
WeightWatcher
v1.10

User’s guide

E. BERTIN

C. MARMO

Institut d’Astrophysique

Contents

1 What is WeightWatcher? 1

2 License 1

3 Installing the software 1

3.1 Software and hardware requirements . 1

3.2 Obtaining WeightWatcher . 2

3.3 Installation . 2

4 Overview of the software 2

5 Using WeightWatcher 2

5.1 The Configuration file . 3

5.1.1 Creating a configuration file . 3

5.1.2 Format of the configuration file . 3

5.1.3 Parameter list . 4

5.2 Detailed description of the configuration parameters 5

5.2.1 Processing of the input weight-map(s) . 5

5.2.2 Processing of the input flag-map(s) . 5

5.2.3 Processing of the polygon vector files . 5

5.2.4 Output files . 6

5.2.5 Optional parameters . 6

5.2.6 Miscellaneous . 7

5.3 Example of configuration . 7

i

ii

1 What is WeightWatcher?

WeightWatcher (or simply WW) is a program that combines weight-maps, flag-maps, and
vector data in order to produce control maps which can directly be used by astronomical image-
processing packages like Drizzle[1], SExtractor or SWarp. Weight-thresholding and/or
specific flag selections are applied by WW through a configuration file: this alleviates other
programs from such interpretation work. WeightWatcher will mostly be useful as part of an
imaging survey pipeline. Its main features are:

• Processing speed: limited by the I/O performances of the machine (typically 50 Mpixel/s
on a workstation),

• Ability to work with very large images (up to, say, 108 × 109 pixels on a 64 bit system),

• FITS format (including Multi-Extension) is used for input and output. Output flag-map
format selection is automatic (8, 16 or 32bits),

• Up to 30 weight-maps, 30 flag-maps, and thousands of polygons can be handled simulta-
neously.

• Automatic rasterizing of DS9 .reg files,

• Statistics of flagged and weighted areas,

• Metadata output in XML-VOTable format.

2 License

WeightWatcher is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version. WeightWatcher is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details. You should have received a copy of the GNU General Public
License along with WeightWatcher. If not, see http://www.gnu.org/licenses/.

3 Installing the software

3.1 Software and hardware requirements

WeightWatcher has been developed on Unix machines (SUN, Compaq Tru-64 and GNU/Linux),
and should compile on any POSIX-compliant system. The software is run in (ANSI) text-mode
from a shell. A window system is therefore unnecessary with present versions.

Memory requirements are fairly modest in most cases, as they do not depend on the size of the
output images. Count a few MB per input image.

1

3.2 Obtaining WeightWatcher

The easiest way to obtain Weightwatcher is to download it from an internet site. The current
official anonymous FTP site is ftp://ftp.iap.fr/pub/from users/bertin/weightwatcher/.
There can be found the latest versions of the program as standard .tar.gz Unix source archives,
including the documentation, and Linux binaries as RPM packages. For production, it is strongly
advised to install the RPM packages if you are running Linux on a machine with x86 of x86-64
architecture and RPM-support, as they contain a strongly optimized version of the code.

3.3 Installation

To install, you must first uncompress and unarchive the archive:

gzip -dc weightwatcher-x.x.tar.gz | tar xvf -

A new directory called weightwatcher-x.x should now appear at the current position on your
disk. You should then just enter the directory and follow the instructions in the file called
“INSTALL”.

The software is also available as a precompiled RPM for Linux systems with an x86 or x86-64
architecture. The simplest way to install an RPM package is to log as root and use the following
command

rpm -U weightwatcher-x.x-dist.arch.rpm

4 Overview of the software

The layout of WeightWatcher is displayed in Fig. 1. One can distinguish 5 main operations
which are controlled by sets of configuration parameters: WEIGHT MIN and WEIGHT MAX for thresh-
old selection; FLAG MASKS and WEIGHT MASKS for bit masking; WEIGHT OUTFLAGS, FLAG OUTFLAGS

and POLY OUTFLAGS for flag assignments; all value assignments are defaulted to 0.0 in the present
version.

The assignment of output flags is left to the user, who should care about possibly overlapping
flag-bits. Both the “Assign-values” and “Assign-flags” operations in Fig. 1 act as the logical
“OR”. For instance, one “bad” pixel in one of the input weight-maps is enough to have the
output weight-map set to zero at the same pixel location. Likewise, one flag surviving the
“Bit-masking” operation is enough to trigger any bit in the output flag-map.

5 Using WeightWatcher

WeightWatcher is run from the shell with the following syntax:

% ww -c configuration-file [-Parameter1 Value1] [-Parameter2 Value2] ...

The part enclosed within brackets is optional. Any “-Parameter Value” statement in the
command-line overrides the corresponding definition in the configuration-file or any default
value (see below).

2

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

Output flag-map

Output weight-map

Input polygon data

Input flag-maps

Input weight-maps

Selection
Threshold

Bit masking

Fill polygon

Assign values

Assign flags

Figure 1: Global layout of WeightWatcher.

5.1 The Configuration file

Each time WeightWatcher is run, it looks for a configuration file. If no configuration file
is specified in the command-line, it is assumed to be called “default.ww” and to reside in
the current directory. If no configuration file is found, WW will use its own internal default
configuration.

5.1.1 Creating a configuration file

WeightWatcher can generate an ASCII dump of its internal default configuration, using the
“-d” option. By redirecting the standard output of Weightwatcher to a file, one creates a
configuration file that can easily be modified afterward:

% ww -d >default.ww

A more extensive dump with less commonly used parameters can be generated by using the
”-dd” option.

5.1.2 Format of the configuration file

The format is ASCII. There must be only one parameter set per line, following the form:

Config-parameter Value(s)

Extra spaces or linefeeds are ignored. Comments must begin with a “#” and end with a linefeed.
Values can be of different types: strings (can be enclosed between double quotes), floats, integers,
keywords or boolean (Y/y or N/n). Some parameters accept zero or several values, which must

3

then be separated by commas. Integers can be given as decimals, in octal form (preceded by digit
O), or in hexadecimal (preceded by 0x). The hexadecimal format is particularly convenient for
writing multiplexed bit values such as binary masks. Environment variables, written as $HOME

or ${HOME} are expanded.

5.1.3 Parameter list

Here is a list of all the parameters known to WeightWatcher. Please refer to §5.2 for a
detailed description of their meaning.

Parameter default type Description

WEIGHT NAMES weightin.fits string(s) Filename(s) of the input weight-map(s).
WEIGHT MIN 0.3 float(s) Weight-pixels below these thresholds will be

flagged.
WEIGHT MAX 1.30 float(s) Weight-pixels above these thresholds will be

flagged.
WEIGHT OUTFLAGS 1 integer(s) Flag values given to thresholded pixels.
FLAG NAMES flagin.fits string(s) Filename(s) of the input flag-map(s).
FLAG WMASKS 0xff integer(s) Flag-bits which will affect the weight-map

pixels.
FLAG MASKS 0x01 integer(s) Bits which will be converted as output flags.
FLAG OUTFLAGS 2 integer(s) Translation of the FLAG MASKS bits.
POLY NAMES "" string(s) Filename(s) of the input polygon descrip-

tions.
POLY OUTFLAGS integer(s) Flag values given to pixel inside polygons.
POLY OUTWEIGHTS 0.0 float(s) Weight factor given to pixel inside polygons.
POLY INTERSECT Y boolean Do you want to flag polygon intersections?
OUTWEIGHT NAME weight.fits string Filename of the output weight-map.
OUTFLAG NAME flag.fits string Filename of the output flag-map.
GETAREA N boolean Compute area statistics.
GETAREA WEIGHT 0.0 float Threshold above which weight pixels are

counted.
GETAREA FLAGS 1 integer(s) Bit mask for flagged pixels excluded of count

statistics.
MEMORY BUFSIZE 256 integer Buffer size, in image lines.
VERBOSE TYPE NORMAL keyword How much WeightWatcher comments its op-

erations:
QUIET – run silently,
NORMAL – display warnings and limited information

concerning the work in progress,
FULL – display more complete information.

XML NAME ww.xml string Filename for XML output.
XSL URL ww.xsl string Filename for XSL style-sheet.
WRITE XML Y boolean Write XML file (Y/N)?
NTHREADS 1 integer 1 single thread, WeightWatcher is not yet

parallelized.

4

5.2 Detailed description of the configuration parameters

5.2.1 Processing of the input weight-map(s)

WEIGHT NAMES - Filename(s) of the weight-maps provided as input to WW. Any 2-dimensional
FITS image may be used as a weight-map; integer images are automatically converted to floating-
point format. If several images are requested, they must all have the same width and the same
height. A null string ("") can be provided, in which case no input weight-map will be used.
Note that only the 1st weight-map will have its pixel values copied to the output weight-map.

WEIGHT MIN - Lower threshold(s) applied to the input weight-map(s). There must be one value
per WEIGHT NAMES filename. Pixels below these values will trigger flagging in the output flag-map
and will set to zero the corresponding output weight-map pixel.

WEIGHT MAX - Same as WEIGHT MIN but for upper threshold(s).

WEIGHT OUTFLAGS - Flag(s) that will be OR’ed in the output flag-map in case of threshold
overtaking. There must be one value per WEIGHT NAMES filename.

5.2.2 Processing of the input flag-map(s)

FLAG NAMES - Filename(s) of the flag-maps provided as input to WW. Any 2-dimensional FITS
image with pixels coded as integers1 (BITPIX = 8, 16 or 32) may be used as a weight-map. If
several images are requested, they must all have the same width and the same height. A null
string ("") can be provided, in which case no input flag-map will be used.

FLAG WMASKS - Mask(s) that will be applied to the input flag-map(s). If the result is non-zero,
the corresponding pixel in the output weight-map will be set to zero. There must be one mask
per FLAG NAMES filename.

FLAG MASKS - Mask(s) that will be applied to the input flag-map(s). For each bit which passes
the masking, a flag (specified by the OUTPUT FLAGS parameter below) will be OR’ed with the
corresponding pixel in the output flag-map. There must be one mask per FLAG NAMES filename.

FLAG OUTFLAGS - Flag value(s) that will be OR’ed in the output flag-map for input flag-map
pixels which pass the FLAG MASKS masking. There must be one flag value per FLAG MASKS bit
set.

5.2.3 Processing of the polygon vector files

POLY NAMES - Filename(s) of the files containing descriptions of polygon shapes, provided as
input to WW. Contrarily to all other files handled by WW, polygon data are in ASCII format.
The adopted syntax is very simple and fully compatible with that of “region” data produced

1According to the FITS convention, integers should be signed integers. The behaviour of the sign bit in bitwise

operations is notoriously ambiguous. Therefore it is strongly advised to always use positive flag values and to

avoid using the sign bit for storing flag information.

5

by the ds92 image visualization software tools. For single extension images, region files can be
written in ‘image’ or ‘fk5’ coordinates. MEF images are compatible with the ‘image’ coordinate
only. They are traditionally given the “.reg” filename extension. The rules are as follows:

- The string “fk5” must be present at the beginning of the file or at the beginning of each
line if the polygon file is in WCS coordinates.

- Lines containing the polygon description must contain the expression “polygon(x1,y1,x2,y2,...)”,
where pairs of coordinates xn,yn refer to consecutive vertices of the polygon. As WW as-
sumes that the polygon is a closed shape, it is useless to repeat the first point at the end
of the list. A polygon must have at least 3 vertices. One ASCII line only shall be used
per polygon. Overlapping polygons or folded polygon regions are combined following an
“inclusive OR” rule if POLY INTERSECT is set to Y (the default value) or an ‘Exclusive-OR”
rule otherwise.

- ASCII lines with a different content will be ignored.

When polygon information has been loaded from one or several files (each file possibly containing
a very large number of polygons), WW will use them to define enclosed areas which will be
flagged in the output flag-map, and/or set to zero in the output weight-map (for exclusion). A
null string ("") can be provided for POLY NAMES, in which case no polygons will be drawn.

POLY OUTFLAGS - Flag(s) that will be OR’ed in the output flag-map for pixels “inside” polygons.
There must be one value per POLY NAMES filename.

POLY OUTWEIGHTS - Weight factor(s) that will be applied to the output weight-map for pixels
“inside” polygons. There must be one value per POLY NAMES filename.

5.2.4 Output files

OUTWEIGHT NAME - Filename for the weight-map produced by WW. A null string ("") can be
provided if no weight-map output is desired.

OUTFLAG NAME - Filename for the flag-map produced by WW. A null string ("") can be provided
if no flag-map output is desired.

5.2.5 Optional parameters

GETAREA - Set to Y to compute effective areas for weighted and (un)flagged pixels. The effective
area is written in the flag/weight map header together with the parameters GETAREA FLAGS (for
the flag map) or GETAREA WEIGHT (for the weight map). The XML output file also contains the
effective area.

GETAREA WEIGHT - Threshold above which output weight pixels are included in the effective
area computation.

2http://hea-www.harvard.edu/RD/ds9/

6

GETAREA FLAGS - Bit mask for flagged pixels included in the effective area computation. Al-
ternatively, individual flag values (1,2,4, etc.) can be provided separated with commas.

5.2.6 Miscellaneous

WRITE XML - If Y an XML file in VOTable format is written at the end of the processing. The
default is Y.

XML NAME - Name of the output XML file.

XSL URL - URL of the XSLT style-sheet. The XSLT style-sheet is automatically installed with
the RPM distribution in /usr/local/share/weightwatcher/ww.xsl.

5.3 Example of configuration

Let’s assume that we want to produce a weight-map weight.fits which takes into account the
gain-map of the detector if the gain is better than 0.2 (from the normalized flat-field ff.fits),
saturated pixels (pixel values above 65000 in the raw science image sc.fits), cosmetic defects
(flagged by bit 4 in the flag-map cd.fits), cosmic rays (identified by pixel values above 12.0
in the filtered image cr.fits) and finally some “bad” regions described as polygonal shapes in
bad.reg. We also want to produce a flag-map flag.fits in which saturated pixel are flagged
by bit 0, cosmetic defects by bit 1, gain drops by bit 2, cosmic rays by bit 3, and bad regions
by bit 4, and we want to know the number of pixels flagged as 2 OR 1 and the number of those
having weights larger than 0.0. The configuration file will be:

Default configuration file for WeightWatcher 1.8.0

EB 2006-03-01

#

#--------------------------------- Weights ------------------------------------

WEIGHT_NAMES ff.fits, sc.fits, cr.fits # filenames of the input WEIGHT maps

WEIGHT_MIN 0.2, -1e30, -1e30 # pixel values < -1e9 are unlikely!

WEIGHT_MAX 1e30, 65000, 12.0 # pixel values > 1e9 are unlikely!

WEIGHT_OUTFLAGS 0x04, 0x01, 0x08 # hexadecimal coding of bits 2, 0 and 3

#---------------------------------- Flags -------------------------------------

FLAG_NAMES cd.fits # filename of the input FLAG map

FLAG_WMASKS 0x10 # hexadecimal coding of bit 4

FLAG_MASKS 0x10 # hexadecimal coding of bit 4

FLAG_OUTFLAGS 0x02 # hexadecimal coding of bit 1

#--------------------------------- Polygons -----------------------------------

POLY_NAMES bad.reg # name of the file containing polygons

7

POLY_OUTFLAGS 0xa0 # hexadecimal coding of bit 4

POLY_OUTWEIGHTS 0.0 # Weight values for polygon masks

POLY_INTERSECT Y # Use inclusive OR for polygon intersects

#---------------------------------- Output ------------------------------------

OUTWEIGHT_NAME weight.fits # output WEIGHT-map filename

OUTFLAG_NAME flag.fits # output FLAG-map filename

#----------------------------- Miscellaneous ---------------------------------

GETAREA Y # Compute area for flags and weights

GETAREA_WEIGHT 0.0 # Weight inferior limit accounted in the area

GETAREA_FLAGS 0x04,0x02 # Bits which will be accounted in the area

Acknowledgements Thanks go to Erik Deul for proposing the WeightWatcher name.

References

[1] Fruchter A. S., Hook R. N. 2002 PASP, 114, 144.

[2] Bertin E., SExtractor, User’s manual, 1996-2003, IAP

8

