{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", " \n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Notebook example: simple two-samples comparison

\n", "\n", "##### The following analysis is comparing the kinematics between events coming for the SM Higgs boson decaying to 2 W-bosons to those coming from the SM WW-diboson background production.\n", "\n", "SM Higgs to WW Feynman diagram:\n", "
\n", "\n", "SM WW-diboson Feynman diagram:\n", "
" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Welcome to JupyROOT 6.18/04\n" ] } ], "source": [ "import ROOT" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3409043" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "## reading the input files via internet (URL to the file)\n", "\n", "## WW\n", "bkg = ROOT.TFile.Open(\"http://opendata.cern.ch/eos/opendata/atlas/OutreachDatasets/2020-01-22/2lep/MC/mc_363492.llvv.2lep.root\")\n", "t_bkg = bkg.Get(\"mini\")\n", "t_bkg.GetEntries()\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "628685" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "## SM H->WW\n", "sig = ROOT.TFile.Open(\"http://opendata.cern.ch/eos/opendata/atlas/OutreachDatasets/2020-01-22/2lep/MC/mc_345324.ggH125_WW2lep.2lep.root\")\n", "t_sig = sig.Get(\"mini\")\n", "t_sig.GetEntries()\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "c = ROOT.TCanvas(\"testCanvas\",\"a first way to plot a variable\",800,600)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "h_bgs = ROOT.TH1F(\"h_bgs\",\"Example plot: Missing transverse energey\",20,0,200)\n", "h2_bgs = ROOT.TH1F(\"h2_bgs\",\"Example plot: Number of Jets\",10,0,10)\n", "\n", "h_sig = ROOT.TH1F(\"h_sig\",\"Example plot: Missing transverse energey\",20,0,200)\n", "h2_sig = ROOT.TH1F(\"h2_sig\",\"Example plot: Number of Jets\",10,0,10)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10000\n", "20000\n", "30000\n", "40000\n", "50000\n", "60000\n", "70000\n", "80000\n", "90000\n", "100000\n", "110000\n", "120000\n", "130000\n", "140000\n", "150000\n", "160000\n", "170000\n", "180000\n", "190000\n", "200000\n", "210000\n", "220000\n", "230000\n", "240000\n", "250000\n", "260000\n", "270000\n", "280000\n", "290000\n", "300000\n", "310000\n", "320000\n", "330000\n", "340000\n", "350000\n", "360000\n", "370000\n", "380000\n", "390000\n", "400000\n", "410000\n", "420000\n", "430000\n", "440000\n", "450000\n", "460000\n", "470000\n", "480000\n", "490000\n", "500000\n", "510000\n", "520000\n", "530000\n", "540000\n", "550000\n", "560000\n", "570000\n", "580000\n", "590000\n", "600000\n", "610000\n", "620000\n", "630000\n", "640000\n", "650000\n", "660000\n", "670000\n", "680000\n", "690000\n", "700000\n", "710000\n", "720000\n", "730000\n", "740000\n", "750000\n", "760000\n", "770000\n", "780000\n", "790000\n", "800000\n", "810000\n", "820000\n", "830000\n", "840000\n", "850000\n", "860000\n", "870000\n", "880000\n", "890000\n", "900000\n", "910000\n", "920000\n", "930000\n", "940000\n", "950000\n", "960000\n", "970000\n", "980000\n", "990000\n", "1000000\n", "1010000\n", "1020000\n", "1030000\n", "1040000\n", "1050000\n", "1060000\n", "1070000\n", "1080000\n", "1090000\n", "1100000\n", "1110000\n", "1120000\n", "1130000\n", "1140000\n", "1150000\n", "1160000\n", "1170000\n", "1180000\n", "1190000\n", "1200000\n", "1210000\n", "1220000\n", "1230000\n", "1240000\n", "1250000\n", "1260000\n", "1270000\n", "1280000\n", "1290000\n", "1300000\n", "1310000\n", "1320000\n", "1330000\n", "1340000\n", "1350000\n", "1360000\n", "1370000\n", "1380000\n", "1390000\n", "1400000\n", "1410000\n", "1420000\n", "1430000\n", "1440000\n", "1450000\n", "1460000\n", "1470000\n", "1480000\n", "1490000\n", "1500000\n", "1510000\n", "1520000\n", "1530000\n", "1540000\n", "1550000\n", "1560000\n", "1570000\n", "1580000\n", "1590000\n", "1600000\n", "1610000\n", "1620000\n", "1630000\n", "1640000\n", "1650000\n", "1660000\n", "1670000\n", "1680000\n", "1690000\n", "1700000\n", "1710000\n", "1720000\n", "1730000\n", "1740000\n", "1750000\n", "1760000\n", "1770000\n", "1780000\n", "1790000\n", "1800000\n", "1810000\n", "1820000\n", "1830000\n", "1840000\n", "1850000\n", "1860000\n", "1870000\n", "1880000\n", "1890000\n", "1900000\n", "1910000\n", "1920000\n", "1930000\n", "1940000\n", "1950000\n", "1960000\n", "1970000\n", "1980000\n", "1990000\n", "2000000\n", "2010000\n", "2020000\n", "2030000\n", "2040000\n", "2050000\n", "2060000\n", "2070000\n", "2080000\n", "2090000\n", "2100000\n", "2110000\n", "2120000\n", "2130000\n", "2140000\n", "2150000\n", "2160000\n", "2170000\n", "2180000\n", "2190000\n", "2200000\n", "2210000\n", "2220000\n", "2230000\n", "2240000\n", "2250000\n", "2260000\n", "2270000\n", "2280000\n", "2290000\n", "2300000\n", "2310000\n", "2320000\n", "2330000\n", "2340000\n", "2350000\n", "2360000\n", "2370000\n", "2380000\n", "2390000\n", "2400000\n", "2410000\n", "2420000\n", "2430000\n", "2440000\n", "2450000\n", "2460000\n", "2470000\n", "2480000\n", "2490000\n", "2500000\n", "2510000\n", "2520000\n", "2530000\n", "2540000\n", "2550000\n", "2560000\n", "2570000\n", "2580000\n", "2590000\n", "2600000\n", "2610000\n", "2620000\n", "2630000\n", "2640000\n", "2650000\n", "2660000\n", "2670000\n", "2680000\n", "2690000\n", "2700000\n", "2710000\n", "2720000\n", "2730000\n", "2740000\n", "2750000\n", "2760000\n", "2770000\n", "2780000\n", "2790000\n", "2800000\n", "2810000\n", "2820000\n", "2830000\n", "2840000\n", "2850000\n", "2860000\n", "2870000\n", "2880000\n", "2890000\n", "2900000\n", "2910000\n", "2920000\n", "2930000\n", "2940000\n", "2950000\n", "2960000\n", "2970000\n", "2980000\n", "2990000\n", "3000000\n", "3010000\n", "3020000\n", "3030000\n", "3040000\n", "3050000\n", "3060000\n", "3070000\n", "3080000\n", "3090000\n", "3100000\n", "3110000\n", "3120000\n", "3130000\n", "3140000\n", "3150000\n", "3160000\n", "3170000\n", "3180000\n", "3190000\n", "3200000\n", "3210000\n", "3220000\n", "3230000\n", "3240000\n", "3250000\n", "3260000\n", "3270000\n", "3280000\n", "3290000\n", "3300000\n", "3310000\n", "3320000\n", "3330000\n", "3340000\n", "3350000\n", "3360000\n", "3370000\n", "3380000\n", "3390000\n", "3400000\n", "10000\n", "20000\n", "30000\n", "40000\n", "50000\n", "60000\n", "70000\n", "80000\n", "90000\n", "100000\n", "110000\n", "120000\n", "130000\n", "140000\n", "150000\n", "160000\n", "170000\n", "180000\n", "190000\n", "200000\n", "210000\n", "220000\n", "230000\n", "240000\n", "250000\n", "260000\n", "270000\n", "280000\n", "290000\n", "300000\n", "310000\n", "320000\n", "330000\n", "340000\n", "350000\n", "360000\n", "370000\n", "380000\n", "390000\n", "400000\n", "410000\n", "420000\n", "430000\n", "440000\n", "450000\n", "460000\n", "470000\n", "480000\n", "490000\n", "500000\n", "510000\n", "520000\n", "530000\n", "540000\n", "550000\n", "560000\n", "570000\n", "580000\n", "590000\n", "600000\n", "610000\n", "620000\n", "Done!\n" ] } ], "source": [ "n=0\n", "for event in t_bkg:\n", " n += 1\n", " ## printing the evolution in number of events\n", " if(n%10000==0):\n", " print(n)\n", " h_bgs.Fill((t_bkg.met_et)/1000.)\n", " h2_bgs.Fill(t_bkg.jet_n)\n", "\n", "m=0 \n", "for event in t_sig:\n", " m += 1\n", " ## printing the evolution in number of events\n", " if(m%10000==0):\n", " print(m)\n", " h_sig.Fill((t_sig.met_et)/1000.)\n", " h2_sig.Fill(t_sig.jet_n)\n", " \n", "print(\"Done!\")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxwAAAI8CAIAAAD0vjrdAAAABmJLR0QAAAAAAAD5Q7t/AAAgAElEQVR4nO3da7KrLNeoYdz19kvSMrVlYsvcP3gmH0sO8QAB5L5q1aisGWPQaBgZKg77vgsAAAA88/9KNwAAAOANSKoAAAASIKkCAABIgKQKAAAgAZIqAACABEiqAAAAEiCpAgAASOB/pRuAR5RS8zyfmXKeZyll3tb8ll4cpVSpBszzrJSSUp78CHIwn+mZZngn/sFS1LCiAOAHSKrappTatq10KwqoYcF1G8qmqmYlbNsWT1lCa+wHa7KGDwsAfoCk6iXGcYz37i8rU73DMAxCiHVdk3w6uhoUerbzKtE8z8uyCCG4hwSAfEiqXqLgUTBUQh9lCz0bqhX9YMth4wTQCU5UB5o3jqMIp02CtAYAfoJKFb5TStm98pkDSWYaKaV9TMrM6vD3+JtePXRlv/brG0WEluLSa0X+Q29SSp1RhY4A6gZM06QPgZ10cjU+X9snP+snm8QZep6HOd/Y+G8szpOt9Mk8vy7y15k82UduvJ24shkkWRv2X65++qk+VrRkR8umabr6OeqqhvuSdV3139d1df94MI6jtyXTNLkv0RN7Z+XOQU/sTjlNk7e1kQW02QsVYSY2KzYyE/1Gh4bt1ocSWWORBTQvd+ccavA0TfbaiyyX2xi9FIcXnlkE++XxD8t9C7O1xFdF/I3MUovo9u9dlsNqsTdO88IbG//JxQnN2Z3Au916l9o7T7epejVeXWTvin2yo11q86Vvhhtr4/CtFV9Ge+IbbxrfYiNLhFaQVLXtRlK1B3Zd9yvA/o4Y/8S/LMwEdodn/30cx2ma7P+G5mDe1PvtGfpeizT4zNe929rDt6o9sTepirT/kMocnnqYVEWyTPspb0sufe7uu39d26GkKrRVuB9WaK2GfiEcFt99+WHteT/iyNLFN/744pxcvaZt7hK5bTjsa2c2WneC85/7/m9yc2NHu9Tmq1tLkrWxX9zq3LXnnWckXb73ZY7a8Pm1zeyHa9ThVe6O7d2fQz2W9+9mDmO4JBOfif3V5k34vN9N3nkeFtnbAC+7tfZMvEvnJlXeUtAezpO8rdVJwDiO57NAu0bivspuZ2gp7L/EF8HMP9Q9nHkL+7P2vty7VkNbxZlP1ruF23M4zNxd3sh8vi6OuzZEoEs2Lw/tfd7Vfn6rszv70O+Br2/3fEe71OZLq/fSnCNr4+pW531T70y8s90DNWM0h6Sqbd5DG16HF9pfoPHeMXLwwtuSUAvd1OEwfSgtsxtjnnJfHj9iEnnKncw7pbuAblIVKZx4nzrZqq8N1m2wj5KE3sVdw6Gkym3V4e/xT/xkUhVKAb8mefu/tYH9m3hSdaYZh1d5Z36mp4xP+TVnDW2HJ7e6UD50vmGRKeNPxRsWWcCvq/fk2oisuhsbgLeFlxbHO9sn3waoAUlV224nVbtz7OP8L6R7SVWoAe6U3q+Vw3wiOZm3zSd/BUZW1+50GG5SdZjA5l1pz79G7Xf0vsXhj+5nfT6JOTh/tCKSVIVmeybJ2799Xl9be/7l7qu8hczQ+95YvXtgc3L/GNnqdmcvi+QcST73SztavM1f03fvU5fm/HVteLc691WX3tSbLp/fm1A5hlR4ia+ftPsSvW+by8HOXHWv74rz+XxCExzOJBC3Bh31vuTMNUHeBtzwcCbx9ucb3cD7Fua6v/PzGf8GaBiGITL2lXm7YRiklJmWy76Qyn32lx+33vj1eK3P3+7r6jVT2hdsRq56+3otrTvn2w2L0M04OYB+JVfGuWsjvtU9bLZ3P9Wf8qX9FHUiqeqXlNKufocm0zcNHIZhGIbP53Ppmvzf012CS3/LP/yu16sr1NnEv4jdyXLQX8p2j6sX+VI3oJQyG8ayLJ/Px5s2SSnNZrNtm55M98cn3+hMNhNfXUl65fgw9Oc3/vPJ2ZnVK8LX9ttvZF5l1v/BYTLNu8gnG2b+6327S98Pl9p8ybIsmeac5E31fur+oK0ky8QTjFPVNZNkeH+Ymjt7GOM46pFXIsWqTOyfd96vHrMsSaoXjZJSLstiVsXtL2v1x2wAOm0ax9HeTqSU+77rjce86bIsy7JM09T0jXGUUoeNPOHGH1q94t+76JhPbZ5nvTL1Svau2Phmf3IDONmwM+8Yf5czc7g34FmSOd/Lus6/qd5Pxd+3GUnVq+Q+voisnhyJP3wFhE5cjTzltiRyNrHbgMPf48tymI872yTXzuh5hmZyeIvQOVWhc6TcZ+PTn29w6AybUAvj51S57KMSkSnXfwcvOJy54p5T5Z3V4anI9rNHz4kJLYL9R3ftHZ7yPut+aucXJ942d0q72aFVcWkrcjeJqw1LuKOdbPONc6ourY1L31rP39R+yWRdk3vyQ0HlOPzXKVNaMB3h4fe3+TW87/vh91PWA1ih+X990/jJHOYn+JkGhGZy8lBavP25f4zqb3z9djeO/QlnDHEhxDzP+18PZJfB3INKSqn9r5NIu53k3uq877Xve/J6W2j16g/usO3Zn5177O8w25Nv97BhCXe0523ONOf4GZCRmZ9/U3ME0DzVdGUXBklVp3QKNU3TjeJz7u7N++Wiq+WRAnv8e/Dz+Vw6auPOxL4dR/y13tNKfvaNaY4TnW+wTR/28q6rw3z0ZLlzRPsQ2OEpZR1zTCuyhT/8HM3qdd8ifk70PM+hY3/u+ex2a09u+ecbdmZH+/oVkaTNP5iz9+N2t7obb3q49U3PJy28DEnVS6hv7IndjkqXu7dtcxOsw2uVdb5FJnZCcGhMpEsz07jf6eap8xnA4UvQLLU+sSb0KnPU4DCN6RHPXN2jlNLntz5MXu9dTxRZV4e81hSu3C0kNId7TKXk8OnnO7Ev38Yf2ZJD2/bhpGZ3rYayZ3ujTdiwMzva19QzSZuzztl8JYYWP9WbRs6TQ5NKHnvEY+e7TPcklcMZAKHBV8TfPWemf28Noed5GEsmyTlV9vztd7RnHh+TSZy4l4WX24DITLynpxwafFhj3rfT7+KOynPmHAvvlPaavDHc+WERImvgMNkUuAHRk3OqvG90SOzcFRuarfjbmCNr7/COTzZ+71PnV6+3Md6li8/TndI7n0sNi0x58tyg822+dE7V7pwK9nVthM4Psz/ur1vd+Tf1vuTECkMb+CzbdiOpinzxHab0jrNgn1lpfx0kTKq873uYc2i2obEhTp5DapbR+8vSm4a6a9L7Wu8Xt7crep5U7dYH5P17POMJLYK7BkJr2zu3J0nV7uS7wrrvdahTjDTVnqd3PUc2frezvLo4J1evu+yRBfR+FbhNiiRVlxoW+ugvnW19ss1Xk6rzc44nVbtvhegM+8mb2s5Mg7YMu+/bCjB0XVopJaW0a9T6Qno9kE+qN9Klcr1NmgOXh/c9w36tdvKFelCZaZr00t2biWZGqYi/XE927y2yMkeNvzbPXlEi54EMd5PQ28z470AP519+6SX2GjCf2pOFtfesVJ/+ya0uVcMe7iMJ2xyas3i8hkNbnfANM3H1TfUXzrquVe37eIKkCrWIf1X9hp1UlWoDDkxP5j7F54VMdCLl3a6klNu2nUzlI2r4xkNyDP4JoGpmmMTcZ8QDhr64xN3qRLpTy7k1zStx9R+Aqk2+q/9m6x6UJFVITv4Nx2VvXUopc9uZ21vdPM/2WRMUWV+GShWAqs1/t8HRN8A5PMuhE+Sgcx1906fBuYv2k63O3oYpU70PlSrUQv90C11/9EtUPmqjlNJD/9uXtbsXogIJzfOcY6szF4Su60qZ6n04UR0AACABKlUAAAAJkFQBAAAkQFIFAACQAEkVAABAAiRVAAAACZBUAQAAJEBSBQAAkABJFQAAQAIkVQAAAAmQVAEAACRAUgUAAJAASRUAAEACJFUAAAAJkFQBAAAkQFIFAACQAEkVAABAAiRVAAAACZBUAQAAJEBSBQAAkABJFQAAQAIkVQAAAAmQVAEAACTwv9IN+KlhGEo3AQCAjuz7XroJv9NXUiU6+3SB1xiGgZ0XaE5vtQwO/wEAACRAUgUAAJAASRUAAEACJFUAAAAJkFQBAAAkQFIFAACQQHdDKsQv7+SabQAAcE93SRVpEwAAyIHDfwAAAAmQVAEAACRAUgUAAJBA1UnVPM9SSinlPM9pJwYAAEir3nuUSim3bTP/HcdRKRWaWF/TN46jEEK/al1XKaU7WbXLCyCCnRdoUW97bqWVKqXUtm3TNO37vu/7NE3btoWSKp08reuqlFJK6c/v8/n8sL0AAKB3laaQuvJkt20YhlCxyn1qnudlWdxF6y1lBl6jw503/jPyNw342XtVSK//82vArC7zwXlfe/7ZeAPOP1v2c+xuz92rJIQYx9H+iz605514HEdT09KmafJOXO3yAojrcOeNf3UfvvSS01+5ud+lZpe6yHVdhRDruu5/qy702njnq5/S3V/kg9Zv9/VZ3R63P/2l3vbcSg//iYu/Dw4npy/Lkrw9AFCPZVl6LiPV5vP5jOOoPxHzubi1RvsvkbOE7U/W252ZLs/77KEYtq5r5PwZpFVjUuX97E9+fSil9KFDk6ofDHfdXx4AuEsXGw50MZ6eshI6xTGJjnlwNak6zEF/yl72VVwunWmZgpmUchxHzjP+jRqTqts/v6SUervxXvqn3a7p3V0aAEjM7b9RkE5i3E7HTZvsdMctMh2mD1W8Dv8NbQN2ew5pH/Jp5t5/8R9kSimdTk3TxHZTqR9U+8h90Y1pmpZl8VYs9HXQ4q9bjfxMtad8eDDx0qz0xO53dcL2uLONz/P2W+tXHapK4zhu2xaqJ83z7K0b6entCpN5C7tJ+h310cZlWUIpl/0S/XhZFvrH7O6fjpWTuHKiuj7Sd+ZEvGqXtwt65dsfQdrHfLiv1uHOq7+ivYf/9r+vxMP3Xui0B3cm3intybwnqpvU4TDDw3zGcTTzP0yzW+dx2zPxHuo6vIuexj01230v/RbrurqLGXl5vP0h3r7J+3L7j5HVaLfQ+ymbj8b7LmZNetsZ2pzyObMO36TSpXU3U+/OYJ46+bH19unWJffK58N9tQ53Xm+/G3nWTg6maZqmyaQvod5dd9h2QmNm6CZVXzOqw6wO72saFnovMwe72W7idT6pMu+l14a9cs6sipM9S2gyt/32KtVvZGdL5zMk+y+hd3GrDKG1l9uZdfgmlS7tofh0yLH0s3rjsK8sPXBn29unW5d8NSr3MV6nw53X7ultJuc4fMuFetOT/e5hIIBDUhXKqLzDB9ipyaEZbrNDowOYxT/M9nxSFVpG+4/e5Mnbfq/IcRK3AfYKdNvszZ/cyQ5/cXNf78qMNzWr3vbcepf28IvB/UGmN45Qudv7Qfb26daFShUe6HDnDX2zedOFPXx85/AVGjmwFeqtQxmVO3O38Ye/hJrt/v0w2NJ+K6mKT+m+RaT9XpHyj9sG738P5bpQTnzIbs1kbioWWiK3Ab/R255b49V/2jzP+77rg+L7vh/Oudv33ZxUGFq2Ui1HjH26eo7HwOuMDiHEtm3DMBwu0T98VXqZ05zdp7wnIekbVAjfVdWRwcFDwwG4J0rrs7Pdv0dGezrJu4w2+4zvw1OR4QzcOXgdlkj/126SfmzmoNeD25LDZPqzCF3+GR+uHT9Q+9V/bBlvYye7OR4D7xIaIEbfcv7z+bg/IM2FbEop9wK0k2NOavZl/+57RfIzfWFa6I3OvLX4u4bu/EzOzNMWudPLpfaH5mDexXvPGf0Jmk9K/9GbXLoXEnqHb5BSuqmbq+xda16v3koV3owaFVIbhmb+JeHthqWUwzB8Pp9lWfSAC6H+9VK3aspXobrIeZfe19y67uq7PJd2QAfhK0Tplan/fjLT9eZMuqhmzy3U+K+lOzxHUoUSqFEhtX1v5l8qhwNDwzCYgY7MiRNKqYddqT6kqHvuQ/Emd8Gj4HjxSd5arzRTOBThmyjHa36HyQ4z0f+1S1mhz+VJ2Q8ndZdUcS+awjinCkjELkuYbntd1/hAl5HyzzzP8zzbT5lTi0yNyh1SMjQA6cml+Dp9vtQtsioutT80sVk/oZxJ/2We59CJZfZk5mCuN6kSgc8o1Crkkv9c+Ir0trx14eo/PNDhzqu/okPjVB2uXAsN+ejO5+vVf3pK91p977VyoUa6XUzoTUNXvbkzd8d2sudgz9xtvHfZv66Kr1vd18Gf7N726xCs8XeJTHY4/z3emPgSJdfbnttdpQpVoEYFnBOqo5j7nMjovWjcv5u/HJ76WueQUurO277FivsXcfEec+ZkoMOShtp5KIx5T8Y/6euqODmHk2WtyGdx/oXxQ4Tn54lcSmd1P9Xb8taFShUe6HDnPfMF7haNxN8NTA7lDX2ilZ4yMvZ6ZER1+13c0SYPs/o6SpPtMKK6d9R1t9lmGW9XquKrItJgd4WEnv06jmhonFLvu3gX6jBBqLTJiOq/0dnSdvbp1oV7/+GBDndeERXJGGyH7Co+8eTcdc59F3cgUHdWY/Tef16hcbNC726/lzvz80mVd57Cuj1fqMGH9wo9Gxov3n33UDJkv0vkjdyP2DuH+LvkcGYdvsmw93T91DD0tbx1GYa8F+vlnj+KYuc9yT6K557C7B2R8jDxPfa1aXpYps/nM47j+TO+D1fJRdqTsNnP56mXdJqmSwc9f09fifX7nai3Pbezpe3s062LnfTkfozXYeetk84kQkNW1p9qJFEqXzmvYObX257b2dJ29unWhUoVHmDnrZPOJ9zeWv89NBz8y+g7+dS8sDrHLbIH9bbndra0nX26ddFJT74aFUnVq7Hz1sncGdC+g575S8HRO39sGIZql1eXqUrlfL3tuZ0tbWefbl2oVOEBdt5qmbzKVm2GkUnZxCWu4N1+RH97bmdL29mnWxfOqcID7LyVO5yoXrg1JURuz1xW2Tso97bndra038aK7Gpt/BqVKjzQ21cz8A697bn/K92AX+vq060RNSoAwEtxmxr8lp395HgMAEAhJFUogXv/AQBeh6QKJVCjAgC8DkkVfitHjYp6FQCgAiRV+C3OqQIAvBRJFUqgRgUAeB2SKpRAjQoA8DokVfgtzqkCALwUSRV+i3OqAAAv1d2I6vE71TDe+o8wljoA4HW6S6pIm6pAjQoA8Doc/sNvcU4VAOClSKrwW5xTBQB4KZIqlECNCgDwOiWTqnmepZRSynmeT75ESqmUSjIrlESNCgDwOkOpE7ellNu2mf+O4+jNlmxKqc/ns66rlNL+u76gbxxHIYSeZ2ihhqHY8uK/K/VyXPfnzhmvw84LtKi3PbdMpUoptW3bNE37vu/7Pk3Ttm2RpEopNc/z5/Nxn9IJ1rquSiml1LquQgjqVfXinCoAwEuVSSF1bcl+62EYIsUqe3CpQ6Xq0qx6S5nrkq9G5T7G67DzAi3qbc8tdk6VPlpn/9c+GnigC1q6ChWfD9pAjQoA8DrFkqrDeVG36YrUMAzzPM/zrAtXX0/PQjGMUwUAeKkCSZU343mSY03TJIRYlmVZFvPfkOGu283DPzinCgDwUgWSqlQ1KjO3ZVnsc96XZYm8xX5XwjaDGhUA4H1qGfzz9gE7fRWhudxvnuf46VmoAjUqAMDrFEuqkpz2pGdyqEvp/3JaVaU4pwoA8FJlkiq3mKQLTlfn482fvJkWasE5VQCAlyqTVOmjdSbv0Q/MITyllL6a78ysxnFclsU+/LdtG+Ms1I4aFQDgdf5X5F2llPqMcnNVnTsG1cnjd0opfa66vvRPnLvjDQqjRgUAeJ3CQ50mPFR3Zla9De16We7CD/f+w13svECLettzO1vazj7dy5rOS5puPL5h5wVa1NueW8uQCqhL7mv0OKcKAPA6faWQvaXMlzVd7Gm68fiGnRdoUW97bneVKu5F80UNNSfqVQCABvWVQvaWMl/WdLGn6cbjm853XqWUfS1O6IocfTX0z1oV97AxZ649qm1Uwnh7Tj6bZCaimo2huz339r3wWtTb8l5m1o+9olp8jNfpducNjbpnbnh6mNL9exF6MOdxHM+/RAixrqt+bAbZ+foW9WwYpj1mKWzmc4w/u1v5h/ddzjyrtwHdnpsLk04Nbfil7g7/4ZTc454zThVwwjAM+uYT4zhO0zRNk+l943eOb068AtcEe/xq91lzE5HIsyYt/voWXmbO9njaJ4fRRiokVfhXDedFcU4VYGUY+74rpeZ5nudZKbX/FSG2bbN76Hmep2lqMS/Rd8Jwh4BulJs22X+JjE19yCyvzueQVAkh9CDbjIb9U6VLZT/V2/Je1vT6abrx+KbDnVd/RXuPFu1/B4wuHV/7pUuH/9zOqMXDf/u/R/FsZm14n3UXVv/XPZKr/x766M2zhz+W3Uiq+oB+gEoVfGqoOVGjQsfcqsOB/vvhzvSRuelC16WJ4xWOk5OdeTsRPebVkNCHpe+iFjo+GPpcDpOZ/+rpQx/9oQ3jOJ7cSJBG6azup3pb3suaXj9NNx7fdLjz6q/oUKXK5T1R3U1W9LlZhylNd+CeF+82wHvuvPd9z9RI9NwO71JJperGWf/elXZYvW4x6fBH76LZq9R9F7PGDm/tftY/1tueS6UK/6qh5kS9Cvjz+Xxun2s8z7O507w5yd2+/fyBlHLbNnNSvGmAPY177rz+++1zd/Tc6jwVbFmWe+MX2h+ZXi165UeKTPYa8K4NPR89Bz037ylWh9fq6Tmt6ndKZ3U/1dvyXtb0+mm68fimw533cOK2TmIi07uVKvNCezIzQ3dK8a34ESoguQWYk5UqPUN3MvNG0zStAaFTlBIKNS/CbdXhczk8G1qloc9IP3ZXb+Qcu7J9fW97bneVKkZUP6WGmhM1KvRNSmmnDtu26cLJMAxmiMiI0Bk8kYvsDhcPhqpH7iHF23Wmr6N3LsvyCfjBqUL6I9i27fwCumXFQynOLlmJcA3pUIs6TOaeURcp+LllLeTzv9IN+LWdkY3OqGHcKcapQvdM8qTPBzed6LZtn89nHMdITxk6ATySH3w9ziil9H6F5uuwQ2OfitMn6T8kpdQDE5xJZMW/AyLYLzF/18dYD9mSu5h6MrOM+qMxn+bhXdx3RyndVarwRQ01J+pVuGEYmvl3nRmhal1X07PGKyhfSxcP6av/pJTmLKt7MxHRVECF/eyCwXme9TV0l1IWvWhuznQoMukHbjp7eC/307QrXl+vFRVUqn6FpAr/qqHmRL0KN+x7M/8ekFLO87z/nUNzGP/zB+Z51ocgP5/PsixtXa6vU8Ab9GKezKvsw21u1mgXmSLJkHcIUHsy+5x3++x171J/bTNS6e7wH04ZrJsTt/IYeBF99Gdd18itc/VpoOqH9809XE4opTR3RAldUVgV0+CrzLHXM1dizvNsTvnyvkrXvb5mw2Yy7yFCe0FqvoKyNyRV8Kmh5kSNCt17MrSm6ZLdvvZ2eUlnTtM0pbqjnDnB6DcJwe1m6/w1kuPazDSht9NZ17Is5pK90Hz01Ql6gtBbm3eJ5N+RZ5EWh//wrxrOi+KcKnTv/IDpoc5S/90tID0/XOi+47vP17mUUdn0yveehK4fxKtfh8ncd9dnlZmPmLSpBiRV+FcNNSfqVeie6WiHYfCmLGYImK8FjEOfnarIZNiXJV6lG19zTqZbeDWjsk+iP3NN5Zm/R867EicukyTl+g2SKvjUUHOiRoW+mQGlPp+PHptKX22nz7Y+TONlKhn6tfoc8yenluueWw/ybq7+M0Ou3zhr/nxBroh5nuNntoV8Hebg5KWLJlXy5kznB1NIcr0nziCpgk8NNSdqVOib9A3+acYuGsfxa2c/z7PuvPVr9XEie55XKaXMvW7M1X961G89wefzuZpX1Tw05bIshwFRT/r6EjNB/LMwk4VmaF4eL1hSpvqZoavBMIehr+W9TP/8LX4d373HXAn4ap3vvA8P4R0OBX69tDDOXI9mX0xn/ni1bUqpz+eT8OR32PRnXXDf6W3P7Wxpvx0t6mpteDSdlzTdeHzT21fzczrL8Q4icPvM60x0e/h8cxiGIT7y/g8a0NUn293hv/itEEu3rho1nCPFOVXAM/og3eGPX6/A/z19jLLOI4BN0581JcBf6iuF7C1lvqzpYk/Tjcc37Lw36EM/4m+gTl270n+pp0ylUazKoXiZSvS353a2tJ19updxThVqxc57j8mrbBWewKTPrKot1WuaHua++F7T257b2dJ29ule1nRe0nTj8Q077xPeU8trw8Dfaf3y/kURve25JZfW3IFBj6Fy5iVmpJbD3/WIKV9n1dune5nJS+qpP917jNdh5wVa1NueW2xpD0XpM8d9Q/Vhcy9Pfa8rET4w39une1nTeUnTjcc37LxAi3rbc8tc/adPltRDxu37Pk1TfCheXYhyL2PRT+nx2fZ9V0rp8YVrqHm2qobr+LgGEADQoDIppHuhR/wiBXt8qUOlyh3ZLHIRaW8p82VNF3uabjy+YecFWtTbnvu/Um98GJvfHLnz0h+JPvx3eGrbtsOsaruqpUk1nBd14zyq3CWrnr4aAABXFRv8M+EROnP2ur7nKCPIJfDLe/YlfJz1HwAAUQWSKm/S8yTHMjcK1edmxe/oOdx1u3mNqeG8qJofAwAQUODwX46zyM0h23meh2H4fD6hg7hdHdy9o5KaU7WPAQAIqOXef0+O2R3OqdK3kcIjNdSEansMAEBUsaQq95lPnFn1SA01odoeAwAQVSapcq/108NWJZkV9zp4pIaaUM2PAQAIKJNUmVvK6P/qB2YoBKXUMAwnR0Y4zGqe59v5GYSooyZU82MAAALKjFMlpZymaVkWc1WdHgnddvL4nTurcRwZquqpGsadqu0xAABRhYc6TXio7sysehva9TJyiAhWTlHsvECLettzO1vazj7dy3S1r3hNqM7HJFVFdTRWHPAuXXW7fSUZJFVfkDdEsHIA4KLeut1axqlCXWq4zq62xwAARPWVQn49gtDV2vCgGBPBygGAi6hUvdweVbp1FaihJlTzYwAAAvltuHIAACAASURBVPpKIXtLmS+jGBPBygGAi3rrdrurVOGUGmpCtT0GACCqrxSyt5T5MooxEawcALiot26XShX+VUNNqObHAAAE9JVC9pYyX0YxJoKVAwAX9dbtUqmCTw01odoeAwAQ1VcK2VvKfBnFmAhWDgBc1Fu3S6UK/6qhJlTzYwAAAvpKIXtLmS+jGBPBygGAi3rrdrurVA1RpVtXjRpqQrU9BgAgqq8UsreU+TKKMRGsHAC4qLdut7tKFb6ooSZU82MAAAL6SiF7S5kvoxgTwcoBgIt663apVMGnhppQbY8BAIjqK4XsLWW+jGJMBCsHAC7qrdulUoV/1VATqvkxAAABfaWQvaXMl1GMiWDlAMBFvXW7VKrgU0NNqLbHAABE9ZVC9pYyX0YxJoKVAwAX9dbtUqnCv2qoCdX8GACAgL5SyK83oulqbXhQjIlg5QDARVSqXm6PKt26atRQE6rtMQAAUX2lkL2lzJdRjIlg5QDARb11u91VqvBFDTWhmh8DABDQVwrZW8p8GcWYCFYOAFzUW7dbslI1z7OUUko5z/PJl0gplVLxCc7PDUE11IRqewwAQNT/Sr2xlHLbNv142zalVDxbEkIopcxLIvOUUiZqY8fsHxY8BgDghDKVKp0eTdOkr7mbpknnVZHp53n+fD5f55m+rb2poSZU82MAAALKHOzU40XZbz0MwziOobzKHl9qXVdvLUrPQedqoSOAvR3cvYzThiJYOQBwUW/dbrFzqsZxPPw3UmfSBa11XUMT6DTr6wFEnFVDTai2xwAARBVLqhKe+TTP87ZtXeXC2dVwDlNtjwEAiCqQVHnrSbdzLKXUsizTNJ2cfrjrXvPaU0NNqObHAAAEFLj6L+3VeZ/PZxzH88MoUND6ooaaUM2PAQAIKDakwsG906F0LnUYm0pfKqhHwErSth7ZJ2XzGACAE4olVQlPKl+Wxf7vtm36nHeSqvtqqAnV9hgAgKgyJ6q71/rpoRCuzmee5/1fQgg9/BXjqt9Uw3lLNT8GACCgTFJlDtvp/+oHJg1SSg3DQFZURg01oZofAwAQUCapklLqUdT1hXXbtrljUDHoVEk11IRqewwAQFThoU515vSzk596G9r1Ms7LjmDlAMBFvXW7nS1tZ5/uZbowU/w6uzofk1QBwEW9dbudLW1nn+5l5A0RrBwAuKi3brfYbWpQtRrOYartMQAAUX2lkF/vNtPV2vCgGBPBygGAi6hUvdweVbp1FaihJlTzYwAAAvpKIXtLmS+jGBPBygGAi3rrdrurVOGUGmpCtT0GACCqrxSyt5T5MooxEawcALiot26XShX+VUNNqObHAAAE9JVC9pYyX0YxJoKVAwAX9dbtUqmCTw01odoeAwAQ1VcK2VvKfBnFmAhWDgBc1Fu3S6UK/6qhJlTzYwAAAvpKIXtLmS+jGBPBygGAi3rrdrurVA1RpVtXjRpqQrU9BgAgqq8UsreU+TKKMRGsHAC4qLdut7tKFb6ooSZU82MAAAL6SiF7S5kvoxgTwcoBgIt663apVMGnhppQbY8BAIjqK4XsLWW+jGJMBCsHAC7qrdulUoV/1VATqvkxAAABfaWQvaXMl1GMiWDlAMBFvXW7VKrgU0NNqLbHAABE9ZVC9pYyX0YxJoKVAwAX9dbtUqnCv2qoCdX8GACAgL5SyK83oulqbXhQjIlg5QDARVSqXm6PKt26atRQE6rtMQAAUX2lkM2nzD/o45teP1lRqQKAi5rvdi/qrlL1Bvv+378cj2uoCdX8GACAgL5SyOZTZoolBbHyAeCi5rvdi0pWquZ5llJKKed5PvkSKaVSKsms2lZDzebi42HI/i/vsgAAEFUshZRSbttm/juOozdbsimlPp/Puq5SSvvv5pq+cRz1PN1pzJRtp8wtF0v0p6QPMOaIIvf5YC2vfAAoovlu96IylSql1LZt0zTpa+6madq2LZJUKaXmef58Pu5TOnla13Xfd6WU/vC8U75EBTWn24/zZVT/t89yThUAoJAyKaSuLdlvPQxDpFhljy91qEK5L5zneVkW73I1nzK3XCyhUgUAvWm+272o2DlV4zge/msfDTzQBa11Xb3z8R7pe7nSNac7j39TqcrZfgAAIv5X6o1TZUJucWtZliRzrpqdRLTyWGTMqI7JT572AwAQUaBS5T3GlyTHUkrpA4XempY23PW8eWnkrCcNmS/N45wqAMCLFahUZTpaZy4nDF36pzV/cDdzPSlr3vOLSlX+ehsAAF61jKj+dTyF+GuHYTCXE3ZxilW2ekzx3OhppSrf+gEAIKrYOVVPsqjDfD6fz5lhrl4lUz2mgtzoaaUq3/oBACCqTKXKvdZP15luzEoPSdVRRpX5nKHiudHTSlXm9QMAQEiZSpUeydPcc0YfsDN3mNHFp2mazt9zxp3ytferyXzOUPHc6GmlKvP6AQAgpExSJaWcpmlZFnNVnXu93pnik5nGHUbhtUmVZhdnEj4We/HcKM0RwBzrBwCAqMJDndqVqh9ofmjXzH188azoYUaV97MlwQKAi5rvdi/qbGlb/3QPuUPqeoyZffEM6XbMVcP7vzcAAJzVfLd7UWdL2/qnS6WKShUAtKP5bveiWsapwjVDrmvciudG92tUudcPAABRfaWQX+82U/vaoFJFpQoA2tFbparY4J+lNP/p5jtnyHrYaMxcV2p90wEA5MXhv9bYPXuGxzXkRk+OAOaLAADEkVS1Kcc5Q0Pb51T9IGMDACCCpKpN2epVxXOXaiMAAHEkVa3JVqMyD2vIYCqMAADEkVS1JluNyjysIYOpMAIAEEdS1aZs9ariuUu1EQCAOJKqNmWrVxXPXaqNAADEkVS1JluNyjysIYOpMAIAEEdS1ZpsNSrzsIYMpsIIAEBcdyOqx+9U08x463bxJOFjsRfPXWqOAABEdJdUNZM2xWWqV5XOWmqOAADEcfivNQPnVJWJAADEkVS1JlONynpYQwZTYQQAII6kqk3Z6lXFc5dqIwAAcSRVbcpWryqeu1QbAQCII6lqTbYalXlYQwZTYQQAII6kqjXZalTmYQ0ZTIURAIA4kqo2ZatXFc9dqo0AAMSRVLUpW72qeO5SbQQAII6kqjXZalTmYQ0ZTIURAIC47kZUb/42NdlqVOZhDRlMhREAgLjukqoG0qYz7OJJwsfc+4+8CgBwF4f/2pStXlVD7lJnBAAgrrtKVdMGsYvMvXvx3KXmCABABJWqxujSUtZYPHepMwIAENdGUjXPs5RSSjnP88mXSCmVUhnbVEjx3KLbCABAXAOH/6SU27bpx9u2KaW+ZktKKfOSlymeW3QbAQCIq71SpdOjaZr2fd/3fZomnVdFpp/n+fP5/LCNP1U8t+g2AgAQN1Q+xIAeVspu5DAM4ziG8ip7GKp1XaWUh2crX964GnKLbqP491pJAMBXrXe7V9VeqRJCjON4+G/k0J4uaK3rmr9dZRTPLbqNAADENZBUHapNnSueW3QbAQCIqzqp8h7je5hjDXc9edOEiucW3UYAAOKqvvovR42q9YO7xXOLbiMAAHFVV6q8Xjn61HnFc4tuIwAAcVVXqrTOs6iD4rlFt1GI7PUqUjcAaFrtlSr3Wj89bFWp9hRXPLfoNor89wgCADSt9qRK35fGnFylH5ib1SilhmE4f++aFyieW/QbxZB1/gCA1tWeVEkp9Sjq+hK8bdvcMai6Oj5YPrfoNuqHJrtKHUtvWQCAp5oZ6lRnTs/HU2hleb2qyC2IeaLgICCA12m9272qs6Vt/NM1XW/xDICYKQLAm7Te7V5V++E/HBTv9YmZIgCgdSRVjSne9xMzRQBA6xoYpyqt+A1n6q9SFu/7iZkiAKB13SVV9adNccX7fiJ5FQDAi8N/jamh7yeSUQEAXCRVjSne9xMzRQBA60iqGlO87ydmigCA1pFUNaZ430/MFAEArSOpakzxvp+YKQIAWkdS1ZjifT8xUwQAtI6kqjHF+35ipggAaB1JVWOK9/3ETBEA0DqSqsYU7/uJmSIAoHXdjaje+m1qivf9RPIqAIBXd0lV/WlTXA19P5GMCgDg4vBfY4r3/cRMEQDQOpKqxhTv+4mZIgCgdSRVjSne9xMzRQBA60iqGlO87ydmigCA1pFUNaZ430/MFAEArSOpakzxvp+YKQIAWkdS1ZjifT8xUwQAtI6kqjHF+35ipggAaB1JVWOK9/3ETBEA0LruRlRv/TY1xft+YqYIAGhdd0lV/WlTXPG+n0heBQDw4vBfY2ro+4lkVAAAF0lVY4r3/cRMEQDQOpKqxhTv+4mZIgCgdSWTqnmepZRSynmeH058aVZNK973EzNFAEDrhlInbkspt20z/x3HUSl1b2J9Qd84jkIIPVlooYah2PImUUPfT8wUhSC1AvA2rXe7V5WpVCmltm2bpmnf933fp2nati2UVMUnllIKIdZ1VUoppdZ1FUK8uF5VvO8nZooAgNaVSSF1bcl+62EYQsWq+MRXZ9V0ylxD30/MFAWVKgCv03q3e1Wxc6r00Tr7v/YBvvMTH556veJ9PzFTBAC0rtjgn/qw3fOJlVLDMAzDME2TEGJZFv3Hh82rVvG+n5gpAgBaV6BS5c14nuRYJp3SGZX+b8hw1/nmZVW87ydmigCA1hVIqi7lT2fmtiyLfRr7siyRt9jvStjmJ4r3/cRMUQgxDHn/AQCyqmXwz0sH7OyJ9YWB5nK/eZ7jp2e1rnjfT8wUhcgeAQBZFUuqbmdR7t8PdSn937eeVlW87yfmimLIOn8AQG5lkiq3mKQLTlcn9uZP3kzrNcr3/cRMUexZ5w8AyK1MUqWP1pm8Rz8wh/D0BX32Eb3IxOM4LstiT7xt24vHWSjf9xMzRUGlCgAad/vE7YcOdal1Xc1TelT0cRwPf/FOvO+7O4pV6E0LLm8SQux6CYjEexEAfqn1bveqwkOdXjpUF5/4zKxaH9q1fDWFmLVSJfZ88xecrg7g51rvdq/qbGkb/3RN11g+AyC2GQHgl1rvdq+qZUgFnFS8VybmioJzqgCgbSRVjSnf9xMzRZHx2N/e0Q9FACim2L3/SonfcKb+KmX5vp+YKYr/yuSZ5g8AyK27pKr+tCmufN9PzBXzVqrIqwAgNw7/NaaCvp+YJwrOqQKAtpFUNaZ830/MFAXnVAFA20iqGlO+7ydmioJKFQC0rbtzqrL6QddVvu8n5oqcUwUAbaNSldi+Z4+l+35iniioVAFA20iqEmu63yWWjIJzqgCgbSRViTXd7xJLRkGlCgDaRlKV2P/1jvliDRkAMXkUVKoAoG0kVYn9X++YL9aQARCTR0GlCgDa1t3Vf7lvU1O+bya2Grn6DwDa1l1Slfs2NRX0zcQ2o+DefwDQNg7/JVa+byY2GgXnVAFA20iqEivfNxMbjYJzqgCgbSRViZXvm4mNRkGlCgDaRlKVWPm+mdhoFFSqAKBtJFWJle+biY1GQaUKANpGUpVY+b6Z2GgUVKoAoG0kVYmV75uJjUZBpQoA2kZSlVj5vpnYaBRUqgCgbSRViZXvm4mNRkGlCgDa1t2I6rlvU1O+byY2GgUjqgNA27pLqnLfpqZ830xsNXLvPwBoG4f/Equgbya2GQXnVAFA20iqEivfNxMbjYJzqgCgbSRViZXvm4mNRkGlCgDaVjKpmudZSimlnOf54cRKqfOzyqp830xsNAoqVQDQtiH3idshUspt28x/x3FUSt2beJ7nZVn03/VkoYX67/KqbKrom4mNRv0w2/yFILUC8Gu5u93alKlUKaW2bZumad/3fd+nadq2LZRUxSdWSi3Lop9VSq3rKoSQUv5oSRzl+2ZiozFnRtXTdxoAFFMmhdSDRdlvPQxDqFgVn1gXsexn9RFA73FAKlXEeqN+mG3+P0DqBuCgt0pVsXGqxnE8/Nc+wHd+4m3bDs+WPa2qfN9MbDVmH6cqdwSAzhU7Uf3SEbr4xPr8dCnlMAxSysi5WT9QQ99GbDKKvFf/kVEBQG4Fkipv0vMkx1qWRZ+ork+3+nw+kbxquOtk24r3bcRWo2i7UgUAKHD4L8dZ5OaQ7TzPwzB8Pp/QQdzcB3eL923EVqPIe++/3BEAUMvgn5eO2R0mPpxTNU1TihbdVLxvI7YaRcMZ1U6lCgAKJlVPsqhML0mieN9GbDUKzqkCgLaVSarca/30SFQ3JnafNUMtpGvvBcX7NmKrUVCpAoC2lUmq9KgHJu/RD8xQCEqpYRjMf+MTH56d5zmSn/1A8b6N2GoUVKoAoHF7IYe8Z11X85QeFX0cx8NfvBO7s7JfeJB7eYXY9TsQiX1GALAVTDOKKDzU6aVDdfGJz8yKEdWJ9Ub9sIaW3K1UFf0uAVCj3kZU72xp8ydVQlTRwxGJRSIA2HpLqmoZUuE1ivdqxFaj4JwqAGgbSVVixfs2YqtRNHzsb+/ohygABPVVl/t6t5mHa6OGvo3YavzNW2WbteCcKgCO3g7/dba0nFNFJOaMAGDrLani8F9ixXs1ItEfRd5ztgAAJFWJle87iURvFHnP2QIAkFQlVr7vJBK9UVCpAoC8SKoSK993EoneKKhUAUBeJFWJle87iURvFFSqACAvkqrEyvedRKI3CipVAJAXSVVi5ftOItEbBZUqAMiLpCqx8n0nkeiNgkoVAORFUpVY+b6TSPRGQaUKAPL6X+kG/Fr8TjXPB34t33cSif6Y/d6CANC57pKq3OPlV9B3Eom+KIaseRUAgMN/iZXvO4lEbxScUwUAeZFUJVa+7yQSvVFwThUA5EVSlVj5vpNI9EZBpQoA8iKpSqx830kkeqOgUgUAeZFUJVa+7yQSvVFQqQKAvLq7+i+38n0nkeiNIvvVf0PmehWpG4DKUalKrHzfSSR6o8heqcodAaByJFWJle87iURvFHnPqcodAaB+JFWJFe97iER/FNlHVM8aAaB+3Z1Tlfs2NcX7HiLRH0Xec6pyRwCoX3dJVe7b1BTve4jEQGw4o9IRACrH4b/Eauh7iERPFJxTBQB5kVQlVrzvIRL9UbRdqQKA+pFUJVa87yES/VFQqQKAvEomVfM8SymllPM8p5r45NzyKd73EIn+KKhUAUBexU5Ul1Ju26Yfb9umlFJKPZxYTyalTN7a84r3PUSiPwqu/gOAvMpUqpRS27ZN07Tv+77v0zTpVOnJxHqy3C3/qnjfQyT6o2g4o9qpVAFowZB7iAH/uw6D+Hd0g2EYxnH05lUnJ9Z/1OlX6Ajgfz/Vs6mh7yES/VE/rKElt6LgZjVAg3J3u7Updk7VOI6H/0bqTF8n1of8IgcQf6Z430Mk+qNoOKPaO/pOBtCwYknVpTOf4hPP87xtWyW5cPG+h0j0R8HVfwCQV4GkKnSO+fk52BMrpZZlmabp5GuHu07Pv4oeiEg8RkGlCgDyKnD1X9qr8z6fzziO54dRyF3QKt73EIn+KLj6DwDyquXef5dOhzIT61zqMDaVUsoMapWsfacV73uIxEBsOKPSEQAqVyypupdFeS3LYv932zZ9GnuRpKqGvodI9ERBpQoAMttL0Ffz2X8RQpiRqJ5MHHlKP3uxpdcIset3IBKJOSKAtpRKM0opc/WfOWyn/6sfmEN4SqlhGMx/4xPXZq/gNz2R6ImCq/8AIK8yh/+klNM0Lctirqpb1/UwjTnkJ6Vc1/Xz+UQmrkfxvodIDMS9gjY8igBQucJDnerM6eTJT5cm9mJEdWK/UT+soSW3ohBiL/ldBeCO3kZU72xp8ydVgiOARGK2CKAtvSVVxUZUf6vivQ6R6I+Cc6oAIK9axql6jeJ9D5EYiA0f+9NxyJla7R39lgaQS3eVqiT3oomooe8hEj1RtF2p2vf/9q9MEQCe665Slfvgbg19D5Hoi81XqvJFAEiiu0pVbjX0EESiJ4rmK1X5IgAkQVKVWA09BJHoiYJKVTACQBIkVYnV0EMQiZ4oqFQFIwAkQVKVWA09BJHoiYJKVTACQBIkVYnV0EMQiZ4ohl/EGpb0egSAJEiqEquhhyASPVHsv4g1LOn1CABJkFQlVkMPQSQWiIJKFYDekVQlVkMPQSQWiIJKFYDekVQlVkMPQSQWiIJKFYDedTeievxeNM/HW6+hhyASS0QqVQB6111Slfs2NTX0EERigSgG8ioAnePwX2LF+wYisUwUZFQAekdSlVgNPQSRWCAKzqkC0DuSqsRq6CGIxAJRUKkC0DuSqsRq6CGIxAJRUKkC0LvuTlTPrYYegkgsEduuVA2Z61U7qRvQgd6Sqv0HX53FewgisUAUbV/9lzsC6EFvh/8G8feTMUsUDR8BIRIfRUFGFYwAOtFbUpX5e59+hdhtFPyiCEYAnegtqdIDqsci/QqReCcKflEEI4BO9JZU6QHVY5F+hUi8EwW/KIIRQCd6S6oyf+/TrxC7jYJfFMEIoBO9JVWcU0Uk5omCXxTBCKATvSVVVKqIxDxR8IsiGAF0omRSNc+zlFJKOc/zw4lPz4pKFZGYJwp+UQQjgF7shYzjaDdjHMfbE9t/1w/WdfXO578lzh33nUgkEk3UD4AOFUwziihTqVJKbds2TZNuxDRN27YppW5MLKUUf1mUUmrfdyHE5/MJvPO+73/1pHyxgl/GROKvo6BSFYwAOjHsJfZ4PSqU/dbDMIzj6M2r4hO7L5zneVkW73INw/BfXlXB9yyRSOwk/sBO6oYq/Xf7qm4UO6fKPaK3bduNicdx1MWqc8ioiMQ8UVCpCkYhskcANSh2Q+UrmVBsYre4tSxLeE7c85VIzBTZs4pFAJUoUKnyHuNLkmMppfSxwnVdAy/dz9ypJssdbIjEd0fBPlIsAqhEgaTqUv50abb6/PR1XcNvMfydnXUn1vDtSSRWGvXDQWSMxZex1gigErUM/hm69O/MxLpAZa4QjCZt5EZEYrYocl5XK8irghFAJYqdU/Ukizo89fl8QlcOOjinikhsNLLnBiOAWjwa5eoufTWf/RchhBmJ6tLEl5ai+BiARCLxZvzb0YmhCFSoVJpRSpkBJA7lJSnltm2mJfrZaZr0PWfiE+vTyKdpOryF9341jFNFJBLfF8Vf1gnUprdxqkSpbO6QBtk3ltHX7tn3ojlczWcmDl/l51+uGn5NEonEO/FvtyaGIlChgmlGEYVTSFN8Sj6xF5UqIpH4vvgDe8mOAg3rrVLV2dKW/u4jEok3o35YQ0t6jcANvSVVtQyp8CtclU0kthkFGVWxCOCk3pIqvpeJxDaj4BdRsQjgpN6SKu5FQyS2GQW/iIpFACf1llTpY7uxWPz7i0gkeqLgN0+xCOCk3pIqvpeJxDaj4DdPsQjgpN6SKr6XicQ2o+AXUbEI4KRi9/4rhHv/EYmNRvbcYlGI/2I+O6kbXoFKFZFIbCEKKlXFohDZI/AOvSVVfC8TiW1G/XAQGWPxZew1Aq/RW1JFpYpIbDaKPW+sYRm7jMBr9JZU8XuUSCQ6UfDNUDICr9Hbier8HiUSiW7km6FwHDgRHq9ApYpIJHYfBd8MhaPgLHi8Qm9J1c49aohE4jEKKlVvjsDP9JZUDdyjhkgkHqPgN9WbI/AznFNFJBKJfDO8PA45U6udYhj+dFepKr5vE4nE6qLgm+HlUXDOFn6it6SK36NEItGJ+uHAyKLEyxGw9ZZU8e1GJBJ9UeQcWVTwzfPaCNg4p4pIJBJzR755XhsFd5uGhUoVkUgkZo6Cb57XRsHdpmGhUkUkEom5I988xJtRUAlrCpWqlmLr7ScS+4z/7bm5Y+72V7AmO2y/oBLWlN6SqrZ/Lzbd/qa/12h/8dh0+//bc3PH3O2vYE122P7cWz7SGvRo4p0YhkHfqSYSa9iLIntX5S0kEoluzL7n6ofttr/19d94zG3vKMvoslLV7p1q6m9h/HuteBtofw0t6bD92ffczPNv+pun9fb/YMsXeY8t9lUN6y2pavh7+Td7F99rtL/O2HT7s++5Iu/ZWk1/87Te/qa3/L2nGpXWW1LV+tbZcPub/l6j/cVj0+3/UaUqW2z6m6f19je95Q99VamE6POcqktbM9MnnJ5I/E2sbct/yfSnP4Sb01ezvMSksa8041WVqnmepZRSynmeA5Nc26+YPuH0V39vMT3T356+qi3/PdOfjjenr2N5q9qSXzF9X96TQkopt20z/x3HUSl1mIZKVdnpicTfxNq2fKY/Nf3pDzl3JYyYNL4nzTjjJZUqpdS2bdM07fu+7/s0Tdu2uUlVVb+Hepu+vt9PTP/a6ava8pn+7PSn453pxcWz8q9OX8eWX+X0fXlJCqk3bXtZhmFwi1VUqspOTyT+Jta25TN9W9Nfjrk36kL7UaL4kjTjpJdUqoQQ4zge/msfDfxT5e+zPqav7/cT0792+qq2fKZva/o7W6a4UDm7M/1wvXJW0fR9eU9SJaU8MVVF3/u9TV/V9ybTv3v6qrZ8pm9r+qq25P+b/nSsb/q+/K90AxLwnTt1PG/d8l/ufCYyfdrpicTfRKEfMj3T35qemDZ25Q1J1bkalRCiy7QZAAD8xHsO/x14y1cAAACZvCepIosCAAAFvSSpcq/108NWlWoPAADozUuSKn1fGnNylX4QvlkNAABAYi9JqqSUehT1YRiGYdi2bV1Xe4ITtwWsSLy1rSyLlNI9Jlt/45VSTa/8Rjce79YiGlmcphsvwu23J3AbWX/7m9iX2914nrSwhvbnsr/Luq7ruh7+6I4LWqBlp5lGmmbbS9TKsuh2mhsH2X+sufHmkLFpqv1s/e13Nx772Wrbr38CXd1zK1mcUONb2ZFD7Tcq35dD7W9iXz6/8djP1tD4J5t3De3P521JlUtvtfZtAePfIGXprc1unr1HtbIspkxofxHX3/hDC/V/zQ5ff/sPG493cWpr/7qupvM7NCbe4BoWJ9L4JnbkSPvtaardl89vPBXuy+c3ngp35Cebdw3tz+r9SZWb5tecGrtt09ucebaJZRF/vw7tL+L6G6/bbP9lmiaz4Wfo6wAABEdJREFUCPW3P97COttv/2A9fLHGG+x+WL9fnHjjIztyDY3fo+23p3H35frbH9+Xa2h/61v+7X6qhvZn1UVS5a09FmrOF+M4Rr4dmlgW00g3qaq88fF9u/72e7+t7KSw2vZ7D4LEG1zP4ngbP47j4XjZodeppPF79PCfaVXN+/LJjSf+bG0bT/zXUfHGP+mnamh/Vi85UT3u/JDrxekzK+2/HIaKqHxZ9FmHoZNeK2+8+DshV0o5DIN7Amnl7detHYZhnud5nvVdOezzQCtvvyve4MOzVS2dUupwBu6yLPZ/a268Ns/ztm174C4U9bf/0r5cVfu9O7Ld/uKNf9hPFW9/Vi9PqkK3Bfx1O25RSund6XAlo62qZVFKLcsSae1BbY0XQizLojs/fTHp5/OJXBVVVfs1/ZvPXorIxBW2P665BmtnduTaXN2Xq3JjX67NpR25rOb6qdxenlS1+1lKKT+fjxBiXddWluLz+Yzj2EprQ/Z912UG/RtdfwpNkFLqMW91FXqapmVZXnjFclNa3JEF+3JR3h25zs+i0c07q5cnVV6V/17Rib/ZqeJbaj3LYsZfnf+Iv4MgoUbW03jxl38frvWN/0Csqv1KKb3NmCxqnudxHA9HnQ4v+U3bUok3uLbFaXRHFuzLpXl35MPxNVuRxifcvKta+c/9r3QDfqGhz0wppX8jNvHl5Tp04du2bdtm9rfKGy++lTaba7/+yWtOgKi//Qftfhe3viOL9vdlr/r3Bd2wynfkh5t38fbn9dPT4kuIXxJVm/iH0tyyfL0Mu6rGuy20/1J/+932tNL+89dAVXVVvBa6+uzqjlzqqvKvg3/u5/blqtp/Y1+uauO5uiMXGQ8i9Gwre24m70+qDsO+1Xz1pj3O3oE9QRPLsjtfDfU3/tBCfbygoZU//juekG6/aXDN7fd2LfEGe58tMoSg2/h7O3Kp8Q9vJFX1t//GvlzJxrPf2pF/2fiH/VTx9udWy7dqVoej6dV+fpGrJ0LTVLssu+/3Vv2NP2wqh99P9bf/cB5JK+0P9evxBleyOJGkqokd+UZStbfQ/ib25VDja96Rn2/elaz8TIY9MAzJ+3iPVTeq6WWpv/HxFtL+H3vZ4tiabrxoof1NbzxNN1603/57OkqqAAAA8ulxSAUAAIDkSKoAAAASIKkCAABIgKQKAAAgAZIqAACABEiqAAAAEiCpAgAASICkCgAAIAGSKgAAgARIqgAAABIgqQIAAEiApAoAACABkioAAIAESKoAAAASIKkCAABIgKQKAAAgAZIqAACABEiqAAAAEiCpAgAASICkCgAAIAGSKgAAgARIqgAAABIgqQIAAEiApAoAACABkioAAIAESKoAAAASIKkCAABIgKQKAAAgAZIqAACABEiqAAAAEiCpAgAASICkCgAAIAGSKgAAgARIqgAAABIgqQIAAEiApAoAACABkioAAIAE/j/Q44VeChzucwAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "scale_bgs = h_bgs.Integral()\n", "h_bgs.Scale(1/scale_bgs)\n", "\n", "scale_sig = h_sig.Integral()\n", "h_sig.Scale(1/scale_sig)\n", "\n", "\n", "h_bgs.SetFillStyle(3001)\n", "h_bgs.SetFillColor(4)\n", "h_bgs.SetLineColor(4)\n", "\n", "h_sig.SetFillStyle(3003)\n", "h_sig.SetFillColor(2)\n", "h_sig.SetLineColor(2)\n", "\n", "legend=ROOT.TLegend(0.5,0.7,0.9,0.9)\n", "legend.AddEntry(h_bgs,\"Background (WW) \",\"l\")\n", "legend.AddEntry(h_sig,\"Signal (H #rightarrow WW)\",\"l\")\n", "\n", "h_sig.SetStats(0)\n", "h_bgs.SetStats(0)\n", "\n", "h_sig.Draw(\"hist\")\n", "h_bgs.Draw(\"histsame\")\n", "legend.Draw()\n", "c.Draw()\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxwAAAI8CAIAAAD0vjrdAAAABmJLR0QAAAAAAAD5Q7t/AAAgAElEQVR4nO3dYdKiPLOA4XDq3Re4MmBlwMo4P3omXyaBCAgmbd9XTXUxPohBxLQNhGZdVwcAAIDP/F/pBgAAAPwCkioAAIAbkFQBAADcgKQKAADgBiRVAAAANyCpAgAAuAFJFQAAwA3+K90AwDnn5nkehuHInMMwdF33bGu+S1ZnnudSDRiGYZ7nrusOboIn+G2afx9ktoKfAf9BLbi9PuHbf2Fza1934AtIqlCFeZ6XZSndigJqWHFpQ9lU1b8JXddl+myZTVLAr7Rrtw0aDcMwjuMnS6jh/QdqRlKFurRtm/++5tu8Qk3TOOemafp86yzLQp/9EJ9R3bKlLvBZHXfywK8iqUJdOLKA1+tFp/ucUhkVYAEnqgOoRdu2MlHw7C4AuIxKFQyZ5zmshB3puf08XdeFv+/9oqLH8y964dRg/9y3L5Sxtxannuuez3WkeeM4juP4yfoetLcRH9q4p7aCLPn4m/DJx+wun3zM3H2fdqCkFahA3/dnP5C+qhE9Pk2TPD5NU/pgpG3bzZb0fZ8+RWbeXFS6BJk5nbPv+83WZlYwFK5Uhp/Zv7GZhcgLRQ1bg42SeccyK+ifni55r8Ey5+a7ms4Wvkq6HTf/5B/Z24ibj29+kDbXfbMZ67FNGS7Zz3/krbu2mfaamrG5Zx1cwfxes7d7nm0hUByH/6DV3u/y1+vl/j3hfZ5neVAeF/Lfvave/FP6vvedlszsl9/3vV/O5kLk9G3/ojI9juORQkLTNHKlVdTg1+t1/LQzf15wuAT39y3Kk4pR2v7oHYuWvNm5nuW72OcqLunGdc7tbdzNt2tz425+nPymjGbe25TDMBy/wDCzmXwL3dZmurEOdHAFowb4/2Z2z3AVAB1KZ3XAuga/tqes6FnpT+fNitdeTWvzcb+EzG/9/ELCfjqqNKRL2KxU+WVGq3x8tw1bGy5kc+3SSpVvVfQm7BWfNls7TZN0kEeqa9Fi9zZZ+uoXKlXpko9v3LCmEr3o5lY7vikzS95zy2Y6brNSdeqzenz3zFTFgJqRVKEKm4cwNkVPDL+R976INzuYdSeh2TsQGaZ9+YXspWVhY/yf0qfnu5ODPY1/u9I50xVMk6q9nGbvT5/3f+k22nwP09muJVWbc6YfknRbhKnP3lqEr7j32Uv/lF/ypi9vps1P5vEVXHfe/70lpB9LoH4c/oNu4UHA9MCfkM/6XceSooVnDqNsvqL0K5njO+G5uulfpac5vi7pQvxzMwuR5m1mul87Cdq/UV94Rf8uRa+V2bibpwFFGzf/VsumTI8A7p1glCq+ma6t4KZ0tnmeb9xtge8gqUJd3v4OSJ8inZA/s+TIl7jccCNzalF6btCFc1A2n3Lksq/NBlzw4ULy7X96RLFhGKT9Hw4C/pDjG3dvK9x1VlPZzZQhbXh7fpi8P3ISmNwx6fmmAU8hqYJ6XdeFJ3bszSY3jGuapmma1+tVZ1ftSR+Tki7q4InMe912voSQL5Wlsz3nYEvqEaUyEvc2pXwC0015fAyFI/M/upn8wjMreGQh4WUcr9eraZoue7cioFqMU4VfEB5wSb+L01ueySFCf7XXN4X97mZ3GF5I9a1G1avv+3Ectd+7RtemvJDLfriC819+P12WRfbNzeI0UC2SKqgXfvVv9r7Fb3kWettjtW27LEvbtp//Ur+2hLdpXzTbo3xCfOHeNd8vdWxu3Fs2Zeq5zeTPTTzY7FtWUH7kyBlU4SALlKygC4f/oNs8z1LakQv4XTKqkD/RdV3XqIN5+st6c/lvXzR/Jor/TX+kAXsLkccPnt219+DX0tMvDFt1wZGNe+OmvNySy5spbXa6zFtWMJ2n67r176WCx4fsAmpAUgXd/CiO4S/as2elPGQzCfCjce49K3+K8ev1OnXIcvNgaPRCezbPifl+ZtN1nfSvmXN0NrveR/vjIxv3yKb85EOYOZH/k8209+FMm/r5CkpRanO24kVl4AKSKtRlfiecOb0SXqoachAwmid6bngCx0PS4QD2Lt3fnCftaaIKwRFRBubXOj+mti8ORfP4wb6PjCs2z7OcsPx58nokRdh7rx6S2bjpZy+zKT/Jfvby41ObKbXZNl8SDlOuz1cwM1tVhUngqOeGwAKOO/7tnw6buXknu/Cz7Z/b/xX9Fg9H/d4bTDJzk77o8XRd0puE5BcbDa4dNfj4AOUHF7I5yuLeTUU234TwVdLR7c/e+29T+J7sjVPvt69vT/Ru7w3++Xbjbg7++Xbjrmc2ZaYNGdFLR5+9/LpkZNp8auZoS4UfiT65R+TbtwioH0kVqnAhqdr81g7/lKZfof7fe/f63uLGpGrzdfc63b2XixzsY/w6bh7K2UxD94a0zrc/nTPtLG9Jqtb92wxvvldyXyP3TFLV7tySebP9e5tyby0y70D+bXm7mTa3/qnFbj734AqGbYjWdO+AIxkV1GlWLliFDf7CIn+RkX98nmcZxequF5JDbLJz+QOX0eseET5XHHyi3Im273tZu2sLEX6UivzTZbZrL3GLve1byYt+uBWOtOTIZjrlVJsPzpzZHcI3s9SnCPgQSRVwsyipKiJMqkq1AQCs4UR1AACAG5BUAQAA3ICkCgAA4AYkVcDN5ATbGm73xqm+APBNnKgOAABwAypVAAAANyCpAgAAuAFJFQAAwA1IqgAAAG5AUgUAAHADkioAAIAbkFQBAADcgKQKAADgBiRVAAAANyCpAgAAuAFJFQAAwA1IqgAAAG5AUgUAAHADkioAAIAbkFQBAADcgKQKAADgBiRVAAAANyCpAgAAuAFJFQAAwA1IqgAAAG5AUgUAAHADkioAAIAb/Fe6AV/VNE3pJgAAYMi6rqWb8D1VJ1XDMMzz7Jzrum4YhoPP6rouM7+prQv8jKZp2HkBdazVMupNqrquW5ZFppdlmedZEqwjz+q67tG2AQAARCo9p2qe52VZ+r5f13Vd177vJa868qyvNBAAAOAflVbUpWAYtq1pmrZt83mVzCPZ2ObhP44gAEqx8wIaWdtzK61UOefato3+m69CySG/I4cIAQAAbldvUnXqvKhhGJZlMZUOAwCAqtSYVG1WmzI51jzP4zhO03Rk4c1VV9cGAACYUOPVf2ev3Xu9Xm3bHnwW1SwAAPCEGpOqTXsnS8kJ6dHAVPM8D8MgA1Z9oW0AAAD1JlWnTjkfxzH877IsjFYFAAC+qcZzqtzWtX4yUEI65zAM67+cczLAFUkVAAD4mkqTKn9QT/4rE/4A3zzPTdMcv3ENAADA0ypNqrquk1HU5cq7ZVnSi/sYkgoAANSj9qFO/Q2Vb1mataFdgZ/BzgtoZG3PNba2xrYu8DPYeQGNrO259V79BwCW7Z3h8LVLcOZ5tny5z9njJP7t8htu87nH/5pvwPG/Gt+O37ZaYm19gZ9hcOfNf3XLNc7PkbuvPv0qNTvVRcpZv9M0rX/fur3n5jtf+VPbtn56cxP4k4zzf5X2+AUWYW3PrfRE9edwLxoAP2AcR8oP9Qhv7OG3S1prDB/JXGsVbtloFEbhL37f/GtUDJumaVkWLu36DnNJVT7HLN06APiHFBsiMmgfPWUlJMXxiU44+k80Zz6pipawOTSjiMZxjEim5QtmXde1bft6vTJPwV3MJVUAoF3af6MgSWLSwmGaNoXpTlpkiubfq3hF/937DITtidI+PMfeieraj/FRTgPgXN/34zhuVizmeQ7PU84cJQzn/PBg4qlFycxpH39je9LF5pd5+aXlWVFVSW4KsldPGoZhs24k84cVJv8SYZPkFeVo4ziOeylX+BSZHseRvOpxj5ypVSvn3BqusrppY9sL8Kx9Wa1/fz5tHv5b/54NHZ2AnA6SvLeQzTnD2TZPVPepQ7TAaDlt2/rlR/OswXnc4UI2D3VFryLzpKdmp68lLzFNU7qamafn279HXuttk6IHM29j2MLNrew3zear+Hdys517H6fnHHkPf4mxtdW+dbW3H7hK/c573ma/m/lrmBz0fd/3vU9f9np36bDDhMYvME2q3mZU0aKi1/UN23stv4Sw2WnidTyp8q8l70b45hx5KzZTk70Nsff4Xp4qLxRmS8czpPCRvVdJL/fbe/eeduQ9/CXG1naz5KNo2tinE/CsfTWvwdX1/b98zhF1kHu96cF+NxoIIEqq9jKqzeEDwtQkakba7L3RAfzqR4s9nlTtrWP44GbytNn+TfLSmwMWpA0I38C0zZv5Uzpb9Eia+26+mfmmPsranmtsbbVvXe3tB65Sv/Oe57LS3nHv+E6UDGUObO311nsZVbrwtPHRI3vNTh+PBltaLyVV+TnTl8i0f1Om/JO2YfO/UbluLyeOsls/W5qK7a1R2oDvsLbn2rv6LzxRXeM0AGPahHNO7jcfXaK/ruuRk8RdcDZ0aPMkpGEY5Dq1aZqihWcGB98bDiA9UVrOzk4fz4z2dNDmOobCM76jP2WGM0iXsClaI/lv2CSZ9kuQ9yFtSTSbbIu9yz/zw7XjC+wlVeHvP43TACyZpmlOrH8LG5sXkcmFdcMwdF2XjmmcH3My6ozHcfRX/qevlcnPznbqm/O/zYouLDOUudPLqfbnlyCvkr5WeE8bv1H2ksvoQsK94RvS1C3F2GaPspdUiRpqTtSrgPs0jZp/t9jshiWLer1ekgwty7LXv55KGnz5aq8uctyFZKVIEnDvgA5uqxAlb6Y8fnB09c2cSYpq4dL2Gv9hkoojzCVV/n404b1p/jdZQy2KehVw3rqq+XeX6MBQ0zR+oCM5kLeu6zzPH3alckhReu5ovMqnjzEVrKnc8tLypvkRsNz+TZSP1Pyi4ceiGcJS1t52yY/DjluYS6ry19n9mamGWhQ1KgBZYVnCd9tyuDAzgmWm/CMHDcM/+VOLfI0qPYC1NwDpwbV4O/9zqVvmrTjV/r2Z/fuzlzPJI8Mw7J1YFs42z/NmIcr/d3Mb7bUKT/nmWfHFqV9f7e0HrlK/854nX9F741RFV67tDfmYLuft1X8yZ3qt/ua1cnuNTLuYvRfdu+otXXg6tlO4hHDhmyOXpuv+9q14+6l7O/hT2Nu+HYI1/yqZ2aLz3/ONya/R7aztueYqVX/UUHOiXgXgnb06ij9tvMveiyZ93D8S/eltnaPruvTs+M3z5U/dC8WfDBSt6V47o8KYr99c8PatOLiEg2WtzLY4/sS3lwVQiCqsdFb3VerXV3v7gavU77znHfkCT4tG7u8NTNK70aXFKpeMvZ4ZUT18lXS0yWhRb0dpCkUjqm+Oup4226/j5UpV/q3INDh9Q/b++nYc0b1xSjdfZXOlohn2SpuMqP4dxtb23TlVtU8b+3QCnrWv5vVdUpXJGEJRdpWfuU/uOpe+SjoQ6MF75+WTj71xs/ZePXytdOHHk6rNZbrgFNu9BkevtffXvfHi01fP35VvbzhTL93Em0vg3n9Pa1ZL15Q1jfL1ja5PBMxQv/N+S3gULz2FeXNEymjma8Jr07qukwOUbdseP+M7ukou054bm/35MmVN+74/ddDz+2TEsu/vRNb2XGNr67dumJ0omnYMrACjrH01ayGZxOaQlcuy1J9q3KJUvnJcwczP2p5rbG21b10qVbBK/c77oySfSHtreTy9s81Pkjv51LyykuMW2YOs7bnG1rZp5ACv/7+yaZIqWGXtq1kLf2fA8A56/hE7d0Rpmqba9ZUyVamcz9qea2xttW9dkipYpX7n/V0+rwpVm2E8pGziklfwbj/O3p5rbG3fDfVUex3LcU4VjLL21axOdKJ64daUkLk9c1kywn6pV7e25xpbW+1bl0oVrFK/8wImWdtz7Y2oXsN46IylDgDAz7GVQqpPmalUwSr1Oy9gkrU9116lStRQc6JeBQDAD7GVQqpPmalUwSr1Oy9gkrU9116lqoY6EzUqAAB+jq0UUn3KTKUKVqnfeQGTrO259ipVooaaE/UqAAB+iK0UUn3KTKUKVqnfeQGTrO259ipVNdSZqFEBAPBzbKWQ6lNmKlWwSv3OC5hkbc/9r3QDvi1/+z8F9/4DAABVspVCqk+ZqVTBKvU7L2CStT2Xc6q0TQMAgCrZSiHVp8xUqmCV+p0XMMnanmuvUiVqqDlRrwIA4IeUTKqGYei6ruu6YRg+mblJvF9gmDhrnAYAAJUpdvVf13XLssj0sizzPM/zvDnnPM+v18s517atc24cx3Ecr5cTK7mO7/I0AACoUplK1TzPy7L0fb+u67qufd9LXrU5s2RU67pK4jVNk3PO16LkWdM0rYFcpaqGOhM1KgAAfk6ZM8hksKjwpZumadt2M69qmqbv+zBPCmcehuF44ep/Z8zVUHO6Nk4VCRZMsna6K/AbrO25xQ7/ybG88L/+aGBESlORrutkwudhMuEff6OGmtOFac5VBwCgViXPqTo7py9NpU8Px0nfq3j5WauoOXFOFQAAv6XAOVWbGc+RHOv1er1eLzkZy88v9a3o9KzM0prwasEz087VUa8CAABVKlCpOl6jivhz1cdxdH9LVtM0hQschkHOgs8sxLnP7rvHvf8AAECilsE/cwfsAjJOVdu2kle5rRRNHnmzwBpqTtSrAAD4IcWSqoNZ1DzPXddFMx+pde3OU8N46IylDgDAzymTVKXX+smZUumcMkZolFSFV/yl46dTowIAAN9XJqmKruCTiXA8zyhVGsfRp0rDMPgMrOs6ORS4+decGmpO1KsAAPghxUblkkE7/X/D883lvjThyAjNv/lENGhC9NdopNCQ+lHIGFsBVqnfeQGTrO25hdf2+IidPovanFmuCpQ7LmcW0jTN6oKjaTWMO3VqmqQKVln7agZ+g7U919jaat+6JFWwSv3OC5hkbc+tZUiFb6vhvCjOqQIA4IfYSiHVp8xUqmCV+p0XMMnanmuuUtVk+ZnCJ9Q1DQAAqmQrhVSfMlOpglXqd97PyLU47u+VOntX5Mj1Ol9rVd6HjTlyGdPxS52+I9+eg3+9ZSGumg+DuT13teR/6xuuuKJpY9sL8Kx9WXlt225+dfu7yEdzpo8XIYMFtm17/CnOuWmaZHqaprc9lB+P8INm3sm3x69FyG/H/F/XIP/YfJUjf5XPgLTn4srcp4Y2fJO5w39/1DA2OuOqA8hqmkZuPtG2bd/3fd/73nccxxrqEHfJV+BUCMevTv/qbyKS+atPi9++xKZo4CGZOf8U3M5eUlXDeVGcUwXgHZ9hrOs6z/MwDMMwzPO8/i1CRLfwGoah73uNeYncCcNXp7RL06bwkcyN1KLM8uxy0tEc+74P7ziCbyhdKvsq9eurvf3AVep33vPkK3rzaNH694DRqeNr33Tq8F/aGWk8/Lf+exQv5N+Nzb+mKyv/TY/kyuN7m97/NXqw7Iekqg30BfYqVaKGmhP1KgA78veQ8I9Hd6bPLE0KXadmzlc4Ds525OVc9piXInsbS+7Jtnd8cG+7RLOFt7h1+5s+akPbtgc/JLhH6azuq9Svr/b2A1ep33nPk6/ovUpVavNE9TRZkXOzojl9d5CeF582YPPc+c3XPVIjkaVFr1JJperCWf+bb1r09qbFpOjBzVUL39L0Vfw7Fr10uq2/zNqea69SVUOdiRoVgGNer9flc43D+9b7k9zHcQxvZh/qum5ZFn9SvG9AOE967rw8fvncHVlanaeCjePYXPr6DTeZvC3y5meKTOE7sHeLW78EWdrmKVbRc2V+Tqv6ntJZ3VepX1/t7QeuUr/znheduC1JTGb+tFLlnxjO5heYzuneFT/2CkhpAeZgpUoWmM7mX6jv+2nH3ilKN9prXkbaqmi7RH/de0v3tpFMp29v5hy7sn29tT3XXqVK1FBzol4FYF/XdWHqsCyLFE6apvFDRGbsncGTucguunhwr3qUHlK8XGd6O3rnOI6vHV84VUg2wbIsx1cwLStGpbiwZOX2a0hRLSqaLT2jLlPwS8taeM5/pRvwbfl70aw1jEGVmW4a3akVQ20BZ/jkSc4H953osiyv16tt20xPuXcCeCY/eHucseu6dWsvfq7D3hv71B0+Sf9DXdfJwARHEln374AI4VP843KMNcqW0tWU2fw6yqbxWzN6lfTVUYq5StU/R9CS6T8z1VCL2pyWFq7rn3+6poFHyU8OFf/O8yNUTdPke9Z8BeVt6eJDcvVf13X+LKtrC3HZVGDe97ULBodhkGvoTqUssmppzhQVmWQiTWej10q3ZljxenutqKNS9S3mkqpaak5mp4GH+CS+/n8f6LpuGIb17zk00fifXzAMgxyCfL1e4zjqulxfUsALZDUP5lXh4bY0awyLTJlkaHMI0HC28Jz38Oz1zbV+22bcxdzhvz+a4M7ETH9nGsBhcvRnmqbMrXPlZIb5i/fNjS4n7LrO3xFl74rCqvgGn+WPvR65EnMYBn/K1+azpO71Nhv2s20eIgxXpOYrKK2xmlTVULOxNg3gpE+G1vRdctrXXi4vSebU9/1dd5TzJxh9JyG43GzJXzM5bsjPs/dyknWN4+gv2dtbjlydIDPsvbR/lUz+nfkr7mXv8F/x86KMTwM44PiA6XudpTyeFpA+P1yYvuJvn69zKqMKyZu/eRK6TOSrX9Fs6avLWWV+E5M21cBeUlVDzcbyNIADfEfbNM1myuIvZH5bwIj67LuKTF54WeJZ0viaczJp4dmMKjyJ/sg1lUcez5x35Q5cJknK9R32kipRQ83G2jSAM/yAUq/XS8amkqvt5GzraJ5NvpIhz5VzzD85tVx6bhnk3V/954dcv3DW/PGCXBHDMOTPbNvzdpiDg5cu+lRpM2c6PpjCLdd74pCvDjVamrX1rQtvPj5gc+cNB/+MtG0b3eXt4L3//DL3RusO+adErxKS5YTLX3/l3n/p+3nquZnm+RXMv0V+Hfea4TfH3j0iuffflzWrpUMzTdPIFvb/Z/p701wJiA80ja0vq8iHh/CiQ4FvLy3M89ejhRfT+QfPtm2e59frdePJ7wjJti6471jbc42trbGtWxeSKnyAnfcsyXI2BxG4fOb1Q6Q9bN8nNE2TH3n/Cw0wtWU5p4rpb00D+C65cV704Nsr8L9PDlHVfLq6UrKtKQF+k60UsnnXx5t6N76NShU+YO337i3k0I/7O1Cn1K7kkXrKVIJi1ROKl6mcvT3X2NpyThXnVEEna1/Nd/F5VajCE5jkzKraUj3VZJj74nuNtT3X2Noa27p1IanCB9h5P7F5anltGPj7Xt+8f1GGtT3X2Nr6rVtP/cbmNHCSta9m4DdY23ONra2xrVsXkip8gJ0X0Mjanmvv6r8aroOzPA0AwI+ylUJaS5nrQqUKH2DnBTSytufaq1SJGmo21qYBAPhptlJIaylzXahU4QPsvIBG1vZce5WqGmo2lqcBAPhRtlJIaylzXahU4QPsvIBG1vZcc5WqJquKWs6vTgMA8NNspZDWUua6UKnCB9h5AY2s7bnmKlVV1GwsTwMA8KNspZDWUua6UKnCB9h5AY2s7bn2KlWihpqNtWkAAH5a1SnkMAz+vuXDMHw+s7WUuS5UqvABdl5AI2t7br1r23Xdsiz+v23bSs6Umuf59XrJPM45edbmejVNszr3v6497OaZfnqapAofaKh6AjpVm2Y8odKkSvKkvu+l5jQMwziO0zR1XZfOLN+2fkWi50Zz1rm+JpBUAYAx1rrdStc2ypPkkb1iVdM0UQq1N/P/tm499Rub0wAAA6wlVf+VbsAuOZYX/jc8Ghiapil9cLOm9T/hNmb6O9MAAPy0epOqN1nR1pxSmpKS1e7Ta6jTWJ4GAOBH1ZhUbR7ji85b3ySnqzvn+r7fS6oad3FcgHVdq6j3aJ8GAOBH1ZhUHa9RRdZ1ned5nudxHN3fklU6j3OXai1eDfUejdMAAPw0NYN/7o2nEJFBqtq2lbxqVw01G2vTAAD8tHqTqoNZ1DzPXddFM+dqXZeO/TF92zQAAD+q0qQqvdZvWZa+79M55VyrKKnKJWQ11GwsTwMA8KMqTaqiK/hkwp8jNc9z0zThKVPjOPpEahiGvQzsf2qo2VibBgDgp9V4orpzruu6vu/HcfT3pkgHo/JZ1LquTdP4S/+cc23bvrlXYA01G2vTAAD8tNqHOvX3SD44Z35m7v1XcporAQHAGGsjqhtbW+VbV/vBNM3vPQDgNO3d7lmVnlP1uBrOMbo6LZ9PjREAgB9mK4XUnjKHh9HURUdqBQDGaO92zzJXqWqy/EzhE6qaLp4bXY4AAPw2Wymk9pS5htyIShUA4CDt3e5Z5ipVf1RQc7o2XTw3olIFAMAmWymk9pS5htyIShUA4CDt3e5Z9ipV1dScrk0Xz42oVAEAsMlWCqk9Za4hN6JSBQA4SHu3e5a9SpWooOZ0bbp4bkSlCgCATbZSSO0pcw25EZUqAMBB2rvds+xVqqqpOV2bLp4bUakCAGCTrRRSe8pcQ25EpQoAcJD2bvcse5UqUUHN6dp08dyIShUAAJtspZDaU+YaciMqVQCAg7R3u2eZq1Rx7z8qVQAAPMFWCqk9Za4hN6JSBQA4SHu3e5a5StUfFdScrk0Xz42oVAEAsMlWCqk9Za4hN6JSBQA4SHu3e5a9SlU1Nadr08VzIypVAABsspVCak+Za8iNqFQBAA7S3u2eZa9SJSqoOV2bLp4bUakCAGCTrRRSe8pcQ25EpQoAcJD2bvcse5WqampO16aL50ZUqgAA2GQrhdSeMteQG1GpAgAcpL3bPctepUpUUHO6Nl08N6JSBQDAJlsp5P9uRLOj8nejhtyIShUA4CAqVT9udW71kuk/M1VTl0qni+dGVKoAANhkK4XUnjLXkBtRqQIAHKS92z3LXKXqjwpqTtemi+dGVKoAANhkK4XUnjLXkBtRqQIAHKS92z3LXqWqmprTteniuRGVKgAANtlKIbWnzDXkRlSqAAAHae92z7JXqRIV1JyuTRfPjahUAQCwyVYKqT1lriE3olIFADhIe7d7lr1KVXiTiDcAABzxSURBVDU1p2vTxXMjKlUAAGyylUJqT5lryI2oVAEADtLe7Z5lrlLVZNVQi8pPF8+NqFQBALDJVgqpPWWuITeiUgUAOEh7t3uWuUpVPTWna9PFcyMqVQAAbLKVQmpPmWvIjahUAQAO0t7tnmWvUiUqqDldmy6eG1GpAgBgk60UUnvKXENuRKUKAHCQ9m73rJKVqmEYuq7rum4Yhk9mTi/iyy2wmprTteniuRGVKgAANhVLIbuuW5bF/7dt23me92Zumkbmcc7Js6Zp6rou/Guo7/vNvEp7ylxDbkSlCgBwkPZu96wylap5npdl6ft+Xdd1Xfu+X5ZlL6mS5Gmapnme53mWzfN6vfyi5K9r4H3pq4Ka07Xp4rkRlSoAADaVSSGlthS+dNM0e8Wq9E/DMIzjKE8Pp4+8ruqUuYbciEoVAOAg7d3uWcXOqZJjeeF/w6OB0Z/8kb6UT7akjvX+haupOV2bLp4bUakCAGDTf6VeOJMnRdJUaRzH6JHwtKr86Vn/dO8Kp4vnRp9UqgAA+GEFKlWbGc/BHGueZ8mfpmmSR6S+FZ2elVla/t5/udsCBosoOF08N6JSBQDApgKVquM1qvSJ6aV/4bRzbhgGOQt+byE3HNwtWK+qIDeiUgUAwKZaRlTPnw4lBSp/wWCYRaUpmjyyu8Bqak7XpovnRlSqAADYVOycqkMnlf+d8/V6vTlTKrFbDytYZ7pjunhuRKUKAIBNZSpV6bV+UoXanFmGpNrMqKSCFY1K9dvXABbPjahUAQCwqcwAElHxSU6W8i2Rv8qo6DLtnEtTLsml5Ln+zCoZtooR1SuMjnGqAMAY7d3uWcXWVrIf/9/wfPMw5fJJVcq3PLpNzV5GJXOuLujbwxKKhmmfmhTPkKhXAQDeIqn6Kl+p+nw58zzLHZczs2nfujVkRVSqAAAHae92zzK2tn7rlq45XZtu3J9CW/EMiUoVAOAtkqpfpn3r1pAVUakCABykvds9q5Zxqr6nqeU6vmvTxXMjalQAAGyylUJGp7SnKn83asiNqFQBAA6iUvXj5BaBq5/4d7qGWlR+unhuRKUKAIBNtlLId4UqBYrnRp9UqrSztK8AwA2oVP22xv3tGpXG4rnRJ5Uq7REAgAxrSdVaPLewG11Tvg22K20AgEdZS6p09+u6o9Od0QIAkGctqdLdr+uOTndGCwBAnrWkSne/rjs63RktAAB51pIq3f267uh0Z7QAAORZS6p09+u6o9Od0QIAkGctqdLdr+uOTndGCwBAnrWkSm5Uk4s19N+/GZ3ujBYAgDxrSZWM7JqLNfTfvxmd7pwVAIA8a0mV7n5dd3S6c1YAAPKsJVW6+3Xd0enOaAEAyLOWVOnu13VHpzujBQAgz1pSpbtf1x2d7owWAIA8a0mV7n5dd3S6M1oAAPKsJVW6+3Xd0enOaAEAyLOWVOnu13VHpzujBQAgz1pSpbtf1x2d7owWAIA8a0mV7n5dd3S6M1oAAPKsJVUr96gpFpW/wwAA5FlLqhruUVMsKn+HAQDIs5ZU6e7XdUdHpQoA8MusJVW6+3Xd0enOaAEAyLOWVOnu13VHpzujBQAgz1pSpbtf1x2d7owWAIA8a0mV7n5dd3S6M1oAAPKsJVW6+3Xd0enOaAEAyLOWVOnu13VHpzujBQAgz1pSpbtf1x2d7owWAIA8a0mV7n5dd3S6M1oAAPKsJVW6+3Xd0enOaAEAyLOWVHHvv3JR+TsMAECetaSKe/+Vi8rfYQAA8qwlVbr7dd3RUakCAPwya0mV7n5dd3S6M1oAAPKsJVW6+3Xd0enOaAEAyKs6qRqGoeu6ruuGYbhpZt39uu7odGe0AADkNWut3UXXdcuy+P+2bTvP897Mcv1e27bOOXnWNE1d1yWzle+b7UaZrKEll6JzpFYAcE7T1JtmPKHSStU8z8uy9H2/ruu6rn3fL8uyl1RJ8jRN0zzP8zzL9nu9XlvzUqkqFzVnVJa+EwAAF1WaQkrlKWxb0zR7xar0T8MwjOOYrloNfbPdKJM1tORSdFSqAOAkKlW1kGN54X/Do4HRn9IjfTuoVJWLmjMqS98JAICL/ivdgF2H8ySXlq/GcdyZV3e/rju6P79YyrfkUgQAIK/GStXmMb6DOdY8z3LocJqmrb/n7lHDHWyejU5xRrVSqQIAvFNjUnW8RpU+Uc5P37z0zzmXv0cNd7B5NjrduSkAAHk1JlWbMuMpuL8FKn/B4H5aprtf1x2d7twUAIC8es+pymdR0Zyv1ys/kNVfuvt13dFxThUA4JdVeq2jjPwZDanQ9/3maOnp+At7mqYhryJ+EgEAx1kbUqHStY2KT1GOJX+VHEumnXN930cLSTOwGnplu1Ema2jJpegYpwoATrKWVFV6+K/rur7vx3GUKpTbupovOtiXDqOwVdbSfQRKeVT/zgMAkFF7CukrVbcsrXivbDrKZA0tuZpR1b2vAEB1rFWqjK1twzlVxI8iAOA4a0mVmiEVbkJGVS463eNZAACQZy2p0t2v645Od0YLAECetaRq5V40xaLydxgAgDxrSVXDvWiKReXvMAAAedaSKt39uu7oqFQBAH6ZtaRKd7+uOzrdGS0AAHnWkird/bru6HRntAAA5FlLqnT367qj053RAgCQZy2p0t2v645Od0YLAECetaRKd7+uOzrdGS0AAHnWkird/bru6HRntAAA5FlLqnT367qj053RAgCQZy2p0t2v645Od0YLAECetaQqd48a6ljPRqc7owUAIM9aUpW7Rw11rGej052zAgCQZy2p0t2v645Od84KAECetaRKd7+uOzrdGS0AAHnWkird/bru6HRntAAA5FlLqnT367qja1RHAADyrCVVVKrKRclo1UYAAPKsJVVUqogXIwAAedaSKipVxIsRAIA8a0kVlSrixQgAQJ61pIpKFfFiBAAgz1pSRaWKeDECAJBnLani3n/EixEAgDxrSRX3/iNejAAA5FlLqqhFES9GAADyrCVV1KKIFyMAAHnWkioqVcSLEQCAPGtJFZUq4sUIAECetaSKShXxYgQAIM9aUkWlingxAgCQZy2polJFvBgBAMizllRRqSJejAAA5FlLqqhUES9GAADyrCVVK/eoIV6LAADkWUuqGu5RQ7wWAQDIs5ZUkTkRL0YAAPKsJVUc4yNejAAA5FlLqqhUES9GAADySiZVwzB0Xdd13TAMB5/Sdd08z9GDTWJ/gVSqiBcjAAB5/5V64a7rlmWR6WVZ5nlOs6XIPM/+KVdRqSJejAAA5JWpVEl61Pf9uq7ruvZ9L3lVZv5hGF6v1+afnHPTNK0BKlXE2yMAAHnNWqK7kIGhwpdumqZt2728qgkKBdM0dV3n/zsMwziOB9eihr6ZqDQ6R2oFAOc0TZk0o5Ri51S1bRv9N3NoT+pP0zSlf/J52JEDiFSqiJcjAAB5Jc+punFpYSkrU/HinCri5QgAQF6BStVmxnM5x5L6VnR61v7Scveo4Q42xEwEACCvQKXq3hpVeopV9iJBqVRdi+X7dWLBCABAXi2Dfx44HWpbmqLJIzsLpOZEvBgBAMgrllRdzqIO2qmHUXMiXowAAOSVSarSa/1k2Kqzy5nnOR0/PZuuUakiXowAAOSVSaokDfLFJJnwudFmqrSp67q2bcdx9InUMAzZ/IxKFfFiBAAgr8yQCl3X9X0/jqMfCiEdg+rg8UHJwMLB1vu+z46oTl5FJK8CANyv8FCnkjl9fj2gjPwpt2fOzFa8VybqjY4R1QHgJGsjqhtb26bhCCDxkwgAOM5aUlXLkArfQkZFvBgBAMizllRx9R/xYgQAIM9aUkWlingxAgCQZy2p4h5/xIsRAIA8a0mVnDCXizX038QKIwAAedaSKmpRxIsRAIA8a0kVtSjixQgAQJ61pIpKFfFiBAAgz1pSRaWKeDECAJBnLamiUkW8GAEAyLOWVFGpIl6MAADkWUuqqFQRL0YAAPL+K92AL6NSRbwYnfsT9SI1BIBHUakiEg9F59RHAMCjrCVVK/eoIV6Myj8hAICnWUuqGu5RQ7wYlX9CAABPs5ZU6e4XiSWjo1IFAMixllTp7heJJaPTnZEDAJ5mLanS3S8SS0anOyMHADzNWlKlu18kloxOd0YOAHiataRKd79ILBmd7owcAPA0a0mV7n6RWDI63Rk5AOBp1pIq3f0isWR0ujNyAMDTrCVVuvtFYsnodGfkAICnWUuqdPeLxJLR6c7IAQBPs5ZU5e5RQx2LmItOd0YOAHiataQqd48a6ljEXHS6c24AwNOsJVW6+0Viyeh059wAgKdZS6p094vEktHpzsgBAE+zllTp7heJJaPTnZEDAJ5mLanS3S8SS0anOyMHADzNWlKlu18kloxOd0YOAHiataRKd79ILBmd7owcAPA0a0mV7n6RWDI63Rk5AOBp1pIq3f0isWR0ujNyAMDTrCVVuvtFYsnodGfkAICnWUuqVu5RQ7wYlX9CAABPs5ZUNdyjhngxKv+EAACeZi2p0t0vEktGR6UKAJBjLanS3S8SS0anOyMHADzNWlKlu18kloxOd0YOAHiataRKd79ILBmd7owcAPA0HUnVMAxd13VdNwzDwad0XTfPc/Kw7n6RWDI63Rk5AOBp/5VuwHtd1y3LItPLsszzvJUt/WOeZ/+UfzVNQ15FvBbVf3IAAI+qvVIl6VHf9+u6ruva973kVZn5h2F4vV47f1ffLxKLRUelCgCQ08gYTdWScTnDRjZN07btXl7VBL3HNE1d1yV/Ja8i2o0A8E1/Dg+ZUXulyjnXtm30351De845JwWtaZr2/15F30bUFx2VKgBAjoKkKqo2fUZ3v0gsGZ3ujBwA8LSqk6rNY3yf5Vhv7v3HnQGJu1H5ZwAA8LSqk6pba1Tizb3/uDMgcTcq/wwAAJ5WdVK16e14Clm6+0ViyeioVAEAchQkVZ9lURHd/SKxZHS6M3IAwNNqT6rSa/1k2Kqry9PdLxJLRqc7IwcAPK32pEruS+NPrpIJf7OaeZ6bpjl+7xoqVcTr0enOyAEAT6s9qeq6TkZRb5qmaZplWdIxqM4cH9TdLxJLRqc7IwcAPE3NUKeSOX14PSAjqhONRwD4Jmsjqhtb2wp6NaLWKJM1tORSdI6kCsC3WUuqaj/8dzfdR3CIJaPmjMrSdxoAFGMtqdLdLxJLRqc7IwcAPM1aUsW9aIhXo9OdkQMAnmYtqeJeNMSr0enOuQEAT7OWVOnuF4klo9OdcwMAnmYtqdLdLxJLRqc7IwcAPM1aUqW7XySWjE53Rg4AeJq1pEp3v0gsGZ3ujBwA8DRrSZXufpFYMjrdGTkA4GnWkird/SKxZHS6M3IAwNOsJVW6+0Viyeh0Z+QAgKdZS6p094vEktHpzsgBAE+zllTp7heJJaPTnZEDAJ5mLalauUcN8WJU/gkBADzNWlLVcI8a4sWo/BMCAHiataRKd79ILBkdlSoAQI61pEp3v0gsGZ3ujBwA8DRrSZXufpFYMjrdGTkA4GnWkird/SKxZHS6M3IAwNOsJVW6+0Viyeh0Z+QAgKdZS6p094vEktHpzsgBAE+zllTp7heJJaPTnZEDAJ5mLanS3S8SS0anOyMHADzNWlKlu18kloxOd0YOAHiataQqd48a6ljEXJRJn11pi0X3OwAwwVpSlbtHDXUs4vu8Sm0sut8BgAnWkipqUUSjEQDwNGtJFbUootEIAHiataSKShXRaAQAPM1aUkWlimg0AgCeZi2polJFNBoBAE+zllRRqSIajQCAp1lLqqhUEY1GAMDTrCVVVKqIRiMA4GnWkioqVUSjEQDwtP9KN+DLqFQRjUbn/kS9SA0BVM5ipYp7/xENRufURwConLWkinv/Ea1Gp/s3AwDUz1pSpbtfIRKvR6f7NwMA1M9aUqW7XyESr0en+xcFANTPWlKlu18hEq9Hp/sXBQDUr2RSNQxD13Vd1w3D8MnMTWJ/gbr7FSLxenS6f1EAQP2KDanQdd2yLDK9LMs8z/M83zJzVtM05FVEm1H9Jx8AKlemUjXP87Isfd+v67qua9/3kipdmFkmpmlaA1SqiMQ4OipVAPCsRsYS+ParNo37O4yBf6Rt2828Kj/zMAzjOB5ci6ZpyKuIRL0RgC5/Dg+ZUeycqrZto//6A3ynZg5LVgeOCZJREa1GR6UKAJ5V8pyqG2dugi/dvYrX3xnJq4g2o/pPPgBUrkClajPjuZxjSckqOuNqf2nrkTvVcAcb4g9G5Z9hAKhfgUrVqfzprWmawgUOwyAntu/M7s+puhar6F2IxEtR/WcYACpXy+Cfp4ZICGdOUzR5ZGeB6vsVIvFidFSqAOBZxZKqy1nUQTv1MN39CpF4PTrdvygAoH5lkqr0Wj8ZierszPM8p+OnZzMw3f0KkXg9Ot2/KABAgbWEaZqcc23byn9lxITor/7c8/zM8l8/+KckW/65Eb/GRCJRYwSgS6k0o5RiaxvVpcIh0aMsyj+yOfO6rlGauJdRraX7AyKxZFT+i0ImAOhiLakqPNSpHKo7eD1gZmYZ+VPuuJxZAiOqE4mqIwBdrI2obmxtK+gViMQyUSZraMml6P5W2wAoYi2pqmVIhW/Rfa4ukXg9OsUZ1WroOxmAYtaSKt39CpF4PTrdvygAoH7WkiruRUO0Gp3uXxQAUD9rSZUc283FGvoPIvH+6HT/ZgCA+llLqnT3K0Ti9eh0/2YAgPpZS6p09ytE4vXodP+iAID6WUuqdPcrROL16HT/ogCA+llLqnT3K0Ti9eh0/6IAgPpZS6p09ytE4vXodP+iAID6WUuqdPcrROL16HT/ogCA+llLqnT3K0Ti9eh0/6IAgPpZS6p09ytE4vXodP+iAID6WUuqdPcrROL16HT/ogCA+llLqlbuUUM0GpV/wgGgftaSqoZ71BCNRuWfcACon7WkSne/QiRej45KFQA8y1pSpbtfIRKvR6f7FwUA1M9aUqW7XyESr0en+xcFANTPWlKlu18hEq9Hp/sXBQDUr1ktfV3V0DcQiWViBU34qPnKrerXALiiaWylGVSqiEQb0a2qo/ubl2iMAIywllTpPgJCJNqNTvEvIgBGWEuqFH8vE4mmo1P8iwiAEdaSKsXfy0Si6egU/yICYIS1pErx9zKRaDo6xb+IABhhLani3n9Eos7oFO+hAIywllRx7z8iUWd0ivdQAEZYS6oUfy8Tiaajo1IFoHbWkirF38tEounoFP8iAmCEtaRK8fcykWg6OsW/iAAYYS2pUvy9TCSajk7xLyIARlhLqhR/LxOJpqNT/IsIgBHWkirF38tEounoFP8iAmCEtaRK8fcykWg6OsW/iAAYYS2pUvy93DBCKdFydIp/EWnXKF8H1e1X3XiDrCVVir+XV+UjlGrPCGk/7b8cARhhLanK3aOm/m/t+luY7VcUZ4S0v3hU3X4ARvxXugFfJt/L+VjFt/BOrL+FmX6lof2032z7G92pFdU24BCLlaoavmE/6FeqaMmFqLrSQPuLRyeTjdMYnWtkBZRGAAdZS6r09yul23A5qs4IaX/x6GRydRqj6j13Ja8CDrOWVN3ZrxxZ2vdf8f6e7Lbv5UP9SrXbqEj7b3zFG9tf5FN9Y15S7Tb6/qf68Cse/nq9Y57bZ/v+K974Vhz0/YZxWeKmn0qqhmHouq7rumEYdma5s188srTvv+K937mqX5FtxDv2e69YaBsBOKRZf2WP6bpuWRb/37Zt53mO5mma5t7fu2+XdmSee1/x3qj9FdlGvGO/94oltpFbD3QUfy4l+HieIrNZeMWaG/YzfqRSNc/zsix936/ruq5r3/fLsqRJlf7fi4p/YZv5Tc87ZugdM7ONABzyIymkHNwN16VpmrRYRaXK2iuyjXjHKnrFmxZ5ZGl3v6J667uVMFIQqrZhP+NHKlXOubZto/+GRwP/0v57UfEvbDO/6XnHDL1j517xXXQy+7s5jyzt7ld0R6I7MHLEkXnufcW/cwLf8DuDf3Zdd2Cu5tj4gce/c9//pv/yKx5emoVXZBvxjv3eK7KNLiztT8xaD8xz72xHF3VkJlTiF5KqrXOn4vPWA024j30Sjyzt+694b9T+ikeW9v1X5B37pXeMbaTkHdOr3mzv4GxHZvoZv5BUHatROffvSVcAAAA3+p1zqiKb5SsAAICH/E5SRRYFAAAK+pGkKr3WT4atKtUeAABgzY8kVXJfGn9ylUzs36wGAADgZj+SVHVdJ6OoN03TNM2yLNM0hTMcuC2gDl3XqTvQqf3N195+T+OHp0no2grzPCv98KTvvND1EVK982ps/N6XjMZ1uWj9LdM0TdMUPZiOC1qgZXeQTDFdwZr599xvBUXt96l52P7SjbpI2u9v5aRC9NNIKFoFfwaCxg/PXpehaP/Vu/OG3zyKuq29HupnuuAj1HzILpPNHN4WUNf3gpimyX9BK2q87Ethg3V9tUWtjT5LivjvaF2Nl2aXbsVF0adF/qu6O5HspHQrjoq+fHTtvOq+eTI91G90wcdp/cI6Lu3FNX616f2lGL3VskcVas5p6ReZxg/P+rfZlX8vp3R9WiLyhoeP9H2v6/0PqdsWqr/51X3zZHoo1Rvigl8Y/POtY7cFrNq6rs65eZ5fr1fptpzQtm10BF3XCRnTNKVDyx4fbLYS/ubijbbhpf2nRSZ0vfPLskTfPKrPJhnHUdf11Jvf8yo+Qpuf9sq7rXwP9QNd8HE/cqJ6nood6SfJWbrhI7r2Jd/4eZ59UqLr4yQdua5cNtI0zev1er1eTdPoevPltNyu66TlereCxuup5d2WKxuGYZCdV8UqyLsdfVp0fXNGdO22H/rxpGrvtoDfbgec80nJ5tnHlZNO3TnX972iz888z+M4anzDhXQk/jiI/MBV0S/KN884juM4Oufk2uTX66Uxr5rnOb2eWgUpkIRboXSLThjH0X9aVHzmj1P0FXrBjydVv73xFOm6TpKSzQNq9VvXdZqmtm3HcVT0Bfd6vdq21fiGCzk5w7/h8zzLJijaqHPWdZ3neRgGOT6i6/C9iEYB1KLrOhkCWjLyvu8V7bySwkp1tmmacRyjI2io1o8nVZs0/ljUSwpU/ttN3VezJ4dvFHXqvi8c/nLOSQevZRfYO6Gt/vZLO6OOUFelxNN4dwqprvV977OoYRgU7bxd161/r2yQb87SLbpT/fvvJ0ycqP7bm7Bmct6inCVdui2nbeYf8vO3UIuuiHqRZVmWZdGb2got7dfSzgxJSrQUeCLR+y87b3qiZ7XCt13X105E4/f/Zb9fqeK2gAXJwQ69e1R6Bo+idZFDTiH39/wkFZ2K1Dj1vv9pXURR4z2lB542K5qKriHdvCZDabdlrgt+dMCGGkRj7qWDxyiia0T1cMDJSOmmHSXt92+4fBEoan9EXeNVv//RN4+uxnsa2yyigdnk/dcyPFLYeP9FWrpR7232UL/UBR/xy+vmRUmxlqQkpTSpUp3KRy3X8qW8SWMHGb3/utofffOo+/BoH/xa9d1Rosar2Ap7PVTUF6hYl8ua9bfOgMtQVPtFVfxBBD48RcggYXI31tJtuYJvnrL0vv/aP/kRvRviFENJFQAAwHN+/0R1AACALyCpAgAAuAFJFQAAwA1IqgAAAG5AUgUAAHADkioAAIAbkFQBAADcgKQKAADgBiRVAAAANyCpAgAAuAFJFQAAwA1IqgAAAG5AUgUAAHADkioAAIAbkFQBAADcgKQKAADgBiRVAAAANyCpAgAAuAFJFQAAwA1IqgAAAG5AUgUAAHADkioAAIAbkFQBAADcgKQKAADgBiRVAAAANyCpAgAAuAFJFQAAwA1IqgAAAG5AUgUAAHADkioAAIAbkFQBAADcgKQKAADgBiRVAAAANyCpAgAAuAFJFQAAwA1IqgAAAG5AUgUAAHCD/wf6wEMiir4gKwAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "scale2_bgs = h2_bgs.Integral()\n", "h2_bgs.Scale(1/scale2_bgs)\n", "\n", "scale2_sig = h2_sig.Integral()\n", "h2_sig.Scale(1/scale2_sig)\n", "\n", "\n", "\n", "h2_bgs.SetFillStyle(3001)\n", "h2_bgs.SetFillColor(4)\n", "h2_bgs.SetLineColor(4)\n", "\n", "h2_sig.SetFillStyle(3003)\n", "h2_sig.SetFillColor(2)\n", "h2_sig.SetLineColor(2)\n", "\n", "legend=ROOT.TLegend(0.5,0.7,0.9,0.9)\n", "legend.AddEntry(h2_bgs,\"Background (WW) \",\"l\")\n", "legend.AddEntry(h2_sig,\"Signal (H #rightarrow WW)\",\"l\")\n", "\n", "\n", "h2_sig.SetStats(0)\n", "h2_bgs.SetStats(0)\n", "h2_sig.Draw(\"hist\")\n", "h2_bgs.Draw(\"histsame\")\n", "legend.Draw()\n", "c.Draw()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Done**" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 1 }