
Implementation of GPU based
Sorting Algorithms

Arvind Ramachandran
Department of Computer Engineering

National Institute of Technology Karnataka Surathkal
Email: arvind0705.ar@gmail.com

Aswanth P. P.
Department of Computer Engineering

National Institute of Technology Karnataka Surathkal
Email: ppaswanth3@gmail.com

Abstract—Parallel sorting algorithms are widely studied nowa-
days. The difficulty in improving sorting run-time when run
serially has lead to a lot of research in this area. Efficient sorting
is required for algorithms like binary search ,merging two lists
etc. The main aim is to effectively reduce the running time
of these algorithms specially after the introduction of parallel
processors like the GPU and CUDA, OpenCL, etc. This paper
presents a survey of some well known sorting algorithms that
are GPU based.

Index Terms—Merge Sort, Quick Sort, Radix Sort, Sample
Sort, Bitonic Sort, Fix Sort, GPU, CUDA

I. INTRODUCTION

Sequential algorithms were implemented on a central pro-
cessing unit using C++, whereas parallel algorithms were
implemented on a graphics processing unit using CUDA
platform. Sorting on a Central Processing Unit(CPU) is slower
than sorting on a GPU.
In this Project, we analyze five parallel sorting algorithms for
a given range of inputs - Merge Sort, Quick Sort, Radix Sort,
Sample Sort and Bitonic Sort. Their methods are described in
brief and performance compared.

II. OBJECTIVE

We are comparing sorting time for each parallel sorting
algorithm for a dataset of array size 50000 to 500000 with an
interval of 5000 .The performance of each algorithm will be
compared in terms of running time and corresponding graphs
will be plotted for each set of inputs.

III. SORTING ALGORITHMS

We discuss a few parallel sorting algorithms here.

A. Merge Sort

Merge sort is based on the divide - and - conquer approach.
It follows this approach by splitting the sequence into multiple
subsequences, sorting them and then merging them into sorted
sequence. If the algorithm for merging sorted sequences is
stable, than the whole merge sort algorithm is also stable.

B. Quick Sort

In the Quick sort algorithm, a list of elements is taken and
partitioned around a specific pivot element. The exact position
of the pivot element in the sorted list is found. The lists are
recursively partitioned until they become too small to partition.

Quick sort is the fastest and most studied algorithm in CPU
architecture.

C. Radix Sort

Radix sort is one of the fastest sorting algorithms for short
keys and is the only sorting algorithm in this report which is
not comparison based. Its sequential variation first splits the
elements being sorted (numbers, words, dates, ...) into d r -
bit digits. The elements are then sorted from least to most
significant digit. For this task, the sorting algorithm has to be
stable, in order to preserve the order of elements with duplicate
digits.

D. Sample Sort

Sample sort is or has been the fastest sorting algorithm if the
inter-process communication is high . It selects a subset of the
input. This subset is referred to as splitters. Splitters are sorted
by some other procedure. The input sequence is divided into
buckets using these splitters. Each bucket is sorted in parallel
and the result is the concatenation of these buckets. However,
performance of the Sample sort degrades if the number of
elements per processor is low.

E. Bitonic Sort

Bitonic Sort is one of the most studied algorithms on GPU.
It falls into the group of sorting networks , which means, that
the sequence and direction of comparisons is determined in
advance and is independent of input sequence. Bitonic sort
is based on a bitonic sequence. Parallel implementation of
bitonic sort is very efficient when sorting short sequences,
but it becomes slower when sorting very long sequences,
because shared memory size is limited and long bionic
sequences cannot be saved into it. In order to merge long
bionic sequences, global memory has to be used instead
of shared memory. Furthermore, global memory has to be
accessed for every step of bionic merge. In order to increase
the speed of sort, multiple steps of bitonic merge have to
be executed with a single kernel invocation. This can be
achieved with multistep bitonic sort.



IV. PROJECT TIMELINE

This is the proposed timeline which we hope to achieve :
27th September 2017 - Discussion of Project Proposal
2nd October 2017 - Submission of Proposal
23rd October 2017 - Mid Progress Evaluation
13th November 2017 - Final Demo
24th November 2017 - Report Submission

V. WORK DISTRIBUTION

This is how we plan to split the work and proceed with the
Project. The work has been divided equally among the team.

A. Arvind Ramachandran (15CO111)

Implementation and Analysis of Merge Sort and Sample
Sort.

B. Aswanth P P (15CO112)

Implementation and Analysis of Quick Sort and Radix Sort.
Bitonic Sort has been done by both of us together.

VI. GPU SORTING ALGORITHMS

Merge sort, Radix sort, Quick sort, Sample sort and Bitonic
sort algorithms were successfully implemented on CUDA ,
running times calculated and results verified using functions
from header "wb.h".

A. Merge Sort

Conceptually, a merge sort works as follows:
1) Divide the unsorted list into n sublists, each containing 1
element (a list of 1 element is considered sorted).
2) Repeatedly merge sublists to produce new sorted sublists
until there is only 1 sublist remaining. This will be the sorted
list.

Since this follows a divide and conquer approach, each sort
and merge operation is performed individually (recursively
as per the algorithm) which takes up time. There arises
a need to parallelize this algorithm in order to improve
its efficiency. Merge sort parallelizes well due to use of
the divide-and-conquer method. It is very difficult to find
a merging algorithm that can achieve a high level of
parallelism and maximize utilization on the GPU due to
the multi-level parallelism requirements of the architecture.
In a sense, parallelizing merging algorithms is even more
difficult due to the small amount of work done per each
element in the input and output. The merge phase of the
original Merge Path algorithm is not well-suited for the
GPU as the merging stage is purely sequential for each
core. Therefore, it is necessary to extend the algorithm to
parallelize the merge stage in a way that still uses all the
SPs on each SM once the partitioning stage is completed.
For full utilization of the SMs in the system, the merge
must be broken up into finer granularity to enable additional
parallelism while still avoiding synchronization when possible.

Fig. 1. An example of the execution of merge sort.

We have adopted the following strategy to parallelize
merge sort :
1) Start with two lists: Your input array, and a temp array
that’s the same size.
2) Define a width, starting at 2. During each step, width gets
multiplied by 2.
3) While width is less than 2N, sort each width-sized chunk
of the list into the temp list. Then switch the pointers of the
two lists. We thereby avoid allocating small arrays or copying
temp back to input.

NOTE : This is the step that happens in parallel. Each
thread gets a chunk of the list to sort. Two halves of each
chunk are are sorted / merged against each other into the
temp array.

4) We end up with one big chunk being sorted into the final
list, and you switch input and temp one last time, returning
temp.

B. Radix Sort

Radix Sort iterates over the keys bits from the least-
significant to the most-significant digit, considering an
implementation specific number of consecutive bits at a time.
With each sorting pass, a stable counting sort is used to
partition the keys into buckets according to the bits being
considered with the current pass. The stable counting sort
computes each keys offset by counting the number of keys
with a smaller digit value and, as it needs to be stable, the
keys with the same digit value preceding the key in the input
sequence. Sorting relies on the reinterpretation of a k-bit
key as a sequence of d-bit digits, which are considered one
at a time. The basic idea is, that splitting the k bits of the
keys into smaller d-bit digits results in a small enough radix
r = 2 d , such that the keys can efficiently be partitioned
into r distinct buckets. As sorting on each digit can be done
with an effort that is linear in the number of keys n , the
whole sorting can be achieved with a total complexity of O (



dk/de*n ). Iterating over the keysâĂŹ digits can be performed
in two fundamentally different ways. Either by proceeding
from the most-significant to the least-significant digit (MSD
radix sort), or vice versa (LSD radix sort). Radix sort is an
out-of-place sort and we need to ping-pong values between
the input and output buffers provided. We need to do a copy
at the end.

The basic idea is to construct a histogram on each pass of
how many of each âĂİdigitâĂİ there are. Then we scan this
histogram so that we know where to put the output of each
digit. For example, the first 1 must come after all the 0s so
we have to know how many 0s there are to be able to start
moving 1s into the correct position.
1) Histogram of the number of occurrences of each digit
2) Exclusive Prefix Sum of Histogram
3) Determine relative offset of each digit For example [0 0 1
1 0 0 1] = [0 1 0 1 2 3 2]
4) Combine the results of steps 2 3 to determine the final
output location for each element and move it there LSB.

Fig. 2. Parallel Radix Sort on the GPU

Implementation of Radix on CUDA algorithm:
1) Get the predicate of your list (bit in common, starting
from the LSB)
2) Scan the predicate, and record the sum of the predicate
in the process Implement Scan on the GPU Note that your
predicate will be of arbitrary size
3) Flip bits of the predicate, and scan that
4) Move the values in your array with the following rule: For
the ith element in the array: if the ith predicate is TRUE, move
the ith value to the index in the ith element of the predicate
scan else, move the ith value to the index in the ith element
of the !Predicate scan plus the sum of the Predicate
5) Move to the next significant bit (NSB)

Verification of the radix sort algorithm is done by using
"wb.h" library where the result was compared with existing
sorted elements file.which gave the following result for the
execution of 50000 elements within range of 5000. A sample
of the working is as follows :

Generic 0.030998016 Importing data to host

GPU 0.000162048 Allocating GPU memory.

GPU 0.000172800 Copying input memory to the GPU.

Compute 0.039742976 Performing CUDA computation

Copy 0.000344832 Copying output memory to the CPU

GPU 0.000151040 Freeing GPU Memory

Solution is correct.

C. Quick Sort

In the Quick sort algorithm, a list of elements is taken
and partitioned around a specific pivot element. The exact
position of the pivot element in the sorted list is found. The
lists are recursively partitioned until they become too small to
partition. Quick sort is the fastest and most studied algorithm
in CPU architecture.

The algorithm is suitable for segmented scan primitive due
to communications between elements (threads) inside a single
segment. A pivot element is chosen in each segment (the first
element of the segment). The pivot element is distributed
across the segments. The input element is compared to the
pivot.Greater-than or greater-than-or-equal are compared
accordingly in alternating passes of the algorithm. A
segmented vector containing true and false is produced by
the comparison operation. This segmented vector is used to
split and segment the input. As a result, smaller elements
are placed at the head of the vector and larger elements are
placed at the end of the vector.

A sequence to be partitioned is divided logically into
sections. Each section is processed by a thread block. Each
thread in the thread block keeps track of the number of
elements it has seen larger and smaller than the pivot. Each
thread stores this information in two arrays in shared local
memory. A cumulative sum is calculated to find out the index
of each element. Threads will write their assigned elements
in new position in the auxiliary buffer.When the number of
sub-sequences is large enough that each thread block can be
assigned one, the algorithm enters in the second phase. There
is no need for inter-thread block synchronization. When the
sub-sequences become small enough to be sorted entirely in
the fast local memory, the authors suggest using a different
sorting algorithm which performs well when the size of the
list approaches the number of threads.

One kernel is assigned to the group having elements
smaller than the pivot and the other is assigned to the group
having elements larger than the pivot. The kernel at the top
knows the index and the size of the two groups; it will have



the information on whether to launch a kernel and how many
threads to use. The parent kernel is able to launch its child
kernels immediately after partitioning the list. The program
progresses in an asynchronous manner. The kernel launches
its two children in a separate stream. CUDA streams are
executed simultaneously, which means the two sub-sorts will
run in parallel.

Input Size : 50000
Execution Time : 0. 51
Input Size/Execution Time : 98039

D. Sample Sort

Sample sort is or has been the fastest sorting algorithm if
the inter-process communication is high. It selects a subset
of the input. This subset is referred to as splitters. Splitters
are sorted by some other procedure. The input sequence is
divided into buckets using these splitters. Each bucket is
sorted in parallel and the result is the concatenation of these
buckets. However, performance of the Sample sort degrades
if the number of elements per processor is low.

The idea behind sample sort is simple. A sample of size s
is selected from the n-element sequence, and the range of the
buckets is determined by sorting the sample and choosing m
- 1 elements from the result. These elements (called splitters)
divide the sample into m equal-sized buckets. After defining
the buckets, the algorithm proceeds in the same way as bucket
sort. The performance of sample sort depends on the sample
size s and the way it is selected from the n-element sequence.

Consider a splitter selection scheme that guarantees that
the number of elements ending up in each bucket is roughly
the same for all buckets. Let n be the number of elements
to be sorted and m be the number of buckets. The scheme
works as follows. It divides the n elements into m blocks
of size n/m each, and sorts each block by using quicksort.
From each sorted block it chooses m - 1 evenly spaced
elements. The m(m - 1) elements selected from all the blocks
represent the sample used to determine the buckets. This
scheme guarantees that the number of elements ending up in
each bucket is less than 2n/m.

How can we parallelize the splitter selection scheme? Let
p be the number of processes. As in bucket sort, set m = p;
thus, at the end of the algorithm, each process contains only
the elements belonging to a single bucket. Each process is
assigned a block of n/p elements, which it sorts sequentially.
It then chooses p - 1 evenly spaced elements from the sorted
block. Each process sends its p - 1 sample elements to one
process - say P0. Process P0 then sequentially sorts the p(p
- 1) sample elements and selects the p - 1 splitters. Finally,
process P0 broadcasts the p - 1 splitters to all the other
processes.

Since the algorithm spends a significant amount of time
on sorting buckets (for example approximately 55 percentage
for sorting 16 million randomly distributed 32-bit integers)
one should not underestimate influence of this step on the
overall run-time of the algorithm. We delay sorting of buckets
until the whole input is partitioned into buckets of size at
most M. Since the number of buckets grows with the input
size, it is larger than the number of processors in most of
the cases. Therefore, we can use a single thread block per
bucket without sacrificing exploitable parallelism. To improve
load-balancing we schedule buckets for sorting ordered by
size.

In order to sort buckets efficiently we split them into
chunks that fit into shared memory, which then can be sorted
without expensive accesses to the global memory. Initially
we employed a sample sort based algorithm for this purpose.
But we found that it performed slightly worse than our quick
sort adaptation by Cederman and Tsigas, which we therefore
use in our final implementation. We also extended it to
support key-value pairs inputs. Quick sort does not cause any
serialization of work, except for pivot selection and stack
operations. Additionally, its consumption of registers and
shared memory is modest.

Fig. 3. An example of the execution of sample sort on an array with 24
elements on three processes.

By choosing t = 256 threads per block and = 8 elements
per thread, we achieve a compromise between the parallelism
exposed by the algorithm, the amount of data (nÂůk)/(tÂů)
written in the second phase and memory latency in the fourth
phase.

Input Size : 50000
Execution Time : 0. 09
Input Size/Execution Time : 555555

E. Bitonic Sort

The bitonic sorting scheme has been extensively used in
parallel computing (mainly to construct sorting network).
Bitonic sort with the property that sequence of comparisons
is data-independent. Therefore it is one of the fastest parallel



sorting algorithms. There are two steps in bitonic sorting
algorithm. Firstly, it makes the arbitrary sequence that is
called bitonic sequence. Secondly, it can be converted to the
first one by cyclically shifting. Bitonic sequence consists
of two monotonic sequences. The monotonic sequence is
increase or decrease from left to right.

For all k < n; If ak < ak+1 ; a1, a2, a3...an is a
monotonic sequence. Bitonic sequence monotonically
increases (decreases), reaches the maximum (minimum), then
monotonically decreases (increases). For example, suppose 3
5 8 9 7 4 2 1 bitonic sequence; it increases from 3 to 9 then
it decreases. If x0, x1, x2...xn is a bitonic sequence, an index i
is between 0<i<n-1. When we apply this rule to sequence, it
increases from x0 to xi , then decreases from xi to xn . Bitonic
split is applied to sequence to get a bitonic sequence. The
sequence length must be 2n. Then, n steps are needed to sort
the entire array. Each indices are compared using (i, n/2-1). If
ai > ai+n/2, the two elements are exchanged, 1<i<n . When this
swapping operation is applied to indices between i=(0, n/2-1),
two bitonic sequences are produced. The first split elements
are smaller than second split elements. Then, in the second
step the same rule will be applied to each subsequence.
Each subsequence will produce new subsequence. When n
step is applied, it produces the subsequence of length 1.
Finally, all the elements in the bitonic sequence will be sorted.

Fig. 4. Bitonic Sorting Network

Bitonic sort consists of O(n(logn)) 2 comparison operation
(compare/exchange) in each n/2 step. Total number of steps
are k=log(n). When this algorithm is parallelized, it would
take n processor to sort it with O(logn) 2 complexity. All
steps in bitonic sort are creating a bitonic sequence and the
sorting are (k(k+1))/2. For example the sorting of an array
that consist 16 elements (2 4 ) would take 10 steps. Firstly,
pair wise exchange is made to make it easier to find the
bitonic sequence. Then, it is divided two sub-arrays. Each
element in sub-array is compared using (i,n/2-1) indices. If

ai > ai+n/2 , swap operation is applied. After all elements
are compared, bitonic sequence is implemented. The first
split of the array is in increasing order; the second split is
in decreasing order. It is reached to bitonic sequence in 3
steps. Next step is the bitonic sorting. These 2 bitonic splits
are divided again until each split that will have 1 element.
Compare and swap approach is applied to all splits. Finally,
bitonic sorted array is implemented.

In parallel implementation of this sorting algorithm, each
split and compare operation is applied on different cores.
Each core works on different part of an array. These splitted
arrays results don’t affect the other one’s result. Therefore,
each CUDA core works on array separately.

VII. PERFORMANCE ANALYSIS

We have compared the running times of these sorting
algorithms over an input size ranging from 10000 to 50000.
We have plotted a graph of as Rung time against Input Size
nnifollows:

Fig. 5. Sorting Time Comparison

VIII. CONCLUSION

This paper presented a survey of GPU based sorting al-
gorithms. We have selected five sorting algorithms for this
purpose - Merge sort, Radix sort, Sample sort, Quick sort and
Bitonic sort. Working and performances of these algorithms
have been calculated and compared. Our analysis showed
that all these performed better than their serial counterparts.
Due to the highly optimal complexity of Radix sort, it is a
difficult to outrival algorithm on GPU. In the future, we will
try to extend our algorithms and try other sorting algorithms
to compare these algorithmsâĂŹs performance. Different data
ranges and distribution can be applied to these algorithms in
both academic and industrial fields based on the use of GPU.
Finally, we will compare the results for more GPU compute



capabilities and propose an algorithm to automatically choose
the best one for each input parameters.

REFERENCES

[1] Sam White, Niels Verosky and Tia Newhall, "A CUDA-MPI Hybrid
Bitonic Sorting Algorithm for GPU Clusters", in 41st International
Conference on Parallel Processing Workshops, 2012.

[2] Zehra Yildiz, Musa Aydin and Guray Yilmaz, "Parallelization of bitonic
sort and radix sort algorithms on many core GPUs".

[3] Bakulev Aleksander Valerievich, Bakuleva Marina Alekseevna,
Pyurova Tatiana Anatolievna and Skvortsov Sergei Vladimirovich,
"The Implementation on CUDA Platform Parallel Algorithms Sort the
Data", in 6th Mediterranean Conference on Embedded Computing, 2017.

[4] Nikolaj Leischner, Vitaly Osipov and Peter Sanders, "GPU Sample
Sort", in Parallel & Distributed Processing (IPDPS), IEEE International
Symposium, 2010.

[5] Rafael Schmid, Edson Borin, Edson Caceres and Flavia Pisani, "An
Evaluation of Segmented Sorting Strategies on GPUs", in 14th IEEE
International Conference on Smart City; IEEE 2nd International
Conference on Data Science and Systems; 18th IEEE International
Conference on High Performance Computing anf Communications, 2016.

[6] Dhirendra Pratap Singh, Ishan Joshi and Jaytrilok Choudhary, "Survey
of GPU Based Sorting Algorithms", 2017.

[7] http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf


