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1 Recap - Unsupervised learning/Dimensionality
Reduction

We can use dimensionality reduction when we have X € IR™? that is high di-
mensional data and want to transform it to a matrix Z € IR"*? where q < p
that preserves the most information.

We can use PCA:
z =e(x)

z=d(2)

e(r) = Az
d(Z)=ATZ
ATA=1T

The best A is A = V¢: first q columns from V in SVD of X

2 Multidimensional Scaling

We have the following dissimilarity measures and their usual uses in practice:

H Dissimilarity measures Usual Uses H
Euclidean Distance Vectors
Chi-squared Distance Distributions
Cosine Similarity Distance between bag of words, patterns
Edit Distance Distance between strings

Multidimensional Scaling process: we start with the distance/dissimilarity
matrix D € R™".
What vectors D € IR™P recover D in the closest way via D;; ~ || X; — X,||3 i.e.
X is an embedding of the n abstract data points in p dimensions that maintains
the dissimilarities as vector distances.



If indeed Dij = HXl — Xj”% then

Dy; = 1X:[13 + ||1X;]13 — 2X7 X; Dij = Ty + Tj; — 2T
such that T = XX© ¢ R™"

_ -1 DeeT e’ D el De
T= Q(D_ n  n + n2 )

In MDS, we eigendecompose T to get X such that T = XXT, T = UVU”T
and X = Uprl/ 2, a reconstruction up to rotation and translation.

Fact: if D comes from euclidean distances then MDS is just PCA.

3 Clustering

The goal here is to assign data points to finitely many clusters. One natural
perspective would be to find clusters in data. Another perspective is dimension-
ality reduction where e(x) =1,..., k

Encoder = cluster membership

Decoder = mean of that cluster =; e(x) € 1,...,k and d(z) = (i,

3.1 K-means Algorithm

The goal with k-means clustering is to assign data points to clusters such that
the within cluster distance is small:

Let ¢(i) = 1, ..., K indicate the assignment of point i.
The quality of ¢ is defined in terms of the within-cluster distance:

k
W(e) = Zj:l Zi:c(i):j |1X; — |3 where:

Hy = % Zi:c(i):j Xi
nj = Zi:c(i):j 1

k
W(C) = % Zj:l é ic(i)=j Zi’:c(i/):j HX’L - X’L'H%
What is the best C (min W(c))? How many C’s are there? The number

of ways of assigning n things to k buckets is far too big for us to be able to
compute so we use a greedy algorithm (k-means):



1) Start with some Cy
2) Fort=1,2,...:

1. Compute the cluster means for C;_;

u;.t_l) =5 D0y ()= Xi forevery j=1,...k

[@
n.
J
2. Reassign n data points to the closest mean:

Ci(i) = argmin||z; — ugi_l)H% for every j =1,...,k

Observation 1: different initialization lead to different solutions. Try differ-
ent (random) starting points. Pick the final clustering with smallest W(c).

Observation 2: k-means will always converge in finite number of steps.

e Might not be to global option.

e Might take a long time so often we terminate after a fixed number of steps.
e Do not choose k by cross-validation.

e Increase k to decrease min.W(c)

e There do exist information theoretical ways to choose k, and there is no "right”
or "wrong” way.

4 Soft Clustering

Hard clustering: k-means assigns each point to exactly 1 cluster

Soft clustering: sometimes it’s not clear that there’s a single cluster that a

point belongs to, instead we want to partially assign points to clusters.
Suppose we have a binomial distribution as follows: Xo ~ N (ug,0?)

Y ~ Bernoulli(m)
Xo Y=0
X = (1-Y)Xo+ VX, = { X0 V=0 (=)~ Nyod)
Approach : find 6 = (7, g, 02, i1, 0%) that maximize the likelihood of the data (M LE)



