
CS 5785 – Applied Machine Learning – Lec. 5

Prof. Nathan Kallus, Cornell Tech
Scribes: Ben Hwang, Ben Yellin, Haojie Zhang,

Kulvinder Lotay, Omer Winarunke, Shantanu Phadke

September 6, 2017

1 Recap - Logistic Regression

1.1 Logit / Log Odds Function

The Logit or Log Odds function is a mapping from the probability values in
range [0, 1] to (∞,−∞). It is also the inverse of the sigmoid function, which
maps values in the range (∞,−∞) to probabilities in the range [0, 1]. The logit
function is as follows:

logit(p) = log
(p

1− p

)
(1)

The following is a graph of the logit function:

The inverse of the logit function is as follows:

logit−1(p) =
1

1 + exp(−α)
=

exp(α)

1 + exp(α)
(2)

1

1.2 Standard Logistic Sigmoid Function

The Standard Logistic Sigmoid Function maps values in the range (−∞,∞) to
probabilities in the range [0, 1]. The function is as follows:

P(t) =
1

1 + e−t
(3)

Additionally it is good to know some key properties of the sigmoid function:

d

dt
P(t) = P(t)× (1− P(t)) (4)

1− P(t) = P(-t) (5)

Additionally, the graph of the sigmoid function looks like the following:

1.3 Linear Model vs Logistic Model

Where as in the Linear Regression model we are trying to find a line in the form
y = b0 + b1x that best fits our given data, in the case of Logistic Regression
models we are trying to best fit the function p = 1

1+e−(b0+b1x) to our given data.

There are some fundamental differences for when we would use Linear Regres-
sion models and Logistic Regression models. The main difference is that Linear
Regression models are meant for data that is continuous in nature, where as Lo-
gistic Regression models are more fit for Binary Classification problems where
we need to predict which of two classes given data points belong to.

The following graph displays the visual difference between these two types of
models:

2

In this sense the Logistic Regression model above assigns a probability to each
of the points (represented by p), where p is the probability that the specific
point has a label of 1. Thus, the higher p is the closer the function is to y=1,
and the lower p is the closer it is to y=0.

1.4 Logistic Regression Example: Hours Spent Studying
vs Passing Exam

An example of a situation in which we can apply a Logistic Regression model
is a scenario where we are coming up a system to predict the probability of a
student passing a test given the number of hours they have studied as input.
This data is ideal for a Logistic Regression model for two main reasons:

(a) The input data points will be in the form (x,y) where x will be the
number of hours a particu lar student studied for the exam in question, and
y is an integer in the set {0, 1} where 0 represents that the student didn’t
pass the exam, and 1 represents that the student has passed the exam.

(b) Since we can’t get a model that exactly models this scenario correctly
100% of the time, we es timate it via forming a probability distribution by
utilizing the Logistic Regression function.

Let’s say our original data set looks as follows when plotted out:

3

Then our Logistic Regression Model to estimate the probability that each stu-
dent would pass the exam given the number of hours they have studied overlaid
on this data would look as follows:

1.5 Advantage of Logistic Regression over Linear Regres-
sion

Besides the usage case difference between the two, another big advantage Logis-
tic Regression has over Linear Regression is that the decision boundary produced
by Logistic Regression is significantly less sensitive to outliers than Decision
Boundaries produced by Linear Regression models, as illustrated by the figure
below:

4

The two graphs show that the Logistic Regression Decision Boundary (the green
line) is affected by outliers to a much lesser degree than the Linear Regression
Decision Boundary (purple line).

2 Bayesian Inference and Maximum Likelihood
Estimation

The goal of maximum likelihood estimation is to determine the most likely
distribution from which a set of data is drawn. To do this, we begin by assuming
the class of distributions from which the data is drawn and seek to find the
most likely parameters of that distribution. Suppose the parameter for the
distribution is β, where β ∼ P(β). Note here that β is a vector, where each
component makes up a parameter of the sought after distribution. That is,
given some set of data, every possible parameter of some distribution β has
some probability of being the true parameter of the distribution. We seek to
find most likely distribution that the data came from. We draw labels according
to the logistic model given by β. We begin by defining the function

lik(β) =

n∏
i=1

P(Xi, Yi | β)

which defines the probability of observing the data given a certain parameter
β.

Using Bayes’ Theorem, we can say that

P(β | X1, Y1, X2, Y2, . . . , Xn, Yn) =
P(X1, Y1, X2, Y2, . . . , Xn, Yn | β)P(β)

P(X1, Y1, X2, Y2, . . . , Xn, Yn)
=

lik(β)P(β)

P(X1, Y1, X2, Y2, . . . , Xn, Yn)
.

The most likely β given the data X1, Y1, X2, Y2, . . . , Xn, Yn therefore maxi-
mizes lik(β)P(β). Because log(x) is a convex function, the maximum of lik(β)P(β)
occurs at the same β value as the maximum of log(lik(β)P(β)). Using properties
of logarithms, we seek to maximize

log(lik(β) + log(P(β)).

5

3 Multinomial Logistic Regression

Multinomial logistic regression enables classification of objects into one of more
than just two categories. Consider a random variable Y , which can be classi-
fied into m categories. We write this as Y ∈ {1, . . . ,m}. Now, we posit the
distribution

P(Y = j | X = x) ∝ eβ
T
j x.

In order for this to be a valid probability distribution, we must ensure that

m∑
j=1

P(Y = j | X = x) = 1.

We can re-express this as

P(Y = j | X = x) =
eβ

T
j x∑m

j=1 e
βT
j x
.

If we fix βm = ~0, we can fit models by multinomial logistic regression using
maximum likelihood estimation for the other components of β.

4 Computing Logistic Regression

Recall:

L(β) =

n∑
i=1

(log(1 + eβ
T xi)− YiβTXi)

Since L(β) is a convex function, we can expect its minimum occurs at critical
points.

So it is equal to solving:

5βL(β) =


αL(β)/αβ1

...

...

...
αL(β)/αβp

 =

n∑
i=1

(
eβ

T xixi
1 + eβT xi

−YiXi) =

n∑
i=1

(σ(βTxi)−Yi)Xi = ~0

Which is a system of p equations in p unknowns. We want to pick β̂ that solves
the above equation.

Recall for all i, we have xi1=1. That implies:

n∑
i=1

(σ(βTxi)− Yi)) = 0

Which is equivalent to:

1

n

n∑
i=1

σ(βTxi) =
1

n

n∑
i=1

Yi

6

The left hand side of the above equation is the expected fraction of positive
examples given logistic regression model with β̂. And the right hand side is
equal to the fraction of positive examples in the training data.

5 The Newton-Raphson Method

Logistic regression models are usually fit by maximum likelihood. We will make
use of its derivatives to maximize the log likelihood `(β). This sets the stage
for this optimization problem and brings us to a classic problem: root-finding,
and a classic algorithm: Newton’s method (also known as the Newton–Raphson
method, named after Isaac Newton and Joseph Raphson).

Logistic regression models are usually fit by maximum likelihood. As de-
scribed at the end of last lecture, we will make use of its derivatives to maxi-
mize the log likelihood `(β). This sets the stage for this optimization problem
and brings us to a classic problem: root-finding, and a classic algorithm: New-
ton’s method (also known as the Newton–Raphson method, named after Isaac
Newton and Joseph Raphson).

Fig. 1 is an example of Newton’s method from Wikipedia. To find the root
of a function (shown in blue), we start with an initial guess x1 and fit a tangent
line using its first derivative if it exists. The tangent line is an approximation
of the function at that point. Then we get new point x2, which is assumed
to be the root. Because the function is complex and we can see it is off the
correct root. Then we use x2 as the next guess. We repeat the process until
a sufficiently accurate value is reached. Note that this is only guaranteed to
provide us a local optimum.

Fig. 2 shows an instance of a Newton-type methods that uses both the first
and second derivatives for a 1D function to find a local maximum of function
f(x). We start with a guess at xk. Instead of fitting a tangent line to the
function to generate the next guess, we fit a local quadratic approximation, i.e.,
a function that has the same 1st and 2nd derivatives as the target function. We
can easily solve for the maximum of this new function and obtain the next guess
for the maximum, xk + dk. We repeat this process until convergence.

5.1 Solving LR with Newton-Raphson

In our case we wish to solve the related problem of finding the maximum of a
function. We will do this using both the first and second derivatives. In higher
dimensions, as with our log likelihood L(β) where β ∈ Rp+1, the counterparts
to the 1st and 2nd derivatives are the gradient and the Hessian, respectively.

L(β) =

n∑
i=1

{
log(1 + eβ

>xi)− yiβ>xi
}

(6)

The gradient of the log likelihood is given by

∇βL(β) =

n∑
i=1

(σ(βTxi)− Yi)) (7)

Note that the gradient is a length p+ 1 vector. We can see from this expression
that the gradient can be expressed as a sum of feature vectors xi ∈ Rp+1,
i = 1, . . . , n, weighted by σ(βTxi)− Yi.

7

(a) Start with a guess x1, find the tangent
line using the first derivative, extrapolate
to get next guess x2.

(b) Repeat this process to get x3, which as
we can see overshoots in this case.

(c) Keep iterating (d) until a sufficiently accurate value is
reached.

Figure 1: Illustration of Newton’s method for finding a root. (Wikipedia)

Figure 2: Finding a local maximum of a function f(x) using a quadratic ap-
proximation. We start with a guess at xk. Using both the 1st and 2nd order
derivatives we fit a quadratic approximation to the function at that point. That
function fquad(x), is equivalent to the 2nd order Taylor series approximation
of f(x) around xk. We can easily solve for the maximum of this function and
obtain the next guess for the maximum, xk + dk. We repeat this process until
convergence. (Murphy)

8

Figure 3: A comparison of gradient descent (green) and Newton’s method (red)
for minimizing a function (with small step sizes). Newton’s method uses curva-
ture information to take a more direct route. (Wikipedia)

The Hessian of L(β), which is a (p+ 1)× (p+ 1) matrix, is given by

∇2
βL(β) =

n∑
i=1

σ(βTxi)
(
1− σ(βTxi)

)
xix
>
i

This matrix is a sum of terms of the form xix
>
i weighted by σ(βTxi)

(
1− σ(βTxi)

)
and it characterizes the curvature of the function we’re trying to minimize. Each
xix
>
i term is the outer product of xi with itself, resulting in a symmetric matrix

of size (p+1)×(p+1). We will see soon that this is closely related to how we com-
pute the covariance matrix for {xi}n1 . The scalar weight σ(βTxi)

(
1− σ(βTxi)

)
has a small value when σ(βTxi) is close to yi. If σ(βTxi) is close to 1 then
1−σ(βTxi) is close to 0 and vice versa, which means that if the approximation
is good at least one multiplier in the expression σ(βTxi)

(
1− σ(βTxi)

)
is close

to 0. As a result, the entire expression has a very low value far from the decision
boundary. If σ(βTxi) is a bad approximation of yi there is a higher chance that
the classification is incorrect and as such σ(βTxi) is closer to 0.5, 1 − σ(βTxi)
is also close to 0.5 making the entire expression close to its maximum: 0.25. If
we look back at the Hessian we can now see that the sum emphasizes xis for
which we are less certain of their classification making the contribution to the
Hessian larger when the choice of β results in a poor decision boundary.

Fig. 3 is a comparison of gradient descent (green) and Newton’s method (red)
for minimizing a function with small step sizes (the name of method varies de-
pending on the reference) but the green curve is a classic first-order method and
the red curve uses first- and second-order information. The first-order tells you

9

something about the slope, and it will eventually get you to the local optimum
by taking step in the direction of gradient. But if you take the curvature into
account, which is indicated by the second-order derivative, you can get a more
direct route.

5.2 Iterative Reweighted Least Squares (IRLS)

In IRLS we start by picking a random choice for β and apply a “Newton update”
to get a better β. We continue taking Newton steps until we reach convergence.
A Newton update is:

βnew = βold − (∇2
βL(βold))−1∇βL(βold)

in which the derivatives are evaluated at β = βold. If we put this in matrix
notation we get:

∇βL(β) = X>(y − p)

∇2
βL(β) = X>WX

Where:

• y is a vector of all the yis.

• X ∈ RN×(p+1) is the matrix of all the feature vectors xis.

• p is a vector of the σ(βTxi)s.

• W ∈ RN×N is a diagonal weighting matrix containing the values of pi(1−
pi)pn(1− pn) on the diagonal.

When we write the Newton update using this notation we get:

βnew = βold + (X>WX)−1X>(y − p)

⇓

(Multiply βold by (X>WX)−1(X>WX) which is the same as not changing it)

βnew = (X>WX)−1(X>WX)βold + (X>WX)−1X>(y − p)

⇓

(Factor out (X>WX)−1X>W)

βnew = (X>WX)−1X>W(Xβold + W−1(y − p))

⇓

βnew = (X>WX)−1X>Wz

in which z = Xβold+W−1(y−p). What is z? We want to predict log odds but
logit(yi) = ±∞. Instead logit ≈ logit(p)+(y−p)(logit′(p)) where p = σ(β>X).
We call z the adjusted response.
In every IRLS iteration we solve this equation with a new set of p, W and z.
This iteration solves the following weighted least squares problem over and over:

βnew ← arg min
β

n∑
i=1

Wi(β
>Xi − zi)

2

10

Figure 4: Logistic regression example (Harrington)

(Recall W is diagonal.) We iterate this step until convergence. This is named
Iteratively Reweighted Least Squares since in every iteration it solves a weighted
least squares problem.

One remaining question is, how do we initialize β? Starting with β = 0 is
often OK. Another option is to use multiple randomized restarts to reduce the
chances of getting stuck at a local maximum.

11

