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1 Recap - Unsupervised learning/Dimensionality
Reduction

We can use dimensionality reduction when we have X 2 IRn⇤p that is high di-
mensional data and want to transform it to a matrix Z 2 IRn⇤q where q < p
that preserves the most information.

We can use PCA:
z = e(x)
x̂ = d(z)
e(x) = Ax
d(Z) = ATZ
ATA = I

The best A is A = V q: first q columns from V in SVD of X

2 Multidimensional Scaling

We have the following dissimilarity measures and their usual uses in practice:

Dissimilarity measures Usual Uses

Euclidean Distance Vectors
Chi-squared Distance Distributions
Cosine Similarity Distance between bag of words, patterns
Edit Distance Distance between strings

Multidimensional Scaling process: we start with the distance/dissimilarity
matrix D 2 IRn⇤n.
What vectors D 2 IRn⇤p recover D in the closest way via Dij ⇡ ||Xi �Xj ||22 i.e.
X is an embedding of the n abstract data points in p dimensions that maintains
the dissimilarities as vector distances.
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If indeed Dij = ||Xi �Xj ||22 then

Dij = ||Xi||22 + ||Xj ||22 � 2XT
i Xj Dij = Tii + Tjj � 2Tij

such that T = XXT 2 IRn⇤n

T = �1
2 (D � DeeT

n � eeTD
n + eTDe

n2 )

In MDS, we eigendecompose T to get X such that T = XXT , T = UV UT

and X = UpV
1/2
p , a reconstruction up to rotation and translation.

Fact: if D comes from euclidean distances then MDS is just PCA.

3 Clustering

:
The goal here is to assign data points to finitely many clusters. One natural

perspective would be to find clusters in data. Another perspective is dimension-
ality reduction where e(x) = 1, ..., k

Encoder = cluster membership

Decoder = mean of that cluster =¿ e(x) 2 1, ..., k and d(z) = µ̂z

3.1 K-means Algorithm

The goal with k-means clustering is to assign data points to clusters such that
the within cluster distance is small:

Let c(i) = 1, ...,K indicate the assignment of point i.
The quality of c is defined in terms of the within-cluster distance:

W (c) =
Pk

j=1

P
i:c(i)=j ||Xi � µj ||22 where:

µj =
1
nj

P
i:c(i)=j Xi

nj =
P

i:c(i)=j 1

W (c) = 1
2

Pk
j=1

1
nk

P
i:c(i)=j

P
i0:c(i0)=j ||Xi �Xi0 ||22

What is the best C (min W(c))? How many C’s are there? The number
of ways of assigning n things to k buckets is far too big for us to be able to
compute so we use a greedy algorithm (k-means):
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1) Start with some C0

2) For t = 1, 2, ... :

1. Compute the cluster means for Ct�1

µ(t�1)
j = 1

n(i�1)
j

P
i:Ct�1(i)=j Xi for every j = 1, ..., k

2. Reassign n data points to the closest mean:

Ct(i) = argmin||xi � µ(i�1)
j ||22 for every j = 1, ..., k

Observation 1: di↵erent initialization lead to di↵erent solutions. Try di↵er-
ent (random) starting points. Pick the final clustering with smallest W(c).

Observation 2: k-means will always converge in finite number of steps.

• Might not be to global option.

• Might take a long time so often we terminate after a fixed number of steps.

• Do not choose k by cross-validation.

• Increase k to decrease mincW (c)

• There do exist information theoretical ways to choose k, and there is no ”right”
or ”wrong” way.

4 Soft Clustering

Hard clustering: k-means assigns each point to exactly 1 cluster

Soft clustering: sometimes it’s not clear that there’s a single cluster that a
point belongs to, instead we want to partially assign points to clusters.

Suppose we have a binomial distribution as follows: X0 ⇠ N(µ0,�2)

Y ⇠ Bernoulli(⇡)

X = (1� Y )X0 + Y X1 =

⇢
X0 Y = 0
X1 Y = 1

(X1Y = y) ⇠ N(µy,�2
y)

Approach : find ✓ = (⇡, µ0,�2
o , µ1,�2

1) that maximize the likelihood of the data (MLE)
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