined Sogeti where he
fulfilled assignments ranging from test automation to organising and managing large test projects. He
participated in European embedded software research projects (ITEA) and is co-author of a book on test
automation and testing embedded software.

Adam Goucher
Adam Goucher has been testing software for the last 10 years. In that span he has worked at a range of
companies ranging from one of the big-5 Canadian banks to a start-up. Recently he has been running
organizations' QA / Test departments and helping them improve their processes from a Quality
perspective. Currently he is doing that for The Jonah Group. He is heavily influenced by the Context-
Driven school of testing, though tries to keep out of the politics of the various factions of the testing
world. He has a website Quality through Innovation at http://adam.goucher.ca.

11

http://www.adamkwhite.com/�
http://adam.goucher.ca/�

 CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Scott Barber
Scott Barber is the Chief Technologist of PerfTestPlus, Executive Director of the Association for
Software Testing Co-Founder of the Workshop on Performance and Reliability and co-author of
Performance Testing Guidance for Web Applications. Scott thinks of himself as a tester and trainer of
testers who has a particular passion for performance testing software systems. He is an international
keynote speaker and author of over 100 articles on software testing. He is a member of ACM, IEEE,
American MENSA, the Context-Driven School of Software Testing and is a signatory to the Manifesto
for Agile Software Development.

Tutorial Speaker Bios

Gerald M. Weinberg
See the Keynote above.

Scott Barber
See the Session Speaker above.

Julian Harty
Julian Harty has lots of experience in software testing and for the last year has worked for Google as a
senior QA Engineer. He is passionate about improving software quality, and how software testing fits as
a part of software quality. He is a frequent author and speaker at testing conferences.

Hung Nguyen
Hung Nguyen is CEO, President, and Founder of LogiGear and is responsible for the company's
strategic direction and executive business management. He's been a leading innovator in software
testing, test automation, testing tool solutions and testing education programs for the last two decades.
Mr. Nguyen is coauthor of the top-selling book in the software testing field, Testing Computer Software
(Wiley, 2nd ed. 2002) and other publications including Testing Applications on the Web (Wiley, 2nd ed.
2003). His experience over the past two decades includes leadership roles in software development,
quality, product and business management at Spinnaker, PowerUp, Electronic Arts, Palm Computing
and other leading companies. A frequent speaker at industry events and a contributor to many industry
publications, Nguyen also teaches software testing at LogiGear University, and at the University of
California Berkeley Extension and Santa Cruz Extension in San Francisco and Silicon Valley.

12

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries ©2008 Association for Software Testing

Program: Day 1 – Monday, July 14, 2008

Time Room: Terrace
3rd Floor

Room: Saint David
3rd Floor

Room: Saint
Patrick North

3rd Floor

Room: Saint
Patrick South

3rd Floor

Room
Colony
West

7:30 – 9:00 AM Continental Breakfast (Room: 3rd Floor Foyer)

Registration

9:00 – 10:30 AM Jerry Weinberg: The Tester’s
Communication Clinic

Scott Barber:
Performance Testing

Software Systems

Julian Harty:
Mobile Wireless
Test Automation

Hung Nguyen:
From Craftmanship

to Leadership
10:30 – 10:45 AM Break (Room: 3rd Floor Foyer)

10:45 AM - Noon Jerry Weinberg: Continued Scott Barber: Continued Julian Harty:
Continued

Hung Nguyen:
Continued

Noon - 1:00 PM Lunch (Room: 3rd Floor Foyer)

1:00 - 2:45 PM Jerry Weinberg: Continued Scott Barber: Continued Julian Harty:
Continued

Hung Nguyen:
Continued

2:45 - 3:00 PM Break (Room: 3rd Floor Foyer)

3:00 – 5:00 PM Jerry Weinberg: Continued Scott Barber: Continued Julian Harty:
Continued

Hung Nguyen:
Continued

5:00 – 7:00 PM Break

7:00 – 9:00 PM
Birds of a Feather Proposal:
Teaching of Software Testing
(Cem Kaner, Becky Fiedler)

AST SIG Meetings
(SIG Leads)

Get your questions
answered about

AST (Michael Kelly)
Open Space

Tutorials

Jerry Weinberg: The Tester’s Communication Clinic

Working with hardware and software is only half of the professional tester's job–and though hard enough, it's not nearly as hard as
the other half, working with people. In this interactive workshop, you’ll obtain new strategies for coping with your most serious
communication problems–with managers, developers, customers, and other testers. Gerald Weinberg helps you affirm your most
successful strategies, while sharing other techniques you may not have thought of. Learn to be more sensitive to management
desires and more influential in obtaining effective developer responses. Real-life communication situations of the participants will be
used to illustrate practical application of various communication models, including:

• The Satir Interaction Model
• The Congruence Model
• Personality Types
• Modality Preferences

13

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries ©2008 Association for Software Testing

Scott Barber: Performance Testing Software Systems: Analyzing Performance Test Data

Performance Testing frequently generates very large volumes of data. That data usually requires significant analysis before findings
are made and recommendations are delivered. To make matters more complex, even though there is a large volume of data, there
are typically an insignificant number of tests conducted for most data reduction methods to be statistically valid. Finally, many of the
statistical methods that are frequently used are either mis-used or mis-understood.

One of the Performance Testing Software Systems (PTSS) series of workshops, Analyzing Performance Test Data is targeted for
anyone who analyzes performance test results data. It focuses on how to make sense out of performance test data to improve
findings and recommendations to help achieve business objectives, reduce project risk, and avoid bad press. Further, it teaches
methods for visually reporting results of performance tests that are less prone to misinterpretation than reporting complex statistics
the audience is unlikely to understand. Finally, this workshop provides you with the knowledge you need to use statistics correctly to
help you understand the data.

PTSS is a unique series of workshops that employ heuristic approaches to performance testing that focus on mitigating risks to the
business and satisfying end users in commercially driven software development environments. This approach marries the software
testing insights of James Bach, Rob Sabourin, Cem Kaner and many other members of the Context-Driven School of software
testing with the performance testing insights of Alberto Savoia, Ross Collard, Roland Stens, and the rest of the WOPR (Workshop
On Performance and Reliability) community. The approach has a track record of success with regard to adequately mitigating
business risk in time to keep pace with the commercial aspects of the project. The Microsoft patterns & practices book Performance
Testing Guidance for Web Applications by J.D. Meier, Scott Barber, Carlos Farre, Prashant Bansode, and Dennis Rea complements
the material presented in this workshop.

Julian Harty: Mobile Wireless Test Automation

Automated testing is becoming a generally accepted ''good practice'' suitable for many situations. There are plenty of tools,
frameworks and practices which are used throughout the software industry. However, automated testing of mobile wireless
applications is not yet mature, particularly when the testing includes 100''s of different, disparate devices, multiple natural
languages, network operators, etc.

This tutorial is based on current experiences and practices at Google and will explain some of the challenges, difficulties and even
the successes gained over the last 12 - 18 months of hands-on test automation of mobile wireless applications. The scope of test
automation includes:

• Web applications
• J2ME applications
• Native applications (e.g. Symbian, Blackberry, Windows Mobile)
• Testing of the servers that support the devices
• Rendering issues
• Performance testing

Key Points:

• Learn about some of the unique challenges of test automation for mobile wireless applications. Learn how some of these automation
challenges can be addressed.

• Be prepared to get involved in the tutorial and share your problems and experiences with a group of peers.
14

http://www.perftestplus.com/ptss.htm�
http://www.perftestplus.com/ptss.htm�
http://www.satisfice.com/�
http://www.amibug.com/�
http://www.kaner.com/�
http://www.context-driven-testing.com/�
http://www.artima.com/weblogs/index.jsp?blogger=agitator�
http://www.sqe.com/events/instructors.asp?f=dis&ci=18&fr=plt�
http://www.testingreflections.com/user/view/7�
http://www.performance-workshop.org/�
http://www.codeplex.com/perftestingguide�
http://www.codeplex.com/perftestingguide�
http://www.codeplex.com/perftestingguide�
http://www.blogs.msdn.com/jmeier/�
http://www.perftestplus.com/scott_blog.php�

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries ©2008 Association for Software Testing

Hung Nguyen: From Craftmanship to Leadership

From a business perspective, every company is in the business of creating products or services. In turn, those products and
services generate revenue, and hopefully, profit after expenses. From a business viewpoint, it’s about money and results. So when
we talk about quality, it is essential to consider quality in its financial context. (Of course there is non-financial value such as human
life affected by poor quality product but we won’t talk about that here). Software testing plays a key role in improving the quality of
software-related products and services. On the flipside, the cost of testing software can reach up to 40% of the overall software
development cost (based on our internal study). As a testing professional, what can we do to move beyond our craft, and contribute
as a leader? In that leadership role, we can potentially maximize our effectiveness in helping the business deliver profit and result.

Much has changed in software testing over the past two decades, yet many of the principles stay the same. In this tutorial, we will
discuss a “macro” approach to software testing. We will be focusing on leadership skills and thinking out-of-the-box in the context of
software testing. Most of my professional career is in the software industry. While I have worn many hats throughout, from testing to
programming, software test management to software development management, technical management to business, studying to
teaching, software consumer to designer, virtually all facets of my work involve software testing. I have also had experience in
building and running a company of software testing professionals from a hundred-fifty staff (dot-com), to twenty staff (dot-bomb),
and now to four hundred staff (globalization); opportunities of working with and testing for hundreds of companies and different
products in various industries, interfacing with software testers, business analysts, developers, managers, and C-level executives, I
want to share with you what I’ve learned and am still learning about developing leadership skills in software testing.

15

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries ©2008 Association for Software Testing

Program: Day 2 – Tuesday, July 15, 2008

Sessions Room / Location

Time Room: Colony Ballroom
2nd Floor

Room: Saint David
3rd Floor

Room: Saint
Patrick 3rd

Floor

Room:
Terrace 3rd

Floor

Room:
Colony
West

7:30 – 8:45 AM Continental Breakfast and Networking (Room: 3rd Floor Foyer)
8:45 – 9:00 AM Opening Remarks

Registration

and
Sponsors
booths

9:00 -10:30AM

KEYNOTE - Gerald M.
Weinberg: Lessons from
the Past to Carry into the

Future

10:30 – 10:45 AM Break (Room: Colony West)
 Speaker Introductions:

10:45 – 11:45 AM
Martin Taylor:
Visualization and

Statistical Methods

Michael Bolton
and Jonathan

Kohl:
Testing and Music

Diane Kelly
and Rebecca
Sanders: The

Challenge of
Testing Scientific

Software

Vendor
Presentations

11:45 – 1:00 PM Lunch

1:00 – 2:30 PM

KEYNOTE - Robert
Sabourin: Applied Testing
Lessons from Delivery Room

Labor Triage

2:30 – 2:45 PM Break (Room: Colony West)
 Speaker Introductions:

2:45 – 3:45 PM
Doug Hoffman:

 Lessons for Testing from
Financial Accounting

Jerry Kominar:
Sleight-of-Quality

Morven
Gentleman:

Measuring File
Systems

Vendor
Presentations

3:45 – 4:00 PM Break (Room: Colony West)
4:00 – 5:00 PM AST Board of Director’s Election
5:00 - 6:00 PM AST Board Of Director’s Meeting

Keynotes

Lessons from the Past to Carry into the
Future – Jerry Weinberg

Applied Testing Lessons from Delivery Room
Labor Triage – Robert Sabourin

Fifty years ago, in 1958, Jerry established the very first separate
software testing group to aid in producing life-critical software for
Project Mercury. Jerry will speak of many steps, done and not yet
done, that he believes are needed to complete the task of creating a
true software testing profession.

This talk presents several labor triage examples from recent cases at
the Royal Victorial Hospital in Montreal Canada. The authors walk
through these experiences and draw parallels to software testing
triage including decision making about bugs (assessing severity,
criticality, establishing priority), focusing testing and requirement
change management. Cases presented illustrate circumstances in
which triage nurses drop existing protocols and use their own intuition
to guide decision making assessment and action in critical cases.

16

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Session

Visualization and Statistical Methods
In High Volume Test Automation of

 Embedded Devices

Martin Taylor

Tuesday, July 15, 2008
10:45am - 11:45am

Room: Colony Ballroom 2nd Floor

Overview

This presentation is an industrial experience report from Texas Instruments Education Technology
(TI Calculators) division. Martin will describe how his team combined high volume test automation
techniques, data visualization, and statistical regression methods to detect memory leaks, device
crashes, and performance problems in the new TI-Nspire(tm) math and science learning
handhelds. Martin also reports how these techniques have been used at TI to compare results
between various TI-Nspire(tm) software builds.

17

Visualization and Statistical Methods in
High Volume Test Automation of Embedded Devices

C. Martin Taylor
Texas Instruments Inc.

Education Technology (Ed. Tech.)
7800 Banner Drive, MS 3908

Dallas, TX 75251, USA
1-214-567-2249

cmtaylor@ti.com

ABSTRACT
This paper is an Industrial Experience Report from Texas
Instruments Education Technology (TI Calculators) division. It
describes how we combined High Volume Test Automation
(HVTA) techniques, Data Visualization, and Statistical
Regression methods to detect memory leaks, device crashes, and
performance problems in the new TI-Nspire™ math and science
learning handhelds. The paper also reports how these techniques
have been used at TI to compare results between various
TI-Nspire™ software builds.

1. INTRODUCTION

1.1 High Volume Test Automation & RRR
High Volume Test Automation (HVTA) techniques involve the
execution of large numbers of automated tests that already pass in
order to expose longevity errors that are generally hard to find.
[KanerMcGee04] Kaner and his co-authors reported in a keynote
address to STAR East [KanerBondMcGee04] that the HVTA
technique of Extended Random Regression (ERR) was used
successfully at “Mentsville” to find timing problems, memory
corruption (including stack corruption), and memory leaks. This
technique of repeatedly executing a set of already passing
automated tests in a randomized fashion, renamed “Repeated
Random Regression” (RRR) by McGee and Taylor, has been in
use at Texas Instruments Ed. Tech. division since mid-2004.

1.2 RRR Testing of TI-Nspire™ Devices
The TI-Nspire™ and TI-Nspire™ CAS (Computer Algebra
System) math and science learning handhelds [TIEdTech08],
illustrated in Figure 1, are embedded devices that contain a
custom ASIC with an integrated ARM 926 processor. The
TI-Nspire™ devices have 32 Mb of RAM for program execution
and 32 Mb of Flash memory for persistent storage. They have a
USB port that can be used to communicate with a PC, a scientific
measurement probe or another TI handheld device.

Figure 1 - TI-Nspire™ and TI-Nspire™ CAS

Since 2003 the Test Automation & Tools team at Texas
Instruments Ed. Tech. division has developed a framework known
as “TI-CAT” (for “TI Calculator Automated Testing”) that
enables automated testing of TI calculators. [Taylor05] This
framework supports two different varieties of automated testing:
System testing at the user interface level and software library
testing at the Application Programming Interface (API) level
[Taylor06]. This paper discusses RRR techniques applied to
automated tests at the user interface level.

For automated testing of the TI-Nspire™ devices we have written
a TI-CAT Test Engine that runs on a PC and communicates with a
Test Engine Service that runs on the device. This pair of
communicating Test Engines allows us to send virtual keystrokes
and mouse movements to drive the device and to request screen
images and other status information from the device. One such
piece of status information is “RAM Available” (i.e. the amount
of free RAM memory) available on the device. The Test Engine
on the PC side automatically requests this information from the
device at the start of every test. Each test appends a row of
comma separated value (CSV) data, including the “RAM
Available” information, to a summary file that can later be used
to generate graphs of “RAM Available”.

2008 Annual Conference of the Association for Software Testing
(CAST), July 14-16, 2008, Toronto, Ontario, Canada.

Copyright © 2008 Texas Instruments Inc.

18

For testing the TI-Nspire™ devices we have a set of about 50
automated Build Acceptance Tests (BAT) that exercise the device
software in a broad but shallow manner. In addition to these BAT
tests, each application on the device has a set of regression tests,
many of which are also automated. When we do a RRR test run
on a TI-Nspire™ device we use all of the automated BAT and
regression tests that pass on a given build of the embedded
software.

2. APPLICATIONS OF RRR TESTING

2.1 Memory Leaks in the Test Software?
Before using the TI-CAT and TI-Nspire™ test software to detect
memory leaks in the embedded software we should prove that the
test software itself does not have any memory leaks. To do this
we wrote a simple automated test that sent the necessary
keystrokes to the TI-Nspire™ device to display the “About”
dialog box, captured this screen, then removed the dialog box.
This exercises all the parts of the test and communications
software but only involves a minimum of functionality in the TI-
Nspire™ application software. We ran this test 1000 times and
captured the RAM Available at the beginning of each test run. As
Figure 2 illustrates, the linear regression slope of RAM Available
is very close to zero, indicating no obvious memory leaks in this
simple exercise of the test and communications software.

Figure 2 – No Memory Leaks in Test Software

2.2 Detecting Large Memory Leaks
During the TI-Nspire™ software version 1.2 development cycle,
we had about 100 automated tests available for RRR testing.
These were a mixture of BAT tests and functional tests of the
Lists and Spreadsheet (L&S) application. When we plotted the
RAM Available data for the very first RRR run we got some
interesting results immediately (see Figure 3).

The coloured dots on the graph indicate particular test cases that
may be of interest, since they seem to precede an obvious large
memory leak. The most obvious of these is the test named
“BAT_032”. Examining the steps of this test we found that it does
a number of things that could be causing a memory leak:

 Runs the Graphs & Geometry (G&G) application
 Runs the Calculator application
 Runs the Lists & Spreadsheets (L&S) application

 Puts the 3 applications in a single-page layout
 Defines functions in G&G & Calculator
 Puts the defined functions into a Function Table in L&S

Figure 3 - RRR Testing Session #1

To determine the specific source of the memory leak we
modified this test to get & report RAM Available after each step.
We then ran the test a few times and plotted the RAM Available
(see Figure 4). The red line in Figure 4 seems to show that one
specific step has the memory leak.

Figure 4 - RAM Available per Step of BAT_032

We used another column in the spreadsheet to remove the RAM
Available delta due to the “Function Table” step and graphed this
as the green line. This line seems to have a flat trend, so the
memory leak is likely in the Function Table feature of the L&S
application, but what part of this feature?

 Entering/Leaving Function Table with an empty table?
 Putting functions into a Function Table?

To further isolate the memory leak we wrote some exploratory
tests, one to just enter and leave Function Table feature, and
another to create 2 simple functions and add them to a Function
Table. We ran each of these tests many times and plotted the
RAM Available. The “Empty Function Table” test results are
shown in Figure 5.

19

Figure 5 - "Empty Function Table" Memory Usage

The RAM Available pattern here is “noisy”, but the trend is
definitely flat. The RAM Available plot for the “add 2 Functions
to a Function Table” test is shown in Figure 6.

Figure 6 - L&S Function Table Memory Leak

This Graph shows a definite, large memory leak of about 526K
per iteration. Providing this data to the developers in a bug report
allowed them to quickly find and fix this serious memory leak.

2.3 Detecting Device Crashes
When a software error causes a TI-Nspire™ device to crash, the
device automatically re-boots itself. The Test Engine that is
driving the device recognizes this by a temporary loss of USB
connectivity. The Test Engine then waits for connectivity to be
restored after the re-boot before proceeding with the next test.
Thus, in an RRR run, the next test after a re-boot takes longer
than normal to run (waiting for the re-boot) but then continues as
normal.

When a TI-Nspire™ device is rebooted, its “RAM Available” is
reset to the maximum allowed by the available physical memory
on the device. These maximum values are readily visible on a
graph of “RAM Available” vs. “RRR Test Number” as seen in
Figure 7.

Figure 7 - RRR Results Showing Device Crashes

Looking at the test summary data from this RRR run we were
able to determine that every device crash happened during the
execution of the same BAT test. Taking the steps from this test,
we used exploratory testing techniques to try various sub-sets of
the steps until we found a minimal set of steps that caused a
device crash. These minimal steps were added to a bug report
which assisted the developers in finding and fixing this device-
crashing bug.

2.4 Measuring Small Systemic Memory Leaks
The presence of small systemic memory leaks can readily be seen
from a plot of RAM Available data from a RRR test run. For
example, if we take the RAM Available data before the first re-
boot in Figure 7 and plot it we get the graph shown in Figure 8.
This shows that the TI-Nspire™ 1.3 software had one or more
small systemic memory leaks that averaged a loss of 445 bytes
per test iteration.

Figure 8 – Small Systemic Memory Leak in TI-Nspire™ 1.3

While these graphical analysis and HVTA techniques do nothing
to identify the causes of such small systemic memory leaks, they
can be used to identify and measure changes in memory usage
between software versions.

During the TI-Nspire™ 1.4 development cycle we worked with
the developers of the Lists & Spreadsheet (L&S) application for
the TI-Nspire™ to measure changes in memory usage by that

20

specific application. The first step in this work was to do a RRR
test run on the 1.3 version of the software that only tested the
L&S application. These results would become the baseline for
comparison with similar results from various software builds
throughout the 1.4 development cycle. These 1.3 baseline results
are shown in Figure 9.

Figure 9 - L&S 1.3 Baseline Memory Usage

There are two statements that can be made about L&S memory
usage from this baseline 1.3 graph. One is that there is a small
systemic memory leak of about 255 bytes per test, as illustrated
by the linear regression trend line. The other is that many of the
tested L&S features use a large amount of memory, as illustrated
by the deep “spikes” in RAM Available.

The L&S developers were tasked with improving memory usage
during the 1.4 development cycle. Early in this development cycle
we repeated the same random sequence of L&S RRR tests on the
current development build (1.4.2996) and plotted the results of
this run overlaid on the results from the baseline run. This is
shown in Figure 10 which shows “good news” and “bad news”.
The good news is that the overall memory usage by the L&S
application has been greatly improved. This can be determined
from the much shorter “spike depth” in the 1.4.2996 data. The
dotted red line tracks the maximum memory usage and can seen
to be much better than the similar trend (dotted gray line) in
version 1.3.2437. The bad news is that the memory leaks have
grown from an average of 255 bytes per test to 601 bytes per test.

Figure 10 - L&S Memory Usage, Build 1.4.2996

Later in the 1.4 development cycle we ran the same random
sequence of L&S RRR tests on the current development build
(1.4.7459) and plotted the results of this run overlaid on the
results from the baseline and 1.4.2996 runs. The results, shown
in Figure 11, show a further deterioration from the 1.3 baseline
measurement. Both the overall memory usage, indicated by the
“spike depth”, and the long term memory usage trend have
deteriorated. The memory leak trend is now estimated at 1,293
bytes per test, up from 601 bytes per test in build 1.4.2996.

Figure 11 - L&S Memory Usage, Build 1.4.7459

This information is current at the time this paper was submitted
for publication and the developers are responding to this news
with renewed efforts to find and fix memory leaks in the L&S
application. The project still has about 6-8 weeks to run, so any
updates to this progress will be presented at the CAST 2008
conference in July.

3. APPLICATIONS OF OTHER HVTA
TECHNIQUES

3.1 Detecting Performance Problems
During the investigation of the test that caused a device crash,
described in section 2.3, we made an interesting observation about
performance. When the TI-Nspire™ saves a document it suggests
a file name to the user. The first saved file name suggestion is
“Document1”. If the user chooses this name, then the next saved
file name suggestion is “Document2”. The automated test we
were using saved its created document using this default file
name. As more documents were saved, it seemed to take longer
and longer to execute.

To investigate this apparent performance degradation we set up an
HVTA test run where the same test was executed repeatedly and
the time to complete each execution of the test was recorded. The
resulting graph of execution time is shown in Figure 12. The
performance of “Save Document” degrades exponentially, as can
be seen from the exponential trend line fitted to the data in Figure
12. This test was initially done during the TI-Nspire™ 1.2
development cycle.

21

Figure 12 - Repeated "Save Doc." Times

Taking that result as a baseline, we re-ran the same test to
measure the performance of this feature during the 1.3
development cycle. Unfortunately the results showed that the
“Save Document” performance deteriorated a little between
versions 1.2 and 1.3 as illustrated in Figure 13.

Figure 13 - Save Doc. Time in TI-Nspire™ 1.3 vs. 1.2

The developers have speculated that this may be an issue in the
underlying file system used on the TI-Nspire™, but further work
is needed to determine and fix the root cause.

4. CONCLUSIONS

4.1 Conclusions
High Volume Test Automation can produce a high volume of
numerical result data. We have shown various examples of how
graphing and performing statistical analysis on this data can
extract information useful to testers and developers of the system
under test. The human eye remains the most sophisticated pattern
recognition system available to us. By graphing HVTA outputs
such as RAM Available and Execution Time, the human viewer
can quickly recognize patterns that indicate severe memory leaks,
system crashes, small systemic memory leaks and performance
deterioration. This graphical presentation, complemented with
statistical regression analysis, is a powerful communications tool
that enables testers and developers to better understand the
behaviour of the system under test.

4.2 Future Directions
We continue to experiment with RRR testing as well as ways of
visualizing and analyzing the results. Currently we run the RRR
tests on the L&S application about once a week. We plan to do
similar RRR runs for memory leak detection and comparison on
other individual TI-Nspire™ applications and on the full system.

Currently the post-run analysis of the RRR result data is done
manually using spreadsheets so we are considering building
automated tools to do this, including graph generation and
regression analysis. Similarly any “drill-down” analysis of a
single test, like that described in section 2.2, is currently done
manually. To automate this, we have a prototype tool that runs a
single test a given number of times and automatically captures
memory and timing data at every step of the test. We hope to
continue to find new ways of leveraging our automated test data
to expose valuable information about the systems under test.

ACKNOWLEDGMENTS
The author would like to thank the following people: Pat McGee,
former PhD intern at TI Ed. Tech., for introducing me to HVTA
techniques and helping me to implement RRR testing; Glen
Thornton, Engineering Director at TI Ed. Tech., for allowing and
encouraging me to publish this data about the TI-Nspire™
development and testing process; Johnny Schmittou, Software
Developer at TI Ed. Tech., for his encouragement and
collaboration in applying these techniques to the TI-Nspire™
L&S application; and Adam Goucher and Dan Hoffman for their
reviews and feedback during the writing of this paper.

5. REFERENCES

[KanerMcGee04] Cem Kaner & Pat McGee

"Experiments with High Volume Test Automation",
ACM SIGSOFT Software Engineering Notes, Volume 29,
Issue 5 (September 2004)
http://www.kaner.com/pdfs/MentsvillePM-CK.pdf

[KanerBondMcGee04] Cem Kaner, Walter P. Bond, Pat McGee

"High Volume Test Automation",
Keynote Address, STAR East (May 20, 2004)
http://www.kaner.com/pdfs/HVAT_STAR.pdf

 [TIEdTech08] Texas Instruments, Inc.

TI-Nspire™ corporate website
http://www.ti-nspire.com/

[Taylor05] C. Martin Taylor

“Automated Testing of Embedded Systems with TestDirector
and Python”
2005 Texas Instruments Software Symposium (Internal Event)
http://events.sc.ti.com/sw2005/presentations.asp

[Taylor06] C. Martin Taylor

 “Automated Testing of Library APIs in the TI-CAT Test
Development Kit”
2006 Texas Instruments Software Symposium (Internal Event)
http://events.sc.ti.com/sw2006/presentations.asp

22

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Session

Testing and Music:
Parallels in Practice, Skills and Learning

Michael Bolton and Jonathan Kohl

Tuesday, July 15, 2008
10:45am - 11:45am

Room: Saint David 3rd Floor

Overview

Many metaphors--besides engineering--can value to learning about patterns and principles in
software testing. Music affords such a metaphor. Both testing and music are performed in a variety
of contexts, providing different values for different people. Both fields are suffused with traditions;
both involve dynamics between scripted and exploratory processes. In this presentation we'll try to
discover comparisons and contrasts that might help to advance learning and provide new
metaphors for testing.

23

Testing and Music: Parallels in Practice, Skills,
and Learning

Michael Bolton

mb@michaelbolton.net

Jonathan Kohl

jonathan@kohl.ca

Abstract
For years, people have appealed to engineering as the
dominant metaphor for how software testing should be
done. Yet there are many other metaphors that could
provide value to learning about patterns and principles in
software testing. As professional testers and non-
professional musicians, we observe that music affords such
a metaphor. What are the parallels between music and
testing—especially exploratory approaches to testing?
What can we learn from the similarities?

In this paper, we explore traditions and contexts; structures
of performance in music and testing; ideas associated with
tension and resolution; the role of scripting and other
artifacts in design, performance, and learning; and skills
development.

Traditions and Contexts
Both testing and music are performed in a wide variety of
contexts, with different audiences, different practitioners,
and different values for different people. Both fields
involve, to a large degree, socially constructed activities,
and are suffused with traditions.

Living traditions depend on tension between three points of
view: a classical aspect, which preserves the foundation of
the practice, but which views change and diversity as a
threat to the purity of the art; a state of the practice, which
advances slowly while absorbing some forms of change
and resisting others; and an avant-garde, which stretches
the limits and boundaries of the state of the art by bringing
in influences from outside and synthesizing new forms, but
which may not feel beholden to the classical foundations.
The classicists and the avant-garde tend to argue with one
another, while the middle ground simply proceeds without
paying too much attention to the other extremes.

In music, cultures and subcultures abound, cross-
pollinating one another. For example, Irish traditional
dance music, a subculture of Celtic traditions that also
include Scottish, Breton, Welsh, Cape Breton, has at least
four dominant sub-styles (Clare, Sligo, Donegal, and
Cork/Sliabh Luachra). The blues has Chicago, Memphis
and Mississippi Delta traditions, as well as boogie woogie,
country blues and blues rock. One example of a veritable
hotbed of colliding musical styles is Zydeco, a style of
music created in Louisiana. Zydeco began as a fusion of
Creole, Cajun (from “Acadian”—itself a blend of French
and Celtic styles from Canada’s east cost) and traditional

American music. It has further evolved to include
influences from blues, jazz, gospel, and other popular North
American music as well as Caribbean influences such as
salsa, rumba and calypso, among others. It’s not uncommon
to hear hip hop styling or steel drums behind the driving
accordion that is a trademark of the genre.

It’s important for both testers and musicians to perform in a
manner appropriate to the context. Electronic dance music
tends not to go over well in a church that favours Gregorian
plainchant for its liturgical music. On the other hand, in a
supportive context, musical styles can blend, leading to
fusion and innovation that can advance new traditions and
recall old ones. The startlingly successful Enigma
recordings of the early 1990s may have contributed to the
success of the fusion of plainsong and chant with dance
music during that decade.

Testing has been (somewhat controversially) categorized
into schools [Pettichord2003]. We assert that these schools
can be seen as analogous to musical traditions. Schools of
testing can be strengthened by adding techniques and
models associated with other schools. In software testing,
opponents to the schools categorization often claim that all
testing styles are the same, and that division is unnecessary.
In music, diversity is embraced and encouraged, and has
led to discovery and growth. In testing, we can also profit
from identifying different ideas, styles and interpretations.
The recognition of specialization and focuses from each of
these areas will lead to more discovery, communities of
practice, and growth for the whole software testing
community. To deny the differences of ideas in testing is
akin to saying that music is only “music” and any attempt
to identify differing styles, traditions and genres is divisive
and problematic.

 Structures
A musical piece has structure whether it is rehearsed or
improvised, played from a score or played
extemporaneously. Several elements of the piece’s
structure are determined by time. The tempo of the piece
refers to its speed or pace. Rhythm refers to the duration of
a series of notes and the ways in which they are grouped
together. A bar, or measure, is a means of dividing the
rhythm into sequences of beats; in most popular Western
music, bars in “straight time” tend to have four beats each
(bars in “waltz time” have three); these associations and
divisions give the piece its meter. Loudness and accents
give dynamics to a piece. Other structural elements are
determined by tones; the pitch (or frequency) of the notes

24

mailto:mb@michaelbolton.net�
mailto:jonathan@kohl.ca�

in the piece; the key of the piece (the tonic or harmonic
centre of the piece, that forms the base of a scale) and the
mode, which specifies the intervals between each note in
the scale. Melody (the tune, sometimes known as the air in
traditional music) is the fundamental theme of the piece.
Chords—combinations of three or more notes played at the
same time—and contour—changes or progressions from
one note or chord to the next—also give structure to a
piece. We only scratch the surface here.1

Testing also has structures, both in design and performance.
We would argue that exploratory testing is structured in
ways that are analogous to improvisational music. As a
relatively new tradition, many of the structures haven’t

Blues music has a very common pattern of chords,
expressed as the “twelve bar blues”. (The Lieber and
Stoller song “Kansas City” is an example of this pattern; so
is their song “Hound Dog”, best known as performed by
Elvis Presley.) In a jam session, someone need only say
“twelve bar blues, in (the key of) A”, and everyone will
have a common framework in which to play. Experienced
musicians will need no other direction than that to begin
playing music together. Improvisations and variations on
the structure give richness and interest to the music.

Irish traditional music also has very common structures.
Reels have four beats to the bar; jigs have six. (An easy
way to keep them straight: the jig has the rhythm “jiggedy,
jigeddy”, and the reel doesn’t; it has a rhythm that can be
approximated by saying “wish I had a motorcycle”.) Tunes
are usually played as a pattern of “aabb”—eight bars with a
given melodic line (a), a second eight bars that repeat that
line or provide a slight variation (also (a); these two lines
together are comprise the “A section”); and then eight bars
with a different melodic line (b), and a second eight bars
that recall that line and resolve toward the tonic or root of
the chord (the latter two lines are the “B section”). In a
“set” the players tend to play several tunes (typically three),
playing each tune three times through and the switching to
another tune, generally in the same rhythm, although the
key may change (or “modulate”) between tunes. Irish
music has very strong and intricate melodies. Tunes tend to
be in the keys of D, G, or A, since these are keys that are
relatively easy to play on the fiddle, the flute, and the tin
whistle, instruments that dominate the genre.

Remarkably, many capable musicians have a limited
knowledge of musical theory. Nonetheless, these structures
are sufficiently powerful that non-theorists can perform
music just fine. That is, they appear to have an intuitive
grasp of the structures. A regular participant in Irish
traditional music sessions will know hundreds of tunes; a
blues player will adapt easily to the many variations on the
basic themes of the genre. Yet these people may have had
little or no formal musical training, and may not be able to
read music. So how do they remember pieces? According
to Levitin, they rely on a structure for their memory, and
the details fit into that structure. [Levitin2006, p. 213]

1 An excellent description of these elements of musical
structure can be found in Levitin, This Is Your Brain On
Music. [Levitin2006]

been named or even noticed, particularly for exploratory
approaches. Practitioners—even experts—sometimes have
a difficult time articulating what they do. Some experts can
often play well only inside their own contexts. The
cognitive patterns are mysterious and we're still learning
how to understand them and the ways in which they
interact with other contextual elements of testing.

Some of the musical genres and styles we have introduced
can also be described as patterns and practices with related
techniques. Musicians will often learn the patterns of what
sounds right in a particular genre, without knowing the
theory behind what they are performing. In testing, we have
observed different kinds of patterns, practices and
techniques as well, and many testers have a limited
knowledge of testing or computer science theory. Both of
us work as testing trainers, and have noticed that many
testers will immediately try similar kinds of patterns or
techniques when given a particular program to test as an
exercise. For example, when posed with an application that
has input fields, most testers will try overflow attacks, or
will try to enter in values of the wrong type. Similarly,
musicians adapt when playing music, depending on the
genre. Again, we scratch the surface here – there are many
patterns that are often used in testing and in music.

James Bach suggests that the structure of exploratory
testing comes from many sources: test design heuristics;
chartering; time boxing; perceived product risks; the nature
of specific tests; the structure of the product being tested;
the process of learning the product; development activities;
constraints and resources afforded by the project; the skills,
talents, and interests of the tester; the overall mission of
testing; and the testing story. [BachRST] James and Jon
Bach have proposed lists of exploratory skills, tactics and
dynamics that refer to patterns of performance
[JamesBach2005]. Bach, Mike Kelly, Jonathan Kohl, Scott
Barber, Ben Simo, and other testers have suggested
mnemonics to remember guidewords heuristics. (Kohl
introduces the idea of comparing music and testing
mnemonics in [Kohl2007])

In the most extreme form of improvisation, avant garde
musicians abandon not only score but also structure. The
result is occasionally interesting, but isn’t usually popular
to listeners other than devotees. It is often performed as an
experimental exercise in the attempt to discover something
new. Avant-garde music tends to help create new genres,
and provide a space to help new ideas foster and grow.
Without experimentation, discovery of new forms or new
fusions of old forms can be suppressed. Testing is
fundamentally experimental and investigative, and would
profit greatly from avant-garde ideas both on testing
projects and in the software testing community as a whole.

Since software testing is not generally performed for
entertainment, or practice in the same way that performing
music is, there are other areas where the analogy breaks
down. Since testing is about discovering and reporting
important information, combinations of practices and
techniques that would be unlistenable in a musical setting
are areas of discovery in testing. Since we are not usually
performing for an audience who is expecting to see or hear

25

something pleasing, we could have more room for
experimentation in testing.

In music, composition and performances are often critiqued
according to different standards and aesthetics. In testing,
we often talk about test coverage, but we don’t often
evaluate how effective our testing is. There are potential
lessons we could draw from musical critiques, and take
form, structure, variation and diversity of approach into
account as we evaluate our software testing efforts.

Tension and Resolution
In composition and performance, music often exhibits
aspects of tension and resolution. A typical piece of music
is written in a given key, and typically the piece ends on the
tonic, the first note or root of a scale in that key,
accompanied by the fundamental chord that shares the
name of that key. Patterns of notes and chords in that scale
create suspense that is resolved by a return to the root.

In a testing session, tension and resolution revolve around
testing ideas, rather than musical notes. Tension and
suspense are generated by a test idea, a question about the
system under test. Resolution comes with an answer to that
question, produced by operating and observing the product.
We see another parallel between music and testing. Too
much tension raises discomfort; too much resolution
becomes boring, tedious repetition. Testers and musicians
alike need to find a balance between tension and resolution,
and to find this balance, they need a mix of knowledge,
skill and creativity. [Kohl2007]

Feelings of tension and resolution in music are also felt and
observed by the audience as they listen to a live or recorded
performance. Music practitioners also learn from watching
others at work. Performing music is related to the practice
and skill development of a musician, and the listening
enjoyment of the audience. In music, most of the
information guides and is locked up in the performance. In
music, impressions are generally about the qualities of the
performance itself.

The elements and focus of the performance is one area
where our analogy breaks down to some degree. In both
testing and music, the audience derives an impression from
the performance, and much of this impression is sustained
after the fact. But software testers generally do not perform
their work in concert halls, nor in front of audiences. Their
work is conducted in relative isolation, with a different goal
in mind: to gather as much important information for
stakeholders as they can. Testing is not usually done for
the benefit of an audience watching the tester doing his
work. Instead, the value for the audience is in the
information derived from the performance, rather than the
performance itself.

There are some exceptions on the performance issue in
software testing. Some exploratory testing teachers such as
James Bach, Jon Bach, Michael Bolton, Jonathan Kohl and
others do live testing demonstrations. With the rise in
popularity of video on the web, many are recording test
sessions for the benefit and enjoyment of others—typically
other testers, or people who wish to learn about testing. The

difference in these performances is that they are usually
done for teaching purposes, not for the viewing or listening
enjoyment of a broad audience. Like musicians, testers can
learn from watching others perform. Furthermore,
differences in styles and genres become much more
apparent when demonstrated. We see this as an
opportunity for testing education.

Scripting
In both music and testing, there is a dynamic between
scripted processes (in which the ideas come from some
person or agency at some point in the past) and
improvisational or more exploratory processes (in which
ideas are created and discovered on the fly, during
performance).

For a given activity, we define scripted and exploratory
approaches to be at opposite ends of a continuum. In a
scripted approach, the process of design and execution of
the activity are separated in time, and typically in the
person performing them. Some person composes, designs
or synthesizes ideas in advance of the activity, and commits
them to some medium—typically in a textual or written
form. The person performing the activity interprets the text
and is guided by those ideas. We define the degree to
which an activity is scripted as the extent to which the idea
and the precise steps to exercise it are specified in advance;
the extent to which those ideas guide the person performing
the steps; and the degree to which learning associated with
design is separated from learning associated with the
activity. An exploratory approach is one in which design
and execution happen simultaneously, not separated either
by time or by person. Instead, composition and
performance happen in a way that responds to context; to
the skills of the performer; to what just happened; and to a
consensus, often unspoken, on what should happen next.
Learning about design and learning about the activity are
not separated; they too happen simultaneously.

A purely scripted approach in music is a very strict
interpretation of the piece as composed, typically by
reading a score. At the opposite pole from playing a piece
by reading a score is playing a piece “by ear”. Music
played by ear is played without sheet music or with
minimal guidance from it. Instead, the musician learns the
piece and its structure by listening to others play it. Playing
by ear is sometimes but not always associated with
improvisation, in which musicians compose and perform
their ideas simultaneously. The players make choices about
what to play based on the structure of the piece; skills in
listening to and observing other performers; technical and
physical skills; the emotions and mood of the players.
Successful improvisation requires skill, and top performers
study to develop a large breadth and depth of musical
theory and technical proficiency on their instruments in
order to successfully and creatively improvise. A purely
exploratory approach in music performance is free-form
improvisation. There are many variations in between. Few
musicians can achieve a purely scripted interpretation.
Conversely, very few (if any) musicians have the skills and
ability to only play music that is influenced by the last note
that was played in free-form improvisation.

26

Western classical music is highly scripted in the form of a
score. A score, or sheet music, uses a highly specific
notational system that allows performers to reproduce the
basis of the piece with their voices or instruments. A score
typically specifies the melody—the tonal and rhythmic
patterns of the notes to be played. The score may also
identify harmony—other notes or chords to be played at the
same time as the melody, possibly identifying different
notes or countermelodies for various instruments; the
tempo—the speed at which the piece is played; volume;
accents; and even bow strokes. Despite this rich, detailed,
well-disseminated, and shared “language” for written
music, it is difficult to perform music exactly the way the
composer intended. Performance on non-electronic
instruments will always include variations in intonation,
timbre volume, dynamics, and embellishments. These
variations might be subtly nuanced, or performed with a
flourish; they might remain quite faithful to the original or
common or they might be dramatic reinterpretations.

When performing a well-known piece of music, there are
scripted and unscripted dynamics at play. Even when
played from a score and when under the direction and
supervision of the author of the music, subtle variations
creep in. Reproducing the composer’s ideas is particularly
hard with musical pieces that have been around for
centuries, because we don’t have the composer around
anymore to consult. Bodies of traditional interpretation
tend to arise around pieces as they age. In popular or
traditional music, people frequently play without any sheet
music at all. This might suggest that there is a great deal of
freedom in unscripted music, but this isn’t always the case.
In most styles of music—such as Irish traditional music—
players adhere strongly to melody, even in the absence of a
score. In Indian classical music, music is not recorded in
scores; instead, the scripts are passed down through an oral
tradition. Music students are taught by a teacher or guru in
this manner: The teacher plays or sings a part, and has the
student repeat it. While this teaching style differs from
Western classical music where the music is written down,
both are using scripted approaches: the ideas come from
some time in the past, and from another person.

There are several factors that influence the decision to be
faithful to the script. One factor in playing a piece from a
score is the level of detail in the sheet music itself. A
Western classical orchestral piece tends to be very highly
scripted. Because many instruments and players must be
coordinated to achieve a precisely desired effect, the
individual lines of music may be laid out very specifically.
Nonetheless, the performance is still strongly influenced by
the individual musicians’ playing styles and the
interpretation of the orchestra’s conductor. By contrast, in
general, scoring for popular music—if used at all—tends to
be less detailed. A typically arrangement of a song
provides detailed music for piano, the melody line for a
singer, and chords for guitar; other scores contain only the
melody line and the chords.. The score itself affords the
opportunity for a cognitively engaged player to bring some
level of variation and interpretation to the performance. In
fact, such scores mandate interpretation because they are
sparsely detailed. At the other extreme, software can be
programmed to play music such that it is very precise in

repeating what is input from a score, but it tends to be
boring and tedious, rarely as interesting and as pleasant to
listen to as real performers are. In popular music,
audiences and performers alike tend to allow a lot of room
for improvisation and spontaneous discovery.

Scripted and exploratory approaches to testing are similarly
on opposite ends of a continuum. In a scripted approach,
the processes of test design and test execution are separated
by time, and typically by person performing them. A test
designer develops test ideas, and records them in advance;
the person performing the test is guided by these ideas.
The degree to which a test is scripted is the extent to which
the test idea and the steps to exercise it are specified in
advance.

An exploratory approach is one in which design and
execution are not separated, either by time or by person.
Instead, the tester performs each test in a way that can
incorporate all of his or her knowledge of the program,
right up to the result of the last test. Steps and test ideas are
not specified in advance, and they may be recorded in great
detail or not at all.

When a tester is working without a script, what can we
expect to happen? If the test is memorized, or they have
watched other testers perform the test, they may follow it as
closely as they would if they had a recorded test script in
front of them. If the test is not memorized, or has not been
repeated so many times that it has become routine, we may
see similar creative effects in testing as in improvised
music.

In improvisational music, playing a euphonious note that
fits with the ensemble and advances their discovery and
engagement with the piece is important; in exploratory
testing, performing some activity that fits with the project
and advances discoveries and engagement with the product
is important. In improvisational music, playing the right
note is not so terribly important, but playing a right note is
very important. If you wish to control the sound of the
piece, emphasize scripting; if you wish to extend possible
interpretations and knowledge, emphasize improvisation
and exploration. In exploratory testing, our work is not as
visible in the way music performance is, and we certainly
can’t hear what our tests are doing (unless we are testing
music software.) Therefore, we have far fewer constraints
when we improvise than our musical counterparts. We have
less of a framework to work from, but more possibilities for
discovery.

Automating tests is the strongest guarantee that they will be
repeated exactly the same way, but like automating music,
the lack of interpretation in execution can limit the results.
A computer can only find the problems we predict and
program it to find. Repeating scripted tests over and over
can get boring, tedious, and may only feel like idea
resolution, without the vital tension created by curiosity
[Kohl2007]. At the other end of the spectrum, there is
testing that is improvisational: exploratory testing. In the
musical realm, electronic, or computer-assisted musical
devices are fused with human efforts. This allows the
musician to explore and create music that they would not
be able to do completely on their own without the aid of

27

tools. Similarly, in testing, we can use automation tools to
help us work more creatively, and perform tasks that would
be impossible without a machine helping us.
[KohlM&M2007]

Skill and Skills Development
Both music and testing can be done easily by people
without skill, but the perceived value of each is greatly
enhanced by skill. Skill itself is enhanced by practice, the
engagement of the performer, performance, knowledge of
structures, and mnemonics that foster rapid learning.

In This Is Your Brain on Music, Daniel Levitin recounts
considerable research into skills development in music.
Levitin points out that skill and success in the music
business are not strongly related; there are too many
vagaries of timing, luck, and the whims of popular culture,
and he acknowledges that expertise is a social judgment.
For this reason, research involving assessments of musical
skill has tended to focus more on technical achievement
and innovation, and less on aesthetic appeal or popular
acceptance.

Formal training (or its absence) is not necessarily
associated with perception of musical skill. Many popular,
skilled, and respected musicians, whether in popular music
(Frank Sinatra, Louis Armstrong, John Coltrane, Eric
Clapton, Stevie Wonder, Joni Mitchell, Irving Berlin),
traditional music (Tommy Potts, Frankie Kennedy), or
classical music (Gershwin, Mussorgsky and Beethoven)
received little or no formal instruction.

Two key factors that do make a difference, according to
Levitin, are emotional engagement and practice. The best
students of music (and of other disciplines, according to
related research are those that have practiced the most. Ten
thousand hours of practice is required to develop world-
class expertise2

Those who have not studied music may be surprised to find
the great scientific, mathematical, philosophical and artistic
energy that has been put into music over the years. In
Temperament: How Music Became a Battleground for the
Great Minds of Western Civilization, Stuart Isacoff
mentions some of the people who were involved in solving
problems in music: Pythagoras, Galileo, Kepler, Descartes,
Newton, Huygens, da Vinci, Rousseau and others.
[Isacoff2001] Music has a surprising depth into many areas
of thought and study. Similarly, software testing is

. Expertise in music, especially in music
that is not heavily scripted, is associated with memory; and
strength of a memory is related to the number of times that
the original stimulus has been experienced.

The strength of the memory, and the associated
development of expertise, is a function of emotional
engagement—how much the user cares about the
experience. To perform well, says Levitin, we have to pay
attention and we have to care. More caring leads to more
attention, and both caring and attention lead to neurological
changes that mark experiences and memories as important.

2 Levitin refers to Anders Ericsson, FSU.

influenced by many disciplines, and has a surprising depth
in many fields because of the vast number of technologies
in use around the world. Music is not limited to learning the
mechanics and rules to create and perform music, but is full
of scientific, mathematical, social, political and artistic
problems. Software testing is not limited to the execution of
tests, and is also full of similar issues as music. We haven’t
learned enough about them all yet, and don’t have the
benefit of the many years and research that have been
poured into music. We still have much to discover and
learn about both.

Since the research that Levitin details on learning and
music is consistent with learning in other disciplines, there
are likely to be parallels that play out in testing. We
propose the following hypotheses:

• We suggest that what we know about learning argues
strongly for giving testers stimulating work that
engages them, and argues against putting testers into
situations where they simply repeat activities with
which they are not engaged.

• Like music, developing testing skills requires
development and practice. The software testing
community could learn from musical counterparts as
we develop exercises and practice software testing.

• Testing has very little of the aspects of physical
performance, found in musical performance, that can
obtain some benefit from rote repetition; there are few
“muscle memory” skills in testing, but there are
cognitive skills. Testing work that is boring or
uncreative is less likely to be memorable, and thus less
likely to lead to learning.

• Testing training that involves memorization of testing
terms for the purpose of passing a certification test is
unlikely to contribute much to the quality of software
testing. In music, written theory exams don’t begin
until Grade 5; all testing and certification up to that
point is based on performance. We hypothesize that
the emphasis on technical terms found in current
testing certification schemes adds little or nothing to
the development of skill, just as the learning of
musical terms contributes little to the quality of
performance. As with musical performance, testing
training that involves experiential learning, on-the-job
training, coaching, and mentoring, will result in the
development of skills.

• Schools of thought in testing ought to be encouraged,
with more research into the differences and diversity
of styles, genres and subgenres publicized for the
learning profit of the software testing community as a
whole. Avant garde, or cutting edge, experimental
testing ideas and techniques should be encouraged, not
written off. The resulting examples, cross-pollination
and feedback loops would add more diversity to
software testing.

• The manufacturing metaphor in software development
is old, tired and often inappropriate. Even new
variations like “Lean Manufacturing” do little to add
to a software development field that is heavily based

28

on design. Other creative, design-heavy fields should
be explored, even artistic ones such as music.

Clearly more research is called for. The software testing
discipline, like music, can be subtly complex and
surprising. Merely taking an engineering or manufacturing
view and trying to automate away the human labour-
intensive side of music hasn’t worked in music, and doesn’t
look like it’s working in software testing either. There are
more disciplines to learn from than engineering and
manufacturing, and the musical field is full of ideas we can
explore as we learn more about software testing.

Notes
[BachRST] Bach, James, and Bolton, Michael, Rapid
Software Testing. http://www.satisfice.com/rst.pdf

[Isacoff2001] Isacoff, Stuart. Temperament: How Music
Became a Battleground for the Great Minds of Western
Civilization. Random House, New York.

[Kohl2007] Kohl, Jonathan. 2007. Exploratory Testing:
Finding the Music of Software Investigation. Self-published
2007 and Methods & Tools Magazine 2007

http://www.kohl.ca/articles/ExploratoryTesting_MusicofIn
vestigation.pdf

http://www.methodsandtools.com/archive/archive.php?id=6
5

[KohlM&M2007] Kohl, Jonathan. 2007. Man and
Machine: Combining the Power of the Human Mind With
Automation Tools. Better Software Magazine

http://www.kohl.ca/articles/ManandMachine_BetterSoftwa
re_Dec2007.pdf

[Levitin2006] Levitin, Daniel J. 2006 This Is Your Brain on
Music: The Science of a Human Obsession. Penguin Group,
New York

[Pettichord2003] Pettichord, Bret.(2003-2007.) Four
Schools of Software
Testing. http://www.io.com/~wazmo/papers/four_schools.p
df

29

http://www.satisfice.com/rst.pdf�
http://www.kohl.ca/articles/ExploratoryTesting_MusicofInvestigation.pdf�
http://www.kohl.ca/articles/ExploratoryTesting_MusicofInvestigation.pdf�
http://www.methodsandtools.com/archive/archive.php?id=65�
http://www.methodsandtools.com/archive/archive.php?id=65�
http://www.kohl.ca/articles/ManandMachine_BetterSoftware_Dec2007.pdf�
http://www.kohl.ca/articles/ManandMachine_BetterSoftware_Dec2007.pdf�
http://www.io.com/~wazmo/papers/four_schools.pdf�
http://www.io.com/~wazmo/papers/four_schools.pdf�
http://www.io.com/~wazmo/papers/four_schools.pdf�

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Session

The Challenge of Testing
Scientific Software

Diane Kelly and Rebecca Sanders

Tuesday, July 15, 2008
10:45am - 11:45am

Room: Saint Patrick 3rd Floor

Overview

Though scientific software is an engine for scientific progress and provides data for critical
decisions, the testing of scientific software is often anything but scientific. Our research examines
the factors that complicate the testing of scientific software, including the complexity of the subject
matter, inadequate validation criteria, a high demand for correctness, and the lack of testing
expertise among scientists.

30

The Challenge of Testing Scientific Software
Rebecca Sanders

Queen’s University
Kingston, Ontario

Canada

sanders@cs.queensu.ca

Diane Kelly
Royal Military College of Canada

Kingston, Ontario
Canada

kelly-d@rmc.ca

ABSTRACT
Scientific software, application software with a large
computational component, is often used to provide data for
critical decisions across broad areas of research in nearly every
science and engineering discipline. Testing is key to assess the
quality of this software. Yet there are several challenges in doing
so that are not always adequately addressed. The definitions of
verification and validation in the context of scientific software
cannot even be agreed upon in the literature.

We carried out a series of interviews of scientists who write or use
scientific software and found that there are three broad areas of
risk in scientific software, related to theory, to code
implementation, and to its usage. All the scientists we interviewed
addressed the first risk by validation testing, generally did not test
to address the second risk, and only tested to address the third risk
if the users were not scientists in the same domain.

1. INTRODUCTION
Scientific software is software with a large computational
component that models some physical phenomena and provides
data for decision support [1]. Development of scientific software
takes place in both industry and academia. The people who
develop and test the software are often scientists and engineers,
many of whom fit under Segal’s definition of “professional end-
user developers” [2]. Scientists and engineers developing software
tend to have strong backgrounds in the theoretical models
implemented in the software, but they do not usually have a strong
background in computer science or software engineering. In other
cases, scientific software is developed by people who are not
domain experts (such as software engineers) in close consultation
with domain expert scientists or engineers.

We conducted a qualitative study, the focus of which was the
development and usage of scientific software. Carried out at two
Canadian universities, this study was broad and hence not solely
focused on testing issues. But many of the concerns we heard
affect how scientific software is tested.

We found that there are three broad areas of risk in play. These
are theory risk, which relates to the complexity of the theory and
the difficulty of validating it; implementation risk, involving the
fidelity with which the problem was coded and documented; and
usage risk, concerning the use of the software by the target user
groups. These risks may not be unique, but they are all in some
way exacerbated due to the nature of software development in the
science community, as well as the complex nature of the science
that lies behind the software.

The ways in which these risks overlap and interact pose
challenges for testing. Some of these challenges can be met by

existing methods, while others may require an injection of
ingenuity.

Section 2 gives a short description of our research method.
Section 3 describes the contributions of risks related to scientific
theory to the difficulty of testing scientific software. Section 4
details several risks related to the code, section 5 discusses usage
risks, and section 6 concludes the paper.

2. RESEARCH METHOD
Qualitative data was collected through interviews with scientific
software developers and users. These interviews were thirty to
ninety minutes in length.

We interviewed sixteen scientists and engineers. Two are civil
engineers, one is a chemist, two are electrical engineers, one is a
geographer, one is a computer scientist involved in medical
computing, five are nuclear engineers, three are in physics, and
one is a theoretical computer scientist. There is a large degree of
variation in their software development experience; some are not
comfortable coding, while some others have worked on industrial
software engineering projects and are very knowledgeable about
requirements, design, testing, and version control options
available to them. Their software varied greatly in size from
modules of less than 1,000 lines of code to programs of over
100,000 lines of code. We interviewed scientific software
developers who had delivered software, in their opinions
successfully, as well as interviewing developers who were
encountering severe problems in their development efforts and
were asking for help. These problems include users finding it
difficult or impossible to install the scientific software, poor code
documentation that makes it hard to understand what the software
is supposed to do, and an inability to find important bugs with
current testing techniques.

At the beginning of each interview, each scientist gave a brief
description of his or her work, the purpose of the software as
related to his work, and his or her role in the development group.
Then we asked questions. Though there were no pre-set questions,
we always made sure we covered the purpose of the software,
requirements documentation, design, development languages,
code documentation, version control, and testing when we
discussed development of scientific software.

We made a digital voice recording of each interview. After each
interview, the digital voice recording was translated into written
notes. As interviews continued to be conducted and notes were
taken from the digital voice recordings, we began the process of
focusing and bounding our collection of qualitative data. This was
done through a well-defined qualitative analysis technique called
coding [3]. Codes are a summarizing notation; they make analysis

31

more efficient and effective by both grouping notes on similar
subjects so they can be compared during the later phase of
pattern-finding and demonstrating where notes are incomplete.
For example, notes related to testing were coded as TEST. The
interviewees names were removed from the notes; in this paper,
they will be referred to by number (S1, S2, S3, etc.) See Table 1
for a list of the research area for each interviewee.

Table 1: Interviewee Characterization

Nine of the thirteen developers we interviewed (the other three
interviewees were primarily interviewed on their use of scientific
software and their validation testing) developed software to
demonstrate that their theory works, to test their models, or to
provide evidence for research publications. One interviewee
developed software for training highly qualified personnel, and
seven developed software for external decision support. These
purposes are not mutually exclusive.

We used cross-case displays [3], a matrix with columns
comparing the content of a code between different interviewees,
as our primary systematic analysis method to compare and
contrast data gathered from all, or a subset of, the interviewees.
These displays allowed us to find patterns and themes among the
data.

Most testing of scientific software among our interviewees can be
described as unsystematic or ad-hoc. One interviewee said he had
tested as much as he could, and he knew there were bugs, but he
didn’t know how to go about finding them. Another interviewee
characterized the testing in his group as ad-hoc and disorganized.
His group is continuously in what he terms a “run and fix” mode

of operation. However, given information they provided on
specific types of testing done in their group, their testing is
probably more thorough than most.

After coming to several conclusions through systematic analysis,
we decided to take our results back to the community of
developers we had interviewed to gather their impressions. This
also served as a check on our conclusions to ensure that they
made sense to the practitioners themselves. Four of the
interviewees attended our focus group: S3, S4, S9, and S14. The
additional comments were added to our analysis.

3. THEORY RISKS
The primary goal of developing scientific software is very often to
get the results of calculations from a scientific or engineering
model as opposed to developing quality software for its own sake
[2][4][5]. These results may be used for decision support or to
validate a scientific model. Therefore the theory often serves as
the functional requirements of the scientific software. In this
context, theory risk is similar to requirements risk.

3.1 Risk of Cognitive Complexity
Cognitive complexity is the difficulty in understanding a concept,
thought, or system [5]. Scientific software is being created to
model increasingly complex phenomena. One interviewee in
chemistry who has been developing scientific software for
decades discussed how the complexity of what could be
represented by software used to be limited by hardware. Before, it
was challenging to model liquid water – but now, with processing
power far greater than in the past, scientists in his domain are able
to model protein folding.

As scientific software expands to encompass more complex
science, the amount one needs to understand about the domain in
order to understand the software is increasing. Some of the
models being translated into software are cutting edge research.
Developers may implement their science models in software to
demonstrate that they work as part of their own research.
Sometimes the software is intended to take advantage of a new
market opportunity.

Whether the intent of the software is to demonstrate a new model,
or to fill a new use in the market place, the cognitive complexity
is high. This presents a problem for testing because most testing
requires the tester to understand what the software is supposed to
do. For example, most software testers do not have PhDs in
chemistry and don’t understand protein folding. The lack of
scientific knowledge amongst software testers, or the lack of even
a common cognitive ground with the scientists, had proven
frustrating to several of our interviewees when they attempted to
collaborate with them. The frustration was enough that most
scientists stated that they wouldn’t bother with such collaboration.
S07 hired software developers for developing and testing of the
user interface, but found that they could not do much to develop
or test the scientific computational part of her scientific software
due to their lack of knowledge.

There were some examples of successful collaboration between
scientists and software developers among our interviewees, but
these required the software developers to spend hundreds of hours
learning the necessary background knowledge from the scientist.
S14 and S15 worked together to develop civil engineering

Subject
#

Field Formal
training in
soft. eng.?

Experience in
the software
industry?

S1 Nuclear
Engineering

No No

S2 Nuclear
Engineering

No No

S3 Optics/Image
Processing

Yes Yes

S4 Geography No No
S5 Chemistry No No
S6 Physics No No
S7 Theoretical

Computer Science
Yes No

S8 Electrical
Engineering

Yes No

S9 Nuclear
Engineering

No No

S10 Nuclear
Engineering

No No

S11 Nuclear
Engineering

No No

S12 Medical
Computing

Yes Yes

S13 Civil Engineering No No
S14 Electrical

Engineering
No No

S15 Civil Engineering No No
S16 Physics No Yes

32

software for the military to calculate the load on bridges, with S14
serving as the software expert. S14 did not have a formal
background in software development but was self-taught in design
and development. They spent many hours developing a shared
vocabulary, with S15 teaching S14 so much about bridges that
S15 stated “[S14] knows more about bridges now than most civil
engineers”. With this knowledge, S14 developed and tested the
software.

S12 is a trained software developer who created medical imaging
software for use by doctors in the operating room. In order to gain
the understanding necessary to create software for use in the
medical field, he spent hundreds of hours in the operating room
watching doctors at work.

The lack of scientific knowledge among software developers is
one reason why most of the scientific software development
efforts we encountered were entirely composed of domain experts
doing their own development and testing. But the scientists and
engineers often have no background or education in testing.
Unlike testers, they understand their domains, but they usually
don’t know how to effectively test their software. Those who did
the best testing among our interviewees were, understandably,
those who had made the most effort to gather software testing
knowledge.

3.2 Risks to Validation Testing
Kendall et al [4] define validation as “determining whether the
mathematical model instantiated in the code faithfully mimics the
intended physical behavior”. Post and Votta’s definition of
validation is “the determination that the model itself captures the
essential physical phenomena with adequate fidelity”, yet they go
on to include several methods of validation testing that would fit
the software engineering definition of verification testing [6].
Roache uses a mutation of the standard software definition – he
says that validation is ensuring that software is “solving the right
equations” [7]. Stevenson states that “Validation answers the
question ‘How well does the model reflect objective
observations?’” [5].

Often validation testing (using Post and Votta’s definition) is used
by the scientists to the exclusion of all other forms of testing. As
with other quality management methods, the effectiveness in
implementation is often compromised [4][5][8].

Fifteen of our sixteen interviewees discussed their validation
testing practices. From our notes, we identified three types of
oracles used to validate scientific software. These oracles are not
mutually exclusive; several interviewees used oracles from more
than one of these sources.

3.2.1 Professional Judgment
Most common is an oracle based on professional judgment. This
relies on an expert or group of experts in the domain to evaluate
the results based on their experience and knowledge. One way of
validating software in S3’s domain of astronomy is what he calls
“eyeball analysis” – a visual comparison of the image processed
with their algorithm versus others. As S3 characterized it, this is
as simple as stating, “look at image A, look at image B; image B
is better.” S11’s model is related to nuclear meltdowns. This falls
in the category of an undesirable event for which there is little real
data. Due to his lack of validation data, his only oracle is his own
expert judgment.

3.2.2 Data-based Oracles
Data-based oracles are those where data can be generated in some
way as comparisons for the software being tested. This can
include data from measuring real-world events, data from
instrumented physical experiments, and data from hand
calculations. S1 and S2’s software was validated by using data
gathered from several sources in the nuclear industry. S6 initially
tests by using professional judgment. This serves as a preliminary
test before allocating computing resources to input real weather
data and check the forecast against the weather that actually
occurs. S9 compares the output of his program to data on standard
nuclear element performance. If his model produces a result
within an error range, which could be “large” by his description,
then it is considered correct. Some interviewees use hand
calculations to check the results of their software; these include
S13, S14 and S15 – the two examples of civil engineering
software development among our interviewees.

3.2.3 Benchmarks
Benchmarks are measures by which the output of the model
implemented in the scientific software is compared relative to the
outputs of other models. S3’s group uses an industry standard
sharpness metric as one way to judge their software’s output. S5
stated that in his domain there are applications modeling behavior
that one does not ever want to encounter in real life, so there are
benchmarks that can be used to determine whether the results are
better or worse than those produced by other methods. S10’s
model was meant to be a simplification of another model, so if his
model produces results that are acceptably close to those of the
more complex model, he considers them correct.

3.2.4 Oracle Risk
All of these types of oracles carry the risk that they could be
incorrect. The data may have been collected or recorded
improperly, or a hand calculation may be incorrect due to human
error. Even with industry data, S2 stated that his group has had
trouble validating their models. He described a give and take
process between his development group and the industry data
sources: if the answer given by the output of the scientific
software does not match the expected output from the industry
data being used as the oracle, it is possible that the industry data is
at fault instead of the scientific software. S2 has encountered
instances in which the industry data was incorrect as well as times
when his model required adjustment. Since the industry data is
not entirely trustworthy, some degree of professional judgment
must be used to determine whether the oracle data itself is
incorrect.

With benchmarks, a risk is that the benchmark does not provide a
consistent comparison. There may be some way to improve the
performance of a model in relation to the benchmark without
improving the model. S3 expressed his dissatisfaction with the
industry standard sharpness metric used in his field, stating that
the results can vary by 80% or more depending on the sampling of
the image used by the benchmark. As with data-based oracles,
there remains a necessary degree of expert judgment with regards
to how much to rely upon the results of a benchmark.

There is also an inherent risk when the scientist is not objective
when validating his own scientific software. Given that one of the
most important goals of some scientific software developers is to
publish papers based on the results of their models, there can be a

33

psychological barrier to finding problems with their software. And
as argued in [6], the peer review process for papers is largely
ineffective at sniffing out poor validation testing.

In addition to the challenge posed by obtaining a reliable oracle, it
is challenging to determine what constitutes sufficient validation.
Sometimes the oracle used is too simplistic or not in the range in
which the scientific software will actually be used. S4, who
created her own oracle data, describes her dataset as “simple” and
not representative of the data that it will eventually be used to
process. Whether this simple simulated data validates the software
adequately enough to justifiably increase her confidence in the
model’s applicability on complex inputs is questionable.

3.3 Risk from Approximations to Continuous
Models
The difficulty of deciding whether validation testing is adequate
or not is compounded by the approximations needed to render the
continuous models into computational models. It can be very
hard, if not impossible, to determine where boundaries or
singularities lie. Having two tests yield acceptable answers does
not necessarily guarantee that points between or close to the test
data will also yield acceptable answers. Therefore validating the
computational model even within the accepted range of
applicability can be a highly challenging task. As with other
domains, validation of scientific software can only influence
confidence that the software will provide a correct answer, but its
limitations are even more pronounced when faced with the
mathematics involved in scientific software computations.

4. CODE RISKS
4.1 Risk to Correctness
Correctness, or the accuracy of a calculation, is a critical quality
factor for most scientific software applications. Scientific software
often requires a high degree of correctness to fulfill its
requirements. The importance of correctness to scientific software
is underlined by Hatton and Roberts [8] and Hatton’s follow-up
[9]. In Hatton and Roberts’ research, over a dozen programs for
seismic data processing in the oil industry, all implementing a
similar algorithm, were found to deliver drastically different
results, with answers becoming more deviant as the amount of
computation in a process increased. The accuracy errors in these
programs reduced the accuracy of the output from six significant
figures to two. For the interpretation of the data to be useful, the
data needed an accuracy of three significant figures. The programs
were unfit to address the tasks they were intended for.

Hatton and Roberts believed that poor testing of numerical
computations was likely to contribute to accuracy problems in
software in other scientific domains as well. Correctness was a
primary quality goal for many of our interviewees. The purpose of
scientific software is to produce an answer that is as accurate a
model of reality as possible.

Testing is critical to the realization of this goal. Stevenson’s
article on quality in simulations [5] is supportive of measuring the
correctness of calculations. He proposes that testing methods for
scientific software should focus more on numerical analysis,
numerical methods, and floating-point computations. Feedback
from our interviewees was in agreement with this.

Another way that the correctness risk is mitigated before testing is
through a conservative choice of development language. Decyk et
al’s preference for Fortran [10], which has mature compilers and
math libraries, was also seen amongst our interviewees; Fortran
was the most common language used to develop their software. S1
and S2, who went against this trend and developed their scientific
software in Visual C++, were plagued by different numerical
results on different platforms.

4.2 Risk from Poor Code Documentation
Poor code documentation is a very common vice in scientific
software [2]. Some interviewees agreed that documentation of
code was so bad that they wouldn’t expect themselves or their
students to be able to understand someone else’s code. S4
encourages students to write code from scratch instead of using
other people’s code because she thinks it’s easier than trying to
determine how someone else’s code works. S16 stated that, due to
a combination of laziness and protectiveness of their code, code
authors in his development group created cryptic, inadequate code
documentation that made the code nearly impossible to interpret.
He compared such code documentation to a Russian textbook –
concise and hard to understand unless one already knows the
material.

Given that the material represented by scientific software already
exhibits high cognitive complexity, the lack of proper code
documentation poses an even higher risk to testing in this domain.
Legacy code has a lifespan of decades [12]; it is common for
scientists to add modules or extensions to existing code bases. Yet
it can be very difficult to understand what the legacy code is
supposed to do, which impedes testing. This is made even worse
by the unavoidably high turnover in research development groups.
Once the code author is long gone, figuring out what old code is
supposed to do can take heroic effort.

4.3 Risk to Verification Testing
As with validation, there are several definitions of verification
testing in the context of scientific software. Kendall et al [4]
define verification as “ensuring that the code solves the equations
of the models correctly”. Post and Votta describe verification as
“the determination that the code solves the chosen model
correctly” [6]. These two definitions are similar to Roache’s
statement that verification ensures that the software “solves the
equations right” [7]. Stevenson’s definition of verification as
answering the question “Does the algorithm and code work as
required?” is broader [5]. The fact that the first three definitions
ignore most aspects of the quality of the code aside from its
conformance to the model shows how little attention is given to
quality factors other than correctness.

The main risk to verification is that scientists and engineers
developing software are often unaware of the need for it and
unsure of how to apply it. There is a tendency for scientists to
focus on validation testing to the exclusion of all other testing.
Validation testing deals with their models, which they understand
and which they are most interested in testing. Our interviewees
consistently validated their software in some way, but the use of
other types of testing or testing for other goals was patchy. This is
partially due to a lack of knowledge of software testing, but it is
also a problem with what Kendall et al refer to as a “quality
attitude” – scientific software developers are often unconcerned
with “customary notions of IT software quality” [4].

34

5. USAGE RISK
Surprisingly, if our interviewees did any other type of testing
besides validation testing, it was usability testing. Some of our
interviewees were doing batch processing that required no user
interface. Others were developing software with complex user
interfaces.

In these cases, usage of their software was viewed as high risk.
Usage risk was addressed through both usability testing and user
documentation. Some leaned more strongly toward either testing
or documentation while others used an even mix of both. Many
other interviewees did not address usability risks at all. The main
factor that correlated strongly with a concern about usability risk
was the degree to which the backgrounds of the software
developers differed from the software’s intended users.

In most cases, the developers and the intended users of scientific
software have very similar domain backgrounds. There are cases
in which the intended users are the developers themselves, people
in the same research group, or people in the same domain
specialty. Of those interviewees with user characteristics fitting
any of those cases, none created user documentation or did
usability testing. Scientific software developers view usability as a
risk only when the users’ background knowledge is markedly
unlike their own.

Our interviewees used several approaches to address usability.
S7’s students were one of the intended user groups, so her
usability testing consisted of having students in her course try her
software and give feedback. S14 and S15 initially had graduate
students test their bridge classification software and its
documentation by experimenting with the program and consulting
the help files, but these students were not representative of the
eventual user group. S14 and S15 later had the opportunity to
have engineers typical of the target users test the software and
help files. S13 took a different path by focusing completely on
user documentation, such as help files, instead of usability testing,
and felt that this was a successful approach.

In one case (S12’s software) the users were operating room
doctors. S12 first had doctors test his imaging software on plastic
models. Later, S12 made multiple observations of the software in
use in the operating room. He described several surprises he had
in the software’s use. The in-use observation of his software was
critical to improving its quality.

In another case (S1 and S2’s software) the intended users of the
scientific software are not scientists. In this instance, the software
was being developed for academic users and non-specialist
industrial users. From our interviews, developing a user interface
and documentation for such diverse groups was a challenge that
they were having difficulty meeting. They had no direct contact
with their industrial users and activities such as installation testing
was faltering. Their approach contrasts with S12’s early
engagement with real users from the requirements stage onward.

6. CONCLUSION
Risks to scientific software come from theory, implementation,
and usage. From what we have observed, the scientific software
developer, being most often the scientist with no supporting
software expertise, tests almost entirely to resolve the theory risk.
The scientist/developer is in a position in which developing
software is necessary to accomplish scientific goals. They are not

software engineers, and they do not want to be. Their overriding
mindset is to demonstrate that the theory embedded in the code is
correct. They do validation testing to demonstrate their theory.
There are many risks in accomplishing this. The scientists have
developed different strategies to address this risk.

If the user of the scientific software is a scientist in the same
domain, as often it is, the risk due to usage is lowered. Some of
our interviewees recognized the risk due to users outside their
domain and addressed this through usability testing, being
opportunistic and inventive in their choices of methods.

The scientists’ lack of resolution of the risk due to code
implementation comes from a number of factors. First, they see
the code and the theory inextricably entwined. They cannot see
the code as a separate entity that needs attention. The code is not
tested for its own sake. Certainly, the code is not usually tested to
show where it is wrong. Second, the scientists’ interest and
deliverable is science, not software. The code is a means to an
end, and often a frustrating one. Third, scientists generally do not
possess software testing knowledge.

The questions of what constitutes an adequate testing oracle for
scientific software and what constitutes adequate test data are left
open. Some of the validation testing we researched was running
up against the practical limits; they were using whatever oracle
they could scrape together from industry data, benchmarks, and
expert judgment.

Software engineers often lack knowledge of and interest in
scientific domains. There is a general lack of knowledge transfer
between these two broad sets of disciplines. Lastly, effective and
efficient testing methods and techniques specifically developed
for scientists have not been put into the scientists’ hands. The
interlocking risks influencing the testing of scientific software
means that testing strategies cannot be directly imported from
other domains. The building blocks of effective testing strategies
likely exist, but how to put them together in a way that meets the
goals of the scientists poses a unique challenge. There is some
important and critical work that could be done here.

REFERENCES
[1] Kreyman, K., Parnas, D.L., and Qiao, S. 1999. “Inspection

Procedures for Çritical Programs that Model Physical
Phenomena”. CRL Report No. 368. McMaster University.

[2] Segal, J. 2004. Professional end user developers and
software development knowledge. Technical Report. Open
University.

[3] Miles, M.B. and Huberman, A.M. 1994. Qualitative Data
Analysis: An Expanded Sourcebook, 2nd Ed. Sage
Publications, California.

[4] Kendall, R.P., Post, D.E., Carver, J.C., Henderson, D.B., and
Fisher, D.A. 2007. A Proposed Taxonomy for Software
Development Risks for High-Performance Computing (HPC)
Scientific/Engineering Applications. Technical Notes.
Carnegie Mellon University.

[5] Stevenson, D.E. 1999. A Critical Look at Quality in Large-
Scale Simulations. Computing in Science and Engineering,
(May-Jun. 1999), 53-63.

35

[6] Post, D.E. and Votta, L.G. 2005. Computational Science
Demands a New Paradigm. Physics Today (Jan. 2005), 35-
41.

[7] Roache, P.J. 1998. Verification and Validation in
Computational Science and Engineering. Hermosa
Publishers, New Mexico, USA.

[8] Hatton, L. and Roberts, A. 1994. How Accurate is Scientific
Software? IEEE Transactions on Software Engineering 20
(Oct. 1994), 785-797.

[9] Hatton, L. 2007. The Chimera of Software Quality. The
Profession (Aug. 2007) 102-104.

[10] Decyk, V.K., Norton, C.D., and Gardner, H.J. 2007. Why
Fortran? Computing in Science and Engineering 9, 4 (Jul.-
Aug. 2007), 68-71.

[11] Boisvert, R.F., Tang, P.T.P., ed. 2001. The Architecture of
Scientific Software. Kluwer Academic Publishers

36

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Session

Lessons for Testing from
Financial Accounting:

Consistency in a Self-Regulated Profession

Doug Hoffman

Tuesday, July 15, 2008
2:45pm - 3:45pm

Room: Colony Ballroom 2nd Floor

Overview

Comparing software testing with accounting is a study in stark contrasts. There are valuable
lessons for software testing from several millennia of evolution and refinements in accounting,
ranging from underlying accounting principles to professional self-regulation techniques. This
session draws parallels from accounting and points out some valuable lessons that might be
applied in the software testing profession.

37

Lessons for Testing From Financial Accounting:
Consistency in a Self-Regulated Profession

Douglas Hoffman

doug.hoffman@acm.org

“Accounting is the discipline of measuring, communicating
and interpreting financial activity.”[1

“The purpose of accounting is to provide the information
that is needed for sound economic decision making. The
main purpose of financial accounting is to prepare financial
reports that provide information about a firm's performance
to external parties such as investors, creditors, and tax
authorities. Managerial accounting contrasts with financial
accounting in that managerial accounting is for internal
decision making and does not have to follow any rules
issued by standard-setting bodies. Financial accounting, on
the other hand, is performed according to Generally
Accepted Accounting Principles (GAAP) guidelines.”[

]

2

Summary

]

“Software testing is the process of measuring, interpreting,
and communicating important qualitative aspects of
computer programs. The purpose of software testing is to
provide the information about software quality that is
needed for to improve quality and make sound business
decisions.” – Douglas Hoffman

To say that accounting concepts and methods have been
around for a long time is a gross understatement.
Accounting records date back over 7,000 years, recording
business transactions and inventory. Over the centuries
accounting has evolved (and continues to evolve) to
become an effective set of practices based on principles and
standards. Financial accounting is that part of accounting
focused on consistent and complete reporting of financial
information for outside stakeholders. Managerial
accounting focuses on the reporting of financial
information as input for making management decisions. At
first look, the accounting field appears to be defined by
strict rules using arcane language. Financial accounting
standards are applied across industries to make financial
statements consistent and thereby more understandable and
comparable. A closer look at accounting, and particularly
financial accounting, reveals that the standards are adjusted
to accommodate real-world constraints and practical
methods – context-driven standards.

1 Wikipedia, 13 March 2008;
http://en.wikipedia.org/wiki/Accountancy
2 QuickMBA/Accounting/Financial Accounting; Copyright
© 1999-2007 QuickMBA.com
http://www.quickmba.com/accounting/fin/

By contrast, the field of software testing is young, having
been around for about 50 years. Before then, programmers
simply did whatever testing they felt appropriate during
software development. As the software development field
grew, roles and responsibilities became more clearly
differentiated, During the 1960s the software creation
process evolved to become logically separated from
software validation. Many people have tried to describe a
universal software testing methodology[3

As different and the fields of Accounting and Software
Testing may seem, there are valuable lessons to be learned
from accountancy and accounting [

], but the
usefulness and applicability of these different approaches
are hotly debated today.

Stakeholders cannot generally compare (or understand) test
reports without well defined, stable standards. Software
testing methods used within industries vary substantially;
terminology is inconsistent throughout industries, test
reports include many different measurements, use various
formats, and have different contents. On many projects the
format and content of reports evolve within the course of a
single release. Factors labeled with the same terms are
often counted differently or embody altogether different
concepts. The methods and vocabularies between industries
are so different that software testers from different industry
segments often cannot even discuss testing. (This
sometimes happens between projects within a single
organization.) The software testing field lacks a common
vocabulary and shared definitions of terms. It lacks a set of
assumptions, principles, or methods that apply to software
testing across diverse parts of the software development
industry.

4

3 Some examples of prescribed test methodologies are:
IEEE Standard 829-1998; Craig and Jaskiel, “Systematic
Software Testing;” and Buwalda, Janssen, and Pinkster,
“Integrated Test Design and Automation.”

4 Accountancy is the profession of accounting, which is the
methodology. Wikipedia, Op. cit.

] that are applicable to
software testing. Where accounting’s unit of measure is
dollars, software testing has many measures for defects,
tests, test outcomes, and other qualitative factors. There is
currently no single element in software testing that could
represent a common characteristic for everything we might
measure, so it isn’t possible to summarize software quality

38

http://en.wikipedia.org/wiki/Accountancy�
http://www.quickmba.com/accounting/fin/�

in a single equation as accounting does[5

Financial Accounting and Software
Testing

]. But, both
accounting and software testing must present information
in an understandable form for it to be useful. Software
testing would benefit from using a common language and
common methods to consistently identify and count items.
Consistency is needed within organizations and across
industries so stakeholders can understand and compare
qualitative information. This paper re-casts several
processes, rules, and measures borrowed from financial
accounting to apply them in the context of software testing.
The lessons help us understand the value of processes,
keeping measurements simple, test strategies,
documentation, and more.

In much the same way that software quality assurance is
much broader than software testing, accounting is much
broader in scope than the financial and managerial
segments described here. Most implications drawn from
accounting for software testing are related to measures,
metrics, and processes because financial accounting is
concerned about one metric: dollars. This paper focuses on
some of the aspects of financial accounting that provide
lessons that can be applied to software testing. The specific
lessons drawn upon are outlined in Table 1.

◊[6] The foundation for accounting is based on three types
of tenets: assumptions, principles, and guidelines.
Assumptions define and limit the scope of accounting.
Principles lay out the basic axioms for accounting.
Guidelines describe exceptional circumstances and
reasoning where assumptions or principles may not be
strictly applied. Some of the tenets have parallels in
software testing. In Appendix 1 I provide a detailed list of
the basic tenets of accounting.

Software Testing Principles can be described using a
similar three-tiered approach. The rules and responsibilities
for software testing could define rules such as a definition
for what constitutes a defect, possible test outcomes, and
test report requirements. Where the Assumptions describe
the boundaries of software testing, Assumptions for
software testing might include ideas like: ‘the purpose of
testing is to provide information of interest to some
stakeholders,’ ‘software testing is always incomplete since

5 Financial accounting has used a single summarizing
model since the 18th century:

Assets = Liabilities + Equity

The equation basically states that the financial value of an
entity (the Assets) is equal to what the entity has been
given or earned (the Equity) and what it has been loaned
(the Liabilities). Equity changes through operations
(revenues and expenses), gains and losses, and owners’
contributions and withdrawals but the equation always
balances.

6 The symbol ◊ is used to denote the beginning of the
lessons

there is always a potential for undiscovered errors,’
‘software tests should be designed and created to provide
the most valuable information for important stakeholders,’
and ‘test measures and metrics represent information from
specified products/projects during specific time periods.’
These assumptions describe the common scope for
software testing and should apply across test groups and
industries.

The Principles describe what needs to be done, how things
are defined, and fundamental approaches to be taken in
software testing. Software testing principles might include
things like: a software defect is defined as a discrepancy
between expected (specified) behavior and actual behavior,
and defect counts should not include cosmetic errors that
do not lead to inappropriate user actions.

The Guidelines provide a set of rules that allow flexibility
to accommodate industry differences and operational
reality. Possible guidelines might include: when the verdict
from a test should be recorded as a failure until it is known
to have passed, and accepted industry practices should be
followed even if they differ from the assumptions and
principles.

◊ The Monetary Unit Assumption says that all values are
translated into Dollars (or Kroners, Rupees, Yuan, etc.).
Accounting concerns itself with items that can be valued or
measured in money. Things like customer loyalty
(goodwill) may be quantified, but only the financial value
which is quantified in dollars will be included in financial
records.

For software testing, this could translate to using one unit
of measure for all values. (We may use several different
factors, such as defect counts and lines of code. Each factor
should be measured the same way, converted to, or
normalized so that we don’t combine function points and
lines of code.) Each factor should have the same meaning
across an industry segment. If a value cannot be ascertained
(e.g., lines of code for a purchased dll library), then that
factor is not included in any measures or metrics.

39

Accounting Concept Software Testing
Implications

Accounting Tenets –
Assumptions, Principles,
and Guidelines.

The rules and responsibilities
for software testing could be
described using a similar
three-tiered approach.

Monetary Unit
Assumption – All values
are counted in dollars.
[When a dollar value
cannot be assigned, it is
not recorded.]

Values are all stated in (or
converted to) one measure. If
the value cannot be
ascertained it does not
become part of any measures
or metrics.

Basic Accounting Cycle Software testing and
reporting may follow a
similar cycle.

Generally Accepted
Accounting Principles
(“GAAP”) – A
combination of basic
accounting tenets, rules
and standards from FASB,
and the generally accepted
industry practices.

The tenets are only a
foundation for rules,
standards, and methods.

Rules, standards, and
methods may vary by
industry.

Materiality Guideline
relaxes GAAP
requirements when the
impact is small.

Some discretion is allowed in
adhering to conventions
when doing so costs more
than it’s worth.

Full Disclosure – Reports
disclose all information
thought to be important to
an investor or lender
within the report or in the
notes to the report.

Report all relevant
information without regard to
its implications. Then clarify
or qualify the information as
necessary.

Conservatism Guideline –
report minimum income
values and maximum
expenses

Report all potential problems
and unknown outcomes in
the data, with footnotes (if
deemed necessary)

Balance Sheet (Current
balances)

A report describing the state
of testing at a specific point
in time.

Income Statement (Profit
& Loss)

A report showing the net
effects of activities during a
specified time period.

Table 1: Summary of Implications

◊ The Basic Accounting Cycle has five parts:

1. Identifying and recording business transactions

2. Posting to journals and the general ledger

3. Adjusting the general ledger to reflect actual business
operations (e.g., bad debts, accrued interest, taxes,
etc.)

4. Preparing financial statements for the time periods

5. Closing the books (resetting accounts to zero for the
next accounting cycle)

A Basic Software Test Execution Cycle might consist of:

1. Performing tests and recording results

2. Updating quality data to reflect the new results

3. Adjusting quality data to reflect actual business
operations (e.g., removing the results of obsolete tests,
reflecting reclassified defects, updating code size
measures, etc.)

4. Preparing quality reports for the time period(s)

5. Re-Baselining the records (resetting counts to zero for
the next testing cycle)

The testing cycle described here covers only running and
reporting test results, thus excluding test planning, logistics,
test case creation, maintenance, etc. Even so, quality data
(in part 3) is seldom adjusted. This causes distortion of the
quality picture from the data. For example, rerun tests are
counted the same way as running new tests, and tests
results from older versions of software are accumulated
with test results from the current version. Some of the
distortions might be removed (in part 5) since the counts
for measures and metrics would restart each test cycle.

◊ Accounting follows a set of Generally Accepted
Accounting Principles (“GAAP”). GAAP is extremely
useful for standardizing and regulating accounting
definitions, assumptions, and methods. It legitimizes
industry differences and codifies how standards for
accounting must be defined and justified. Although
variations exist between industries, using GAAP results in
consistent reports over time and across industries.

Consistent reporting over time allows fair assessment of
the progressive performance of an organization. This
context enables stakeholders to understand, evaluate, and
compare financial reports at different points in time,
understand financial health of organizations and industries,
and provides a basis for ascertaining the validity of
financial statements. It isn’t useful to compare a financial
statement for one time period where revenue is counted
when money is deposited in the bank (cash accounting)
with a financial statement from another time period where
revenue is counted when goods are shipped (accrual
accounting)[7

Adherence to GAAP results in comparable statements
by organizations within an industry segment (to the
extent they interpret and implement the common industry
practices the same way). Although financial statements
from banks are very different from manufacturing

]. Adherence to GAAP assures that standard
accounting methods are consistently applied within an
organization and if methods are changed the impacts of the
changes are fully explained and separated.

7 Cash accounting recognizes revenue based on how soon
customers pay, while accrual accounting recognizes
revenue based on how fast goods are shipped. Revenue is
usually lower under cash accounting.

40

organizations, statements from different banks are largely
comparable, as are the statements from manufacturing
organizations. Financial statements for all firms are
superficially very similar in terminology and format
because industries share the same foundational principles
(GAAP), and the differences are understandable and
justifiable within each industry segment.

There are three primary parts in GAAP:

1. The basic accounting tenets (assumptions, principles,
and guidelines)

2. Detailed rules and standards issued by the Financial
Accounting Standards Board (FASB), a group of
accounting experts independent of all other business
and professional organizations [8

3. The generally accepted industry practices for each
industry segment

].

The software testing profession would benefit from
identifying and standardizing generally accepted software
testing principles (GASP) and identifying some of the more
and less applicable contexts where the principles apply. A
structure similar to GAAP might be created for GASP. A
Software Testing Standards Board (STSB)9

Under GAAP, many accounting rules require accountants
to apply expert judgment in deciding key assumptions that
have “material” impact on the reported results (e.g.,
whether to use cash or accrual accounting methods, or
accounting for software development costs as a period
expense or an investment to be recouped by future sales).
Similarly, software testing is context-specific and requires
expert judgment to decide on key factors in testing and
reporting. GASP must account for the relatively young
state of the science and large variation in contexts for

 would need to
be created to identify, articulate, oversee, and adjudicate
software testing issues. The STSB would represent the
many constituent private sector stakeholders and use an
open decision-making process to establish GASP standards.
STSB members would be expert software testing
stakeholders and need to severe all connections with the
firms and institutions they served prior to joining the
Board. The members of the board would be selected based
upon their knowledge of software quality, software testing,
business, and a concern for the public interest in matters of
software testing and reporting.

8 See http://www.fasb.org/facts/index.shtml#mission for
facts about the FASB
9 Bryan Kocher published an article “A Model for Software
Practices from the Accounting Profession” (IEEE Software,
Volume 17 Number 1, January/February 2000) calling for
the establishment of an Information Systems Standards
Board (ISSB) to create a set of standards for software
system design and construction, modeled on the FASB and
accounting professions. I do not share his confidence that
Generally Accepted Programming Practices exist and can
be simply articulated, but I do agree that establishing a
system based on personal responsibility is preferable to
endless regulation.

software testing. Any “best practice” for software testing
must be applicable without exceptions or qualified so that
following it is not mandatory (which makes it a “good
practice” in some contexts and not applicable in some
others).

◊ The Materiality Guideline relaxes certain GAAP
requirements if the impact is not large enough to influence
decisions so that users of the information should not be
overburdened with information overload. The general rule
for assets depreciates (uses up) its value a little bit at a time
over the useful life. To a large corporation it may cost more
to compute and track depreciation for assets costing a few
hundred dollars than the item itself costs. The materiality
guideline allows accounting for those assets as immediate
expenses because the numbers on the financial statements
will not change.

An example parallel guideline for software testing would
be removing low priority/low impact defects from defect
counts. The metrics might give a false impression if it
includes low priority defects not likely to be fixed. The
biased metrics could lead stakeholders to poor conclusions
about what to test or what to fix. Another example of
materiality might be elimination of report items that do not
provide any information that could change stakeholder
behavior. The cost of gathering and reporting the
information is wasted when no stakeholder will make
decisions based on it.

◊ The Full Disclosure Principle and Conservatism
Guideline for accounting state that all information thought
to be important to an investor or lender should be disclosed
within the statements or in the notes to the statements and it
must include all known information that could negatively
affect the financial statements. An example would be the
possibility of losing a pending lawsuit that could force the
company to pay out a large amount of money. However,
speculative information that might positively impact the
organizations financial is not allowed to be included in the
body of financial statements (except as footnotes).

The parallel for this in software testing is for reports to
include all information known at the time of report
generation. For example, non-reproducible errors would
need to be documented (at least in footnotes). The
preliminary outcomes from the most recent test runs would
be included in all measures and metrics. Footnotes for the
measures and metrics can explain and clarify if pending
analysis of some test failures might change their result to
passes. Another example would be where a defect report is
logged for a potential problem immediately before
measures or metrics are reported. Even though analysis
might lead to closing the report (e.g., as ‘Not a Problem’ or
‘Duplicate), the report should be counted as an error in
measures and metrics, using footnotes to explain and
clarify.

◊ Two separate financial reports are used to describe the
current state of the organization. The Balance Sheet
provides a snapshot of the financial state at one point in
time. This often appears in financial reports with the
corresponding Balance Sheet values from other time
periods for comparison. The Income Statement (a.k.a.,

41

http://www.fasb.org/facts/index.shtml#mission�

Profit and Loss Statement) describes the recent financial
changes in accounts due to business activities during a
period of time (e.g., monthly, quarterly, or yearly).
Together, the two reports show where the organization
stands and how the organization has been doing recently.

Software test reports can be logically separated in a similar
way. One component in the report covers the state of the
software being tested. This quality indication is a statement
of current software behavior, completeness, or readiness.
The other component covers the recent history of changes
in behavior, completeness, or readiness. The first part is
about the product and includes information needed to
understand the quality of the software at that one point in
time. The second part is about progress and it describes
recent changes in the product quality.

Conclusions
The rules for accounting have been established and refined
for centuries, where the computer software testing
profession operates without established rules and has
existed for roughly half a century. Although software
testing is in its relative infancy and we are still establishing
a vocabulary to describe what we do and I think that
valuable lessons for software testing are available from
accounting. These lessons will help software testing evolve
and mature more quickly.

The structure and concepts for the rules of accounting can
be used to provide a useful conceptual framework for a set
of rules that could govern software testing. A major lesson
from accounting in this regard is that rules differ from one
segment of the industry to another because of the widely
differing requirements for each. Another lesson is that it is
possible for a profession to standardize and regulate itself
through personal responsibility rather than by externally
imposed regulations.

The software testing profession will be able to approach
standardizing the rules when the information we measure
can be unambiguously assigned values on a single scale (or
a few distinct scales). Monetary value is universally applied
in accounting in spite of the scores of currencies in use and
accounting methods work the same way for all of them.
Fundamental measures in software testing are not well
defined yet: “test case,” “defect,” “defect report,” “code
complexity,” and “program size” are examples of
commonly used terms that have several, often conflicting
definitions. The differences in the terms are not only due to
different industries, but many are hotly debated between
industries and sometimes within a single company.

Generally Accepted Accounting Principles validate and
institutionalize differences in rules across industries.
Different rules, formats, or terms are due to justifiable
context specific differences and the same accounting
principles are applied across the industry segment. This
results in accounting reports across each industry that can
be easily read, interpreted, and compared. Similarly,
context differences in different industries that test software
result in different testing and information requirements.
Similarly defined tenets in software testing could facilitate
acceptance of common foundational rules and approaches

while allowing for context specific solutions. Although I
have not encountered any universal “best practices” in
software testing that I could professionally support, they
may exist, and context-specific “good practices” have been
known for decades. The software testing profession would
benefit from standardizing them and identifying some of
the more and less applicable contexts.

A materiality guideline allows for some discretion in
measurement and reporting of useful information to an
appropriate level of detail. This flexibility is critical since
the requirements and practices for software testing varies so
much today. Reporting standards that require conservatism
and full disclosure could also benefit software testing. An
example of conservatism in testing would be a requirement
for test reports to include an explicit list of tests that were
not performed (including ones considered but not created)
and the rationale behind their not being done. Full
disclosure would require that any known information that
might influence stakeholders’ decisions be included in
reports (e.g., non-reproducible errors). Such standards
would remove ambiguities that may be exploited to bias
reports or justify sub-optimal testing by providing all of the
potentially negative information that might influence
stakeholders’ decisions.

Software testing might also benefit from considering two
distinct types of reports: one to display the current state and
another to describe recent activities. A report of the current
state provides a snapshot of status, while the activity report
shows changes occurring during specified time periods.
One shows where we are and the other how we got here.

Because the state of the science in computer science is still
young, coming up with generally accepted software testing
principles may not be within our grasp anytime soon.
However, endeavoring to do so will improve the state of
the science by exploring the serious question of why there
are different definitions and tenets. Applying some of these
lessons from financial accounting could improve the
software testing profession. Standardizing terms,
definitions, and report formats could reduce some of the
redundant work done by nearly all software test
organizations, possibly freeing up resources to delve more
deeply into the invaluable job of more and better software
testing.

Appendix 1
Twelve basic accounting assumptions, principles, and
guidelines:

1. Economic Entity Assumption

Accounting keeps track of business transactions (as
separated from personal transactions), so that the
finances of the firm are not co-mingled with the
finances of the owners.

2. Monetary Unit Assumption

Economic activity is measured in dollars, and only
transactions that can be expressed in dollars are
recorded. [This means, for example, that the effects of
inflation are ignored in accounting.]

42

3. Time Period Assumption

This principle assumes that it is possible to report the
complex and ongoing financial activities in relatively
short, distinct time intervals. The time interval must be
included in P&L and Cash Flow reports, and the
specific date on a Balance Sheet.

4. Cost Principle

“Cost” refers to the amount spent (cash or cash
equivalent) when the transaction takes place. This
means historical values are not adjusted to reflect
increases in value. [Hence, accounting values other
than stocks and bonds do not reflect the amount of
money a company would receive if it were to sell the
asset at today’s market value.]

5. Full Disclosure Principle

All information thought to be important to an investor
or lender should be disclosed within the statement or
in the notes to the statement.

6. Going Concern Principle

Accounting assumes that an organization will continue
to operate and will not liquidate in the foreseeable
future. This allows deferring of prepaid expenses until
future accounting periods.

7. Matching Principle

This principle requires that expenses be matched with
revenues in the same time period [using an accrual
basis of accounting], even when paid at different
times. Where the expenses cannot be matched with
particular revenues (such as advertising costs that

increase future sales), the expense is charged in the
period it is incurred (when the ad is run) and the
revenue recorded when the sale is made.

8. Revenue Recognition Principle

Revenue is recognized as soon as everything that is
necessary to earn the revenue has been completed for
a product or service (but not before that), regardless of
when money is actually received.

9. Materiality Guideline

A modifying convention that relaxes certain GAAP
requirements if the impact is not large enough to
influence decisions so that users of the information
should not be overburdened with information
overload.

10. Conservatism Guideline

If there are two acceptable alternatives for reporting an
item, the alternative that will result in less net income
and/or less asset amount is chosen. [For example, an
accountant may write inventory down to an amount
that is lower than the original cost, but will not write
inventory up to an amount higher than the original
cost.]

11. Cost-benefit Guideline

A convention that relaxes GAAP requirements if the
expected cost of reporting something exceeds the
benefits of reporting it.

12. Industry Practices Guideline

Accepted industry practices should be followed even
if they differ from GAAP

43

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Session

Sleight-of-Quality:
A Magical Approach to Testing

Jerry Kominar

Tuesday, July 15, 2008
2:45pm - 3:45pm

Room: Saint David 3rd Floor

Overview

Quality assurance requires a diverse set of skills, demonstrated in complex testing environments.
The study of traditional magic principles can help software testers raise their awareness of
discrepancies that can be found in these environments, leading to improved quality assurance.
Software likened to a magical "trick" offers an interdisciplinary approach to the study of method and
effect, enabling us as professionals to approach testing from new angles. Magic in this context will
not only educate but will also entertain!

44

Sleight-of-Quality: A Magical Approach to Testing

Jeremy Kominar
Research in Motion
195 Phillip Street

Waterloo ON

jkominar@rim.com

ABSTRACT
Software Testing is a field that requires a diverse set
of skills, demonstrated in a myriad of complex
testing environments. The study of magic and
deception can help software testers raise their
awareness of the discrepancies found in these
complex environments, leading to improved
software testing. Software, likened to a magical
“trick”, offers an interdisciplinary approach to the
study of effect, through which we can gain
awareness of test methods. This paper will draw
parallels between the complementary roles of the
developer and the tester, and the magician and their
audience. Both can benefit from understanding one
another’s perspectives and from seeing things from
a different point of view. Magicians use
psychology, philosophy, mechanics, manipulation
and theatrics, the five pillars of magic, to deceive
their audiences. These pillars of magic, combined
with misdirection of attention, provide a breeding
ground for distorted perceptions. Similarly, in
software testing, these elements of deception can
allow bugs to go unnoticed. Without awareness of
the realities in which we, the observers, conduct our
observations, we as the tester are no better than
laymen naively watching a magic trick for the first
time. This paper will discuss how the tester can
exploit each pillar of magic for the purposes of
software testing. By exploiting the knowledge of
magicians, we gain a heightened awareness of the
testing environment, and strengthen our deductive
and reasoning skills.

Categories and Subject
Descriptors

D.2.5 [Software Engineering] Testing and
Debugging - Testing

General Terms
Performance, Experimentation, Human Factors,
Standardization, Languages, Theory, Verification.

Keywords
Software Quality Assurance, Pillars of Magic,
Psychology, Deception, Misdirection, Observation,
Inference, Agile, Exploratory Testing, Personae
Testing, Refactoring, Change Blindness.

1. INTRODUCTION
For centuries, magicians have entertained audiences
through use of guile, ruse, and clever misdirection.
Their methods, shrouded in mystery and known only
by a select few, have produced effects that are both
unbelievable and unfathomable. This paper
examines the five pillars of magic used by
magicians to deceive their audiences and how
software testers (hereinafter referred to as testers)
can use similar knowledge in a testing context.
Readers may be perturbed by what they have read,
and may wonder how deception could possibly have
any relevant place in a serious discussion about
testing. However, skeptics are encouraged to read
further and to temporarily suspend their disbelief.

In their book Rapid Software Testing, James Bach
and Michael Bolton state that “testing magic is
indistinguishable from testing sufficiently advanced
software” [1], and it is this belief that warrants
further exploration. Parallels exist between the
roles of ‘The Tester’ and the ‘The Magician’, and
‘The Tester’ and ‘The Magician’s Audience’. This
paper will enhance the tester’s ability to comment

45

on the quality of software by exposure to the five
pillars of magic: psychology, philosophy,
mechanics, manipulation, theatrics and the parallel
roles in magic and testing. This exposure will allow
the tester to be able to approach testing from a new
perspective, which will provide a heightened sense
of awareness of the testing environment, and result
in strengthened deductive and reasoning skills.

2. MECHANICS
The first pillar of magic discussed is ‘mechanics’ –
the basic methods and procedural workings of a
system. With respect to magic, the mechanics
define how a trick comes to fruition from start to
finish. Most tricks are composed of two elements,
method and effect, or input and response. In
software testing, test cases quite often require the
same elements: user input and observation of a
system response.

2.1 Where Do Magic Tricks Come From?
Similar to the software development life cycle
(SDLC), magicians have their own processes for
creating tricks. In fact, many of the process models
of the SDLC are similar in nature to those in the
magic development life cycle (MDLC). The
similarity of these models can be seen in a
discussion of the most traditional model in each
disciple, the waterfall model.

The tester’s traditional role in the waterfall model
involves testing software created by development at
the end of the development cycle. However, testers
can extend their sphere of influence by being
involved throughout the entire process of the SDLC
through review and analysis of requirements, or in
helping to create document specifications.
Involvement in each phase of development is what
gives magicians the opportunity to minimize bugs
and maximize effect. To have this same impact,
testers should engage in the software development
process at the earliest possible opportunity.
Now consider the waterfall model in the MDLC.
Before the magician’s audience is privy to any
sleight-of-hand, or grand illusion, the magician first
considers the requirements of the effect her or she
wishes to achieve. Will the trick be with cards or
coins or some other prop? Will the setting be one-
on-one and in close quarters, in a small group, or on
stage at a distance? Will the audience be actively

involved in the trick or will they simply watch? The
answers to all of these questions manifest
themselves in the requirements of the effect. At this
point the trick is conceptualized, keeping in mind
that a trick that meets all the requirements may
already exist. During the development phase, the
magician learns of, or possibly develops, methods to
achieve the effect that the trick requires. After
practice and demonstration to people ‘in the know’
or those who are very tolerant, the magician
performs for their audience, their end-users. The
presentation phase is where the audience suspends
their disbelief, the magician distorts reality, and
nothing is what it seems. One cannot help but
notice the similarities of the models discussed, so it
is natural to believe that interdisciplinary
approaches to the process may prove both beneficial
and insightful. Another similarity is that in both
cases, it is important to practice and learn in
different settings so that one is prepared for the
moment when testing or performance is required and
no routine or test case has been created.

Software development has its own developmental
models and subsequent mechanics that govern its
testing activities. By following a repeatable process
and through diligent practice similar to that of
magicians, testers can have the opportunity to refine
the mechanics of their model, reflect on historical
trends, and improve upon quality.

2.2 How Does This Thing Work Anyways?
Testers need to know the mechanics of the tests that
they are running. By constantly questioning the
rationale of the test cases one can not only learn
more about the software and test case coverage of a
particular test suite, but also, they can hone their
testing prowess by thinking critically. The
following questions are great candidates to promote
critical thinking while testing:

“What is the usage scenario for this test case?”
“Why is this test case important?”
“What part of the code does this test case
cover?”
“Can this test case be tested differently? How?”

Simply following test case method steps without
knowing why the steps are to be followed results in
less effective testing due to missed opportunity.
Each time a tester executes a test, the opportunity

46

exists to question its validity. If testers do not
question the test cases or subsequently challenge the
system, the same bugs will be found and new ones
will go unnoticed. Magicians will often start with
an effect and then construct methods that can
achieve it. The methods to their tricks and the
audience responses are evaluated throughout the life
of the trick resulting in continuous improvement.
Through the study of system response and effect,
testers and magicians alike can gain awareness of
methods used stimulate desired responses. These
methods also help to identify ways that users
interact with the system under test.

2.3 How Can It Be Made Better?
Magic happens in the minds of the spectators. A
good magic trick will only reveal effect and not
method. Therefore, does the method used matter if
the effect remains the same? The answer is, YES!
While performing, magicians aim to minimize their
effort while maximizing the impact. This efficiency
results in a reduction of the chance of failure and of
potential exposure.

Testers should also ascribe to this efficiency
equation. Bret Pettichord defines ‘refactoring’ as
[2

2.4 Can I See Those Cards Please?

], “a process in agile development that improves
the way in which existing code is designed.” The
technique involves “changing a software system in
such a way that it does not alter the external
behavior of the code yet improves its internal
structure.” Refactoring is also applicable to testing.
To testers, method is paramount. It is ideal to
reduce the number of superfluous test cases or test
case steps in a particular test suite to free resources
with the provision that test coverage is not lost.
However, the tester must also be aware that multiple
paths may lead to the same goal – in which case
each new path could potentially be as important as
the previous. These paths will represent different
usage cases of the end user. By refactoring test
cases, testers can work towards creating less bloated
tests that still have the same test coverage but take
less time to run.

Magicians have used props to assist in achieving
illusion for quite some time. Take the magician’s
wand, for instance; with a point and a simple waving
motion, the magician can create instant misdirection

of attention. However, props like the wand are not
the only deceptive objects utilized in performances.
Magicians can also employ gaffs in their effects.
Gaffs are objects or tools that magicians have
modified in some way to serve a specific purpose –
such as a coin that has both sides depicting heads for
instance! Most laymen fail to consider the wide
variety of possible options that are at the magician’s
disposal. For instance, when thinking about the
objects that magicians use in their tricks, laymen are
deceived in to thinking that the objects they observe
are in fact the same objects that they are familiar
with and have handled other situations. Coin magic
is a very effective form of magic as coins and money
are something that people can easily relate to, and
magicians will exploit this familiarity to lull the
audience into a false sense of security. You need to
think outside of the box to be a magician or to
discover a magician’s methods.
If tools exist that can help magicians achieve the
impossible, it is appropriate to wonder if similar
tools exist for testers. As it turns out this is the case,
and one of the available tools is more common than
one may think. The tool in question is, ‘other
testers!’ In the same way that a spectator develops a
clearer mental model of the method of a trick once
they have been exposed to how it works, a tester’s
mental model of the product becomes clearer
through the course of testing it. However, just as
not all spectators believe a trick works the same
way, not all testers share the same mental model.
Testers can leverage other testers’ mental models by
observing how they test, learning their test methods,
and using their own as well as these newly learned
methods in their testing. Similar to how [3]
“magicians become experts by listening to and
watching other successful magicians,” testers too
can benefit from observing testing methods and
patterns of their peers and contemporaries in an
attempt to replicate them. By gaining exposure to
testing subcultures, the tester’s body of knowledge
will increase. As knowledge increases, mental
models develop and become engrained. Active
mental model development will afford the tester the
ability to reason more soundly and as such comment
more comprehensively on what they are testing. In
fact, as discussed in their book Lessons Learned in
Software Testing: A Context-Driven Approach Cem
Kaner, James Bach, and Bret Pettichord [4] “testers

47

don’t like breaking things; they like dispelling the
illusion that things work.”

3.
The second pillar of discussion is philosophy - the
critical study of the ideas and basic principles that
govern a body of knowledge, especially with an aim
to improve or reconstitute those principles.

PHILOSOPHY

3.1 What Does the Future Hold?
Predictive models of software development focus on
planning the future in detail. Teams that use these
models can often report in detail on the features and
tasks that are planned for a project, assuming little
variance. However, they tend to have difficulty
changing direction when the need inevitably arises.
Earlier, the MDLC waterfall model was described,
but what was not discussed about this model is that
it is extremely idealistic and not practical for most
magicians (sorry for the deception). For the most
part, magicians are quite agile – not necessarily in a
literal sense, but a developmental sense. The
MDLC is more commonly viewed as an iterative
process. It would be extremely naive to believe that
one could read the method of a magic trick and then
shortly after, present the trick to an audience and
achieve the full effect. Even if the trick could be
executed under these circumstances, what would the
quality of that trick be? Would it have been
deceptive? Could the performance have been
enhanced? Will the trick work the next time?
Predictive models can be used to anticipate magical
effects, but magic is created both in the environment
in which it is presented , as well as in the mind of
the spectator. Both are subject to change and
variability. These dynamic factors call for a more
adaptive and iterative approach to achieving
consistent and deceptive magical acts.
Many of the tricks which magicians perform involve
prestidigitation (skilled sleight of hand). Before the
presentation phase, the experienced magician will
rehearse for their confidants not only the effect, but
also the sleights that comprise it. Since many
effects are experienced in the spectator’s minds it is
essential that the magician collect frequent and early
feedback in the MDLC, and an iterative approach
affords them this ongoing opportunity. Magicians
are proponents of this iterative approach because
unlike the SDLC, the MDLC does not have a

maintenance phase. As a result, if the magician
accidentally exposes something that was not meant
to be seen by the audience, there are no ‘hot fixes’
or ‘updates’ that the audience can download to
correct the problem. The audience is now less
susceptible to deception as they have learned
something new about magic. It is also essential that
a magician understand as much as possible about
their trick, their tools, their audience, and the
environment. Understanding the relationships
between these multiple factors allows for better
adaptation and agility. Without question, testers can
benefit from possessing the same awareness as they
are afforded the same benefits, however, in a testing
context.
A common assumption is that the earlier a defect is
found the cheaper it is to fix. By using a more
iterative approach during the development life cycle,
defects can be discovered and potentially resolved
more regularly – this principle applies to both
magicians and testers. However, it must be
remembered that context plays a pivotal role in any
testing model, and must be appropriately
incorporated. In considering context, it is not
always the case that one method should be favored
above all others. With the dynamic nature of
environment, stakeholder needs and requirements
[2] “there are good practices in [different]
context[s], but there are no best practices.”
Proponents of the context-driven testing school of
thought believe in the importance of context, and
rightfully so.

4.
The third pillar of magic deals with the psychology
and the role which it plays in deception. The nature
of psychology is such that it is applicable to any
field or discipline that involves human factors.
Software testing certainly falls into this category.
Through exposure to the nuances of how the mind
works and how magicians exploit these nuances,
testers can learn to become better observers.

PSYCHOLOGY

4.1 Why Are We So Easily Deceived?
Cem Kaner et el, in their book Lessons Learned in
Software Testing state that [4] “testing is grounded
in cognitive psychology.” Just as audiences are
fooled by the psychological principles applied by
magicians, testers can be fooled by psychological
principles that deceive them as to the quality of the

48

software. By the exploitation of human limitations
in reasoning and perception, both the magician’s
audience and testers can have their attention misled,
allowing discrepancies to go unnoticed. However,
there is hope, and it can be found in better
understanding our cognitive limitations. According
to Kaner et el [4], “if you want to be better than
good, studying cognitive psychology will help you
understand the factors that affect your performance
as a tester, as well as the factors that affect how
people interpret your work.”

Cognitive psychology can help us understand these
limitations. According to Bach and Bolton [1] we
“misunderstand probabilities, we use the wrong
heuristics, we lack specialized knowledge, we forget
details and we don’t pay attention to the right
things.” Magicians commonly exploit these
limitations, and recognizing these limitations will
enable us to become better testers. If, for instance,
we appreciate that there are holes in our vision that
we unconsciously fill, or that sounds and lights can
divert our attention, we will be able to [5

It has been stated that [

] “design
better tools, and create better interfaces that work
with the grain of our mental architecture and not
against it.”

6

6

], “you’re harder to fool if
you know you’re a fool.” By knowing one’s
susceptibility to being fooled, the tester is also able
to conduct risk analysis on each of these
susceptibilities. Not all of the idiosyncrasies of the
mind may be relevant to the testing context, but the
savvy tester will want to learn more about the
cognitive factors that may affect their testing. If
someone believes that they are immune to the
psychological factors that affect their testing, they
clearly should think again [], “con artists say that
the person easiest to con is one who is absolutely
convinced he cannot be fooled. You can put that
principle to work for you as a tester. Convince
yourself that you are easy to fool. It’s not hard, just
watch carefully for your own mistakes while testing.
Notice whenever another tester finds a problem that
you could have found, but didn’t.”

4.2 May I Have Your Attention Please?
Human beings interact constantly with their
environment through observation. The environment
constantly bombards them with stimuli. In fact, they
are subjected to far more information than their

brains can even process. It is the brain’s job to filter
this information according to where they choose to
direct their attention. The brain [5] “is not a clear
mechanical system such as clockwork or like a
computer program; giving the same input won’t
always give the same output. Automatic and
voluntary actions are highly meshed, often
inextricable. Parts of vision that appear fully
isolated from conscious experience suddenly report
different results if conscious expectations change.”
Magicians are constantly diverting their audience’s
attention away from one thing in order to focus it on
something else. By learning how magicians divert
attention, testers can learn to avoid falling prey to
similar tactics during their testing. Bringing
subconscious processes to the conscious mind
allows the tester to become more aware of their
actions and their environment, resulting in increased
observational skills and attention to detail.

4.3 How Would You Like That Framed?
The ability to frame actions or events strategically,
given the audiences’ particular perspective, enables
the magician to focus the audience’s attention
wherever they so desire. While attention is focused
in one place, subterfuge can take place in another.
In ‘close-up’ or ‘parlor’ magic, the audience is in
close proximity to the magician. While this may
seem advantageous to one who wants to discover the
magician’s methods, it is in fact just as easy, if not
easier, for the spectator to be misdirected. As
proximity to the magician increases, tunnel vision
overtakes the audience’s perception. The magician
can use not only his eyes and hands for misdirection,
but he can also make use of his voice, body
language, and other props to deceive. However, if
the audience were to move their vantage point
further away from the magician, their field of vision
would increase, making them less, not more,
susceptible to deception. By changing the framing
of a magic trick, the audience can increase the
breadth of their model, and be more likely to
discover how the effect works.
The principle of framing is also used in the field of
quality assurance. Framing can affect many of the
tester’s activities in the SDLC. These tasks include
but are not limited to testing, test design, and
requirements review. By reducing the scope of
focus for a particular task which is currently in

49

frame, the tester can give undivided attention and
resources to the task at hand and increase the depth
of investigation, but this focus comes at a cost.
While resources are devoted to one activity or task
in such a focused manner, other areas will tend to be
neglected. To overcome this issue, Kaner, Bach and
Pettichord [6] suggest the “plunge in and quit”
approach, which continually adjusts the depth of
focus. “The great thing about this method is that it
requires absolutely no plan other than to select a
part of the product and work with it. After a few
cycles of the plunge in and quit, you will begin to
see patterns and outlines of the product. Soon, more
organized and specific testing and studying
strategies will come to mind. It works like magic.”
The plunge in and quit method has certain
advantages, but it does not provide breadth of focus,
and so it is best used in conjunction with framing /
reframing. Focusing / defocusing, demonstrated in
the plunge in and quit technique, along with framing
/ reframing, which constantly redefines the testing
charter throughout the course of testing, comprise
the basic elements of exploratory testing. Testers
design their tests by using their mental model of the
system they are testing. Exploratory testing gives
the tester the freedom to define and or redefine their
models of the software by exploring any areas that
may need further clarity. As Kaner et al. state [7

4.4 Did I Observe or Infer That?

],
“because testing is sampling and your sample can
never be complete, exploratory thinking has a role
throughout the test project as you seek to maximize
the value of testing.” Both depth and breadth of
mental models can be achieved through exploratory
testing. This approach quickly builds richer models
of the product in the tester’s mind through curious
yet focused exploration and observation of the
software. Once a preliminary model that reflects
their current understanding of the system is defined
in the tester’s mind, the model can be probed for
areas of ‘opportunity’ or uncertainty. Areas of
uncertainty in a model are often considered ‘off the
happy path testing’, a prime breeding ground for
bugs.

Bach and Bolton comment that observation and
inference have the ability to be easily confused.
They state [1], “Heuristics provide the tester and
magician’s audience with a fallible means to solving

problems or making decisions. When we are
observing something, our minds are not passive, but
rather, they ask questions about the sensory data
from the environment.” Some everyday heuristics
are as follows:

Where there is smoke there is fire.
By finishing all testing and finding no bugs there
are no bugs to be found.
Regression test cases that did not fail before
should not fail now.
People cannot saw other people in half without
critical injury.

Heuristics are used by the observer to make
inferences about what they have observed. It is
stated in [8

1

] that “Because they are reasonable, low-
cost shortcuts, heuristics can present more valuable
solutions for the present circumstances.” In short,
heuristics enable us to make sense of our
observations without using excessive observational
resources. However, issues arise when a heuristic is
used in the wrong context or the heuristic is no
longer valid. In the case of our regression test case
heuristic, take into consideration that code changes
could have been made since the last execution of the
test. While this may be unlikely, if it happened, the
heuristic would break down. This idea is
summarized in [] by stating, “It’s easy to miss bugs
that occur right in front of your eyes. It’s [also] easy
to think you ‘saw’ a thing when in fact you merely
inferred that you must have seen it.”
Taking inference a step further can lead to the
phenomenon of change blindness. Change blindness
refers to our inability to notice information that our
heuristics tell us is extraneous. Tom Stafford and
Matt Webb in their book Mind Hacks : Tips and
Tools for Using Your Brain [9] claim, “We don’t
memorize every detail of a visual scene. Instead, we
use the world as its own best representation –
continually revisiting any bits we want to think
about. This saves the brain time and resources, but
can make us blind to change.” Despite this
efficiency of viewing the world in this way, it is
sometimes important to revisit specific sections of
the visual scene that do not have our attention. With
all said and done is there anything that can be done
to combat this affect? Again, the answer is, YES!

50

Bach and Bolton [10

5.

] suggest to, “[pay] special
attention to incidents where other people notice
things that you could have noticed, but did not.”
This will help you to understand where you tend to
be susceptible to change blindness. They also
suggest probing for further evidence that something
has gone awry before basing a statement or a belief
on one observation alone. Finally, look at the
software from multiple vantage points and gather
different types of information, including but not
limited to multiple execution results of test cases,
review of requirements documents, and as
mentioned earlier, the opinions of fellow testers.

Manipulation is the set of methods by which
magicians are able to deceive their audience.
Discussion will follow surrounding how these
methods may work against the tester, as well as
suggesting ways that the risk of deception can be
mitigate.

MANIPULATION

5.1 How Can We See What Is Not There?
Even when anticipated, deception has the unique
property of remaining effective. It is stated [11

5.2 How Many Methods of Misdirection
Make a Magician Magical?

]
that, “Despite the audience's knowledge of the
deception and its ardent efforts to detect magicians'
methods, magicians are consistently effective in
deceiving the audience.” Similarly, the tester knows
that the software they are testing has bugs, and yet
bugs still go undetected. Why does this happen
despite conscious awareness of this principle? Is the
reality is that conscious awareness does not exist?
With this awareness can these risk be mitigated?
The answer to the first question lies in misdirection
and its effects on the attention of the observer. The
answer to the second is reader specific, and finally
the answer to the third question is, YES!

Magicians have many ways of misdirecting the
audience’s attention; however not all methods are
required to execute any one trick. The choice of
misdirection depends primarily on the context.
Below, the reader will find a description of the
context in which some key types of misdirection are
used by magicians. Following each magical context,
a software testing context will be given where the

respective forms of misdirection could potentially
exist and cause bugs to go unnoticed.

5.2.1 Anticipation
John W. Cooley [12

5.2.2 Premature Consummation

] speaking about the great
magician Harry Blackstone states that anticipation is
“a type of misdirection in which a magician first
anticipates that the spectator's attention will be fixed
on a critical thing.” At this point, for instance, the
magician has the opportunity to ‘get one ahead’ of
the audience by placing a rabbit into their hat before
walking out on stage and producing one from the
same location. Once on stage, the audience will try
to anticipate what the magician will do to deceive
them, however, at this point the dirty work has
already been done.
Anticipation in software testing lures testers into a
similar false frame of reference. It may, for
instance, cause the tester to believe that the code for
a new feature has detrimentally affected an old
feature when in fact has not, or worse yet, to assume
that it has not affected the old feature when in fact it
has. To mitigate the risk of this type of misdirection
affecting the tester, he or she can communicate with
the development team before testing, ensuring that
any modifications and ramifications have been
explained.

Cooley [12] continues to describe Blackstone’s
thoughts on premature consummation. “Using
premature consummation, [the] magician gets
spectators to relax attention prior to the magician
making a necessary move.” By misleading the
spectator’s attention into prematurely believing a
deceptive act has already occurred, the magician can
then cause the spectator’s attention to relax. At this
moment, since vigilant attention is no longer
required, the magician can make the move necessary
to achieve their goal.
This form of misdirection can take place in the
SDLC in the following common scenario. The
tester has completed testing, bugs have been logged,
fixed, and the fixes have been verified – therefore
technically the problems should no longer exist. At
this point, the tester may be inclined to ‘relax’
having done their due diligence in verifying the
fixes. However, as it turns out the bug was fixed but
core functionality was broken. While fixing one
bug another bug can potentially be introduced into

51

the code. The tester’s familiarity with the software
can be utilized in a similar situation while verifying
bug fixes. By drawing upon their model of how the
software works, they can infer what areas of the
software may have been changed because of the fix,
if this information is not explicitly or readily
available. Again, development is a tremendous
resource in this situation. If the option is available,
testers can communicate with development in order
to find out the scope of the changes that went into
the fix and test accordingly.

5.2.3 Monotony
A third type of misdirection is described as
monotony. Cooley [12] states that, “Monotony, is
effective because of its simple premise that the
audience's attention becomes dulled after vigilance
of a repetitive act of some duration. Monotony is
the misdirection sometimes used to produce a rabbit
from a top hat. Magicians take several silk scarves
from a top hat and deliberately allow them,
repetitiously, to fall to the floor. Consequently, the
audience's attention wanders. Magicians take
advantage of the attention loss by sneaking a rabbit
into the pile of scarves. Then, they produce many
more scarves in a sweeping gesture again and again,
as if they are multiplying uncontrollably, and then
scoop the whole pile, rabbit and all, into the hat.”
Testers can be very susceptible to this form of
misdirection. Take for instance regression testing.
The novelty of regression wanes rather quickly in
comparison to test cases that test new features and
new code – after all, statistically there should be a
higher probability of finding bugs in new code.
Hence, the possibility of the tester letting their guard
down may become a reality while running test cases
they find less interesting. This situation can be
avoided by introducing novelty into regression in
the form of exploratory testing using the plunge in
and quit approach. By conducting careful risk
analysis the tester may temper regression with
exploratory testing of legacy features by using
rotating charters to discover new bugs.

5.2.4 Confusion
Cooley [12] describes Blackstone’s fourth type of
misdirection as confusion. “By using confusion, the
magicians present so many varied individual
interests for the spectators' observation that it is
impossible for the spectators, in the limited time

available, to differentiate the significant from the
insignificant. Spectators must make a "desperate
and hurried attempt to inspect and weigh the
multiple interests presented, [thus they are] able to
give only superficial, hasty attention to the
individual things before [them]." Thus, the
spectators' attentions become scattered … Confusion
is different from the monotony stratagem in that in
using monotony, all the details are identical and
success depends on tiresome sameness, whereas in
using confusion, the individual details need not be
the same and success depends on "disarray, turmoil
and disorder."
Kaner, Bach and Pettichord [6] speak to confusion
in the SDLC accordingly: “Confusion should be
used as a test tool.” Testers need to realize that
confusion that they find in the product may be tied
to confusion in specification documents, confusion
in implementation, or the product may simply be
broken. Kaner et el [6] go further to state that “the
more knowledge the tester possesses about the
product and testing in general, the more powerful a
compass their confusion becomes, showing them
where important problems lie.”

5.2.5 Diversion
Blackstone’s fifth type of deception is described by
Cooley as diversion. Diversion plays on the
audience’s psychological requirement to shift
attention to things that are deemed to be more
critical by the brain. By substituting something
critical for something of lesser importance, the
magician can draw attention toward the more critical
object. Cooley [12] states that, "Diversion occurs
when magicians achieve a lack of spectator attention
at the proper point in a routine by directing spectator
attention from the proper course and toward a false
course.”
The effects of diversion can be seen in instances of
the SDLC which suffer from resources constraints.
What is viewed as critical can vary daily due to
shifting priorities and changes in requirements and
features. To mitigate the risk of this type if
misdirection one approach is for the project to adopt
a more agile development life cycle. By taking a
more iterative and agile approach, testers and
development can inform each other of updates
during testing and feature development since they
are in constant communication. The risk of

52

diversion can be minimized by dissemination of
knowledge and project planning that revolves
around short turnaround times and consistent
change.

5.2.6 Distraction
Blackstone is quoted [12] as saying “with diversion,
the key is a natural and inconspicuous approach,
whereas with distraction, the key is surprise at a
time when the audience is not suspicious …
[distraction] implies [the] inability on the part of a
spectator to think properly about anything."
Distraction is all around us and in many facets of
our lives. By overwhelming the audience’s attention
the magician can execute actions that will go
unnoticed while attention is diverted. One of the
‘advantages’ that this form of misdirection has over
the others is that sources of distraction can generally
be identified. Risk analysis will help identify
‘distractions’ in a project and mitigation strategies
can be determined accordingly [3]. Some common
distractions for testers are changing priorities,
changing specifications, changes to environmental,
as well as changes to resources. Once identified as
risks, these distractions can be dealt with in the
appropriate manner. Creating a risk catalogue that
identifies each risk, its probability and its mitigation
strategy can assure risks have proactively been
considered.

5.2.7 Specific direction
Blackstone's comment on the final type of
misdirection, ‘specific direction’ is also noted in
Cooley’s paper. Specific misdirection is, “a bold,
undisguised act of definite direction. Specific
direction can be an act, a verbal direction, or a
gesture.” [12] that lures the audience’s attention
towards a particular place.
Specific misdirection in testing has the ability to
cause the tester to focus their attention on a
particular task when their attention should be given
to something else. In the case of specific
misdirection the tester could know that their
attention should be focused elsewhere, for example,
if they believe they should be testing more important
or error prone aspects of the product when they are
busy testing or doing something else. An example
to consider is when a tester has found a bug and
continues to drill down and explore the issue while
allowing other testing and areas of opportunity in

the code to go unexplored.. However, the tester may
be assigned testing tasks by someone else who does
not share their same opinion. Avoiding this type of
misdirection is easier when the tester knows more
about the product they are testing. Through
dialogue with management, the tester can convey
the potential risks of not testing certain areas and
focusing on others.

5.3 Is A Second Opinion Needed?
A valuable tool for both the magician’s audience
and the software tester is a second pair of eyes. In
both contexts, multiple perspectives can add value.
The more information that is available about a given
model, especially from different perspectives, the
more inferences can be made about how the model
works. Another benefit to this approach is the fact
that familiarity of subject matter is not necessarily
an asset. Less familiarity with a subject will lead to
different heuristics used by the observer to make
inferences. The combination of inexperienced and
experienced observation will result in focus and
attention being given to different aspects of the
product. Assumptions made by the experienced
tester will be questioned by the inexperienced tester
and vice versa – sharing tester experiences can help
determine whether or not the product meets
requirements. Just as in magic, where not knowing
how tricks work can lead to great ideas, not having
specific knowledge of how the software should
work means that the sky is the limit for the
observer’s imagination – this in turn fosters
creativity.

6. THEATRICS
The final pillar of magic is ‘theatrics’ and the
presentation of the effect. Given that magic happens
in the spectator’s mind, it seems prudent to know
what is important to the spectator and how they will
perceive a particular effect. By knowing how the
spectator will react, the magician maximums the
impact of effect. The same principal extends to the
field of software testing. Knowledge of how the
software works and how the end-user will respond
to system usage scenarios allows testers to comment
on the usability of the system.

6.1 Do I Know You? Should I Know You?
In order to understand and learn from magicians one
must first learn about their processes and operating

53

environment. Magicians know their environment
and audience very well, as this is essential to their
livelihood and ability to entertain. Testers too can
benefit from gaining knowledge about their project
stakeholders and product environment. For
instance, by having developed a rapport with the
development team through dialogue and interaction,
a tester can gain more intimate knowledge of the
software and its implementation. In a similar
fashion, knowing the needs of the end user allows
the tester to more accurately predict how the
software will be used while testing accordingly.
Since software generally has more than one end
user, having knowledge of each user’s motives and
objectives allows the tester to engage in persona
testing. In this form of testing, test cases are
modeled specifically around use cases which are
applicable to each type of user that interfaces with
the system. For instance, an administrator may
conduct different actions than a normal system user.
It has been said that “knowledge is power,” which is
certainly true for magicians, however, in the context
of software testing, a more apt phrase would be,
“knowledge breeds quality.” Testers provide
information about quality, and that information can
help lead to better quality. By possessing
information about quality, testers are afforded the
liberty to improvise while testing generally leading
to novel subtitles of the software and of course,
bugs.

6.2 How Good is Good Enough?
As the old adage goes, practice makes perfect. Even
very skilled magicians must continuously sharpen
their skills in order to maintain their prowess.
Practice for the magician not only involves
performing repetitive actions ad nauseam, but it also
involves practicing tricks in different contexts. A
trick may work in specific contexts: while seated or
standing, in low light, for your pet, or while
performing for friends and loved ones; however
there will ALWAYS be new contexts for
performing tricks that offer new learning
opportunities.
Testing is no different. Despite all of the bugs that a
tester may have uncovered, there will always be
more bugs to find in different software, in a
different context, and related to different
implementations. It is for this reason that testers
must continue to pursue testing and new test

methodologies. As bugs are found and fixed in
software, the overall quality is improved, which
makes the tester’s task of finding bugs more
difficult. Testers must continue to pose new
questions to the system and be willing to accept the
results. Testing is all about asking the right
questions, about the right things, and at the right
time – if the same questions are uncritically asked in
the same context, testing efforts will lose their
novelty and their quality will stagnate. By changing
focus and trying new software testing techniques
from a different point of view, the savvy tester will
generate new questions to be answered.

7. CONCLUSION
As mentioned earlier, knowledge breeds quality in a
testing context. The arguments in this paper have
shown, through parallels between the SDLC and the
MDLC, that interdisciplinary approaches can add
not only value but perspective to the tester’s role in
assuring quality. By gaining awareness of method
and effect through the study of the five pillars of
magic, the tester is given new ways to think both
deductively and critically about what they observe
and perceive. Testing is full of questions and as
long as the tester remains both open minded and
curious, as is the magician’s ideal audience, the field
of software testing will remain novel and fun.
However, without awareness of the realities in
which we the observers conduct our observations,
we as the tester are no better than laymen naively
watching magic tricks for the first time. That said,
there is a rich body of testing knowledge available
today as this field has been in existence for over
twenty years. By engaging with this existing
knowledge base and integrating experience from the
field of magic, as well as constantly evolving our
own practices, we can avoid being deceived by our
own senses and thereby become “magicians of
software testing.”

54

8. REFERENCES

[1] J. Bach, M. Bolton “Rapid Software Testing
V2.1.3,” Satisfice Inc, pp. 47-48, 2007.

[2] B. Pettichord “Agile Testing: What is it? Can
it Work?”
http://www.io.com/~wazmo/papers/agile_testing_2
0021015.pdf, 2002.

[3] J. W. Cooley, “Mediation Magic: Its Use and
Abuse,” University of Chicago Law School
Journal, pp. 34, 1997.

[4] C. Kaner, J. Bach, B. Pettichord, “Lessons
Learned in Software Testing: A Context-
Driven Approach.” Wiley, 4. ISBN 0-471-
08112-4. pp. 11-13, 2001.

[5] T. Stafford, M. Webb “Mind Hacks, Tips &
Tricks for Using Your Brain” O’Reilly,
preface, 2005.

[6] C. Kaner, J. Bach, B. Pettichord, “Lessons
Learned in Software Testing: A Context-
Driven Approach.” Wiley, 4. ISBN 0-471-
08112-4, pp. 24-28, 2001.

[7] C. Kaner, J. Bach, B. Pettichord, “Lessons
Learned in Software Testing: A Context-
Driven Approach.” Wiley, 4. ISBN 0-471-
08112-4, pp. 18, 2001.

[8] J. Bach, M. Bolton “Rapid Software Testing
V2.1.3,” Satisfice Inc, pp. 16, 2007.

[9] T. Stafford, M. Webb “Mind Hacks, Tips &
Tricks for Using Your Brain” O’Reilly, pp.
134, 2005.

[10] J. Bach, M. Bolton “Rapid Software Testing
V2.1.3,” Satisfice Inc, pp. 45, 2007.

[11] J. W. Cooley, “Mediation Magic: Its Use and
Abuse,” University of Chicago Law School
Journal, pp. 4, 1997.

[12] J. W. Cooley, “Mediation Magic: Its Use and
Abuse,” University of Chicago Law School
Journal, pp. 28-30, 1997.

55

http://www.io.com/~wazmo/papers/agile_testing_20021015.pdf�
http://www.io.com/~wazmo/papers/agile_testing_20021015.pdf�

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Session

Measuring File Systems

Morven Gentleman

Tuesday, July 15, 2008
2:45pm - 3:45pm

Room: Saint Patrick 3rd Floor

Overview

Performance testing almost always involves cross-disciplinary skills. These skills include domain
knowledge to identify sensible questions, appropriate variables, instrumentation to measure them,
and functional forms that they might follow; statistical knowledge to design experiments, choosing
control variables and observations; and data visualization knowledge to recognize breakdowns in
models, outliers, or censoring.
This talk will illustrate these ideas as they are relevant to measuring and understanding file
systems, their design, and static and dynamic characteristics of the load. It will show how
designers, system operators, and users can perform empirical studies to aid in implementation
choices, purchasing decisions, system tuning, and operational practices.

56

Measuring File Systems
W. Morven Gentleman

Dalhousie University
Halifax, NS, Canada

Morven.Gentleman@dal.ca

Abstract
Performance testing almost always involves cross-disciplinary
skills. Domain knowledge is required to understand what might
be sensible questions to ask, what variables might be appropriate
to observe, what instrumentation might be able to measure these
variables, and what functional forms the relationships between
variables might follow. Statistical knowledge is required to
design the experiments, including what observations should be
taken in terms of setting combinations of controlled variables, as
well as how to analyze these observations. Data visualization
knowledge is important for recognizing anomalies through
breakdowns in models, such as outliers or censoring. All these
disciplines play a role in interpreting the results.

This talk will illustrate these ideas as they apply to measuring
file systems. There are many different file system designs and
the relevant issues depend not just on the designs, but also on
static and dynamic characteristics of the load. Empirical studies
are called for by designers making implementation choices, but
also by system operators making purchasing decisions, tuning
their systems or settling on operational practices. Users too can
take advantage of empirical study of the file systems they use.

Motivation
This paper examines performance measurement of file systems.
It illustrates the cross-disciplinary skills useful in studying file
system performance. Performance testing almost always
involves cross-disciplinary skills. Domain knowledge is required
to understand what questions might be sensible to ask, what
variables might be appropriate to observe, what instrumentation
might be able to measure these variables, and what functional
forms the relationships between variables might plausibly
follow. Statistical knowledge is required to design the
experiments, including what observations should be taken (in
terms of how many observations should be made, and more
importantly what combinations of settings should be used for
controlled variables), as well as how to analyze these
observations. Data visualization knowledge is important for
insightful display and manipulation that leads to detecting
unexpected dependencies, to suggesting the functional forms of
those dependencies, as well as to recognizing anomalies through
breakdowns in models, such as outliers or censoring (values
outside the instrumentation recording range). All these
disciplines play a role in interpreting the results.

File system performance is usually of major importance in
overall computer system performance. Performance measures
for file systems include typical times to access a file, to read
data from a file, and to write data to a file. They also include the
related measures of typical rates for how many file access
operations can occur per unit time, how much data can be read

per unit time and how much data can be written per unit time.
Rates are not simply reciprocals of time to perform an operation,
because normally several operations are performed concurrently.
Typical levels of concurrency are also important measures of
performance. Beyond typical values for measures, the variability
of these measures is also important, as well as the values of the
measures in specific situations. Times for compound operations,
such as a file system check, file system backup, or file system
de-fragmentation are also of interest. Moreover, elapsed time is
not the only resource consumed in file system operation, so file
system performance also is concerned with overhead space
required on disk, working space on disk for compound
operations, lengths of queues, sizes in main store of critical data
structures and buffers, processor cycles consumed and context
switches required, jitter introduced to streaming data, and many
other things.

Designers of file systems need file system performance
measurements. Today there are many different variations in file
system features and functionality, even for the same operating
system or on the same hardware. For any of these variations
there are many details of file system implementation that a
designer must choose, often to optimize performance [Sun
2004][Apple 2007]. Optimal (or even just good) choices depend
on load, and what is perhaps not obvious is that load cannot be
well characterized by a simple scalar quantity. The type of usage
engaged in at a particular site can subject its file system to very
different kinds of demands [Iamnitchi 2002], and can result in
files with very different characteristics such as file size, file
lifetime, intensity of activity, or sequentially of access. Since file
systems are rarely designed for only a single site, file system
designers are interested in typical behavior over some
representative category of systems, but they are also interested
in the variation of performance across that category of systems,
and in the difference between the performance as experienced
on this category and that experienced on other seemingly similar
categories. All of this means that file system designers have a
vested interest in modeling different categories of load and using
these load models to predict performance.

Operators of file systems also need file system measurements.
Quantifying need and usage for a site can obviously assist in
making choices among alternate file systems, as well as in
making provisioning choices as to physical media such as SAN
(Storage Area Network), RAID, or simple disk spindles.
Quantified need and usage for the site can assist in choosing
how much volume of storage is required, how much spare
capacity will benefit performance, how much redundancy is
warranted, how much bandwidth data transfer will consume and
what benefit spare capacity might offer. Structural decisions
such as file layout within and across devices can have significant
effects on performance [Smith 1994]. Operational procedures,
such as disk compaction or file system optimization, can be the

57

mailto:Morven.Gentleman@dal.ca�

appropriate response to measured performance bottlenecks.
Note, however, that operators of file systems are normally only
interested in measurements of the file system sites that they
operate. Measurements on other sites are of interest only for
comparative purposes.

Users of file system services can also benefit by adapting their
practice to what they learn from measurements on the file
systems that they use. When is caching from a central server
effective? How often should file caches be flushed and
refreshed? How often should garbage collection and deletion of
obsolete files be performed? When should older files be
migrated or archived? When is processed data cheaper to
regenerate than to retrieve? Is file compression a worthwhile
technique? How much file sharing occurs in practice, and are the
costs of supporting and managing sharing warranted? For this
collection of files, is journalizing and restoring earlier versions
of files something that is actually used? Are these files used
atomically or do they morph? Are they accessed randomly or
sequentially? Is it better to archive smaller files within a single
compendium file or to represent them individually in
directories? Again, such questions do not have answers that are
universally true, so users of file system services care only about
measurements taken on the current state of the file systems they
use.

The foregoing paragraphs serve to indicate some of the
challenges facing testers setting out to make and analyze
measurements on file systems. The market is diverse in
objectives, interests and sophistication. Although early
measurements of file systems were historically made on
centralized services such as university time-sharing systems
[Satyanarayanan 1981] [Ousterhout 1985] [Irlam 1993]
[Tanenbaum 2006], and later there have been measurements on
workstations centralized by sharing a single LAN and file server
[Baker 1991] [Muharemagic 1995] [Mummert 1996] [Vogels
1999] [Zhou 1999] [Douceur 1999], today measurements need
to be taken for many different systems, independently owned
and operated, which the tester may never personally see nor
interact with. There is no single authority who can approve code
changes for instrumentation or assuage concerns about security
breaches.

Instrumentation
As in many situations for in progress measurement of evolving
processes, there is a choice between exhaustive recording of
individual events as they happen and statistical sampling over
time of process state. Recording all events as they happen, often
called an event trace [Ousterhout 1985][Mummert 1996][Vogels
1999] is simple to understand and ensures that rare states or rare
state transitions are not missed. When events occur frequently
and record nontrivial amounts of data, however, tracing can add
substantial overhead that may even interfere with the activity
being measured. Consider, for example, recording all I/O
activity generated for a heavily used database as it is queried and
updated. Recording all the read and write actions could cause
even more trace I/O than the activity being traced! Moreover,
when multiple processes are being traced concurrently, relating
the different traces to each other may not be easy, especially
when they occur on distinct computers networked in a cluster or
distributed across a wide area network. Static assessments of

snapshots taken as the systems evolve may be more practical
and may even be easier to comprehend.

Whether tracing all events or taking snapshots of state at
sampled times, choosing what to record requires not only an
understanding of the performance questions to be answered, but
also often a detailed understanding of the architecture and
implementation of the system. It can involve interfacing to and
possibly modifying code and runtime data structures, s well as
persistent data structures of the file system representation on
disk.

As one example, an design choice to be evaluated might be the
relative merit of growing a file by allocating a contiguous or
nearby disk block versus allocating a disk block arbitrarily
found somewhere on the disk. (Older file system designs
strenuously attempted to achieve the former, more modern
design often advocates the latter because it is simpler.) The
tradeoff appears straightforward – will an arbitrarily allocated
disk block impose significantly more and bigger seeks?
Excessive seeks not only can reduce overall throughput, they
can degrade the quality of service for individual files containing
time-based media such as music or video. The pattern of reads
and writes within the newly grown file itself clearly matters, but
is only part of the issue. There are other considerations.
Instantaneous multiprogramming depth for the whole operating
system also matters, because an intervening disk access request
to the same disk drive serviced on behalf of another program
may leave the arm remote from the carefully arranged
contiguous blocks of this file. Also, how frequently are files
grown anyway – published survey statistics show the vast
predominance of files are only written once, when they are first
created. Even if for a particular site there really is a problem
with discontinuous files, is the file growth algorithm critical, or
would the problem be coped with adequately by an operational
procedure of running a defragmentation utility sufficiently
frequently. Measurements adequate to resolve these questions
involve not just file system primitives, but other parts of the OS
such as the dispatcher, and possibly long-term scheduling of
operational procedures as well.

As a different example, another design choice is what metadata
is useful to record in the directory entry for each file.
Satyanarayanan, in one of the original studies of file systems as
used [Satyanarayanan 1981], points out that the decision in the
TOPS-10 OS not to record the file creation date but only the
date of last modification caused challenges for implanting an
automatic migration scheme. Inconsistent interpretation of file
creation and last file modification dates for copies created from
existing files has also caused challenges. As bandwidth and
device storage capacity have increased over the years, space
taken for metadata is probably not usually serious, but the
overhead to maintain metadata, and the question of
interpretation of metadata for files exchanged with other systems
that record different metadata, may be serious. The value of such
metadata thus hinges on how it is used in practice, especially as
we recognize how few of the files in most file system actually
are used to store archival user data, compared to those used as
working store, as configuration descriptions, as internal system
information, etc. Unfortunately, experiments with different
metadata generally imply unique customized versions of the file
system and supporting tools, although some can be done by
conventions for associating each file with its metadata stored in

58

another conventional file (an example of this was simulation of
the resource fork of files in the original Mac OS when some
different file system was used as a repository).

The point of these examples is to illustrate that instrumenting a
system for measurements to resolve file system issues is often
unique to the issue being investigated and to the file system
being investigated, possibly even to the specific site. In the past,
when system source code was available, system support
personnel produced customized test versions of systems. Today
that is generally impractical, especially when source is not
available. Unique test harnesses and load monitors can also be
constructed with programmable debuggers or by running the
system within a virtual machine environment that can be
stopped and inspected from the host. Even so, custom
instrumentation is expensive and difficult to get operations staff
to approve for use in production, especially for remote or
independently owned and operated sites. A different approach is
to attempt to use the logs generated by many (including Linux,
Windows Vista and Macintosh Leopard but not all other)
systems when running in production. Such logs, when they exist,
may even be configurable (indicating data that could be
recorded but may not always have been). However, predefined
system logs may not record exactly what is needed, leading to
creative searches for surrogate recorded data from which data of
interest can be inferred.

Yet another approach to instrumentation is to use portable
assessment tools that are universal in that they can work on a
wide variety of systems. An excellent example of such a tool is
the CMU and Panasas Inc. fsstat [Gibson 2008] utility for
collecting size and age distribution statistics for a file system
site.

Statistics and Data Visualization
Classical statistics can contribute in many ways to empirical
performance modeling, from sequential sampling to
experimental design to stepwise regression to signal processing.
The perspective is rarely that of formal hypothesis testing, but
rather exploratory data analysis (EDA) where observations are
collected and analyzed to suggest possible relationships
consistent with the observations as well as to eliminate
relationships unlikely to be accepted by more formal analysis.
Exploratory data analysis is the essence of what is called data
mining by other communities. Exploratory data analysis
frequently relies on data visualization to extract subtle properties
from experimental observations, to detect breakdowns in model
assumptions, and to identify anomalies that violate patterns
established elsewhere in the data.

Analysis of file system measurements is much like other
empirical performance modeling except for one significant
aspect that has become recognized over the years. Whereas the
natural scale used for measurements in many areas produces
observations that are roughly distributed like the normal
distribution, or can conservatively be treated as if they were,
measurements with respect to a variety of properties o file
systems produce observations with much greater weight in the
tails. File sizes are one such property; others include file
lifetimes (time since file creation, time since last modification,
time since last access). This has been noted many times on many
different systems in many different experimental situations

[Gribble 1998][Douceur 1999] [Evans 2002][Traeger 2008],
often with sample sizes so large that the non-normality could
even be confirmed by the Kolmogorov-Smirnov test, which is
notoriously insensitive to tail behavior. How much greater
weight is in the tails is controversial: is a logarithmic
transformation sufficient, i.e. were the observations in the
natural scale roughly distributed according to the lognormal
distribution, or is the even more heavy-tailed power law family
of distributions (Pareto distribution, Zipf’s law, etc.) [Crovella
2000], required? Heuristic arguments have been presented as to
why lognormal should have been anticipated [Gong
2001][Downey 2001].

The consequence of these distributions being so heavy-tailed is
profound affecting not just the details of appropriate statistical
methods, but even the terminology that should be used to
describe results. In everyday English, when we want to refer to a
typical or representative value of a random variable, we usually
use the terms average, mean, or expected value without
necessarily implying the formal definition from statistics. There
was a great deal of surprise nearly thirty years ago
[Satyanarayanan 1981] when it was first learned that although
large files were easy to notice, the average file size was only
about 12 Kbytes. The effect was even more dramatic for the
median, i.e. that value for which 50% of the observations are
less and 50% of the observations are greater. The median is less
affected by the large values in the tails; indeed it picks out the
same observation whatever monotone transformation is applied
to the measurement scale. Median file size was at that time only
about 2.5 Kbytes. The lesson was clear: for robustness we
should only talk about, only think about, and only do calculation
in terms of medians. Just about the only sensible use of mean
file size is for estimating total required capacity in the unusual
circumstances where number of files can be predicted. Median
file sizes have grown over time as backing store has become
cheaper and more plentiful, and as new applications and
datatypes have become more demanding – but the effect is
surprisingly small [Tanenbaum 2006].

It would be nice if these distributional issues could be finessed
simply by making measurements in a log scale, such as
measuring file size as the logarithm of the number of bytes in
the file, or measuring file lifetimes as the logarithm of the time
interval. Various statistical tests or data visualizations have been
proposed in order to check whether that transformation is
sufficient for a particular set of observations. Histograms
[Douceur], fitted probability density functions (PDF) [Evans
2002], empirical cumulative distribution functions (CDF)
[Douceur], collective cumulative distribution functions (CCDF)
[Douceur], log-log Complementary CDF [Crovella 1998], log-
log Limit Distribution Test [Crovella 1998] are among the plots
tried. One of the most convincing data visualizations is the
probability plot, sometimes called the qq plot [Chambers
1983][NIST 2008]. This is a plot of the quantiles of the
empirically observed cumulative distribution versus the
quantiles of the theoretical distribution. (The qth quantile is
defined as that value for which a fraction q of the data is less
than the value and a fraction (1-q) is greater than it.) If the
observed sample comes from that theoretical distribution, the
plot should be a straight line. What is particularly attractive
about this data visualization is that it highlights the tails without
being dominated by a few extreme observations. Nevertheless it
immediately provides insight into questions such as whether

59

power law distributions need be assumed instead of lognormal:
for this to be the case, the extreme observations would have to
curve upward.

Illustrative example of Statistics and Data
Visualization
To illustrate the foregoing, we look at some load
characterization measurements from a home personal computer
(Macintosh iMac, running MacOS 10.4). The plots use log2

Figure 1 is the qq plot for the sizes of the 601,146 files in the
root directory on that computer. The average file size observed
was 89.70 Kbytes.

.

Log Kbyte Size qq plot

y = 4.3312x + 0.0202

-5

0

5

10

15

20

25

-1 0 1 2 3 4 5

Normal quantile

Figure 1. Probability plot for root file system of file size

We see that the qq plot is indeed linear, so there is no suggestion
that a lognormal distribution for file size is not adequate. The y-
intercept of the trend line, an estimator for the median, is at
20.0202

To study at the age of these files, we look at Figure 2, the qq
plot for log days since file creation.

 Kbytes, that is 1.0141 Kbytes. Although the tails of log
file size are normal, the center of the distribution is less so. The
actual median file size is approximately 3 Kbytes. The slope of
the trend line is a linear estimator for the scale factor sigma in
the lognormal distribution, something like a Best Linear
Unbiased Estimator (BLUE). The mean of the fitted lognormal,
a better estimator than the observed sample mean for the
population mean, is 91.88 Kbytes.

Log days since creation qq plot

y = 0.1273x3 - 0.5071x2 + 1.1235x +

0

2

4

6

8

10

12

14

-3 -2 -1 0 1 2 3 4

Normal quantiles

Figure 2. Probability plot for root file system of file age

In this case the qq plot is not so close to a straight line, although
a piecewise linear curve might fit. We have instead used a cubic
polynomial, which fits the data quite well. Again there is little
reason to consider a Pareto distribution. The median age appears
to be 29.7783

In the system considered here, there is an additional
consideration: the preponderance of files belong to, or are
created by, the system itself, and are not user files. This system
was initially installed 819 days before these statistics were
taken, so it is not surprising that many files are of similar age.

, that is 878.14 days.

It is interesting to consider the age of these files in terms of how
recently they were changed. To do this, we look at Figure 3, the
qq plot for log days since file modification.

Log days since change qq plot

y = 0.0775x3 - 0.3193x2 + 1.3745x +

0

2

4

6

8

10

12

14

16

-4 -2 0 2 4

Normal quantile

Figure 3. Probability plot for root file system of file age since

last modification

As in the preceding plot, the qq plot is not so close to a straight
line, although a piecewise linear curve might fit. We have
instead again used a cubic polynomial, which fits the data quite
well. Again there is little reason to consider a Pareto
distribution. The median age appears to be 210.209, that is
1183.63 days. It might seem odd that the median file age since

60

modification exceeds the median age since file creation,
although not by much. The explanation apparently has to do
with an inconsistent use of age fields when files are copied and
not subsequently changed.

Finally, consider the age of these files in terms of how recently
they were accessed. To do this, we look at Figure 4, the qq plot
for log days since file access.

Log days since access qq plot

y = 0.1326x3 - 0.5216x2 + 1.3876x +

0

2

4

6

8

10

12

14

16

-3 -2 -1 0 1 2 3 4

Normal quantile

Figure 4. Probability plot for root file system of file age since last

access

Once again the qq plot is not so close to a straight line, although
a piecewise linear curve might fit. We have once more used a
cubic polynomial, which fits the data quite well. Again there is
little reason to consider a Pareto distribution. The median age
appears to be 29.8444

The fact that so many files have not been written or read again
since they were created has been noted on other systems. It
would seem that most files are written only when they are
created, and not even read after that. One corollary is that details
of strategies for growing files are in practice of little importance.

, that is 919.31 days. This again is
comparable to the age of the files since file creation.

In order to get some sense of how user file statistics might differ
from system files, we repeat the same four data visualizations
above for the 22,813 files in the home directory of the only user.
(This directory contains no applications, which on other systems
have been observed to be among the larger files.) The average
file size observed was 620.67 Kbytes.

Log Kbytes qq plot

y = 4.4888x + 1.2738

-5

0

5

10

15

20

-1 0 1 2 3 4 5

Normal quantiles

Figure 5. Probability plot for user home file system of file size

As for the root file system, Figure 5, the probability plot for the
user’s home directory alone, is nearly a straight line, confirming
that log file size can be regarded as normally distributed. The y-
intercept of 21.2738

The median and mean file size for the home directory are
somewhat larger than the corresponding file size for the root file
system. Because of the large number of files in the sample, this
difference is statistically significant.

, that is 2.4180 Kbytes, corresponds to the
median predicted from the tails, although the actual median is
4.9328 Kbytes. Again, the slope of the trend line gives an
estimate for the scale factor sigma in the lognormal distribution.
The mean of the fitted lognormal, a better estimator than the
observed sample mean for the population mean, is 305.92
Kbytes. This estimate being less than half the observed sample
mean illustrates how the huge variance of the lognormal
distribution can cause the observed sample mean to be a poor
indicator of the population mean.

Moving to the age of files in the user’s home directory, we look
at Figure 6, the qq plot of log days since file creation.

Log days since creation qq plot

y = 1.7076x3 + 3.0717x2 + 3.4869x +

0

1

2

3

4

5

6

7

8

9

10

-2 -1.5 -1 -0.5 0 0.5

Normal quantile

Figure 6. Probability plot for user home file system of file age

61

As before, the qq plot overall is not really linear although a
piecewise linear curve might do. We have again fit a cubic
polynomial to get the y-intercept, the fitted median. It is 29.8444

Moving to the age of the user’s files in terms of how recently
they were changed, we look at Figure 7, the qq plot for log days
since last file modification.

,
that is 165.30 days. This is considerably younger than the
median age of the files in the root file system

Log days since change qq plot

y = 0.1648x3 - 0.463x2 + 0.645x +

0

2

4

6

8

10

12

-3 -2 -1 0 1 2 3

Normal quantiles

Figure 7. Probability plot for user home file system of file age since
last modification

As before, the qq plot overall is not really linear although a
piecewise linear curve might do. We have again fit a cubic
polynomial to get the y-intercept, the fitted median. It is
29.6162, that is 784.81 days. This is considerably older than the
median age since creation of the files themselves, although less
than the corresponding median age since modification in the
root file system. This is not entirely surprising, as many of the
files were copied from earlier systems.

Finally we move to the age of the user’s files since last access.
To do this we look at Figure 8, the qq plot for log days since file
access.

Log days since last access qq plot

y = 2.1327x3 + 2.759x2 + 1.9716x +

0

1

2

3

4

5

6

7

8

9

10

-2 -1.5 -1 -0.5 0 0.5

Normal quantile

Figure 8. Probability plot for user home file system of file age since
last access

As with the other file age qq plots, this plot is not really straight
although a piecewise linear curve might do. Once more we fit a
cubic polynomial, which fits the data quite well. The y-intercept,
the fitted median, is 28.2707

Conclusions

, that is 308.84 days, This again is
considerably older than the median age since creation of the files
themselves, although less the median age since last modification
of these files, and less than the corresponding median age since
access in the root file system. Very odd!

Measurement, analysis, and interpretation of file systems is of
interest to file system designers, operators and users. Testers
setting out to fill this need will find challenges in
instrumentation, whether custom built, culled from existing logs,
or available from third parties as universal tools. Providing a
valid and persuasive analysis will depend on statistical
knowledge as well as data visualization. Effective visualizations
often are based on deep theory. Successful interpretation often
exposes things about the file system under study that you did not
know or did not think mattered. Most importantly, it provides
actionable advice to the client.

The illustrative example of the home computer file system has
highlighted several apparent anomalies that have also been
identified in previous studies.

1. The very large number of files in the system file system
tree outside the user tree, that are not accessed after product
installation, can be attributed in part to the propensity of
operating system and application vendors to supply their
products and documentation in a multitude of configurable
variants, corresponding to release, processor model, and
national language, along with other factors [Faas 2007].
This diversity is good, and the customer may well want to
retain variants for future needs. However it is likely that on
a home computer only one, or at most a few, variants will
ever be used. The others do not need to be kept on-line, and
certainly do not need to be kept in uncompressed form.

2. The naïve assumption that files are created, then written to,
and subsequently accessed for reading or further
modification leads to simplistic semantics for recorded
metadata about the individual file. A great many files are
copied from other files, often from other file systems. It is
generally less interesting to know metadata about the
instant of copying than about the origin of the content. De-
fragmenting a file, moving a file to compact space in use or
to optimize file access time, or compression and
decompression of file content are other operations that
should not modify metadata. Some system implementations
have attempted to accommodate this by establishing
conventions for metadata upon making a copy, but the
results are not entirely satisfactory. Interpretation of
metadata for copies thus needs to be done with care, and
statistical summaries of file system attributes must be
subject to caveat.

3. The tiny size of a typical file suggests not so much that
there is little related information to be stored individually,
but rather that large information complexes are represented
by file structures of many related individual files.

62

Unfortunately the obvious mechanisms to represent such
complexes in a conventional file system, such as filename
conventions, subtrees, parallel subtrees, or inclusion files
(where a file contains relative pathnames of other files) are
crude, and complicate recognition of structured
information. Similar challenges have been noted with
respect to URLs on the World Wide Web.

Future Work
This paper illustrated results for a single home computer. Past
surveys have studied computers in a business environment,
whether central timesharing services or workstations on a LAN.
There are reasons to believe that personal home computers
might be used quite differently, say because of multimedia such
as music or video [Evans 2002], and consequently demands on
the file system could be unlike what has been observed in the
past. Past studies have shown many file system characteristics
are strongly affected by file type. For this reason, we plan a
large-scale study of home machines.

References
Baker, Mary G., John H. Hartmann, Michael D. Kupfer, Ken W.
Shirriff, and John K. Ousterhout, Measurement of a Distributed File
System, Proceedings of the Thirteenth ACM Symposium on Operating
Systems Principles, pp 198-212, Pacific Grove, CA, October 1991

Chambers, John, Cleveland, William, Kleiner, Beat, Tukey, Paul,
Graphical Methods for Data Analysis, Wadsworth, 1983

Crovella, Mark E., Taqqu, Murad S., Bestavros, Azer, Heavy-Tailed
Probability Distributions in the World Wide Web, A Practical Guide to
Heavy Taile: Statistical Techniques and Applications, (ed. Adler,
Feldman & Taqqu), Birkhouser Boston Inc. pp. 3-25, 1998

Crovella, Mark E., Performance Evaluation with Heavy Tailed
Distributions (Extended Abstract), TOOLS 2000, B.R. Haverkort et al.
(Eds.): LNCS 1786, pp. 1–9, 2000.

Douceur, John R., and Bolosky, William J., A Large-Scale Study of File-
System Contents, ACM SIGMETRICS'99, Atlanta, GA, May 1-4, 1999.
pp. 59-70, 1999.

Downey, Allen B., The Structural Cause of File Size Distributions,
ACM SIGMETRICS/Performance Evaluation Review, Vol. 29, No.1,
June 2001, pp. 328-329, 2001

Evans, Kyle M., and Kuenning, Geoffrey H., A Study of Irregularities in
File-Size Distributions, Proceedings of the 2002 International
Symposium on Performance Evaluation of Computer and
Telecommunication Systems, San Diego CA 2002

Faas, Ryan, Take Back Your Mac’s Hard Drive: The Best Ways to
Reclaim Disk Space, PeachPit,
http://www.peachpit.com/articles/article.aspx?p=761745&seqNum=1,
8 June 2007

Gibson, Garth, Unangst, Marc, and Dayal, Shobhit. Static Survey of File
System Statistics, http://www.pdsi-scidac.org/fsstats/

Gong, Weibo, Liu, Yong, Misra, Vishal and Towsley, Don, On the Tails
of Web File Size Distributions, Proceedings of 39th Allerton Conference
on Communication, Control, and Computing, Oct. 3-5, 2001

Gribble, Steven D., Manku, Gurmeet Singh, Roselli, Drew, Brewer, Eric
A., Gibson, Timothy J., and Miller, Ethan L., Self-Similarity in File
Systems, SIGMETRICS 98/PERFORMANCE 98 Joint International
Conference on Measurement and Modeling of Computer Systems,
Madison, WI, June 1998, pages 141–150.

Iamnitchi, Adriana, and Ripeanu, Matei, Myth and Reality: Usage
Behavior in a Large Data-intensive Physics Project. Poster at
Supercomputing 2002

Irlam, Gordon, Unix File Size Survey – 1993,
http://www.gordoni.com/ufs93.html

Muharemagic, Edin A., Mahgoub, Imadeldin O. and Milenkovic, Milan,
Analysis of File Usage In Personal Computer Environments, Distributed
and Parallel Databases, Vol. 3, pp. 315-324, 1995

Mummert, L. B. M. Satyanarayanan. Long Term Distributed File
Reference Tracing: Implementation and Experience. Software—Practice
and Experience, Vol. 26, No. 6, (June): pp. 705–736. 1996

NIST SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/, 2008

Ousterhout, John K., Da Costa, Hervé, Harrison, David, Kunze, John A.,
Kupfer, Mike, and Thompson, James G., A Trace-Driven Analysis of the
Unix 4.2 BSD File System, ACM SIGOPS Operating System Review,
Vol. 19 No. 5, pp. 15-24 1985

Satyanarayanan, M., A Study of File Sizes and Functional Lifetimes,
Proceedings of the eighth ACM symposium on Operating systems
principles, pp. 96-108,1981

Smith, Keith, and Seltzer, Margo, File Layout and File System
Performance, Harvard University Computer Science Technical Report
TR-35-94 1994

Tanenbaum, Andrew S., Herder, Jorrit N., Bos, Herbert, File Size
Distribution on Unix Systems – Then and Now, ACM SIGOPS
Operating Systems Review, Vol. 40, No. 1, pp. 100--104, Jan. 2006.

Traeger, Avishay, Zadok, Erez, Joukov, Nikolai, and Wright, Charles P.,
A Nine Year Study of File System and Storage Benchmarking, Technical
Report FSL-07-01 (to appear April 2008)

Vogels, Werner, File System Usage in Windows NT 4.0, Operating
Systems Review Vol 34. No. 5, pp. 93—109, Dec. 1999

Zhou, Min and Smith, Alan J., Analysis of Personal Computer
Workloads, Proceedings of the 7th International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, March 24 - 28, 1999

Introduction to File-System Performance Guidelines, Apple Developer
Connection

http://developer.apple.com/documentation/Performance/Conceptual/
FileSystem/FileSystem.html 2007

File System Performance: The Solaris OS, UFS, Linux ext3, and
ReiserFS A Technical White Paper, Sun Microsystems, August 2004

63

http://www.peachpit.com/articles/article.aspx?p=761745&seqNum=1�
http://www.pdsi-scidac.org/fsstats/�
http://www.gordoni.com/ufs93.html�
http://www.itl.nist.gov/div898/handbook/�
http://developer.apple.com/documentation/Performance/Conceptual/FileSystem/FileSystem.html%202007�
http://developer.apple.com/documentation/Performance/Conceptual/FileSystem/FileSystem.html%202007�

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries ©2008 Association for Software Testing

Program: Day 3 – Wednesday, July 16, 2008

Sessions Room / Location

Time Room: Colony Ballroom
2nd Floor

Room: Saint David
3rd Floor

Room: Saint
Patrick 3rd

Floor

Room:
Terrace 3rd

Floor

Room:
Colony
West

7:30 AM – 8:45 AM Continental Breakfast and Networking (Room: Colony West)

Registration

and
Sponsors
booths

8:45 – 9:00 AM Opening Remarks

9:00 – 10:30 AM
KEYNOTE - Cem Kaner,

JD, PhD: The Value of
Checklists and the Danger of

Scripts

10:30 – 10:45 AM Break (Room: Colony West)
 Speaker Introductions:

10:45 – 11:45 AM
Steve Richardson and

Adam Geras:
Seeking Data Quality

Adam White:
Software Testing To

Improv
Lightning Talks

Vendor
Presentations

11:45 – 1:00 PM Lunch (Room: Colony West)

1:00 – 2:30 PM
KEYNOTE -Brian

Fisher: The New Science of
Visual Analytics

2:30 – 2:45 PM Break (Room: Colony West)
 Speaker Introductions:

2:45 – 3:45 PM Bart Broekman:
Testing Fuzzy Interfaces

Adam Goucher:
Lessons in Team

Leadership from Kids
in Armor

Scott Barber:
Testing Lessons

From Civil
Engineering

Vendor
Presentations

3:45 – 4:00 PM Break
4:00 – 5:00 PM AST Membership Meeting

Keynotes

The Value of Checklists and the Danger of
Scripts – Cem Kaner, JD, PhD
Exploratory testing is a general approach to testing, including all
aspects of product/market research, test design, execution,
troubleshooting, result reporting, etc. To see what is different about
exploratory testing, contrast it with its opposite, scripted testing. In
practice, most testing that people actually do probably sits in the
middle, somewhere between pure exploration and perfect scripting.
My bias is that most of the best testing sits a lot closer to the
exploratory side of that continuum. And yet, I tell people they should
use checklists to structure their work. How can that be? Aren't
checklists really just abbreviated scripts? As a law student, and then
as a lawyer, I relied heavily on detailed checklists and task outlines
and templates for forms, but we were trained to use them as aids to
critical thinking in the moment, rather than as directives to be
followed. This talk considers that distinction, and how it has helped

me approach many testing tasks in a way that provides structure but
doesn't restrict exploration.

The New Science of Visual Analytics – Brian
Fisher

Innovations in information and communication technology enable us
to collect and process immense quantities of data about our physical
environment and human activity. We accumulate these mass stores
of information based on our belief that they will help to build
understanding and inform decision-making in a wide range of areas
of human interest. The resulting "data glut" has posed a huge
challenge for data mining and related computational approaches.
Visual analytics takes a different approach to the problem. The visual
analytics approach to information system development is being
explored in areas as diverse as science and medicine, design and
manufacturing, and law enforcement and disaster relief.

64

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Session

Seeking Data Quality:
Using Agile Methods to Test a Data Warehouse

Steve Richardson and Adam Geras

Wednesday, July 16, 2008
10:45am - 11:45am

Room: Colony Ballroom 2nd Floor

Overview

The basic purpose of a data warehouse is to provide information that will help people make better
choices, with the outcomes of those choices determining the value of the data warehouse. This
value comes at the cost of building and maintaining the data warehouse and depends greatly on
the data quality. Inspired by agile testing methods and value-based prioritization, we achieved
great data accuracy at minor cost.

65

Seeking Data Quality: Using Agile Methods
to Test a Data Warehouse

Steve Richardson
Ideaca Knowledge Services, Inc.

110-308 11 AVE SE
Calgary, AB CANADA

1 (403) 265 4332

steve.richardson@ideaca.com

 Adam Geras
Ideaca Knowledge Services, Inc.

110-308 11 AVE SE
Calgary, AB CANADA

1 (403) 265 4332

adam.geras@ideaca.com

ABSTRACT
The basic purpose of a data warehouse is to provide information
that will help people make better choices. The outcomes of these
choices determine the value of the data warehouse. This comes at
the cost of building and maintaining the data warehouse. How
useful the information is depends on the data quality, this is the
key aspect of a data warehouse. We have recently completed two
data warehouse projects where we applied agile testing methods
to achieve high levels of data quality.

It is critical to understand where the business value lies when
testing a data warehouse. Based on our understanding we looked
at these data warehouse attributes: data accuracy, data usability,
and warehouse maintainability. Most of our focus was placed on
the quality of the data; its relevance, completeness, correctness,
and consistency. Yet the size of a data warehouse makes it
impossible to test every record since the effort and cost would be
immense. Given that we believe that effective testing of a data
warehouse is a process of investigation and evaluation, we wanted
to find the most costly failures given our time and resources.
Inspired by agile testing methods and value-based prioritization,
optimization of our work resulted in an efficient test workflow
that helped us to achieve great data accuracy at minor cost.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Management, Documentation, Economics, Verification.

Keywords
Data warehouse, testing, test strategy, test planning, verification,
validation.

1. INTRODUCTION
We have recently completed testing on two data warehouse
projects. One of the basic premises of how we approach projects
is that every activity is based on providing value. In the research
we did preparing for these projects we found some information on

the testing techniques used but little on why they were used and
what value they provided. We did not think that this was enough
for us to use for our testing strategy. This led to our researching
where the business value lies in a data warehouse project and
using that to determine our strategy.

Measuring the business value that better data provides is almost
impossible. Let’s say that the data helped to make a better
decision, which led to some incremental increase in free cash flow
for the business. To what extent did that data help in making the
decision? Fortunately we did not need to estimate the benefits
created by the data; we only needed to ensure that the best
possible value was delivered to the customer. This is an easier
question to answer.

The value of data warehouse lies in the use of the data that it
provides. For the data to be used it must be of an acceptable level
of quality to the customer. This level of data quality comes at the
cost of testing, building, and maintaining the data warehouse. Yet
the size of a data warehouse makes it impossible to test every
record since the effort and cost would be immense.

We used agile testing principles to shape our test strategy. We
wanted to find the most costly failures given our time and
resources. Given that we believe that effective testing is a process
of investigation and evaluation, we built our strategy around the
guided exploration of those aspects of a data warehouse the
provide business value.

The major driver of value in a data warehouse is data quality.
From the risks of developing a data warehouse, to the ongoing
impact on a business, data quality is the key to business value. It
has been estimated that 60% of data warehouse project are
seriously delayed, go over budget, or fail due to poor quality data
[1]. In addition Larry English puts the business cost of poor
quality data to be as high as 10 to 25 percent of revenue [2]. The
goal of our testing became to provide the best quality data that we
could in a way that minimized the cost of the effort. It is the best
way to enhance the business value of a data warehouse.

2. THE VALUE OF A DATA WAREHOUSE
As the economy becomes increasingly organized around
information, data becomes more of a strategic enterprise resource.
Better data allows people to make better decisions, improve
operational performance, and achieve a competitive advantage.
Data warehouses are one tool to provide business people with the
data that they need to make these operational and strategic
decisions. These kinds of decisions can make or break a company
and the quality of the data is vital.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CAST’08, July 16-18, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 1-58113-000-0/00/0004…$5.00.

66

Like any product the important thing is how to provide value to
the customer. A customer values a product to the extent that it
solves a problem that they have. The product of a data warehouse
is data that helps the customer solve a problem. Anything that
does not help the customer solve this problem has no value to
them, and to provide it is a waste of time and resources. The data
warehouse must deliver reliable data that supports the customer in
the decisions they make, if it does not it will be perceived as a
failure [2].

It is critical to understand where the business value is in a data
warehouse. The business value is in the data provided, not in the
technology. Data provides value by reducing the risk involved in
making a decision. The more accurately the data represents that
state of the world, the better enabled the decision maker is to
make the right choice. Not all decisions will have the same impact
on the business. While high quality data should always be the
goal, data that has the most business impact should receive the
most attention.

The best measure of the value of this data is its use. The value of
data is measured by the benefits that can be derived from it, in
terms of future cash flows. The value of data is difficult if not
impossible to isolate from its contribution to revenues, data is a
catalyst rather than a direct source [3]. Fortunately we didn’t need
to estimate the benefits created by the data; we only needed to
ensure that the best possible value was delivered to the customer.
This is an easier question to answer. We needed to determine what
the most important data value drivers were and see that they were
delivered to the customer.

Based on the research of Daniel Moody and Peter Walsh [3], and
with supporting evidence from the work of Rudra and Yeo [4],
Neal and De Voe [5], English [2], and Loshin [6], we focused on
these data value drivers:

• The more accurate the data is, the more useful it is, and
therefore the more valuable it is.

• The value of data increases when combined with other
data.

• The value of data increases with its use; in fact it only
has value when people use it.

Providing this data comes at the cost of building and maintaining
the data warehouse. The size of a data warehouse makes it
impossible to test every record as the effort and cost would be
immense. Cost effectiveness can’t be achieved if we checked
every relevant feature of every input and output in every possible
way. Acceptable levels of quality must be determined. Often just
knowing the accuracy of the data is enough for decision makers,
who can then factor in a margin of error.

A prudent approach recognizes that some data quality problems
present greater risks than others. We focused on applying limited
resources to solve high risk problems instead of attempting to
solve every data issue. To find the maximum number of errors in
a limited amount of time we need to know what is good enough
and how much testing we must do. Test planning is about decision
making. The effective testing of complex products is a process of
investigation and evaluation.

Based on our understanding we looked at these data warehouse
attributes: data accuracy, data usability, and warehouse
maintainability. Most of our focus was placed on the quality of the

data; its relevance, completeness, correctness, and consistency.
We felt that focusing on these characteristics of data quality
provided us a way to ensure that we provided the value drivers of
a data warehouse. This focus on data quality, and its delivery,
gave us a way to maximize the value of the data warehouse while
limiting the size of the testing effort.

3. AGILE AS BUSINESS VALUE DRIVER
Based on our assumption that the effective testing of complex
products is a process of investigation and evaluation, we sought
refuge in the agile principles as a means of dealing with the
complexity and to give us a mechanism for guiding us towards the
tests that would be of the most value to our customers.

Our goal was to enable a ‘lean’ test process that eliminated waste.
We made a general assumption that writing test scripts and
collating test data was one of the more resource-intensive
activities in testing. Avoiding this effort on invalid test targets
would be of paramount importance, and we would further strive to
avoid this effort for low-value targets.

Consequently, our choice was to base our plan on motivated,
skilled testers that would investigate the quality of the data
without obsessive process. We chose to communicate the goals of
the testing and provide guidance as to what needs to be looked at
using lightweight scripts. Further, we chose to ask co-located
business users to help us prioritize the test targets based on the
data value context we provided earlier in the paper.

In agile development, the approach tends towards using business
value as a guide for what to build next. In our case, we wanted to
use business value as a guide for what to test next. The typical
example of how an agile process drives towards delivering value
is the product backlog from Scrum [7]. As a list of what to
deliver placed in descending order of business value by motivated
business users, the product backlog is the basis for release
planning. The team chooses a number of the highest-value
backlog items for an upcoming release, and further chooses from
that number for an impending sprint. It seems reasonable that we
can apply this same mechanism to a backlog of testing tasks. The
result would presumably be a value-driven test effort, where the
items that have the most value are tested first.

Other agile principles that applied directly to our context were
simplicity, sustainability, face-to-face communications, and the
reliance on retrospectives. Each of these principles contributed to
our test effort, as outlined further by our test strategy.

4. TEST STRATEGY
Much like a project process, the optimal testing process is
influenced by the product under test and the environment that it
will operate in. For the purposes of understanding our test
strategy, then, it seems appropriate to describe our sense of the
product we were requested to test.

A data warehouse is a database that collects and integrates an
organizations data in order to provide timely management
information and data analysis. It is comprised of fact and
dimension tables that are associated into associated sets called
stars. A fact table is a collection of data elements that are usually
numeric and represent some aspect of the companies operation. It
usually has a multipart foreign key that is made up of its’
associated dimensions. A dimension table represents one
characteristic of the business that describes some aspect of a fact;

67

it has a single primary key that is represented in one or many fact
tables.

Our test strategy focused first on the concept of a ‘test target’ and
second on using a ‘testing backlog’ that was comprised of test
targets. In our case, test targets were items that required testing
that were at approximately the same level of abstraction – facts,
dimensions, and the ‘extract, transform and load’ processes, or
ETL’s. Each target, we assumed, required approximately the
same test approach. The testing backlog was therefore simply a
list of the ETL’s that were being built and therefore required
testing. The business representatives on the team assisted us to
order the targets in descending order of value (based on the earlier
description of value of data above) and we then proposed test
iterations that were comprised of a number of the targets.

A further assumption was that writing test scripts and devising test
data to support test cases is an expensive, and arguably the most
expensive, activity that testers are asked to perform in this
context.

As test targets and as items on testing backlog, the ETL’s were
essentially the skeleton of an investigative and exploratory test
effort. We started thinking of this testing as ‘guided exploratory’
testing since it wasn’t purely exploratory – we had a guide that we
could use as a monitor on our progress. We were even able to use
a burn-down chart. In addition, we chose to abstract what was
common in testing from across all the targets, and use that to
establish a ‘test script’ for our testers to follow, albeit the script
was not so formal as to include specific test input values and
specific test output values.

With simplicity as our guide and our assumption that the testers
were motivated individuals, the vague test script proved to be an
excellent framework for being investigative and questioning and
for documenting the test effort for the internal and external
auditors. In our case, we needed to validate that we were
compliant with the Sarbanes-Oxley Act and its’ Canadian
equivalent. The basic idea behind these government regulations is
to make certain that public companies can produce reliable and
repeatable results. To ensure that every step of a company’s
business process is documented and audited, and that all systems
are in agreement and enforcing adequate internal controls. The
test strategy should evolve as you continue to learn about the data
warehouse, its development, and its typical faults. The contents
of the test scripts evolved over the course of the project through
the retrospectives that we organized for the end of the iteration.

4.1 TEST TECHNIQUES
The process to get data from the source systems to the target facts
and dimension sets called stars can become complex. But our
approach to the testing of that process was simple. At each step of
the process where the data moved between one system and the
next we provided a simple script to guide the tester. This gave us
both a way to validate the quality of the data and provide an audit
trail of the internal controls of the data warehouse for regulatory
compliance. Originally our scripts were made up of 15 prompts
for testing an ETL, dimension table, or fact table. As we went
through the testing we were able to remove some of the prompts
as development standards and automated checks were developed
to validate those aspects of the testing.
We were in constant communication with both the development
team and the end users to ensure that we were focused on the

outcomes that were most relevant to the business. A user accesses
the data warehouse through the set of a fact and its dimensions
called a star. The dimensions are used to select data from the fact;
this means that the ultimate testing target is the star. Both the data
in the fact and the dimensions needs to be high quality, but so
does the associations between them. It is this combination of fact
and dimension that gives the data warehouse its power to provide
business value.
For each star we tested the data as it flowed from source through
the ETLs until it ended up in the star. At each step the data was
validated. Many of the stars shared both dimension tables and
ETL processes, the test results for these individual steps applied
across all the stars that they were a part of. In addition we had the
ETL tool capture and record as much validation information as
possible. It can help with counts, totals, success, and errors.
Having a dashboard to display the results of the daily loads is a
useful tool both during testing and for ongoing maintenance once
the data warehouse goes live.
We generally used a combination of visual inspection and SQL
queries to validate that the data was correct, complete, and
consistent are each transformation. We would take a cross section
of data elements from the target table and compare them directly
with those elements in the source system; these were checked at
the field level. In addition, higher level tests were constantly
comparing counts and totals between the source and target
systems. Due to the sheer volume of records this type of checking
should use SQL queries and software tools as much as possible.
There were three sets of scripts we used to guide the testing, one
each for testing ETLs, facts, and dimensions. The scripts for ETLs
were focused on the aspects of completeness, correctness, and
consistency. Once all the ETLs up to a fact or dimension table had
been tested we then tested that fact or dimension. Tables 1-3 show
the guides we used as scripts.

Table 1 Examples of script contents used to test an ETL.
Aspect Guidance / Expected Results
Completeness Validate that no records are

lost (including rejects)

… …

Correctness Validate that there are no data
size errors

… …
Consistency Validate that the correct time

offsets are applied
… …

Consistency Validate that the data is of
consistent granularity

… …

In all three tables, the purposeful absence of traditional testing
step-by-step test execution instructions makes them lighter and
easier to maintain and evolve. Including expected results in the
‘guide’ portion of the script left room for exploration, but at the
same time, satisfied the Sarbanes-Oxley auditors.
Table 1 shows examples of scripts used to test an ETL. Since
ETLs are used to move and transform data from a source to a

68

target they represent a major control point in a data warehouse.
From a data quality and regulatory point of view it is essential that
an ETL works correctly. Testing the ETLs in a data warehouse
can be a massive task as there are typically hundreds of ETLs,
moving thousands are data elements, for millions of records. To
write detailed test scripts for each possible outcome is not a cost
effective solution. Instead we chose to base our testing on the
skills of our testers to investigate and evaluate those aspects of an
ETL that provided business value and regulatory compliance. To
aid in this investigation, and to provide documentation of the
testing, we used a script of 15 guided prompts. These proved to be
more than enough to ensure that our ETLs provided correct,
consistent, and complete data throughput.

Table 2 Examples of script contents for testing a fact.
Aspect Guidance/Expected Results
Completeness Validate that counts and totals

match

… …

Correctness Validate that the dimensional
keys map to a record in the
dimension table

… …

Consistency Validate that the granularity
matches the specification

… …

In a data warehouse a fact table holds the quantitative data that a
business user is interested in. Table 2 shows examples from the
script used to test our facts. While each fact table typically holds a
unique data set we realized that to the business user the value of
the fact was in the data it contained and in the ability to use this
data. These aspects of a fact are consistent across all facts. Again
we did not believe that developing test scripts at the level of detail
where individual data elements were described for each fact was a
cost effective solution. Our script for testing all facts was at a
higher level of abstraction and we trusted the skill of our testers to
ensure that each individual fact was tested thoroughly and
achieved the best possible data quality.

Table 3 Examples script contents for testing a dimension.
Aspect Guidance/Expected Results
Completeness Validate that counts and totals

match

… …
Consistency Validate that the granularity

matches the specification
… …

Table 3 provides a couple of examples from the script to test a
dimension. A dimension or set of dimensions is used to access a
subset of data from a fact table. This makes it imperative that a
dimension table is correct, consistent, and complete. If it is not
then the business user cannot access the data that they are
interested in. While each dimension table represents a unique
characteristic of one or more fact tables, how it is used by the

business user is consistent. We believed that one script that could
be applied to each dimension by skilled testers and would provide
better value than developing individual detailed scripts for each
dimension. The script we provided consisted of high level
prompts for the type of tests that needed to be performed, leaving
the details to the tester to work out. We were again seeking to
achieve the highest possible data quality at the lowest possible
cost. We feel that we achieved this result.

5. TEST RESULTS
As a result of our testing we were able to achieve a data accuracy
rate of greater than 99.99995% with a testing effort of less than
20% of the development effort. We believe that our test strategy
provided the best results that our customer could have hoped for
given that it seemed further testing would have provided little or
no gain in data accuracy or usability.
Our use of test scripts that provided guidance to our testers helped
us achieve great data quality while minimizing the cost of testing.
The common scripts allowed us to build a common understanding,
common approach, and common reporting of our test effort. The
use of common scripts provided a basis for communication of our
results both with the development team and the business users.
This helped in the further development of the data warehouse by
pointing out areas for improvement, and in building trust of the
data warehouse with the business users.
The focus of testing on the provision of data quality allowed us to
test efficiently, rapidly, and effectively. By classifying the defects,
for example, we were able to guide the team towards corrective
actions that would yield the most value in terms of reducing
defect rates. Root cause analysis demonstrated that the team and
our customer would benefit greatly from ramping up enforcement
of development standards (Table 4).

Table 4 Results of classifying the defects by root cause
Cause Defect %
Development standards issues 23%
Implementation errors 22%

ETL errors 21%

Database issues 13%

Design issues 9%
All other issues 12%

The contents of the analysis in Table 4 is not, however, our point.
Our main idea is that using a guided exploratory test strategy for
our customer’s data warehouse – especially when the end-users
are participating in the exploration planning – worked for us, and
we believe that the core test style (summarized in Table 6) is
applicable to other data warehouses as well.
The contents of Table 4 are supported by the defect classification
scheme outlined in Table 5. Both tables are presented as evidence
that the testing yielded useful test results that had an immediate
and positive impact on the customer’s desire to launch the data
warehouse in a timely and cost-effective manner.

Table 5 Defect root causes
Cause Cause Breakdown

Development standards issues Naming conventions

69

 Design standards

 Documentation standards

 Metadata
Implementation errors Primary/foreign key problems

 Inconsistent field lengths

 Bad data

 Missing data
 Field types

ETL errors Counts off

 Totals off

 Failed calculations
 Failed conversions

 Unpopulated fields

Database errors Performance

 Indexes
 Partitions

 Tablespace

Design issues Missing fields

 Extra fields
 Missing dimensions

 Mapping problems

All other issues Miscellaneous

In Table 6, we have summarized the test strategy that lead to the
early discovery of the root causes of problems with the target data
warehouse.

Table 6 Summary - Contrasting Test Styles
Old Approach New Approach
Focus on tool – database, data
warehouse

Focus on value – data usage in
business context

Focus on process – tables,
views, stored procedures

Focus on outcome –
stars/dimensions/facts

Test plans Test backlogs
Test cases Test targets

Detailed scripts for instructions Light scripts as guides for
exploration

No special emphasis on team
communication

Team communication was vital

The focus on tools versus focus on values differentiation stems
from our continued reliance on the customer’s view of the data –
we were less concerned about database and warehouse structure
when it came time to plan the testing. Instead, we focused on how
the data was to be used in daily business operations and helped
our customer to create flexible and dynamic lists of things (the
test targets) that should be tested (the backlog), from their

perspective. This is the motivation behind much of the agile
movement – getting the customer involved and strengthening their
voice based on their use of system under development/test – and
doing that efficiently.

6. CONCLUSION
New regulatory requirements such as Sarbanes-Oxley mean that
the ability to test is now a design issue, even in systems like data
warehouses. Besides the value of testing as an audit and control
tool, we chose to apply value assessments of data to prioritize our
tests of the data warehouse. We established a lean test process
based on the agile principles of simplicity, people over process,
sustainability, face-to-face communications, and retrospectives in
order to minimize wasted time and effort and to maximize our
ability to find more serious problems sooner.
We found that we were able to distinguish testing the data
warehouse tool from testing the use of the tool. Prioritized testing
backlogs of standard data warehouse elements that the user relates
to were an important part of our strategy, as were limited-detail
scripts that fostered guided, investigative, exploratory testing. We
found that our ability to test and pinpoint serious problems was
highlighted by our ability to identify development process
changes that had the greatest impact on data quality. For
example, there was a marked improvement in data quality after
the development team implemented and enforced design and
coding standards.

7. REFERENCES
[1] L. Dubois, Data Quality Supplies ROI Metrics, Business
Intelligence, 2008.

[2] L.P. English, Improving Data Warehouse and Business
Information Quality, John Wiley and Sons, New York, 1999.

[3] D.M.P. Walsh, Measuring the Value of Information: An Asset
Valuation Approach, European Conference on Information
Systems (ECIS ’99), 1999.

[4] A. Rudra, and E. Yeo, Issues in User Perceptions of Data
Quality and Satisfaction in Using a Data Warehouse – An
Australian Experience, 33rd Hawaii International Conference on
System Science, IEEE, Hawaii, 2000.

[5] K. Neal, and L.D. Voe, When Business Intelligence Equals
Business Value, Business Intelligence Best Practices, 2007.
www.bi-bestpractices.com/view/4744

[6] D. Loshin, Business Intelligence: The Savvy Managers Guide,
Morgan Kaufmann Publishers, San Francisco, 2003.

[7] K. Schwaber, Agile Project Management with Scrum,
Microsoft Press, Redmond, 2004.

70

http://www.bi-bestpractices.com/view/4744�

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Session

Software Testing To Improv

Adam White

Wednesday, July 16, 2008
10:45am - 11:45am

Room: Saint David 3rd Floor

Overview

Improvisational theatre is about exploring and extending your environment: you go with what you
have in an attempt to make your team, product and company better. My experience testing on
turbulent software projects is often informed by the same principles. I frequently ask myself "How
do I make this the best test in the world?" "What tests will expose the best bugs?" "How am I going
to explore my environment?" In this session, Adam White will explore improv concepts and give
examples of how this relates to his experience as a software tester.

71

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Session

Testing Fuzzy Interfaces –
 Can We Learn From Biology And Wargaming?

Bart Broekman

Wednesday, July 16, 2008
2:45pm - 3:45pm

Room: Colony Ballroom 2nd Floor

Overview

We testers don't like fuzzy functionality—vague descriptions of situations and how the system
responds—because we can't tell if we've "tested it all" or if we can "predict the result of our test
cases".
This presentation explores other ways of designing test cases, besides logically deriving them from
system specifications. From biology, Darwin's theory is applied to the process of designing test
cases, whereby test cases evolve into better test cases. From wargaming, when acting as players
of a wargame, we can find defects in situations that would remain undiscovered by 'classical'
methods.

72

Testing Fuzzy Interfaces – Can We Learn From
Biology and Wargaming?

Bart Broekman
Stationsweg 19

3603 ED Maarssen
The Netherlands

Tel. +31 (0)6 25 26 98 91

broekman.bart@gmail.com

Introduction
Usually testing involves “trying out certain situations
and determine if the system behaves as expected and
cannot be broken”. The expected system behaviour is
usually well understood and, ideally, well defined and
documented in specifications.

What is meant with “fuzzy functionality”? It is about
‘vague descriptions of situations and how the system
responds’. The possibilities of situations that the system
might encounter and the way it should react is not
completely understood, let alone specified. A few
examples: PDA touch screens; grey boundary areas
between equivalence classes; weird interactions of
functions/transactions that have never been thought of
yet.

We (testers) don’t like fuzzy functionality. Because it
means “not deterministic”. We often demand
determinism of the system in order to be able to test it
properly. Even more… we often demand specifications
that are complete, correct and unambiguous. These we
definitely loose in case of fuzzy functionality. So what
is left of ‘knowing you tested it all’ (coverage) or
‘being able to predict the result of your test cases’
(oracles)?

Do other ways of designing test cases exist, besides
“logically deriving them from the available information
about the systems behaviour” which we learn to do in
all testing workshops? This paper shows how ideas
from 2 completely different worlds – the world of
Biology and the world of Wargaming - might help the
world of testing.

Biology
An interesting innovation in test design is the so called
“Evolutionary Algorithms”. It is Darwin’s theory
applied to the process of designing test cases, whereby
test cases evolve into better test cases. Evolutionary
algorithms are used for optimisation problems or
problems that can be translated into an optimisation
problem. A typical example is to try and find test cases
for which the system violates its timing constraints. In
that case test cases are ‘better’ when they result in
higher response times. Darwin’s principle of “Survival

of the fittest” is the driving force behind these
algorithms. Whereas test design techniques focus on
individual test cases, evolutionary algorithms deal with
'populations' and the 'fitness' of individual test cases.

As Darwin should be praised for his brilliant theory of
evolution, so should the people that saw ways to apply
this theory to find new ways of designing test cases.
This paper will merely aim at explaining the basics of
how it works. For people interested in more solid
scientific background of the theory of Evolutionary
Algorithms and its applications, further reading of the
following publications is suggested:

Pohlheim H. (2001). Genetic and Evolutionary
algorithm toolbox. Chapter 1- 7.
http://www.geatbx.com/docu/algindex.html

Sthamer H. H. (1995). The automatic generation of
software test data using genetic algorithms. Thesis at
the University of Glamorgan.

Process overview
The process of evolution is illustrated in the figure
below. It is a process that is usually applied to
populations of animals, but as said before, it can be
applied to ‘populations’ of test cases. The set of test
cases will then go through the following steps:

Generate
initial

population

Fitness assessment

Exit
criteria
met?

Result

Selection

Recombination

Mutation

Reinsertion

1. An initial population of test cases is

generated. This can be done randomly. A test
case can be defined as a set of parameters,
each with a value chosen from its associated
domain. The initial population should not be

73

mailto:broekman.bart@gmail.com�

too small. A size between 50 and 100 is a
good starting point.

2. Some test cases are ‘better’ than others. Why?
Because they result in something closer to the
desired end result. So it is the test goal that
defines the concept of ‘good’ and ‘better’. In
Evolutionary Algorithms a fitness function
must be constructed that adequately indicates
how ‘good’ a test case is. For instance, when
testing for violation of timing constraints, the
response time itself is an adequate fitness
function.

3. New test cases are constructed by combining
the properties of ‘parent test cases’. In
practice this means that selected test cases
will exchange some of their parameter values
to create new combinations of parameter
values, ergo – new test cases. To have a
positive evolutionary drive towards better test
cases, the properties of ‘good’ test cases
should have a higher chance to be propagated
than those of ‘bad’ test cases. But even bad
test cases can possess some parameter values
that turn out to be ‘great’ if combined with
other parameter values. (It should be realized
that the terms ‘good’ and ‘bad’ are related to
the objective you’re after. When testing to see
if timing constraints are met, we try to violate
those constraints, meaning that test cases that
result in bad response times are actually
‘good’ test cases.) So the best test cases are
preferred to propagate their properties, but
even the bad ones should have a (slight)
chance as well. Therefore this step involves
random selection weighted by fitness values.
How this works is further illustrated in the
following intermezzo.

Intermezzo: “weighted random selection”

As an example, take 10 test cases with the
following fitness values:

TC-01 12

TC-02 25

TC-03 31

TC-04 8

TC-05 12

TC-06 33

TC-07 15

TC-08 22

TC-09 6

TC-10 10

Now in order to do a random selection from
this group, but in such a way that the ones
with higher fitness value have a higher

chance to be chosen, we can use the
following mathematical trick:

Normalize the fitness values. This means
“divide by the sum of all fitness values”. The
result is, that all normalized values will add
up to 1.

Produce an “accumulated” list of fitness
values. This means that for each test case its
normalized value will be added to the
previous accumulated value. By definition
the final accumulated value will be exactly 1.

For our example these steps would result in
the following:

 fitness normalized accumulated

TC-01 12 0,069 0,069

TC-02 25 0,144 0,213

TC-03 31 0,178 0,391

TC-04 8 0,046 0,437

TC-05 12 0,069 0,506

TC-06 33 0,190 0,695

TC-07 15 0,086 0,782

TC-08 22 0,126 0,908

TC-09 6 0,034 0,943

TC-10 10 0,057 1,000

Now if a simple random generator is used to
generate a number between 0 and 1, and then
pick the test case with the next higher
accumulated fitness function, we get exactly
what we want: random, but giving test cases
with higher fitness values a better chance.

4. The step “Mutation” is necessary to enable
new parameter-values to enter the population.
Often this will turn out to be worse than the
original test cases, but occasionally a
‘winning’ parameter value will enter the
population.

5. Part of the parent generation of test cases will
be replaced by an equally sized part of the
new generation. Again this is a random
selection weighted by fitness values: The new
test cases with the highest fitness value have
the highest chance to be selected. For the test
cases that need to disappear the opposite
holds: The parent test cases with the lowest
fitness value have the highest chance to be
selected to be discarded.

Then the process will repeat itself with the new (and
hopefully improved) population of test cases. The
principle of ‘survival of the fittest’ drives this process
towards ‘better’ test cases, as defined by the fitness
function. This continues until a certain stop criteria is
met. For instance: the process continues until a test case

74

is found that results in a response time of more than 50
milliseconds.

This is a clear example of a test design problem where
our everyday-test-design-techniques (based on deriving
test cases from specifications) won’t help. Because the
situation we are looking for is not specified! The same
holds true for the testing of fuzzy interfaces, where we
‘suspect that strange things might happen’. To apply
“Evolutionary Algorithms” to the testing of fuzzy
interfaces, requires 1 major problem to be solved:
Define a fitness function that correctly describes the
goal you’re after, which is “the kind of defect you try to
uncover”.

Wargaming
This paragraph discusses another example where test
cases are NOT derived from specifications that tell you
which situations should be tested. This example comes
from the world of “wargaming”.

Wargames are a specific kind in the vast world of
games. They are usually complex games where the
players command an army to battle against the army of
their opponent. The army can consist of abstract
counters or realistically painted miniatures, and can be
historical (such as Napoleon at Waterloo) or purely
fantasy (such as Elves against Orcs). For people that are
interested to know more about this fascinating hobby,
visiting the local game stores or browsing the internet
could open up a new world.

In a certain respect playing (war)games is very similar
with testing (IT-)systems. The rules of the game can be
compared with the specification of the (game-)system.
The games rules usually contains information that
should look very familiar to us as testers, for example

• They define the different units – such as light
infantry, shock cavalry, etc. - and their properties
– such as movement speed and attack and defense
values. This can be compared with information
found in the data dictionary of an IT-system.

• They define the order of steps to play the game.
Often it is a structure of “game turns”, each
consisting of “phases” that consist of “steps”. This
is very similar to the structured description of the
process flow of an IT-function.

• They define the conditions under which certain
actions are allowed or not. These can be very
complex rules, defined in “IF…THEN…ELSE”
kind of constructions.

• They define exactly what the result of certain
actions is.

When playing a game, wargamers perform lots of
unexpected creative moves to outwit their opponent,
hoping to gain that ‘edge’ that will win them the game.
In doing so they often end up in unexpected situations
where they find problems in applying the rules.
Disagreements about whether a move is allowed or not,

or what the precise effect of a certain action is. Ergo
they found a defect in the ‘system’.

Some examples:

• From “Fire and Fury – The American Civil War in
Miniature”: Player A has a few units in a tight
spot. A lone battery and a severely battered
infantry unit are threatened by overwhelming
numbers of enemy infantry. He decides to “attach”
the battery to the remnants of the infantry brigade
to still have a slim chance for his battery to
survive. In the following turn Player B charges the
unit. In the firing phase that precedes the hand-to-
hand combat he wipes out the remains of the
infantry, so the following melee is against the
battery alone. An unlucky roll of the die gives the
result “Hard Pressed”, which means “defending
brigades are disordered and retreat until 2” from
the enemy”. Player A is not unhappy with this and
wants to retreat his battery 2”. Player B however
objects and points out page 47 of the rules, saying
”When participating artillery stands are defeated
and survive the combat effects, they are
immediately silenced [….] They retreat their full
movement rate […]” which would put the battery
out of action for at least the following turn. Player
A objects to this interpretation and points to page
45 of the rule book, saying ”Attached batteries are
considered as part of a brigade and are treated as
any other stand of the attached brigade”
He claims that the battery was attached at the start
of the turn and since it has not been detached, it
still counts as attached, even though the infantry to
which it was attached is gone during the actual
assault.

• From “Warhammer Fantasy Battles”: Magic is an
important part in this game. To successfully cast a
spell, the player must roll some dice and achieve a
total die roll of at least the “casting value” of that
spell. His opponent can then still attempt to dispel
that spell. However, when the casting roll contains
at least two 6’s, the spell is cast with a so called
“Irresistible Force” which cannot be dispelled.
Player A has a nice powerful magic item called
“Staff of Change” which can help spell casting a
lot, but has a chance to be destroyed when being
used. The effects of this item are specified as
follows: ”The bearer can re-roll any number of
the dice rolled to cast or dispel a spell. The second
result(s) stand. […] If the bearer casts a spell with
Irresistible Force using the staff's re-roll ability,
the staff will exhaust its power and cease working
for the rest of the battle." Player A tries to cast a
difficult spell with a casting value of 12 and he
decides to roll 3 dice. He has an unlucky throw of
2 – 2 – 6. Thanks to his magic item, he re-rolls the
2 – 2 and scores a 4 – 6. So his score is now 4 – 6
– 6. Player B cries out with joy: “Hah! Irresistible
Force. Your staff is out of action now”.
Player A is not very happy about that, but sees an
escape, claiming: “I can still re-roll that original 6”
and rolls a 3, resulting in a successful total of 3 – 4
– 6.Player B objects, saying that re-rolling that 6
was illegal, because the staff was already out of

75

action after the first re-roll. Player A disagrees,
and the debate rages on.

These are examples of “fuzzy” situations where two
totally different outcomes are both acceptable within
the games rules (= system specifications). Clearly an
unacceptable situation for us as testers! Clearly a defect
of the system.

Would we as testers have found the same defects?
When we regard the game rules as system
specifications and then apply our test design techniques
that we are so comfortable with? Probably not, because
the situations that uncover the defect are not described
in the specifications.

So what is it that the gamer does, that leads him to find
defects that we as testers would probably miss? The
critical difference between a gamer and a tester here is
in the way they approach the specifications (game
rules):

• For a tester the objective is to see if the system
behaves as expected (or as specified). The
specifications are part of his objective.

• For a gamer the objective is to WIN THE GAME.
The specifications are merely the boundaries that
limit his clever actions.

If we as testers want to find such defects as illustrated
above, we must adopt the gamer’s view on
specifications. We must test the system as if to ‘try and
WIN THE GAME’ and see the specifications as
nothing more than attempts to limit our clever creative
ideas to achieve this. Of course the challenge here is to
find a meaningful answer to the question “when can I
say that I won the game?”

(And as another intriguing afterthought… should the
player of a game be considered as “the user of the
system” or as “part of the system itself”?)

Summary
The concept of “fuzzy functionality” refers to vague
descriptions of situations and how the system responds.
To find defects related to such unspecified situations,
deriving test cases from specifications obviously won’t
help. From 2 different ‘worlds’ new ideas enter our
testing world that could inspire us to try new ways of
designing test cases.

From Biology: Define your test goal in terms of a
fitness function and use an evolutionary process to
derive test cases that get better and better in achieving
that goal.

From Wargaming: Translate “testing the system” into
“trying to win a game” and consider the specifications
as mere attempts to limit your clever moves.

76

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Session

Lessons in Team Leadership from
Kids in Armor

Adam Goucher

Wednesday, July 16, 2008
2:45pm - 3:45pm

Room: Saint David 3rd Floor

Overview

Groups of testers within an organization are often given the label of a team and point person is
often a 'lead' or 'manager.' In sports, the person who leads the team is the 'coach'. While leading a
group of testers or 4-year old lacrosse players might seem at opposite ends of the spectrum the
similarities are striking.

77

Lessons in Team Leadership from Kids in Armor
Adam Goucher

http://adam.goucher.ca
adam@goucher.ca

1 INTRODUCTION
Groups of testers within an organization are often given the label
of a team and point person is often called a ‘lead’ or ‘manager.’ In
sporting, the person who leads a team is the ‘coach’. While
leading a group of testers or four-year old lacrosse players might
seem to be at opposite ends of the spectrum the similarities are
striking. This paper looks at three areas of commonality: skills
development, dealing with stakeholders, and test planning

2 SKILLS DEVELOPMENT
2.1 Skill Progression Charts
The local lacrosse association [1] provides coaches with a number
of Skill Progression Charts which outlines the skills players are
expected to have learned and at what point. These serve as the
guide for coaches in both planning practices throughout the
season and as the measuring stick against which players and
coaches are measured.

Table 1. Three rows of the WMLA Catching chart

 Paperweight Tyke Novice Peewee Bantam Midget

Hand
Position I I R R R R

Stick
Position I I R R R R

While
Moving
Towards

 I I R R R

I – Introduced
R- Reviewed

What this shows is that players is that Paperweight players (ages 4
and 5) only need to only worry about knowing where to put their
hands and stick to catch a pass, but by Novice they should need no
prompting or correction. Paperweights also do not need to worry
about catching while moving towards the passer.

Testers are often affected by charts of this kind but they are
presented in terms of job descriptions and definitions. These job
descriptions tend to be prepared in such a manner that they could
be recycled on job advertisements. Converting them to a chart
however gives a different perspective and allows for easier
consumption on information.

Table 2. A skill progression chart regarding test case design

 Junior Intermediate Senior Lead
Test Case Execution I R R R

Test Case Creation I R R R

Test Case Analysis I R R R
Scenario Execution I R R

Scenario Creation I R R

Scenario Analysis I R R

Session Debrief I R
Session Execution I R

Session Creation I R

Here we see that Junior testers are expected to know how to
Create, Analyze and Execute traditional scripted tests whereas
Senior ones are expected to be able to do that as well as for
Scenarios and Sessions[2].

Skills Progression Charts are a powerful tool but are both fluid
and highly context sensitive. Given the differences between
organizations both in products or services produced and
organizational culture, the charts of each organization will differ
as well. If you do not use Scenarios as a test case strategy then it
should not appear in the chart, or perhaps Session Execution is
introduced at the Junior level with Debriefing solely the job of the
Lead. The chart should also be used as a guide, not as a rule. Just
because someone, according to the chart, is not supposed to be
doing a task in a certain manner does not mean they should be
prevented from doing so if they show an affinity for it and it is the
appropriate technique for the task at hand.

2.2 Role of Coach
The role of a sports coach is all about preparing the team for
success. This preparation can come in many forms including
practices, workshops, targeted training, team relationship building
and both positive and negative reinforcement. The role of a team
lead and the tools available to them is very similar.

Part of a Coach’s success is that of the individual over the team;
especially in the lower house league levels. So too should the
success markers of a team lead be set against the success of their
members. Are the people you are leading succeeding?

• Are they discovering the type / quantity / quality of bugs
expected of them?

• Are tasks taking the expected length of time?
• Are they being innovative?

If for the answer to even one of the three questions, then there is
likely an underlying cause that could be met through some form
of training. It could be something as formal as attending a
conference, a local course or direct coaching or mentoring. The

78

sporting community has been using these as both learning and
motivational tools for years yet it is disturbing how many testing
teams let their members stale and stagnate rather than employ
them. In competitive sports, coaches are removed midseason (for
a number of reasons, but mainly) when their teams are
underperforming. Team leads are often insulated from this form of
drastic action but if they were not it is a safe bet that testers would
be better trained and more engaged in their work. Both of these
will lead to greater success for the team which translates to
success for the lead.

2.3 Methods of Learning
Skill development in sport is largely about building up muscle
memory [3]. This is because the body needs to know how to react
instinctively to various situations. Successful players have
practiced for hours on end both individually and as a team.

Testing software is not an activity where knowing where to move
a stick to catch a ball or angle to fake out a goalie is relevant.
Testing is a cerebral activity which means what leads need to help
train is their team’s brains. A large portion of Malcolm Gladwell’s
Blink [4] discusses training one’s intuition. The traditional method
of building this trained intuition in testers has been through the
rote execution of prepared test plans and test cases. While this
does train testers to spot the types of defects covered in the
existing test cases it does not help them deal with discover
different classes of defects or in some cases even new variations
of a known class. A newer technique for training tester intuition
deals not with testing, but about asking questions – of anything,
not just software.

James Bach [5], Michael Bolton [6] and Matt Heusser [7] (to
name a few) have been known to carry with them objects which
they ask people to test such as a yo-yo, a salt shaker or an ice cube
that glows when wet. The governing rule of this game is pretty
simple: ask questions. Experienced testers are able to come up
with a stream of questions which approach the problem from a
number of angles (sometimes simultaneously). Newer testers
might come up with a few questions initially but quickly exhaust
their supply.

The sport equivalent of the traditional learning method is how
kids are taught to pick up loose balls in lacrosse. First they learn
to trap the ball then flip it back into the pocket. Once they have
mastered that they remove the trapping aspect and just pick up the
ball while moving. Advanced players can learn what is known as
the Indian Pickup where they chop at the ball and pick it up using
a well timed twist of the wrist. This would be akin to spending a
period of time executing scripted tests, then scenarios and
eventually running sessions.

With younger players variation is important for them to remain
engaged with individual activities lasting no more than 10
minutes. Adult attention spans are longer but no less prone to
wandering. Shutting off a tester’s natural state of questioning to
follow a script would then seem to be counterproductive to
keeping them engaged in the task at hand. Pairing a tester learning
a new technique with someone already skilled in it and letting
them ask questions as they go through it would therefore have
more lasting value as far as learning than just going through a
series of test cases alone would.

3 DEALING WITH STAKEHOLDERS
Most of the leading definitions of what software testing is involve
some mention of the people that the software interacts with. It has
also been argued that testers should look more at the social
sciences [8] than the hard sciences for their inspiration. Once a
tester has assumed a leadership role, the interactions with other
people dramatically increase. The same applies to sports; when
you are a player you associate with the other players and are
insulated from everything else through the coach. But when you
are the coach you have to deal with many different groups of
people – all with different and often conflicting agendas.

3.1 Players / Testers

3.1.1 Relating With
In both situations, the primary category of person that a coach /
lead deals are those who are on their team. This paper is going to
make the assumption that the members of your team want to be
there. The role is then one of keeping them happy and making
them effective which can be achieved by developing a good
relationship with each person. Here are 4 techniques for achieving
that

3.1.1.1 Open Door Policy
So often do people profess to have an Open Door Policy but then
have their door closed most of the time that it phrase itself is now
cliché. But approachability is critical to good leadership. The trick
is however to not wait for someone to come through the door,
instead, bring the door to the players who might not come talk to
you for some other reason (power distance for example)

3.1.1.2 Ask Questions
Do not blindly take on faith than your testers are not stuck on
something, are being as productive as you would like, or do not
have some brilliant solution to a problem. The only way to find
this out is by asking questions. Remember that as a coach you are
not on the floor playing the game, nor are you hip-deep in pre-
release software testing as much as they once were.

3.1.1.3 Meet One-on-one
It used to be that coaches set themselves as being far superior than
those on the team and people performed for them our of near fear.
Nowadays coaches need to show empathy and listen to people on
the teams as individuals. This individual attention is the major
glue that binds the relationship. Regular one-on-one meetings [9]
with everyone that you are responsible for not only helps reinforce
the first two techniques but the individual attention people receive
will help them feel more comfortable in the relationship.

3.1.1.4 Positive Spin
Even when dealing with someone on a negative topic, padding it
with something positive can soften the blow. This is especially
important if the event has occurred a number of times recently.
For instance, rather than just focus on a goal that was let in,
mention it along with all the shots that were blocked. Or in
software testing, focus not only on the bug that made it to
production, but the ones that did not.

79

3.1.2 Adding and Removing Members
If a coach is in a non-house league context, then they will have to
deal with team try-outs. This is equivalent to team leads having
responsibility for adding and removing from their teams; once
again, the methods used in both are similar.

3.1.2.1 Don’t Just Talk, Do
Having a potential player sit in a meeting with a coach rather than
on the floor to determine their skill is unheard of and yet,
interviews with testers often do not include a demonstration of
testing. An effective interview includes some form of testing by
the potential candidate be it in a fictitious application drawn on a
whiteboard, a common application or one built explicitly for that
purpose.

3.1.2.2 Diversity Is Key
A lacrosse team cannot have only attackers. It needs to have
defenders, loose ball experts, face-off specialists and a goalie. A
test team needs a range of specialties too. A team that is overly
weighted in performance, automation or black-box testers is not
going to be as effective long term than if skills were appropriately
balanced.

3.1.2.3 Role Players Are Necessary
Unlike the testing market, when choosing players the available
talent is often determined by their birth year. This forces a coach
to select not only the couple players who will be leaders on the
floor but supporting players as well; and they will know their job
is to provide support. Once a test team reaches a certain size some
team members will have to fall into a support role as well else you
risk having too many divergent strategies around testing which
could take the whole effort astray.

3.2 Product Management / Parents
The relationships that a team lead or coach has with the player’s
parents or company management team is often the source of most
of their day-to-day grief. Unfortunately that comes with both roles
and can be a distraction from achieving the desired results of the
team.

First and foremost, parents want success for their children. In
house league situations there are often rules to make sure
everyone gets equal playing time and rotation through positions so
is largely mitigated. In representative teams where the better
players get more playing time and the environment is more
competitive that this becomes an issue. The coach’s job in this
type of situation is to take the heat for their decisions and not let it
become a distraction for the players.

Product Management in turn, cares about their product (or
products if there team is working concurrently on different tasks).
The role here for the team lead is the same: prevent the
distractions coming from management from affecting the rest of
the team.

3.3 Officials / Auditors
Both officials on the playing floor and corporate or regulator
auditors are there to ensure that certain rules and safety measures
are followed. The attitude towards these two groups that the lead
establishes towards them will inevitably trickle down to the rest of
the team. It is important then that they be treated with respect and

professionalism even when faced with an unreasonable request of
obviously incorrect call. And over the long term having a civil
relationship with officials and auditors tends to pay off harkening
back to the adage of ‘you get more bees with honey than with
vinegar.’

4 TEST PLANNING
A large part of both a coach and a lead’s responsibilities revolves
around planning. For a coach it is about practices and game day.
For test leads it is for project and feature test planning.

The largest module of the Coaching Association of Canada’s
NCCP Level 1 certification program that deals with practice
planning and is portable to test planning.

Before you can design an effective practice you need to be able to
provide answers about the following areas [10]:

• Logistics – equipment needed / available, length of
practice, availability of assistants and their experience

• Athletes – number of athletes, skills and abilities, gaps
in skills among athletes, reason for involvement

• Safety Risks – equipment, human error, emergency
procedures in case of an accident

• Goals – purpose of practice, team goals and short-term
objectives, links to previous and future practices

• Organization – structure of session, activity choice,
sequence of activities

• Delivery – how will lead position themselves, what will
lead watch, teaching methods employed

• Skills – technical / tactical skills, mental skills

If you change the context from sporting to test planning you end
up with the beginnings of a mission from which you can start your
actual planning.

A well-structured practice has five parts

1. Introduction – Coach tells team what will happen during
the practice

2. Warm-up – prepare the body for the efforts of the main
part

3. Main – perform activates that will help athletes improve
sport-specific abilities and fitness

4. Cool-down – low intensity activities to initiate the
recovery of the body

5. Conclusion – Coach provides some comments on the
practice and give athletes and opportunity to provide
feedback

This structure is used by coaches at every level from house league
to professional leagues. The structure also maps well to the format
used in Session Based Test Management; sessions will often last
60 – 90 minutes which is about the same length as a typical
practice, sessions are associated with a specific mission and
session sheets can be re-executed.

A comparison between the a practice plan and a session charter
shows the how each phase matches
Practice Plan Session Sheet
Introduction Charter
Warm-up Session Setup
Main Test Design and Execution

80

Cool-down Session Teardown
Conclusion Debrief

• Charter – what we are testing or what problems we are
looking for

• Session Setup – configuring environment, locating
materials, reading manuals

• Test Design and Execution – testing to fulfill the charter
• Session Teardown – prepare session report, deconfigure

environment
• Debrief – analyze the results of the session and provide

opportunity to provide feedback

SBTM is often seen as a radical approach to testing when first
being introduced into an organization. Sport practices have been
planned in a similar form for a long time and can serve as a useful
reference model when starting to implement Sessions.

5 CONCLUSION
The area of sports coaching is far more mature than software
testing in terms of available learning materials and research. Most
countries have a national coaching body to assist in the
development of both grassroot and elite level coaches. Many,
including Canada and the UK have national certificate programs,
NCCP and UKCC respectively, in general coaching while in other
jurisdictions (like the US) leave training up to the individual
sporting federations.

Of course no amount of theory can replication the experience of
actually being a coach and the hands-on learning it provides. The
common perception is, especially at the house league level, is that
you need to have kids (that are on the team) to coach. After
checking with the three major summer leagues (lacrosse, baseball,
soccer) about any policies around non-parents as coaches they all
confirmed that you do not need to be a parent to be a coach. The
non-parents who are coaches do it for a variety of reasons
including specialized training / experience or love of the game. It
is my recommendation that ‘improving skills as a test team lead’
be added to that list. Not only will test team thank you, but so too
will kids on your team.

6 ACKNOLWLEDGEMENTS
The author would like to thank the following people for reviews
and feedback on early drafts of this paper: Dr. Jacob Slonim,
Kristina Woolfson, Dr. Gregory V. Wilson, Adam White and John
Gilhuly. Also the 2007 WMLA Minor Paperweight Yellow team
and the 2008 WMLA Minor Paperweight Purple team for
experiencing the coaching journey with me.

7 REFERENCES
[1] Whitby Minor Lacrosse Association

http://www.whitbyminorlacrosse.com/
[2] Hinkson, Jim. 2001. The Art of Team Coaching. Warwick

Publishing Inc.
[3] Bach, Jonathan. 2000. Session-Based Test Management. In

Software Testing and Quality Engineering (November, 2000)
[4] Gladwell, Malcolm. 2005. Blink: the power of thinking

without thinking. Back Bay Books.
[5] http://www.satisfice.com
[6] http://www.developsense.com

[7] http://www.xndev.com/
[8] Kaner, Cem. 2006. Software Testing as a Social Science.

Presented at the Toronto Association of Systems & Software
Quality. October, 2006.

[9] Rothman, Johanna, Derby, Esther. 2005. Behind Closed
Doors. The Pragmatic Programmers

[10] Coaching Association of Canada. 2007. Multi-Sport
Modules Reference Material - Competition – Introduction
(Part A)

81

http://www.whitbyminorlacrosse.com/�
http://www.satisfice.com/�
http://www.developsense.com/�
http://www.xndev.com/�

CAST 2008: Beyond the Boundaries

July 14-16, 2008 – Toronto, Canada

http://www.cast2008.org

CAST 2008: Beyond the Boundaries © 2008 Association for Software Testing

Session

Testing Lessons From Civil Engineering

Scott Barber

Wednesday, July 16, 2008
2:45pm - 3:45pm

Room: Saint Patrick 3rd Floor

Overview

When tasked with designing and building an aesthetically pleasing bridge, using new
environmentally friendly materials, over a river that is likely to flood over the roadway of the bridge
once every ten years, an engineering firm doesn't start testing when the bridge is mostly complete.
They don't even start testing at the same time that they start building the bridge. Rather, they start
testing as soon as someone proposes an initial design. And even though bridges do fail
sometimes, they fail catastrophically significantly less often than software does.
While I agree that testing a bridge is fundamentally different from testing software, the general
approach and thought process that I learned while earning a B.S. in Civil Engineering have turned
out to be extremely useful to me as a software tester. What surprises me is how few software
testers have been exposed to these approaches and thought processes.
Come to this session for an introduction to the ways in which Professional Engineers test their
creations and what lessons we can learn and appy to our jobs as software testers that will make
our testing more effective and help our developers make better applications more efficiently.

82

Testing Lessons From Civil Engineering: Prologue to
an experience report, discussion, and (hopefully)

additional research
Scott Barber

sbarber@perftestplus.com

Introduction
Engineers don’t look at the world the same way that testers
do. Engineers look at the world with an eye to solving
problems. Testers look at the world with an eye toward
finding problems to solve. This seems logical. What is
less logical is the fact that engineers, and I’m talking about
the kind of engineers that deal with physical objects, seem
to be much more sophisticated in their testing than testers.
In fact, most of what I know about testing, I learned as a
civil engineering student. We didn’t call most of it testing.
We didn’t even identify it as anything other than “You
really want to get this right.”

Maybe Civil Engineers test better than software testers
because of the motivations to “get it right”. Consider what
happens when a piece of Civil Engineering, like a bridge
fails:

• Huge amounts of money is lost.
• Engineers lose their jobs and their licenses to practice.
• Lots of TV news coverage.
• Innocent, unsuspecting people die.

Consider what happens when a piece of software, like a
program to assist with submitting personal taxes, fails:

• Some executives probably don’t get bonuses.
• Some smart people put in some overtime.
• The Government extends the tax deadline.
• Even more people use the software the next year,

figuring the problem has been resolved.

I guess it’s no wonder Civil Engineers go the extra mile to
“get it right”. Maybe it’s not even appropriate (let alone
cost effective) for software teams to test with the same kind
of rigor as Civil Engineers. But wouldn’t it at least make
sense for us to take a look at how they approach this
testing? Might there not be lessons there that we can apply
without breaking the budget or extending the project
duration?

I believe so.

Some of the principles and techniques, as I recall them
from engineering school, that I’ve applied or adapted to

software testing, which I believe have had a positive impact
on my testing include:

• Prototyping
• Safety Factors
• Failure Modes
• Risk Assessment
• Independent and Collective Testing of Materials and

Designs
• Experimental Design and Execution
• Thought Experiments
• Realism in Environmental and Usage Modeling
• Validation of Models
• Sub-section Isolation

I make no claim to being an expert in any of these areas as
they relate to Civil Engineering. I’m 15 years removed
from these topics in that context. In fact, the titles I’ve
given these ideas predominantly come from my head. I’m
certain that, from a Civil Engineering perspective, what I
recall about these items is at best incomplete, and possibly,
just plain wrong. Be that as it may, the influence that these
items have had on my development and success as a tester
are profound. I believe that makes this concept worth
exploring.

83

	01_1pg_CAST2008FrontCover
	02_3pg_CAST2008Overview
	03_3pg_CAST2008Sponsors
	04_5pg_CAST2008Bios
	05_3pg_CAST2008Schedule_Day1
	06_1pg_CAST2008Schedule_Day2
	07_1pg_CMartinTaylor_CoverSheet
	08_5pg_CMartinTaylor_VisualizationAndStatisticalMethods
	09_1pg_JonKohlMichaelBolton_CoverSheet
	10_6pg_JonKohlMichaelBolton_TestingAndMusic
	Abstract
	Traditions and Contexts
	Structures
	Tension and Resolution
	Scripting
	Skill and Skills Development
	Notes

	11_1pg_DianeKellyRebeccaSanders_CoverSheet
	12_6pg_DianeKellyRebeccaSanders_TheChallengeOfTestingScientificSoftware
	13_1pg_DougHoffman_CoverSheet
	14_6pg_DougHoffman_FinancialAccountingAndTesting
	Summary
	Financial Accounting and Software Testing
	Conclusions
	Appendix 1

	15_1pg_JeremyKominar_CoverSheet
	16_11pg_JeremyKominar_SleightOfQualityAMagicalApproachToTesting
	INTRODUCTION
	MECHANICS
	Where Do Magic Tricks Come From?
	How Does This Thing Work Anyways?
	How Can It Be Made Better?
	Can I See Those Cards Please?

	8TPHILOSOPHY
	What Does the Future Hold?

	8TPSYCHOLOGY
	Why Are We So Easily Deceived?
	May I Have Your Attention Please?
	How Would You Like That Framed?
	Did I Observe or Infer That?

	8TMANIPULATION
	How Can We See What Is Not There?
	How Many Methods of Misdirection Make a Magician Magical?
	Anticipation
	Premature Consummation
	Monotony
	Confusion
	Diversion
	Distraction
	Specific direction

	Is A Second Opinion Needed?

	THEATRICS
	Do I Know You? Should I Know You?
	How Good is Good Enough?

	CONCLUSION
	REFERENCES

	17_1pg_MorvenGentlemen_CoverSheet
	18_7pg_MorvenGentlemen_MeasuringFileSystems
	Abstract
	Motivation
	Instrumentation
	Statistics and Data Visualization
	Illustrative example of Statistics and Data Visualization
	Conclusions
	Future Work
	References

	19_1pg_CAST2008Schedule_Day3
	20_1pg_SteveRichardsonAdamGeras_CoverSheet
	21_5pg_SteveRichardsonAdamGeras_SeekingDataQualityUsingAgileMethodsToTestADataWarehouse
	INTRODUCTION
	THE VALUE OF A DATA WAREHOUSE
	AGILE AS BUSINESS VALUE DRIVER
	TEST STRATEGY
	TEST TECHNIQUES

	TEST RESULTS
	CONCLUSION
	REFERENCES

	22_AdamWhite_CoverSheet
	24_1pg_BartBroekman_CoverSheet
	25_4pg_BartBroekman_CanWeLearnFromBiologyAndWargaming
	Introduction
	Biology
	Process overview
	Wargaming
	Summary

	26_1pg_AdamGoucher_CoverSheet
	27_4pg_AdamGoucher-LessonsInTeamLeadershipFrogKidsInArmor
	INTRODUCTION
	SKILLS DEVELOPMENT
	Skill Progression Charts
	Role of Coach
	Methods of Learning

	DEALING WITH STAKEHOLDERS
	Players / Testers
	Relating With
	Open Door Policy
	Ask Questions
	Meet One-on-one
	Positive Spin

	Adding and Removing Members
	Don’t Just Talk, Do
	Diversity Is Key
	Role Players Are Necessary

	Product Management / Parents
	Officials / Auditors

	TEST PLANNING
	CONCLUSION
	ACKNOLWLEDGEMENTS
	REFERENCES

	28_1pg_ScottBarber_CoverSheet
	29_1pg_ScottBarber_Testing Lessons From Civil Engineering
	Introduction

