
SWarp
v2:21

User's guide

E. BERTIN
Institut d'Astrophysique de Paris

December 17, 2010

Contents

1 What is SWarp ? 1

2 Skeptical Sam's questions 1

3 License 2

4 Installing the software 2

4.1 Obtaining SWarp . 2

4.2 Software and hardware requirements 2

4.3 Installation . 3

5 Using SWarp 3

5.1 The Con�guration �le . 3

5.1.1 Creating a con�guration �le . 3

5.1.2 Format of the con�guration �le . 3

5.1.3 Con�guration parameter list . 4

6 How SWarp works 8

6.1 Overview of the software . 8

6.2 Image mapping and memory constraints 8

6.3 Propagating FITS keywords . 11

6.4 Parallel processing 12

6.5 Astrometry . 12

6.5.1 Input frames . 13

6.5.2 Output frames . 13

6.5.3 Bi-cubic spline interpolation . 17

6.6 Resampling . 17

6.6.1 Image data . 17

6.6.2 Oversampling . 18

6.6.3 Noise stability issues 20

6.6.4 Weight-maps . 23

6.7 Background subtraction . 23

6.8 Scaling the
ux . 25

6.9 Combining resampled images 27

6.9.1 Various types of image combination 27

6.9.2 Weighted coaddition . 29

i

6.9.3 Image bu�ering and memory constraints 31

6.9.4 Overlap information . 31

7 Two-step co-addition and resampling 32

8 Examples 32

8.1 Example 1 . 32

8.2 Example 2 . 34

9 Troubleshooting 35

10 Acknowledging SWarp 36

11 Acknowledgements 36

ii

1 What is SWarp ?

SWarp is a program that resamples and co-adds together FITS imagesusing any arbitrary
astrometric projection de�ned in the WCS standard1. The main features ofSWarp are:

� FITS format (including multi-extensions) in input and outp ut,

� Full handling of weight-maps in input and output,

� Ability to work with very large images (up to 500 Mpixels on 32-bit machines and 106

Tpixels with 64-bits), thanks to customized virtual-memor y-mapping and bu�ering,

� Works with arrays in up to 9 dimensions (including or not two spherical coordinates),

� Selectable high-order interpolation method (up to 8-tap �l ters) in any dimension,

� Compatible with WCS and TNX (IRAF) astrometric description s,

� Support for equatorial, galactic and equatorial coordinate systems,

� Astrometric and photometric parameters are read from FITS headers or external ASCII
�les,

� Built-in background subtraction,

� Built-in noise-level measurement for automatic weighting,

� Automatic centering and sizing functions of the output �eld ,

� Multi-threaded code with load-balancing to take advantage of multiple processors.

� XML VOTable-compliant output of meta-data.

2 Skeptical Sam's questions

Skeptical Sam doesn't have time to test software extensively but is always keen on asking
agressive questions to the author to �nd out if a program could �t his needs.

S.Sam: What's the point in releasing another image co-addition software? We already had the
Drizzle (Fruchter & Hook 1997, 2002) andMSCRed (Valdes 1998) packages. And there are
now MOPEX (Makovoz & Khan 2005) and Montage (Berriman et al. 2008)...

Author: Co-addition is most-certainly the most critical step in reducing modern CCD mosaic
data. Although several powerful packages are available, they did not meet all the requirements
we had at the TERAPIX 2 data centre in Paris, where the project was initiated.

S.Sam: SWarp doesn't perform the astrometric calibration, does it?

Author: No it doesn't. You will have to use SCAMP 3 (Bertin 2006) for that.

S.Sam: I am the kind of guy who does high precision astrometry and photometry. My sources
are detectable on raw frames. Resampling, you know, would just wreck the signal, so I prefer
to combine measurements from individual images than to co-add pixels.

1seehttp://www.cv.nrao.edu/fits/documents/wcs/wcs.html
2http://terapix.iap.fr
3http://astromatic.net/software/scamp

1

Author: It is true that resampling distorts slightly both signal and noise. However, if done
properly, and if the data are not undersampled (Full Width at Half Maximum > 2:5 pixels),
the degradation is generally very small. For instance, resampling a single ground-based image
(atmospheric seeing of FWHM 3 pixels, and conversion factor2e� =ADU) twice with SWarp ,
and comparing
uxes and positions measured using PSF-�tting, one gets for bright starsrms
di�erences of less than 5:10� 4 mag and 10� 3 pixel between the original and the twice-resampled
images. This is already much better than what photon-noise allows for. Hence apart from
situations of strongly non-stationary noise or undersampled data, the consequences of resampling
are expected to be negligible.

3 License

SWarp is free software: you can redistribute it and/or modify it un der the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version. SWarp is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY; without even the implie d warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GN U General Pub-
lic License for more details. You should have received a copyof the GNU General Public License
along with SWarp . If not, see http://www.gnu.org/licenses/ .

4 Installing the software

4.1 Obtaining SWarp

The easiest way to obtainSWarp is to download it from the o�cial website 4, or alternatively
from the current o�cial anonymous FTP site 5. At this address the latest versions of the program
are available as standard.tar.gz Unix source archives as well as documentation and RPM
binary packages for various architectures. It is strongly advised to install one of the RPM
packages if you intend to run the software for production purposes on a Linux machine with
x86 architecture and RPM-support, as the RPM executables have been optimized for execution
speed.

4.2 Software and hardware requirements

SWarp has been developed on Unix machines (Compaq Tru-64 and GNU/Linux), and should
compile on any POSIX-compliant system. The software is run in (ANSI) text-mode from a shell.
A window system is therefore unnecessary with present versions.

Memory requirements are fairly modest in most cases, as theydo not depend on the size of
the output images. 100MB is su�cient when co-adding images (even mosaics) involving current
CCD chips (2k� 4:5k). More memory may be helpful for co-adding bigger maps. Although the
built-in virtual-memory feature will almost always allow o ne to work with any image size, the
performance hit caused by �le-swapping may be important in some cases.

4http://astromatic.net/software/swarp
5 ftp://ftp.iap.fr/pub/from users/bertin/swarp/

2

4.3 Installation

To install, you must �rst uncompress and unarchive the archive:

gzip -dc swarp-x.x.tar.gz | tar xvf -

A new directory called swarp-x.x should now appear at the current position on your disk. You
should then just enter the directory and follow the instruct ions in the �le called \ INSTALL".

The software is also available as a precompiled RPM for Linuxsystems with an x86 architecture.
The simplest way to install an RPM package is to log as root anduse the following command

rpm -U swarp-x.x-dist.arch.rpm

5 Using SWarp

SWarp is run from the shell with the following syntax:

% swarp Input image1[Input image2 ...] [@Image list1 [@Image list2 ...]] -c con�guration-�le
[- Parameter1 Value1] [- Parameter2 Value2 ...]

The part enclosed within brackets is optional. The �le names of input images can be directly
provided in the command-line or in lists preceded with '@'. Lists are ASCII �les containing the
input �le names (one per line). One should use lists instead of image �le names if the number
of input images is too large to be handled directly by the shell. Any " - Parameter Value"
statement in the command-line overrides the correspondingde�nition in the con�guration-�le
or any default value (see below).

5.1 The Con�guration �le

Each time SWarp is run, it looks for a con�guration �le. If no con�guration �l e is speci�ed
in the command-line, it is assumed to be called \default.swarp " and to reside in the current
directory. If no con�guration �le is found, SWarp will use it s own internal default con�guration.

5.1.1 Creating a con�guration �le

SWarp can generate an ASCII dump of its internal default con�gurat ion, using the \-d " option.
By redirecting the standard output of SWarp to a �le, one creates a con�guration �le that can
easily be modi�ed afterward:

% swarp -d >default.swarp

A more extensive dump with less commonly used parameters canbe generated by using the
\ -dd " option.

5.1.2 Format of the con�guration �le

The format is ASCII. There must be only one parameter set per line, following the form:

Con�g-parameter Value(s)

Extra spaces or linefeeds are ignored. Comments must begin with a \#" and end with a linefeed.
Values can be of di�erent types: strings (can be enclosed between double quotes),
oats, integers,

3

keywords or boolean (Y/y or N/n). Some parameters accept zero or several values, which must
then be separated by commas. Values separated by commas, spaces, tabs or linefeeds may also
be read from an ASCII �le if what is given is a �lename preceded with @(e.g. @values.txt).
Integers can be written as decimals, in octal form (precededby digit O), or in hexadecimal
(preceded by0x). The hexadecimal format is particularly convenient for writing multiplexed bit
values such as binary masks. Environment variables, written as$HOMEor $f HOMEg are expanded.

5.1.3 Con�guration parameter list

Here is a list of all the parameters known toSWarp . Please refer to next section for a detailed
description of their meaning. Some \advanced" parameters (indicated with an asterisk) are also
listed. They must be used with caution, and may be rescoped orremoved without notice in
future versions.

BACKDEFAULT 0.0
oats (n � n ima)
Default background value to be subtracted inBACKTYPE MANUALmode.

BACKFILTERSIZE 3 integers (n � n ima)
Size (in background meshes) of the background-�ltering mask.

BACKFILTTHRESH 0.0 integers (n � n ima)
Di�erence threshold (in ADUs) for the background-�ltering .

BACKSIZE 128 integers (n � n ima)
Size (in pixels) of a background mesh.

BACKTYPE AUTO keywords(n � n ima)
Tells SWarp what background is subtracted from the images:

AUTO The internal interpolated background-map
MANUAL A user-supplied constant value provided in

BACKDEFAULT

BLANKBADPIXELS* N boolean
If true, pixels with a weight of zero are set to zero in the combined image.

CELESTIALTYPE NATIVE keyword
Celestial coordinate system in output:

NATIVE Same as �rst input �le
PIXEL No (de-)projection (faster)
EQUATORIAL Equatorial � , � coordinates
GALACTIC Galactic l , b coordinates
ECLIPTIC Ecliptic � , � coordinates

CENTERTYPE ALL keywords(n � ndim)
Tells SWarp how to center the output frame:

ALL Center on the region that contains all input �elds
MOST Center on the region with most overlap between

input �elds
MANUAL Manual centering using the CENTERparameter

4

CENTER 0.0 strings (n � ndim)
Position of the center in CENTERTYPE MANUALmode. Can be given in
oating point nota-
tion, in hh:mm:ss(for right ascension/longitude), or dd:mm:ss(for declination/latitude).

COMBINE Y boolean
If true, resampled images will be combined.

COMBINEBUFSIZE 256 integer
Maximum amount of bu�er memory (in MB) used for the co-additi on process.

COMBINETYPE MEDIAN keyword
Tells SWarp how to combine resampled images:

MEDIAN Take the median of pixel values
AVERAGE Take the average
MIN Take the minimum
MAX Take the maximum
WEIGHTED Take the weighted average
CHI2 Take the weighted, quadratic sum
SUM Take the sum

COPYKEYWORDS OBJECT strings (n � 1024)
Coma-separated list of FITS keywords that will be propagated from the input FITS head-
ers to the coadded and resampled image headers.

DELETETMPFILES Y boolean
If true, resampled, temporary image �les are deleted ifCOMBINEis set to Y

FSCALASTROTYPE FIXED keyword
Tells SWarp how to compute the astrometric part of the
ux-rescaling:

NONE Ignore the e�ects of re-projection
FIXED Apply a constant rescaling
uxes based on the ra-

tio of pixel scales at the �eld's geometrical center
VARIABLE Apply a rescaling of
uxes based on the local ratio

of pixel scales (variable throughout the image)

FSCALEDEFAULT 1.0
oats (n � n ima)
Default
ux scale to adopt for each image if the FSCALEKEYWORDkeyword is not found in
the FITS header

FSCALEKEYWORD FLXSCALE string
FITS keyword that should contain the
ux scale factor in inpu t images.

GAINDEFAULT 0.0
oats (n � n ima)
Default gain (conversion factor in e� =ADU) to adopt for each image if the GAINKEYWORD
keyword is not found in the FITS header. 0 means \in�nite" gai n.

GAINKEYWORD GAIN string
FITS keyword that should contain the gain in input images.

HEADERONLY N boolean

5

If true, SWarp does not do anything besides creating the FITS header in the combined
image. This header can later be duplicated as.head �les to provide an identical target
frame on several machines.

HEADERSUFFIX .head string
Filename extension for external ASCII \headers" that override internal FITS parameters.

IMAGEOUTNAME coadd.fits string
Name of the output image �le.

IMAGESIZE 0 integers (n � ndim)
Dimensions of the output image (in PIXELSCALETYPE MANUALor FIT mode). 0 means
\automatic".

MEMMAX 256 integer
Maximum amount of megabytes allowed for storing input images in memory.

NTHREADS 0 integer
Number of threads (processes) allowed to run simultaneously during the resampling and
combination phases.0 automatically sets one thread per CPU core.

OVERSAMPLING 0 integers (n � ndim)
Amount of oversampling in each dimension.0 means \automatic".

PIXEL SCALE 0.0
oats (n � ndim)
Step between pixels in each dimension (inPIXELSCALETYPE MANUALmode). Must be
expressed in arcseconds for angular coordinates.

PIXELSCALETYPE MEDIAN keywords(n � ndim)
Tells SWarp how to adjust the output pixel size:

MEDIAN Take the median of pixel scales at the center of
input frames

MIN Take the minimum of pixel scales at the center of
input frames

MAX Take the maximum of pixel scales at the center of
input frames

MANUAL User-de�ned pixel scale at image center (with the
PIXEL SCALEkeyword)

FIT Sets the pixel scale such as the full output �eld
�ts the user-de�ned IMAGESIZE

PROJECTIONERR 0.001
oats (n � n ima)
Maximum position error (in pixels) allowed for bicubic-spline interpolation of the astro-
metric reprojection. 0 turns o� interpolation.

PROJECTIONTYPE TAN string
Projection system used in output, in standard WCS notation (see Table 2).

RESAMPLE Y boolean
If true, resampling is performed on the input images.

RESAMPLEDIR . string

6

Path of the directory where resampled images are written.

RESAMPLESUFFIX .resamp.fits string
Filename extension given to resampled images produced bySWarp .

RESAMPLINGTYPE LANCZOS3 keywords(n � ndim

Image resampling method:
NEAREST Take the nearest neighbour
BILINEAR Bi-linear interpolation
LANCZOS2 Lanczos-2 4� 4-tap �lter
LANCZOS3 Lanczos-3 6� 6-tap �lter
LANCZOS4 Lanczos-4 8� 8-tap �lter

RESCALEWEIGHTS Y booleans(n � n ima)
Tells SWarp whether input weight maps and variance maps should be automatically
rescaled or not.

SATLEVKEYWORD* SATURATE string
FITS keyword that contains the saturation level (in ADUs).

SATLEVDEFAULT* 50000
oats (n � n ima)
Default saturation level (in ADUs) set for images for which no SATLEVKEYWORDFITS
header keyword is found.

SUBTRACTBACK Y booleans(n � n ima)
If true, input images are background-subtracted prior to resampling.

VMEMDIR /tmp string
Path of the directory where virtual-memory and other temporary �les are written.

VMEMMAX 2047 integer
Maximum amount of megabytes allowed for virtual-memory storage.

VERBOSETYPE NORMAL keyword
Tells SWarp how well operations should be commented:

QUIET Run silently
LOG Log essential information
NORMAL Display information dynamically (using control

characters)
FULL Display more complete information

WEIGHTIMAGE strings (n � n ima)
List of input weight-map �lenames

WEIGHTOUTNAME coadd.fits string
File name of the output weight-map.

WEIGHTTHRESH*
oats (n � n ima)
Threshold below or above which input weights are de�ned equivalent to zero (in�nite
variance, i.e. a bad pixel).

7

WEIGHTTYPE NONE keywords(n � n ima)
Sets the type of input weight-maps:

NONE No weighting
MAPWEIGHT Relative weights (i.e. inverse variance)
MAPVARIANCE Relative variance
MAPRMS Absolute standard deviation

WRITEFILEINFO N boolean
If true, extended information about input �les is written in the header of the output FITS
image.

WRITEXML Y boolean
If true, meta-data are written in XML-VOTable format.

XMLNAME swarp.xml string
File name for the XML VOTable output of SWarp . Use \STDOUT" for piping to standard
output.

XSLNAME* . string
URL of an XSL style-sheet for the XML output of SWarp . The URL will appear in the
href attribute of the style-sheet tag.

6 How SWarp works

6.1 Overview of the software

What SWarp does is basically to read a set of input FITS images, resampleand combine them,
and �nally save the resultant FITS image to disk. The work can be decomposed in several steps:

1. Input image headers are read and checked for content. If con�gured in fully automatic
mode, SWarp will set the characteristics of the output frame based on this information.

2. Input images (and their weight-maps, if available) are read one-by-one. Background-maps
are built, and subtracted from the images if required.

3. Images are resampled, projected into subsections of the output frame, and saved as FITS
�les. \Projected" weight-maps are created too, even if no weight-maps were given in input.

4. A combined output image is created using the information stored in the \projected" weight-
maps. It consists of a composite of the resampled sub-sections. A composite output
weight-map is also written in the process.

The global layout of SWarp is presented in Fig. 1. Let us now describe each of the important
steps.

6.2 Image mapping and memory constraints

How doesSWarp projects input images into the output frame space? There aretwo ways of
applying a geometric transformation to an image (see Wolberg 1992). The most intuitive is

8

Input frames

Warped
weight-maps

weight-map
CompositeCo-added image

External
weight-maps

Input

Warped images

headers

Frame buffer Frame buffer

Frame bufferFrame buffer

Background
subtraction

Resampling
Image

Co-addition

Figure 1: Global Layout of SWarp .

9

called \forward mapping". It consists in scanning the input image pixel-per-pixel, line-by-line.
Each pixel is simply \thrown" to the position it is supposed t o occupy in the output grid.
Although this technique can be used for geometric resampling or \drizzling" (Fruchter & Hook
1997), it is totally cumbersome with high order interpolati on techniques. \Inverse mapping"
is far more e�cient in this case. In this procedure the output frame is scanned pixel-per-pixel
and line-by-line. Using the inverse projection, each output pixel center is associated a position
in the input frame, at which the image is interpolated. This t echnique has been implemented
in SWarp (Fig. 2); it possesses several advantages. The output imageis accessed sequentially,
and thus can be arbitrarily large. Also, only positions corresponding to pixels (or sub-pixels)
within the output frame have to be mapped.

Weight-mapInput image

weight-map
Resampled image Resampled

Flux
scaling

Variance
scaling

engine
Interpolation

alpha,delta
->

x,y (out)

Frame buffer Frame buffer

x,y (in)
->

alpha,delta

Figure 2: Layout of the image mapping section.

The most potentially critical part is the pseudo-random access in the input image. In most cases,
it will be an individual imaging array (like an individual CC D) and will therefore �t in memory.
For much larger input images however we rely on the e�ciency of virtual-memory-mapping.
SWarp's virtual memory engine works in the following way: each input image, stored as a
single precision, 4-byte array is loaded in physical memoryif the required amount of megabytes
doesn't exceedMEMMAX. If it does, a temporary �le called vmxxxxx xxxxx.tmp is written in the
directory speci�ed by VMEMDIRECTORY. The program exits with an error message if this �le would
exceedVMEMMAXMegabytes. The 3 \memory" parameters are mostly hardware-dependent. It is

10

advised to setMEMMAXto 50-100% of the actual amount of memory present in your machine. If
disk-space is not the limiting factor, VMEMMAXshould be set to a higher value, 2048 on a 32-bit
machine, or even more on a 64-bit machine. The choice of theVMEMDIRECTORYis critical. First,
this write-enabled directory must be large enough to contain each input image in
oating-point
format. Second, it is strongly recommended to have the data on a fast disk. Note that the
default path for VMEMDIRECTORYis /tmp , which on many systems is on a partition simply not
large enough to handle the typical quantities of data to process. An alternative is to use \.",
the current directory, at the expense of disk thrashing!

De-projecting and co-adding simultaneously all input images would frequently imply many �les
open at the same time, and large amounts of (virtual) memory.SWarp takes a more sequential
approach: each input image is mapped in a tightly-�tting rectangular subsection of the output
frame. All subsections are written to disk (in the RESAMPLEDIRECTORY) as swarp.xxx.�ts FITS
�les, and read back later during the co-addition phase, to be stacked together. Individual
subsection �les are automatically removed after processing or abortion. It is possible to disable
the deletion by setting the DELETETMPFILEScon�guration parameter to N (the default is Y).
This can be useful for diagnostic purposes.

Note that although SWarp does not use much memory, the amount of temporary disk-space
needed during processing can be quite large. In addition to the output image and weight-map,
one should provide disk-space for the individual projectedimages and their weight-maps. In the
case of mappings done at unit scale, this involves storing more than twice the amount of input
pixels as temporary data.

6.3 Propagating FITS keywords

During the re-gridding and co-addition processes involvedin SWarp , not all FITS keywords
present in the input image headers are automatically copiedto the output image headers, as
many of them become irrelevant. Table 1 lists the non-essential keywords that can be found in
the output FITS header after being propagated/updated by SWarp .

Table 1: Non-essential FITS keywords managed bySWarp

Name Output value
EXPTIME Sum of exposure times in the part of the coadd with the most overlaps
GAIN E�ective gain (
ux and weight scaling apply, see x6.9.2)
MJD-OBS Modi�ed Julian day of the earliest start of exposures
SATURATEMinimum of all input saturation levels (
ux scaling applies)

For data management purposes it is often useful to propagateother selected FITS keywords
(such asFILTERor TELESCOPfor instance) and their values from the input image headers to the
resampled and coadded image headers. To this aim, aCOPYKEYWORDScon�guration parameter is
provided. It accepts a list of FITS keywords that shall be copied in the headers of all the images
created bySWarp ; by default, only the OBJECTkeyword and its content are copied. Because the
coadded image can result from the combination of many input �les, only the keyword found in
the �rst image header from the input �le list is propagated up to the �nal coadded image. It is
important to note that SWarp does not check the content of the list ofCOPYKEYWORDS; therefore
one should be cautious not to propagate \structural" FITS keywords like NAXIS1,BITPIX,...
that may interfere with the interpretation of the output dat a.

11

6.4 Parallel processing

Versions� 1:32 of SWarp are \multi-threaded". Multi-threading allows CPU-intens ive tasks in
SWarp to be run in parallel on multi-core or Hyper-Threaded (HT) ma chines. Best performance
is generally achieved when the number of active threads is equal to the number of processor cores
in the machine (Fig. 3). This is automatically done with the default settings (NTHREADS= 0).
However, if other cpu-intensive tasks have to run on the samemachine at the same time, it can
be useful to setNTHREADSmanually, to have SWarp using a lower number of threads.

Figure 3: Pixel throughput of SWarp 2.0 resampling (Lanczos3) as a function of the number of
threads on an SMP machine with 4 Opteron-242 (1.6GHz) processors. Departure from perfect
linear scaling (indicated by the dashed line for reference)is due to I/O limitations and parts of
code that are not multithreaded.

6.5 Astrometry

The astrometric engine at the heart of SWarp is based on M. Calabretta'sWCSlib library 6, to
which we added the handling of polynomial distorsion parameters (FITS keywords PVxx xx) as
proposed in the latest WCS documents7. We included IRAF's TNXastrometric projection too
(for inputs only), although it is not part of the WCS standard .

All celestial coordinate computations are performed in theequatorial system. Galactic or ecliptic
coordinates are supported in input and output.

6Available at http://www.cv.nrao.edu/fits/src/wcs/
7http://www.cv.nrao.edu/fits/documents/wcs/wcs.html

12

6.5.1 Input frames

(De-)projection parameters of input images are extracted from their respective FITS headers.
These are the usualCTYPEx CRVALx, CRPIXx, CDELTxand/or CDxx xx WCS parameters. Exter-
nal \header" �les can also be provided by the user; for every input xxxx.�ts image,SWarp looks
for a xxxx.headheader �le, and loads it if present. A .headsu�x is the default; it can be changed
using the HEADERSUFFIXcon�guration parameter. External headers may either be real FITS
header cards (no carriage-return), or ASCII �les containing lines in FITS-like format, with the
�nal line starting with \ ENDttttt ". Multiple extensions in ASCII �les must be separated by an
\ ENDttttt " line; there should not be any primary header in that case. External \headers" need
not contain all the FITS keywords normally required. The keywords present in external headers
are only there to override their counterparts in the original image headers, or add new ones.

With SWarp it is possible to process a single extension from an input Multi-Extension FITS
(MEF) �le, be it an image or a weight-map. For instance, to pro cess only the 3rd extension from
the MEF �le called mef.fits , one should usemef.fits[2] . Note that in command lines, the [
and] characters must be escaped with\ , or the complete name put between double quotes, to
avoid expansion by the shell.

6.5.2 Output frames

The celestial pair of components of the output coordinate system is speci�ed with the CELESTIALTYPE
con�guration parameter, and can be selected amongNATIVE, PIXEL, EQUATORIAL, GALACTICand
ECLIPTIC. In NATIVEmode, the output celestial coordinate system is taken from that of the �rst
�le of the input list. This is the default. The PIXELoption forces SWarp to ignore all the \ce-
lestial" aspects (projection, de-projection, sky coordinates) of both input and output images. It
provides a major speed-up to the warping engine by bypassingall the trigonometric operations
normally involved in the other modes. It is useful for quickly combining mosaic images whenever
astrometric information is not needed. In PIXELmode, degrees are interpreted as dimensionless
Cartesian coordinates.

The output (celestial) projection is set by the PROJECTIONTYPEcon�guration parameter. The
list of all presently supported projections is shown in Table 2, and illustrated in Fig. 4 and 5
using a gridded map of the Earth.

Now, what projection is the best? With \small" �elds (< 10 degrees in their maximum di-
mension), the choice is not critical as long as the projection center lies within the frame. For
compatibility reasons, it is advised to stay with the tradit ional gnomonic (TAN, for tangential)
projection in such cases. With larger �elds the pure tangential projection is inappropriate, and
one is faced with the usual problems confronted by cartographers. It would be outside the
scope of this document to discuss the merits of each projection. For detailed information about
the di�erent projection systems, the user should refer to the latest WCS document. Let us just
mention that equal-area projections (those that conserve relative areas) are often to be preferred
for mapping large sky surveys, because they naturally conserve surface-brightness and/or allow
summing pixel values to measure
uxes. The following are equal-area projections: ZEA, CEA,
COE, BON, GLS, PAR, MOL, AIT, QSC. AIT (Aito�) is one of the most popular projections for all-sky
maps.

Note that some of the projections (CYP, CEA, COD, COE, COO, COPand BON) require additional
PVxx xx parameters. These parameters can easily be included in axxxx.headheader �le with
the same pre�x as the output coadded image (which iscoadd.�ts by default, see the example at
the end of this document).

13

Table 2: Valid PROJECTIONTYPEs in SWarp

Zenithal projections
AZP Zenithal perspective
TAN Distorted tangential
STG Stereographic
SIN Slant orthographic
ARC Zenithal equidistant
ZPN Zenithal polynomial
ZEA Zenithal equal-area
AIR Airy

Cylindrical projections
CYP Cylindrical perspective
CEA Cylindrical equal-area
CAR Plate carr�ee
MER Mercator

Conic projections
COP Conic perspective
COE Conic equal-area
COD Conic equidistant
COO Conic orthomorphic

Pseudoconic and polyconic projections
BON Bonne's equal-area
PCO Polyconic

Pseudocylindrical projections
GLS Global sinusoidal (Sanson-Flamsteed)
PAR Parabolic
MOL Mollweide
AIT Hammer-Aito�

Quad-cube projections
TSC Tangential spherical cube
CSC COBE quadrilateralized spherical cube
QSC Quadrilateralized spherical cube

14

AZP TAN STG SIN

ARC/ZPN ZEA AIR

CYP CEA� CAR MER

COP COE COD COO

BON PCO

Figure 4: Graphic illustration of projections available in the WCS library (see text).

15

GLS PAR MOL AIT

TSC CSC QSC

Figure 5: Graphic illustration of projections available in the WCS library (continued from Fig.
4).

Centering of the output frame is controlled by the CENTERTYPEparameter. There are three
centering modes:

� ALL: the �eld is centered in a way that all input images �t into the output frame. This is
the default.

� MOST: the �eld is centered on the zone of maximum overlap between input images.

� MANUAL: manual centering with the CENTERparameter.

A di�erent centering mode can be used in each dimension; for instance, in 2D images with�; �
coordinates, \CENTERTYPE ALL,MOST" will apply the ALL mode in � and the MOSTmode in � .
If a single mode is speci�ed, it is applied to all available dimensions.

The CENTERparameters are active inCENTERTYPE MANUALmode only, and must be used to spec-
ify the actual center of the output �eld, in world units. In th e case of angular coordinates, both
the
oating point (in degrees) and sexagedecimal formats are accepted: right ascension/longitude
may be written as hh:mm:ss.ss, and declination/latitude as � dd:mm:ss.ss.

The pixel \scale" (which is the step between pixels at the center of the output frame) can be
computed automatically in each dimension bySWarp . There are �ve modes speci�ed by the
PIXELSCALETYPEcon�guration parameter:

� MEDIAN(the default): the median value of all pixel scales at the center of input frames is
taken as the output pixel scale.

� MIN: the smallest of all pixel scales at the center of input frames is taken.

� MAX: the largest of all pixel scales at the center of input framesis taken.

� MANUAL: manual scaling with the PIXEL SCALEcon�guration parameter.

16

� FIT: Pixel scales are automatically computed to have the projected data �tting the output
frame dimensions speci�ed with the IMAGESIZE con�guration parameter.

When right ascension/longitude and declination/latitude are both present, pixel scales computed
by SWarp are made equal in both dimensions to avoid anamorphosis.

The PIXEL SCALEparameters are active inPIXELSCALETYPE MANUALmode only, and must be
used to specify the actual pixel step for each dimension, in world units. Note that in the case
of angular coordinates,PIXEL SCALEvalues are read in arcseconds, not degrees.

The dimensions of the output frame (in number of pixels per axis) are set using theIMAGESIZE
con�guration parameter. A value of 0 for any axis results in an automatic dimensioning of this
axis; but obviously this is not possible in PIXELSCALETYPE FITmode.

Note that the current simple algorithms used for automatic centering and scaling routines can
get confused rather easily close to the pole or with some verywide �eld projections. In particular,
it is recommended to turn o� automatic settings when making all-sky projections.

6.5.3 Bi-cubic spline interpolation

The trigonometric calculations involved in SWarp re-projections have a major impact on pro-
cessing speed. To accelerate the resampling phase, versions � 2:06 of SWarp implement a bi-
cubic spline interpolation8 of the astrometric mapping between the input and the output frames.
Interpolation is used by default for large images, with a maximum allowed positional error of
10� 3 pixel (as measured in the output frame). This error tolerance can be changed independently
for each input image with the PROJECTIONERRcon�guration parameter. A PROJECTIONERRof
0 turns interpolation o�. Interpolation is also automatica lly deactivated for smaller images or
inappropriate mappings like all-sky projections or projection with singularities.

6.6 Resampling

The action of projecting a grid of pixels on another grid is called resampling. Ideal image
resampling involves both �ltering and interpolation betwe en pixels. In SWarp , �ltering is
\naturally" implemented by oversampling the destination g rid. BecauseSWarp uses reverse-
mapping, interpolation is made on the input images.

6.6.1 Image data

At each position x , the dot-product between a local kernelk(x) and neighbouring pixel values
f yields a local, interpolated value:

~f (x) = k(x):f (1)

The kernel is derived locally from an interpolation function h:

ki (x) = h(x � x i) (2)

The RESAMPLINGTYPEcon�guration parameter allows the user to choose among several sym-
metric, compact interpolation functions:

8This feature is currently limited to 2D images.

17

� NEAREST: a \square box" response function, with width 1 pixel. Apply ing this function
produces nearest-neighbour interpolation (also known as sample-and-hold). The kernel
extends over a single input pixel.

� BILINEAR: a pyramidal response function with Full-Width at Half Maxi mum 1 pixel. This
results in a bilinear interpolation . The kernel extends over 2ndim pixels.

� LANCZOS2: a
Q

d sinc(�x d)sinc(�
2 xd) response function with (� 2 < x d � 2) (Lanczos2

window). The kernel extends over 4ndim pixels.

� LANCZOS3: a
Q

d sinc(�x d)sinc(�
3 xd) response function with (� 3 < x d � 3) (Lanczos3

window). The kernel extends over 6ndim pixels.

� LANCZOS4: a
Q

d sinc(�x d)sinc(�
4 xd) response function with (� 4 < x d � 4) (Lanczos4

window). The kernel extends over 8ndim pixels.

As demonstrated in Fig. 6, the Lanczos4 interpolation function provides the best resampling
for correctly sampled data. In theory one could use an even larger kernel to get a closer-to-
perfect resampling. However in practice large kernels witha sharply-limited bandpass carry more
problems than advantages. Artifacts, image borders or undersampled data generate extended
ripples (Gibbs' phenomenon). These ripples are obvious on the saturation trail and the cosmic
ray impact of the Lanczos interpolations in Fig. 6. In additi on, the computational cost becomes
prohibitive with multi-dimensional data.

Nearest-neighbour interpolation provides a good conservation of the noise spectrum at scales
close to unity; unfortunately, it generates a terrible aliasing when zooming in, and can distort
a lot object shapes at places. Its usage should therefore be restricted to images such as
ag- or
weight-maps.

Bilinear interpolation is fast and doesn't generate negative artifacts. However, it creates a lot of
smoothing by correlating the values of neighbour pixels. Onimages with white noise, this may
lead to obvious \moir�e" e�ects (Fig. 7). Nevertheless, bil inear interpolation can be useful for
processing undersampled data.

In general, Lanczos3 resampling represents the best compromise. As can be seen in Fig. 8, it
brings a substantial bene�t over bilinear interpolation in preserving the signal, while creating
relatively modest artifacts around image discontinuities.

6.6.2 Oversampling

Unfortunately the procedure described above generates aliasing when \zooming out" su�ciently
an image by resampling it at a lower resolution. Moreover, the intensity of the resampled
background white noise stays constant instead of being proportional to the zooming factor
(see Fig. 10). This is because the algorithm essentiallydecimatesthe data instead of binning
them within the output pixel footprint: a similar e�ect appl ies in the panning windows of
astronomical visualization tools, for instance. This problem can be approximately solved by
dilating appropriately the interpolation kernel, or by pre -�ltering the input image (like textures
in 3D hardware). A more exact and more e�cient solution is to oversamplethe output pixel
grid (Fig. 10), in order to obtain a density of samples per unit area (or hypervolume) at least
equal to that of the input image.

Oversampling is controlled by the OVERSAMPLINGcon�guration parameter. If OVERSAMPLINGis
set to 1, no oversampling is applied. AnOVERSAMPLINGof 2 oversamples the data by 2ndim

18

Figure 6: Comparison between resampling methods.From top to bottom: nearest-neighbour,
bilinear, Lanczos2, Lanczos3, Lanczos4.From left to right : Interpolation function pro�le, Mod-
ulation Transfer Function, result from shifting an image by half a pixel in both direction, and
result for a 5� zoom + rotation by 20 degrees.

19

Figure 7: Example of moir�e pattern on the background noise,generated by bilinearly resampling
an image containing white noise at a pixel scale slightly di�erent from 1.

samples per pixel, and so on. Oversampling can be di�erent ineach dimension:OVERSAMPLING
2,3 will oversample each pixel in a 2� 3 grid for instance. An OVERSAMPLINGof 0 (the default)
lets SWarp select automatically the most appropriate oversampling factor in each dimension,
by comparing pixel scales at the reference point. Although it works fairly well in many cases,
situations where the pixel scale varies a lot over the image | like in all-sky projections | are
not yet properly handled, and manual setting should then be prefered.

Note that oversampling considerably slows down the processing; OVERSAMPLINGvalues should
therefore be selected with some caution!

6.6.3 Noise stability issues

So far we have ignored the in
uence of noise variations in theresampling process. In theory,
the interpolation schemes described above apply only if thenoise is stationary (in the wide
sense) over the extent of the interpolation kernel. Artifacts aside, this can be considered as
true for the background noise, since the weight-maps are reasonably stable at the interpolation
scale. However, the photon noise associated with the sources themselves may vary strongly
over the scale of the PSF FWHM. As most astronomical images are barely oversampled, the
hypothesis of noise stationarity breaks down on bright point sources for which intrinsic photon
noises dominates9 In the most severe cases, resampled noise peaks may generatedistorsions in
the resampled pro�les.

Low-background-noise simulations were conducted in orderto evaluate the amplitude of these
distorsions on correctly-sampled data (PSF FWHM = 3 pixels). The e�ect is small, although
not totally negligible on sources with intermediate intensity. On pro�le-�tting measurements
for instance, photometry can be a�ected at the level of a few millimag rms. The degradation of
astrometric precision was found not to exceed a few millipixelsrms. On typical background-noise
limited images the e�ects are even smaller.

9 It is possible to stabilize the noise variance using a non-linear dynamic scale transform (Anscombe 1948,
see also Starket al. 1998). The transformed signal is still bandpass-limited bu t unfortunately, resampling and
transforming it back biases signi�cantly the data.

20

Figure 8: E�ects of the resampling on position (top) and
ux (bottom) measurements. Left:
bilinear interpolation; right: Lanczos3 interpolation. In both cases, a simulated deep sky image
with 0.7" seeing, containing stars and white background noise, was rotated by 20 degrees and
then rotated back to match the original image. Fluxes were measured in a �xed 2" aperture. The
dispersions seen here re
ect the di�erences betweenmeasurementson the original and resampled
images. These dispersions are much smaller than what one would observe by comparing the
measurements on the resampled images with the theoretical (noise-free) positions or
uxes of
the simulation. Note however the signi�cant magnitude o�set and
ux dispersion in the bilinear
case, consequences of the stronger smoothing induced by bilinear interpolation.

21

Figure 9: Oversampling in SWarp . The input grid is shown as small grey squares, whereas the
output grid (resampled image) is represented by the large tilted ones. Left: Without oversam-
pling, only one interpolation (dark spot) of the input image is done at the center of each output
pixel. Right: with oversampling, several interpolated samples are obtained on a regular subgrid,
and then binned in each output pixel. Here a 3� 3 oversampling is su�cient.

Figure 10: The e�ect of oversampling in SWarp . A deep, real image with a 0.2" pixel scale
and 0.8" seeing FWHM is resampled at 1" resolution.Left: no oversampling. Right: with 5 � 5
oversampling. Note the lower noise level and higher depth inthe right image.

22

6.6.4 Weight-maps

The processing of the weight-maps (seex6.9.2) follows that of the data images, except that one
is dealing now with variances instead of
uxes. The resampled weight at position x may be
written as

~w(x) =
1

P
i

k2
i (x)
wi

(3)

Therefore when an input weight within the range of the interpolation function is zero, the
interpolated weight is also zero. The general consequence is that the borders of interpolated
images are trimmed by half the range of the interpolation function. Similarly, small \holes" in
a provided weight-map are dilated by the interpolation function footprint. For example, once
interpolated with a Lanczos4 kernel, a single, isolated zero-weight pixel will yield a clump of
about 64 pixels in the resampled image! This is another illustration of the disadvantages in
using large interpolation kernels.

6.7 Background subtraction

The
ux at each pixel is a function of the sum of a \background" signal and light coming from
the objects of interest. At most wavelengths, the strongestcontribution to the background is of
instrumental/atmospheric/ecliptic origin, and is theref ore prone to changes between exposures.
If not subtracted, the compositing of all these exposures will often produce an ugly patchwork
created by all the di�erent individual backgrounds. A solut ion to this problem is to apply
background-subtraction prior to resampling and co-adding the data. Large-scale gradients of
instrumental origin are commonly found on astronomical images, hence subtracting a constant
from each frame will generally yield poor results, as shown in Fig. 11). It is therefore necessary
to subtract a smooth background mapwhich contains the low-spatial-frequency noise components
of the data, including any o�set. Subtracting a background-map may alter or destroy the signal
of scienti�c interest; thus some caution is needed in choosing parameters for this procedure.

Background subtraction is activated by setting the SUBTRACTBACKcon�guration parameter to
Y (which is the default). Setting it to N will disable subtraction, but background estimation
will still take place (it is needed by other SWarp tasks), and the processing time will stay
approximately the same.

Background estimation uses SExtractor's algorithm and is controllable with the same key-
words10. The following is largely copied from SExtractor documentation (Bertin 1999).

To construct the background map, SWarp makes a �rst pass through the pixel data, computing
an estimator for the local background in each mesh of a grid that covers the whole frame. The
background estimator is a combination of �:� clipping and mode estimation, similar to the
one employed in Stetson's DAOPHOT program (see e.g. Da Costa1992). Brie
y, the local
background histogram is clipped iteratively until convergence at � 3� around its median; if �
is changed by less than 20% during that process, we consider that the �eld is not crowded and
we simply take the mean of the clipped histogram as a value forthe background; otherwise we
estimate the mode with:

Mode = 2:5 � Median � 1:5 � Mean (4)

This expression is di�erent from the usual approximation

Mode = 3 � Median � 2 � Mean (5)

10 In SWarp All background con�guration keywords accept a list of value s, one value for each input frame.

23

Figure 11: Example of residual gradients in a co-addition after a constant has been subtracted
from input images.

(e.g. Kendall and Stuart 1977), but was found to be more accurate with our clipped distri-
butions, from the simulations we made. Fig. 12 shows that theexpression of the mode above
is considerably less a�ected11 by crowding than a simple clipped mean | like the one used in
FOCAS (Jarvis and Tyson 1981) or by Infante (1987) | but is � 30% noisier. For this reason
we revert to the mean in non-crowded �elds.

The choice of the mesh size (in pixels),BACKSIZE, is critical. If it is too small, the background
estimation is a�ected by the presence of objects and random noise. But more important is the
fact that part of the
ux of extended objects can be absorbed in the background map. The
e�ect may be almost unnoticeable on individual input images (where the signal-to-noise ratio is
low), and have measurable photometric consequences on the deep, coadded image. It is therefore
advised to use largeBACKSIZEs in SWarp . Of course if the mesh size is too large, it will not
be able to reproduce all the variations of the background; a good compromise has to be found
by the user. Typically, for reasonably sampled images, a size of 128 (the default) to 512 pixels
should work well.

The �nal background map is a (natural) bicubic-spline inter polation between the meshes of the
grid. Before interpolating, a median �lter can be applied to suppress possible local overestima-
tions due to bright stars or artifacts. BACKFILTERSIZEsets the size (in background meshes) of

11 Obviously in some very unfavorable cases (like small meshesfalling on bright stars), it leads to totally
inaccurate results.

24

-10

-5

0

5

10

0 5 10 15 20 25 30

C
lip

pe
d

M
od

e
(A

D
U

)

Clipped Mean (ADU)

Figure 12: Simulations of 32� 32 pixels background meshes polluted by random Gaussian
pro�les. The true background lies at 0 ADU. While being slightly noisier, the clipped \Mode"
gives a more robust estimate than a clipped Mean in crowded regions.

the median �lter. \1" means no �ltering applied to the backgr ound grid. Usually a size of 3
meshes (the default) is su�cient, but it may be necessary to use larger dimensions, especially
to compensate, in part, for small background mesh sizes, or in the case of large artifacts in the
images. Median �ltering also helps reducing possible ringing e�ects of the bicubic-spline around
bright features. In some speci�c cases it might be desirableto median-�lter only background
meshes whose original values exceed some threshold above the �ltered-value. This di�erential
threshold is set by the BACKFILTERTHRESHparameter, in ADUs. The default is 0.

By default the computed background-map is automatically subtracted from the input image.
But there are some situations where it is more appropriate tosubtract a constant from the
image (e.g., images where the background noise distribution is strongly skewed). TheBACKTYPE
con�guration parameter (set by default to \AUTO") can be swi tched to MANUALto allow for
the value speci�ed by the BACKDEFAULTparameter to be subtracted from the input image. The
default value is 0.

As said before, the background estimation procedure is usednot only for background subtraction,
but also for other tasks in SWarp , such as weight calibration. Thus even ifSUBTRACTBACKis
set to Nor BACKTYPEis in MANUALmode, \reasonable" values for other background parameters
must be given to ensure proper working of the software.

Note that the present version of background subtraction doesn't work on non-2D images.

6.8 Scaling the
ux

How are
uxes modi�ed by image warping? Let us assumeF is the integrated
ux (in units of
e� for simpli�cation) of a source of �nite extent S that would be recorded on a perfect detector

25

array. In the continuous limit, we de�ne

F �
Z

S
f (x) d2x; (6)

where f (x) is the pixel value at physical position x on the detector. In real life, pixel values are
a�ected by a variable e�ciency q, yielding a measured \raw"
ux

Fr =
Z

S
q(x)f (x) d2x: (7)

Digital images are generally divided by a \
at-�eld" and eve n a \super-
at" prior to SWarp ing.
The assumption behind
at-�elding is that the light receive d from the sky or the dome, and
recorded to form the
at-�eld, has uniform radiance (i.e. constant
ux per solid angle). The

ux measured on the
at-�elded image is therefore

Ff =
Z

S

q(x)f (x)
f 0q(x)�
(x)

d2x =
Z

S

f (x)
f 0�
(x)

d2x; (8)

where �
 is the local sky area sustained by a pixel (area � 1 in pixel units), and f 0 the scaling
factor of the
at-�eld, which we will set to 1 for the sake of si mplicity. As can be seen,
at-
�elding does not make the image \
at" in terms of sensitivity ; it introduces a dependency with
astrometrical distorsion. With most cameras the e�ect is generally small (� 1 millimag). The
resampling operations described inx6.6 are designed to conserve surface brightness per pixel,
hence the
ux recorded on the warped image, with new physicalcoordinatesx 0 is now

Ffw =
Z

S

f (x)
�
(x)

d2x0 =
Z

S

f (x)
�
(x)

�
�
�
�
�
@x0i
@xj

�
�
�
�
�

d2x =
Z

S
f (x)

�
�
�
�
�
@x0i
@�j

�
�
�
�
�

d2x: (9)

� represents the local (angular) sky coordinate vector. We have made use of the fact that if pixel
size is small compared to the rate of change of plate scale (which is almost always true), �
(x)
is equal to the Jacobian of the de-projection

�
�
� @�i

@xj

�
�
�. Now if an equal-area projection is selected

for the output image,
�
�
�

@x0i
@�j

�
�
� is constant and we have the nice relationFfw / F . This means that

swarping properly
at�elded data using an equal-area output projection produces an image with
a perfectly
at response to the incoming
ux 12. This is why equal-area projections should be
prefered to other projections whenever possible.

Immediately following resampling, the intensity of each image is scaled according to the con�gu-
ration parameters. The
ux-scaling parameter pi is the product of two factors: a \photometric"
factor, and an \astrometric" one. Currently, the photometr ic part must be speci�ed by the
user (for instance in a pipeline it is generally produced by the photometric calibration process).
The photometric factor can be set directly using the con�guration parameter FSCALEDEFAULT:
there must be one value per input image, separated by a coma. It can also be read from the
FITS header. The FSCALEKEYWORDcon�guration parameter tells SWarp what FITS keyword
to look for in each input image. The default is \FLXSCALE". If the FSCALEKEYWORDis not
found in the image header, then theFSCALEDEFAULTvalue is taken instead. FSCALEDEFAULT
is defaulted to 1 for all images.

The astrometric part of the
ux-scaling factor corrects for the di�erence in pixel size between the
input and output images. The FSCALASTROTYPEcon�guration parameter controls the behaviour
of this \astrometric"
ux-scaling. The default behaviour (FSCALASTROTYPE FIXED) is to apply

12 Warning: this
ux correction can be extremely inaccurate | 1 0% error or even more! | for sources that are
undersampled on the output image.

26

a constant correction factor to account for possible mismatches in pixel size. Hence
ux is con-
served only when equal-area projections are used for both input and output. FSCALASTROTYPE
VARIABLEapplies a pixel-scale correction variable throughout the �eld and can therefore be
used on any kind of projection. The impact on processing speed is negligible when bi-cubic
spline interpolation is used (x6.5.3). \Astrometric"
ux-scaling can be deactivated by us ing the
FSCALASTROTYPE NONEoption.

6.9 Combining resampled images

This is the last part of the processing. Now at each pixel position of the output image, SWarp
has to combine data values coming from all the resampled image, each one coming with a rough
estimate of its variance (from the resampled weight-map). Many combinations are therefore
possible.

6.9.1 Various types of image combination

The user can choose between the following options, as arguments to the COMBINETYPEcon�gu-
ration parameter:

� AVERAGE: The output is simply an unweighted average of all pixel values with non-zero
weights:

F =
P

i pi f i

n6=0
; (10)

where pi is the
ux scaling factor (see x6.8), and the composite weight is

W =
n2

6=0
P

i
1

qi wi

; (11)

where the wi are proportional to the inverse of the scaled variance: 1
p2

i � 2 . Needless to

say that this combination is not optimum in terms of S/N, unle ss all input images have
identical Gaussian noise.

� CHI2: The output is the square-root of the reduced� 2 of all pixel values with non-zero
weights:

F =

s P
i wi f 2

i

n6=0
: (12)

By construction, the composite weight (the absolute one) is

W � 1: (13)

The result of the combination is a so-called \� 2 image". Although it does not respond
linearly to the input signals, it can be used for detecting sources. As shown by Szalay et
al. (1999), the \ � 2 image" is indeed the optimum combination to achieve panchromatic
detection on a set of images taken at di�erent wavelengths, provided the data sets are
background-noise limited and that the noise is uncorrelated between frames. This assumes
further that the Point Spread Function (PSF) has been homogenized in all channels.� 2

images are most often used in deep panchromatic surveys requiring photometric redshift
analyses. The double-image mode of SExtractor allows one todetect on the � 2 image
while making the photometric measurements on each of the single-band images.

27

� MEDIAN: The output is the median of all scaled pixel values with non-zero weights:

F = median(f i): (14)

Assuming Gaussian noise distribution, we obtain the following approximation to the com-
posite weight (see e.g. Kendall & Stuart 1977):

W =

8
>><

>>:

2
�

� P
i

p
wi

n6=0

� 2 �
n6=0 + �

2 � 1
�

if n6=0 is even,

2
�

� P
i

p
wi

n6=0

� 2

(n6=0 + � � 2) otherwise.
(15)

This approximation can become inaccurate ifwj varies by large proportions (a factor of
3 or more) from frame to frame. The median is convenient for combining data polluted
by unidenti�ed glitches or noise spikes. It generally provides \safe" (robust) co-additions
even with strongly non-Gaussian noise distributions. However it is suboptimal for Gaussian
noise: the resulting variance is increased by� 60% compared to what is obtained with
an average. As with all non-linear combinations, one shouldcheck that input images have
approximately the same Point Spread Function if point-sources are to be co-added. One
should also avoid theMEDIANoption when combining images with very di�erent depths.

� MIN: The output is the minimum of all pixel values with non-zero weights:

F = min(pi f i): (16)

The variance of F is too \noise-distribution dependent" to allow some estimation, hence
we set

W =

(
1 if n6=0 6= 0 ;
0 otherwise.

(17)

� MAX: The output is the maximum of all pixel values with non-zero weights:

F = min(pi f i): (18)

The variance of F is too \noise-distribution dependent" to allow some estimation, hence
we set

W =

(
1 if n6=0 6= 0 ;
0 otherwise.

(19)

Maxima and minima can be useful for identifying defects or rare events in a set of data.

� SUM: The output is an unweighted sum of all pixel values with non-zero weights:

F =
X

i

pi f i : (20)

The composite weight is

W =
1

P
i

1
qi wi

: (21)

Subtractions can be carried out instead of additions by using negative
ux scaling factors.

� WEIGHTED: The output is a weighted average of input values:

F =
P

i wi pi f iP
i wi

: (22)

28

The output weight is just the sum of input weights:

W =
X

i

wi : (23)

This combination should be the most appropriate for detecting and measuring faint sources
on properly weighted, homogeneous images. Because it is a linear processing, new data
can be added later if needed.

6.9.2 Weighted coaddition

Weight-maps provide a convenient way to store the standard
ux error assigned to each pixel.

For each input image 1 � i � N entering image combination, one can de�ne the following
parameters in an arbitrarily small \pixel" j :

- The local, uncalibrated
ux f ij = f ij + � f ij , where f ij is the
ux contributed by the sky
background, and � f ij that contributed by celestial sources,

- the local, uncalibrated variance of the
ux � 2
ij = � 2

ij + � � 2
ij , where � 2

ij is the
ux variance
contributed by the background noise, and � � 2

ij that contributed by the photon statistics
of celestial sources,

- the local,normalized weight13 wij ,

- the electronic gain of the CCD gi , in e� =ADU (de�ned at wij = 1),

- the relative
ux scaling factor pi deduced from the photometric solution to calibrate the
images:

pi � f ij = pl � f lj 8 i; j; l; (24)

- and the relative weight scaling factor qi derived from the comparison of the background
noise level with the normalized weight; input images will beweighted with qi wi .

� f i , � � 2
i , wi and gi are related through:

gi wij =
� f ij

� � 2
ij

: (25)

Now, to optimally co-add calibrated images, one could weight them using

qi wij =
1

p2
i � 2

ij
: (26)

However, such weight maps exhibit strong variations on small scales, in the presence of celestial
objects (� 2

ij increases a lot on bright pixels). The modulating e�ect of weighting, combined
with variations of the PSF and sampling errors would lead to signi�cant distorsions of stellar
pro�les. It is therefore more appropriate to weight pixels according to the intensity of the local
background noise, which is far smoother:

qi wij =
1

p2
i � 2

ij

: (27)

13 Both
uxes and weights may have gone through resampling, but for the sake of clarity we shall from now
drop the \ ~ " from x6.6

29

This has also the advantage that one can use normalized
at-�elds as wij 's, without prior
knowledge of the CCD gain in the case where instrumental noise is negligeable. For faint
objects, this weighting scheme is as e�cient as that of (26), and is only suboptimum for the
objects with very high surface-brightness, when theqi 's vary a lot from exposure to exposure.
But as these objects are easily detected on individual exposures, the most accurate photometry
is still possible by combining the N measurements.

In practice, SWarp can read several types of weight-maps, although they are allinternally
converted to variance for processing. The input weight-mapformat must be speci�ed with the
WEIGHTTYPEkeyword. WEIGHTTYPE NONEis for no input weight-map (the default), MAPRMSfor
indicating that the data contain the absolute standard deviation of pixel values, MAPVARIANCE,
for weight-map data stored as relative variances, andMAPWEIGHTfor relative weights. Relative
variance maps and weight maps are re-scaled internally using local variance measurements made
directly on the input images. This has the advantage of making it possible to use for instance
a single
at-�eld image as a weight-map for a whole series of background-noise-limited images
with di�erent exposures. But automatic re-scaling may sometimes lead to inaccurate weightings,
because of source crowding or \complicated" weight-maps for instance. In cases where accurate
weighting is important, one should either use absolute standard deviation maps (WEIGHTTYPE
MAPRMS), or turn o� weight/variance rescaling by setting the RESCALEWEIGHTScon�guration
switch to N(default is Y).

When producing composite �elds larger than the input images, the latter must be background-
subtracted prior to coaddition, to avoid generating discontinuites in the output image. Thus
one can write the output coadded
ux as

� f j =
P

i qi wij pi � f ijP
i qi wij

= pl � f lj 8l; (28)

and the resulting variance as

� � 2
j =

P
i q2

i w2
ij p2

i � � 2
ij

(
P

i qi wij)2 : (29)

Using (25), an equivalent \local gain" Gj in the coadded image can be computed:

Gj wj =
� f j

� � 2
j

=
P

i qi wij pi � f ijP
i q2

i w2
ij p2

i � � 2
ij

:
X

i

qi wij ; (30)

where wj is the composite weight-map of the coadded image. From our de�nition of weights,
wj is inversely proportional to � 2

j and must be 1 if all input weights are at 1; hence it is easy to
show that

wj =
P

i qi wijP
i qi

: (31)

Substituting (31) in (30), and using (24) and (25), one gets

Gj =
P

i qi wij
P

i q2
i wij pi g� 1

i

:
X

i

qi : (32)

Unfortunately, as can be seen, this \coadded gain" will vary with position in the general case.
Nevertheless, some approximations can be made to simplify this expression. First of all, in most
cases,gi will be almost constant from one input image to another. Second, if exposures are
taken under photometric conditions with constant sky brightness and negligible instrumental
noise, one should haveqi / p� 1

i , removing the dependence with input weights, and therefore
position in the coadded image. In that very case, the resulting gain is simply

G � g
X

i

p� 1
i : (33)

30

Sadly, in many bands, the presence of clouds does not decrease the sky brightness as much
as source brightness, and doesn't act at all like a decrease in global sensitivity or exposure
time. Coadded regions of a survey that are taken under non-photometric conditions experience

uctuating \gains". But this e�ect is generally small: taki ng the quite unfavourable case of
qi / p� 2

i (constant background noise) with pi 's varying by a factor of 4 between two exposures,
and weights varying from 0.5 to 1, makesGj to vary by 20% at most. This should not cause
signi�cant di�culties in any pro�le �tting routine. Theref ore (33) still remains a very good
approximation in the general case, and the \coadded gains" provided by this method are still
more stable than what unweighted co-addition o�ers.

This does not prevent regions with lower coverage (in whichN is smaller) having lower gains. To
avoid large gain drops in the gaps of CCD mosaic images, it is recommended for the observations
to use large, random dithering patterns consisting of at least 4-5 exposures per covered sky area.

6.9.3 Image bu�ering and memory constraints

In order to maximize the e�ciency of the image combination pr ocess,SWarp version 2.0 and
above allocates a signi�cant amount of memory to bu�er input and output data. This amount of
memory can be set by the user with theCOMBINEBUFSIZEcon�guration parameter. The default
value for COMBINEBUFSIZEis 256 (Megabytes). If your machine is a bit short of memory you
should decrease this value. Conversely if you need to combine a large number of overlapping
images, you might want to setCOMBINEBUFSIZEto a substantial fraction of the memory available
on your machine to avoid \disk thrashing".

6.9.4 Overlap information

SWarp uses the Bron and Kerbosh algorithm (1973) based on FITS header information to
estimate the maximum number of input frames that overlap and optimize the management of
its internal bu�ers. The maximum overlap density is display ed on screen prior to image combi-
nation and can be found in the output XML meta-data. Note that this estimate is somewhat
approximative as it ignores input weights (which can be zeroover signi�cant fraction of the
overlap), and that there can only be one single overlapping frame per multi-extension FITS
input �le.

The maximum overlap density is also used for computing the maximum accumulated exposure
time and maximum equivalent gain in the output frame. The maximum exposure time is sim-
ply the sum of all the exposure times from the individual overlapping frames. The maximum
equivalent gain is computed using (32) forCOMBINETYPEs AVERAGE, SUMand WEIGHTED. For all
other COMBINETYPEs the equivalent gain is just the average input gain in the overlap after the
scaling of pixel values.

The saturation level of the combined data (in ADU) is also computed if saturation values are
provided in the input image headers through the SATLEVKEYWORDFITS keyword, or directly
with the SATLEVDEFAULTcon�guration parameter. For any COMBINETYPEthe output saturation
level is de�ned as the minimum of all input saturation values after astrometric and photometric
rescaling have been applied.

31

7 Two-step co-addition and resampling

All the operations described so far can be done in one single run of SWarp . This generally
su�cient for small projects, which usually involve observations conducted over a short period
of time. However, for large sky surveys that can extend over years, this implies \waiting" for
the data to accumulate after passing through the reduction pipeline. In this caseSWarp would
only be started once all the �elds that cover a given sky area are available. Much of SWarp
processing time is spent in resampling the data; therefore for projects that extend over a long
period of time, it would be more e�cient to resample the images as they come out of the
reduction pipeline. The remaining of the work, co-addition, could be done at a later date.

To solve this problem, versions� 1:32 of SWarp allow the internal processing pipeline to be
split in two: image-resampling and image-combining. If theCOMBINEcon�guration parameter
is set to N, SWarp stops right after having background-subtracted and resampled the input
images. TheDELETETMPFILESoption is then automatically deactivated.

To combine images resampled at an earlier stage,RESAMPLEshould be set to N: in that case
SWarp will skip all the background-subtraction and resampling stage, and jump directly to the
combine process. Prior to version 2.0 this feature only worked with input resampled images
produced by SWarp , because of some speci�c information needed in the FITS header. Since
version 2.0, any FITS image can be used. However, whenRESAMPLEis set to N, SWarp combines
input images with the implicit assumption that they all shar e the sameCRVALand CDELTWCS
parameters: images are placed in the �nal frame according totheir NAXISN's and the integer
part of their CRPIX's. The RESAMPLE Nfeature can be used for instance to extract sub-images,
or paste input images within an arbitrary empty frame.

Setting both RESAMPLEand COMBINEto N will not produce any output �le, but can be useful
to check the content of input data or to adjust output astrometric parameters. By default,
RESAMPLEand COMBINEare both set to Y.

It may sometimes be useful to create only the header of what will become the combined image;
for instance for generating an output \.head" �le that will de�ne the output projection system.
Such a \.head" �le can then be copied to several machines that will resample input images
to a common projection, for later co-addition. This can be done by setting the HEADERONLY
con�guration parameter to Y; processing will stop before resampling like in the case where
RESAMPLEand COMBINEare set toN, but this time the header of the output image will be written
to disk.

8 Examples

In the following, examples of use ofSWarp are given, together with commented con�guration
�les.

8.1 Example 1

Let us assume one wants to produce a full-sky Aito� representation in galactic coordinates of a
series of observed �elds stored in*.fits 2D �les(with WCS info), for illustration purposes. The
�les might be dummy ones, supplemented with hand-made headers, or obtained from virtual
telescopes such asSkyView14, or real ones. In all cases an additional full sky map is useful to

14 http://skyview.gsfc.nasa.gov

32

delimit the full-sky: one may for instance download a 360 degrees Aito� projection of COBE-
DIRBE data from SkyView. The syntax is

% swarp *.fits

A possible default.swarp con�guration �le is

#---------------------------------- Output ---------- --------------------------

IMAGEOUT_NAME coadd.fits
WEIGHTOUT_NAME coadd.weight.fits

#------------------------------- Input Weights ------- -------------------------

WEIGHT_TYPE MAP_WEIGHT # Not used here
WEIGHT_SUFFIX .weight.fits
WEIGHT_IMAGE

#------------------------------- Co-addition -------- --------------------------

COMBINE_TYPE AVERAGE # This coaddition is for illustration
only: the weight-map will contain
a sum of field footprints

#-------------------------------- Astrometry -------- --------------------------

CELESTIAL_TYPE GALACTIC # Coordinate system forced to galactic
PROJECTION_TYPE AIT # Code for Aitoff
CENTER_TYPE MANUAL # Imposed to alpha = delta = 0.0
CENTER 00:00:00.0, +00:00:00.0 #
PIXELSCALE_TYPE MANUAL # The full sky area will exceed the

fraction that contains the fields
PIXEL_SCALE 1800.0 # in arcsec: Half a degree per pixel

at image center, on both axes
IMAGE_SIZE 800,400 # 360/0.5 = 720, 180/0.5 = 360,

plus a margin

#-------------------------------- Resampling -------- --------------------------

RESAMPLING_TYPE BILINEAR # For illustration purposes, no need
for a sophisticated interpolation

OVERSAMPLING 4 # A small oversampling only to have
pretty, antialiased field limits

INTERPOLATE N
GAIN_KEYWORD GAIN
GAIN_DEFAULT 0.0

#--------------------------- Background subtraction -- -------------------------

SUBTRACT_BACK N # No background subtraction
BACK_TYPE AUTO

33

BACK_DEFAULT 0.0
BACK_SIZE 128
BACK_FILTERSIZE 3

#------------------------- Virtual memory management -- ------------------------

VMEM_DIR .
VMEM_MAX 2047
MEM_MAX 256 # 256 MB should be enough to avoid

swapping

#------------------------------ Miscellaneous ------- --------------------------

DELETE_TMPFILES Y # Delete temporary resampled FITS files
VERBOSE_TYPE NORMAL

In this application, coverage maps can be generated using the output weight-map instead of the
image itself.

8.2 Example 2

In this example, one has a set of CCD images taken with a standard dithering strategy,
input*.fits , and the related set of weight-mapsinput*.w.fits However the unusual thing
is that for some reason the output has to be tilted by 30 degrees with respect to the local
north-south axis, and the pixels must have an aspect ratio of16:9!

First, one starts with a fairly standard con�guration �le:

#---------------------------------- Output ---------- --------------------------

IMAGEOUT_NAME coadd.fits # Output filename
WEIGHTOUT_NAME coadd.weight.fits # Output weight-map fil ename

#------------------------------- Input Weights ------- -------------------------

WEIGHT_TYPE MAP_WEIGHT #
(all or for each weight-map)

WEIGHT_SUFFIX .w.fits # Suffix to use for weight-maps
WEIGHT_IMAGE # Weightmap filename if suffix not used

(all or for each weight-map)

#------------------------------- Co-addition -------- --------------------------

COMBINE_TYPE WEIGHTED # weight-maps are provided

#-------------------------------- Astrometry -------- --------------------------

CELESTIAL_TYPE NATIVE # Standard stuff
PROJECTION_TYPE TAN # A tangent projection will do
CENTER_TYPE ALL # We want all the data to fit in
CENTER 00:00:00.0, +00:00:00.0 # Not used in CENTER_TYPE ALL mode

34

PIXELSCALE_TYPE MEDIAN # Will be overriden by coadd.head
PIXEL_SCALE 0.0 # Not used in MEDIAN mode
IMAGE_SIZE 0 # Automatic sizing

#-------------------------------- Resampling -------- --------------------------

RESAMPLING_TYPE LANCZOS3 # High quality resampling
OVERSAMPLING 0 # Auto. oversampling (=1 in that case)
INTERPOLATE N
GAIN_KEYWORD GAIN
GAIN_DEFAULT 0.0

#--------------------------- Background subtraction -- -------------------------

SUBTRACT_BACK Y # Needed for co-adding dithered fields
BACK_TYPE AUTO
BACK_DEFAULT 0.0
BACK_SIZE 128
BACK_FILTERSIZE 3

#------------------------- Virtual memory management -- ------------------------

VMEM_DIR .
VMEM_MAX 2047
MEM_MAX 128 # 128 MB should be enough to avoid

swapping

#------------------------------ Miscellaneous ------- --------------------------

DELETE_TMPFILES Y # Delete temporary resampled FITS files
VERBOSE_TYPE NORMAL

To implement the unusual output features required, one mustwrite a coadd.head ASCII �le
that contains a custom anisotropic scaling matrix. A coadd.head for pixels 0.2" large, that tilts
the image by 30 degrees and applies a 16:9 anamorphosis to thedata would be:

CD1_1 = 6.4150E-5
CD1_2 = 2.0833E-5
CD2_1 = -3.7037E-5
CD2_2 = 3.6084E-5
END

9 Troubleshooting

In case you face a problem which not listed below, please do not hesitate to discuss it in the
SWarp section of the AstrOmatic forums15.

My window terminal crashes during a long SWarp run!

15 http://astromatic.net/forum

35

Unexpected crashes ofXTerm windows have been reported. This seems to be caused by the
large number of ANSI control sequences thatSWarp sends to the terminal. You may either set
the SWarp con�guration keyword VERBOSETYPEto QUIETor FULL, and/or redirect the output
to a �le.

SWarp crashes with error messages like \ > *Error*: pthread create() failed... ".

The multithreaded version of SWarp requires a fairly large stack, that may exceed the maximum
value allowed by your shell. Use the shell commandlimit to increase thestacksize parameter
if required (you might need the root privileges to change this if it is a \hard" limit).

SWarp crashes with error messages like \ > *Error*: Not enough memory for... ",
although I have properly set the MEMMAX VMEMMAXparameters.

The maximum value allowed by your shell for memory use might be set too low. Use the shell
command limit to increase thedatasize , memoryuseand vmemoryuseparameters if required
(you might need the root privileges to change this if it is a \hard" limit).

SWarp crashes with error messages like \ > *Error*: cannot open for reading... "
during the co-addition phase, although it had no problem acc essing the same �les
for resampling.

The maximum number of open �les allowed by your shell might beset too low. Use the shell
command limit to increase thedescriptors and openfiles parameters if required (you might
need the root privileges to change this if it is a \hard" limit).

10 Acknowledging SWarp

Please use the following reference: Bertin E., Mellier Y., Radovich M., Missonnier G., Didelon P.,
Morin B., 2002, in Astronomical Data Analysis Software and Systems XI, ASP Conf. Series281,
228.

11 Acknowledgements

Many thanks go to Mark Calabretta (ATNF/CSIO, Epping) for hi s great astrometric library,
Nicolas Devillard (ESO, Garching) for introducing me to memory-mapping techniques, Chiara
Marmo (TERAPIX/IAP) for adding the computation of saturati on levels and doing many
bug�xes, Mireille Dantel-Fort, Laurent Domisse, Fr�ed�er ic Magnard, Yannick Mellier (TER-
APIX/IAP), Mario Radovich (OAC, Naples), Roeland Rengelin g (Sterrewacht, Leiden), Roy
Williams (CACR, CalTech), Jan Kohnert (AIP, Postdam), J•or g P. Dietrich (ESO, Garching)
Dafydd Wyn Evans (IoA, Cambridge),Joe Mohr, Shantanu Desai (University of Illinois) and
all the Astr Omatic forum users for testing and suggestions, and Henry JoyMcCracken (TER-
APIX/IAP) for help with the manual and additional testing.

References

[1] Anscombe F.J., 1948,Biometrika 15, 246

[2] Berriman G.B., Good J.C., Laity A.C., Kong M., 2008, ASP Conference Series394, 83

[3] Bertin E., 1999, SExtractor 2.1, User's manual, IAP

36

[4] Bertin E., 2006, ASP Conference Series351, 112

[5] Bron C., Kerbosch J., 1973,Communications of the ACM v.16, n.9 , 575

[6] Da Costa G.S., 1992, inAstronomical CCD Observing and Reduction Techniques, ed. How-
ell S.B. (ASP Conf. Series)

[7] Fruchter A., Hook R.N., 1997, SPIE 3164, 120

[8] Fruchter A., Hook R.N., 2002, PASP 114, 144

[9] Infante L., 1987, A&A 183, 177

[10] Jarvis J.J., Tyson J.A., 1981,AJ, 86, 476

[11] Kendall M., Stuart K., 1977, The Advanced Theory of Statistics, Vol. 1 , (Charles Gri�n
& Co., London)

[12] Makovoz D., Khan I., 2005,ASP Conference Series347, 81

[13] Starck J.-L., Murtagh F., Bijaoui A., 1998, Image Processing and Data Analysis(Cambridge
University Press)

[14] Szalay A.S., Connolly A.J., Szokoly G.P., 1999,AJ 117, 68

[15] Valdes F., 1998,ASP Conference Series145, 53

[16] Wolberg G., 1992,Digital Image Warping (IEEE Computer Society Press)

37

