
Generating Customized Low-Code Development
Platforms for Digital Twins

Manuela Dalibor1, Malte Heithoff1, Judith Michael1, Lukas Netz1,
Jérôme Pfeiffer2, Bernhard Rumpe1, Simon Varga1, Andreas Wortmann2

1 Software Engineering, RWTH Aachen University, Aachen, Germany, www.se-rwth.de
2 Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW),

University of Stuttgart, Stuttgart, Germany, www.isw.uni-stuttgart.de

Abstract—A digital twin improves our use of a cyber-physical
system and understanding of its emerging behavior. To this effect,
a digital twin is to be developed and configured and potentially
also operated by domain experts, who rarely have a professional
software engineering background and for whom easy access and
support, e.g., in form of low-code platforms are missing. In this
paper, we report on an integrated method for the model-driven
engineering of low-code development platforms for digital twins
that enables domain experts to create and operate digital twins
for cyber-physical systems using the most appropriate modeling
languages. The foundation of this method is (1) a code generation
infrastructure for information systems combined with (2) an
extensible base architecture for self-adaptive digital twins and (3)
reusable language components for their configuration. Using this
method, software engineers first configure the information system
with the required modeling languages to generate the low-code
development platform for digital twins before domain experts
leverage the generated platform to create digital twins. This two-
step method facilitates creating tailored low-code development
platforms as well as creating and operating customized digital
twins for a variety of applications.

Index Terms—Digital Twin, Low-Code Development Platform,
Domain-Specific Languages, Model-Driven Engineering, Code
Generation

I. INTRODUCTION

Digital Twins (DTs) [1] promise improving the understand-
ing and use of Cyber-Physical Systems (CPSs) in automated
driving [2], manufacturing [3], medicine [4], and further
domains. For instance, they aim to prevent crashes [5], reduce
resource consumption [6], and predict health issues [7]. DTs
are software systems that are representing (’twinning’ [8])
a CPS to act as its surrogate for analyses [9], control [10],
or predicting its behavior [11]. On one hand, they gather
data from and about the twinned CPS that may include data
not accessible by the twinned system itself, such as historic
data about its usage or strategic data about its planned use
received from another system (ERP, MES). Consequently, a
quintessential prerequisite for leveraging this data is making
it available to other systems and human operators. On the
other hand, DTs need to be configured and reconfigured over
time to extract the desired data, aggregate it properly, and
act on it. In many domains, the CPSs and, hence, their DTs
are configured by domain experts yielding highly specialized,
sparse, expertise about the CPS, its environment, and its use,
but no formal software engineering education. These domain

experts need to take care of changing the programming of
the CPS and its DT over time to reflect deterioration or
hardware changes (e.g., replaced sensors or actuators) over
time. Thus, it its crucial to enable these domain experts to
properly configure, connect, and control DTs. Yet, no general
approach for engineering and configuration of digital twins
through domain experts exists [12], [13].

Low-code development [14] is a recent trend in model-
driven end-user programming in which highly integrated mod-
eling tools for a specific kind of applications enable end
users in creating and configuring corresponding applications.
Corresponding Low-Code Development Platforms (LCDPs)
could support domain experts in creating, configuring, and
controlling digital twins. Yet, to the best of our knowledge
no LCDPs for digital twins exists.

To facilitate engineering and operations of DTs with
LCDPs, we present a pervasive model-driven method to gen-
erate tailored LCDPs for creating, configuring, and controlling
DTs. Our method relies on (1) the MontiGem toolchain [15]
for the generation of information systems, (2) an extensible
digital twin architecture model [16], [17], [18], (3) reusable
language modules to define the modeling languages selectable
in the LCDP and available in the digital twins, and (4) their
integration with each other as well as their transformation into
an integrated LCDP.

The contribution of this paper, thus, is a two-stage method
to create tailored LCDPs for the creation and configuration of
DTs. This method combines the model-driven generation of
information systems with the generation of DTs from models
of their architecture and latest results from software language
engineering. First, models and languages for the DTs to be
developed with the platform are collected. From this, the first
code generator produces a web-based LCDP capable of mod-
eling with these languages. Second, the DT to be developed
is configured with various models, possibly including models
of the languages collected beforehand. Through a second code
generator, an executable instance of that DTs is produced that
features self-adaptive behavior and visualization capabilities.

This method, hence, facilitates creating highly-specialized,
local LCDPs for DTs, as well as creating, configuring, and
controlling DTs by domain experts. Within a former publi-
cation [19], we have discussed our vision towards low-code
approaches for digital twin engineering together with some

challenges. This paper is a significant extension and shows
the method for engineering LCDPs for digital twins in detail
together with a comprehensive example, more related work,
and an intensive discussion.

In the following, Sec. II presents a motivation for the low-
code development of digital twins in injection molding before
Sec. III discusses low-code development, introduces digital
twins and the DT architecture used in the following, presents
the generator framework MontiGem and introduces language
plugins. Sec. IV provides an overview of our approach for
generating the low-code development platform and using the
platform to generate digital twins and explains how we
generate the low-code development platform. Sec. V describes
how the LCDP can be used for the low-code development of
digital twins. Sec. VI shows the functionalities of the generated
digital twin during runtime and how it can be configured using
models. Afterwards, Sec. II investigates its benefits through a
case study, before Sec. VIII relates our approach to others.
Sec. IX discusses observations and Sec. X concludes.

II. USE CASE INJECTION MOLDING

In the "Internet of Production"1 excellence cluster, we
devised a self-adaptive, model-driven digital twin architecture
and applied it to injection molding [16], [18]. Injection mold-
ing [20] is a batch processing production technique in which
a plastic granule is heated and injected under pressure into
an injection mold (the negative form of the product to be
produced). It is one of the most common mass production
processes for the plastic parts that we interact with on a daily
basis. Figure 1 highlights the quintessential components of an
injection molding machine.

clamping unit hopper
User

Interface

control cabinet
Injection

Unit

Figure 1: Main components of an injection molding machine

The typical injection molding process is as follows: (1) An
operator configures the machine through its UI and inserts
plastic granule through a hopper. (2) In the injection unit,
the plastic granule is heated and molten into the desired
consistency. (3) The screw transfers the plastic to the nozzle.
(4) Under pressure, the injection unit injects the molten plastic
into the mold while the clamping unit keeps the mold closed
during injection so that the applied pressure is countered and
the mold halves do not open up. (5) After a cooling time, the
machine ejects the work piece from the mold.

Generally, various device components with multiple influ-
encing variables (such as temperature or pressure) and process

1https://www.iop.rwth-aachen.de

parameters are directly related to successful production of
injection molded parts. But injection molding machines are
sensitive to unintended and hardly predictable changes in
their behavior due to deterioration and environmental effects.
Consequently, two injection molding machines of the same
type will require different configuration depending on their
history and the environment. Hence, the expertise on how
to configure a specific machine is highly specific and rarely
made explicit but demands practical knowledge by experienced
machine operators. This slowly increasing deviation towards
highly specific configuration of the machine as-operated is
common to all kinds of CPS.

For the large majority of these systems, domain experts
without formal software engineering training need to be able to
configure them accordingly. Current configuration mechanisms
are unobstructed and untraceable, i.e., the domain expert pro-
vides an initial configuration, starts a production, investigates
the result, and adjusts the configuration accordingly. This takes
time, consumes energy, and produces waste.

Leveraging DTs [21], [1] that monitor and control the
system of interest can reduce configuration time, save energy,
and prevent waste [18]. To this end, the DTs need to be pro-
grammed with adequate mitigation measures, i.e., undesired
conditions and countermeasures. Given that domain experts are
rarely software engineering experts, low-code development can
support them in successfully employing DTs accordingly. This,
however, assumes that the operator of the system in question
already has a DT to work with, as well as system to configure
it properly, in place. As this also rarely is the case, we devised
a method to generate LCDPs for the creation and configuration
of digital twins such that domain experts can choose the most
suitable modeling languages to (low-)code the configuration
of their highly-specific DTs.

III. BACKGROUND

We aim to enable domain experts without formal software
engineering training to configure a DT leveraging low-code
development. To this end, we combine various modeling tech-
niques and model-driven methods to create and configure the
platform. The models we use for configuration are more ab-
stract than programming languages and allow domain experts
to create powerful full digital twin applications nonetheless.
This section introduces essential foundations.

A. Low-Code Development

Low-code development is a success story of model-driven
engineering [14]. The term low-code first appeared in literature
by Forrester in 2014 [22] as "platforms that enable rapid
delivery of business applications with a minimum of hand-
coding and minimal upfront investment in setup, training, and
deployment." This trend of End-User Software Development
[23] continues and is further purused by projects like Low-
comote2[24]. Where traditional MDE methods and techniques
aim to support a variety of modeling applications (i.e., class

2https://www.lowcomote.eu/

Digital Twin Architecture

ExecutorData Processor

CPPS

Evaluator Reasoner

Data Lake

CPPS StateQuery

Query Data

List<Goal>

CPPS State

Query

Command Feedback

Data

MA

Solution Feedback

Figure 2: Digital twin base architecture [18] in MontiArc
(MA) [39].

diagrams, the epsilon transformation language, or Xtend are
not tied to specific applications), low-code development plat-
forms leverages tightly integrated modeling platforms, can
provide immense added value to modelers for very specific
purposes, such as the development of mobile3, web-based4, or
business applications5. These platforms provide graphical [25],
textual [26], or form-based modeling environments [27] that
focus on specific applications and comfortable UX, intelligent
assistants, and well-integrated downstream tool chains [28].
Through this, the complexity of creating specific applications
and the generated code are hidden from low-code modelers.
Low-code development platforms are used to develop a variety
of data-intensive applications. [19], [16] presents the architec-
ture for an LCDP to develop a ditital twin.

B. Digital Twins

There is a variety of interpretations of the concept of digital
twins. Some consider a digital twin a highly-precise simulation
model, used at design-time of its twinned counterpart [29],
[30], [31], while others understand it as software system
representing the counterpart during its run-time [32], [33], [34]
or something in-between [35], [36], [37]. For us, a digital twin
is "a set of models of the system, a set of digital shadows and

their aggregation and abstraction collected from a system,

and a set of services that allow using the data and models

purposefully with respect to the original system" [16]. Digital
Shadows (DSs) are data structures that describe a dedicated
view on the original system for a specific purpose. "A digital

shadow is a set of contextual data traces and their aggregation

and abstraction collected for a specific purpose with respect

to an original system" [38]. The DS provides information
only, whereas the DT also interacts with the system using the
collected data.

Our architecture for DTs is developed using MontiArc [40],
a component & connector architecture description lan-
guage [41] that enables to model architectures as hierarchy

3https://www.salesforce.com/campaign/lightning/
4https://www.claris.com/
5https://www.quickbase.com/

of connected components. Components are black-boxes with
a defined interface that consists of ports that can be either
incoming, defining which types of incoming messages they
can consume, and outgoing, defining which types of outgoing
messages they produce. Components interact via unidirectional
connectors between the ports of their interfaces. Further-
more, components can be decomposed into subcomponents
or atomic. Figure 2 show the base architecture from which we
derive the domain-specific DTs. The DT comprises a Data

Processor component that connects to a Data Lake to
aggregate data about the current Cyber-Physical Production
System (CPPS) state. The Evaluator monitors the CPPS
state and checks whether the CPPS operates as intended. In
case it detects any anomalies it creates goals that specify the
intended CPPS state. The Reasoner finds a solution for the
current situation and hands this solution to the Executor.
The Executor translates the provided solution into concrete
CPPS settings and performs these on the CPPS. For specifying
domain knowledge and the behavior of the DT, domain experts
can utilize multiple modeling languages:

• UML/P class diagrams [42] to define the domain model
with its elements and their relations.

• A language for Case-Based Reasoning (CBR) [43], which
is a problem-solving paradigm that reuses solutions from
formerly encountered situations, to find a similar solution
to the current situation. A case consists of a description
of the situation as conditions properties of the domain
model, its solution in terms of actions to be performed,
and the situation the solution intends to produce. A simple
case could be that once the injection mold reaches a
low temperature, it needs to be heated again, which
should yield a situation in which a specific temperature
is reached again. CBR models are interpreted during
runtime of the DT and can be updated and exchanged
during its runtime as well.

• An event language that domain experts can utilize to
describe events based on situations in the real system
based on values of monitored parameters contained in
the domain model. Actions define reactions of the DT to
an event, e.g., sending a goal for the reasoner to evaluate.
Events and actions are linked by rules.

• A communication specification language which enables
defining communication of data types from a specified
endpoint and with a defined protocol. Currently, the
architecture supports communication via OPC-UA and
MQTT.

• An expression language for aggregating data. It includes
the most commonly used functions such as maximum,
minimum or summation functions. Aggregation is needed
for the DS when collecting data.

C. MontiGem

We use MontiGem, the generator framework for information
systems [44], as a model-driven platform to create and (re-
)configure DTs using low-code techniques. This includes a
set of modeling languages to create the DT: a language to

Figure 3: MontiGEM Generator framework.

define data structures based on UML class diagrams, namely
CD4A, a language to define graphical interfaces, namely
GUI-DSL [45], [15], a tagging language [46], [47], an event
language [18] and a language to define goals. All used
modeling languages are based on the language workbench
MontiCore [48]. These languages are described with context-
free grammars which integrate concrete syntax with abstract
syntax. Additionally, they use well-formedness rules imple-
mented in Java (“context conditions”). Models are parsed by
a corresponding generator (Figure 3) and transformed into an
abstract syntax tree. This abstract syntax is transformed again
to the target syntax tree and provided to a template engine,
that produces source code in the configured programming
language.

This code generator has already proven its capabilities in
real-world projects for financial management [49], energy
management systems and the engineering of wind turbines
as well as in research projects on goal modeling in assistive
systems [50] and privacy-preserving information systems [51].

D. Low-Code Development Platform Language Plugin

Language plugins are complex software components which
can be used to encapsulate a language, components to process
models of this language and editors and viewer to create and
manipulate models. Figure 4 shows the elements of language
plugins comprising

• a language component [52], [53], [54] featuring
the MontiCore [48] grammar of the language, context
conditions, and model transformations pertaining that
language,

• MontiArc [40], [55], [56] components interpreting mod-
els of that language to be embedded into the Reasoner

DSL Component

EditorViewer

Grammar

WFRs Trafos

Digital Twin

Components

A

B

MA

DSL

Infrastructure

GUI Model

Viewer

GUI Model

Editor

Figure 4: A detailed view on a Low-Code Development Plat-
form Language Plugin consisting of a DSL language compo-
nent, containing language constituents, a MontiArc component
model for integrating the plugin’s functionality into the DT
architecture, and viewer and editor GUI models for editing
models of the language in the LCDP.

and/or Executer of the architecture of DTs config-
urable with the LCDP under development,

• a GUI model from which, together with the provided DSL
infrastructure of the DSL component, MontiGem gener-
ates a TypeScript-based editor for models of that language
to be embedded into the LCDP under development, and
optionally

• an optional TypeScript-based viewer to visualize the
behavior of models of that language at runtime of the
DT configured with the LCDP.

The latter TypeScript editor and viewer are integrated into
MontiGem via its UI hooks for HTML.

IV. MODEL-DRIVEN ENGINEERING OF THE LOW-CODE

DEVELOPMENT PLATFORM

In a two step approach, we can generate in the first step
LCDPs to generate in the second step customizable DTs that
can be used to create, configure, and operate tailored DTs
using the most appropriate modeling languages for different
domains. The novelty of our approach comes from combining
the MontiGem code generation infrastructure with our model-
driven architecture for DTs and DT language plugins. Our
approach needs three different roles:

1) the low-code development platform engineer creates the
LCDP model-driven,

2) the digital twin designer uses the LCDP to configure the
digital twin to be generated and

3) the domain expert uses the digital twin to observe and
control the CPPS.

The process of generating the LCDP starts with a set of
LCDP models and a set of language plugins as input for the
MontiGem generators (see Figure 5 top left).

This set of LCDP models are five different kinds of
MontiGem design-time models (see Figure 3): The domain

Database

Digital Twin

Architecture Configuration

ViewerEditor

MontiGem Instance

MontiGem

Design-Time Models
MontiGem

Generators
LCDP Language Plugins

Low-Code Development Platform

A
p
p
lic

a
ti
o
n
-I

n
d
e
p
e
n
d
e
n
t

4D DSL

Component
EditorViewerDigital Twin

Components

DT Components

Model Library

Application Independent

Digital Twin Models

Basic
Process

Structure

Basic DS
Structure

Event
Model

Reason.
Model

DT
Model

Extended Digital Twin Architecture

ExecutorData Processor

CPPS

Evaluator Reasoner

Data Lake

Interpreters

Comm.

Model

Definition

Digital Twin Instances

A
p
p
lic

a
ti
o
n
-D

e
p
e
n
d
e
n
t

LCDP
Model

M2T

M2T

Digital Twin

Generator

Figure 5: Using the models and language plugins (top-left), the MontiGem generators produce a tailored LCDP for creating
and operating DTs (top-right). The generated LCDP consists of a web-based frontend and a database backend. In it, the
languages defined by the plugins, the GUI parts defined in the GUI models, and different domain models are available such
that domain experts can leverage these to configure DTs. By selecting the models to be used in the DT and the GUI models
for representation of DT information, the common architecture of DTs (bottom-right) is parametrized an tailored accordingly.
Using the DT generators, a new DT is produced with comprises an instance of that architecture connected to a new MontiGem
instance representing information about the DT.

model using UML CD as notation describes the data structure
for the generated LCDP, e.g., the class DTCommunication,
with the attributes endpoint or topic or the classes DTModels
or DTServices with its attributes. GUI models describe the
graphical user interfaces of the LCDP, e.g., of the dashboard or
detailed pages [45]. Data models define which part of the data
of the domain model should be shown in each GUI, e.g., DT
services, DT models or a ModelList with entries. OCL models

describe input validators for input fields in the LCDP GUIs,
e.g., to validate if the address of an endpoint follows a certain
pattern. Tagging models add database technology specific
information to the domain model, e.g., which attributes are
unique in the database, or define rights and roles, e.g., the
admin or LCDP configurator.

Besides MontiGem design time models that define the
general appearance and functionality of the LCDP, language

plugins allow a digital twin designer to create and edit models
in the LCDP. Each of the plugins comprises a Domain-Specific
Language (DSL) component which encapsulates a complete
domain-specific language in form of a grammar defining
its concrete and abstract syntax, as well as well-formedness
rules, additional transformations and code-generators. These
language plugins come along with components for the DT ar-

chitecture, capable to process the models of this DSL, viewers,
editors for the models, and a set of predefined models. By
selecting language plugins, the LCDP engineer can determine
which languages will be available for digital twin designers to
use in the LCDP.

The MontiGem generator (Figure 5 top middle) takes all
the predefined and application tailored models as input to
compute a LCDP (Figure 5 right), which is provided to
digital twin engineers as web application. First, from the
domain model, most of the internal infrastructure is defined
and generated. A relational database is build which holds the
data structure. Additional to the database, several classes are
generated to allow database access, abstract from database
tables to allow a more general use of the data structure and
allow an easier communication of the web platform and the
server backend. Moreover, the MontiGem generator produces
editors/viewers and the DSL infrastructure for models of the
LCDP language plugin’s DSL.

This LCDP is then provided to digital twin designers who
have the aim to create one or more digital twins in connection
to a certain CPPS and tailored for their specific needs.

V. LOW-CODE DEVELOPMENT PLATFORM

The generated low-code development platform provides
application-independent parts, which can be used by a digital
twin designer to configure the digital twin to be created. The
selected configuration for one specific digital twin is then the
application-dependent part of the LCDP.

A. Provided Application-Independent Parts of the Low-Code

Development Platform

The LCDP provides application-independent parts, which
can be used by the domain experts for creating different digital
twins. It already includes viewers and editors for the models of
the usable DSLs and a set of application-independent models
(see Figure 5 top right).

The LCDP provides a model library (see Figure 6) with a
set of different domain-specific models. This enables users to
store and reuse models used in previous projects. Moreover,
the models can be exported and imported between projects or
for use with different tools if required.

Model Library

Domain
Model

Data
Model GUI

Model

Sensor Dashboard

Figure 6: Model library, containing predefined models.

Also, the LCDP provides a basic process structure [57] as
well as other structures of all relevant runtime languages as a
class diagram. These basic structures include all concepts of
the grammar of these languages. This allows us to store their
models during runtime and enabled their runtime handling.

An architectural model with extension points describes the
structure of the DT to be generated. These extension points
can be filled with predefined DT components for five distinct
parts that can be adapted: the data processor, the evaluator, the
reasoning, the executor, and the communication (see Figure 7).
Each of those parts are meant to be used during run-time of the
DT and are further explained in Sec. VI. The feature diagram
of Figure 7 shows various possibilities for configuration. The
required features provide the services needed for a minimal
working DT. The additional optional services can be used
for more sophisticated behavior, such as action planning with
models of the Planning Domain Definition Language (PDDL).
Some of the digital twin services are able to handle models
during runtime, others need models during design time. The
editors and viewers of the LCDP language plugins allow to
define these models in the required languages.

The LCDP comes along with the basic DS structure to be
able to manage and store them during runtime of the digital
twin. The conceptual model in [38] describes what concepts

are needed for engineering a DS. The digital representation is
modeled as a class diagram and consists of the composition
of the asset the DS stands for, data traces, its unique purpose

(e.g., "minimize waste in injection molding"), the system’s
underlying models, and a link to other DSs. The data traces

originate from a source (e.g., a specific sensor), consists of
data points and can be enriched with metadata. This way,
the meta-model for the DS is adaptable and extendable to
conform to every use-case. We use that meta-model in our
implementation to stay consistent with the definitions of the
Cluster of Excellence IoP.

B. Low-Code Configuration of DTs through the Platform

The LCDP comes with an intuitive user interface through
which the DT designer configures the DT. The DT designer
can be any person that knows the domain and the physical
entity. For realizing a DT, no advanced programming skills
are required. The low-code DT configurator guides the DT
designer through the configuration process. It ensures that
the minimal required specifications are given and that the
designer is provided with meaningful options to configure the
system step by step. The process of configuration creates the
application-dependent parts (see Figure 5 bottom right) of the
low-code development platform.

Definition of the domain. The DT designer has to start
with the definition of the domain model. The domain model

describes the context and CPPS with which the DT interacts in
UML/P CD [42] with integrated OCL/P. The DT designer can
(1) set up it’s own model, (2) he can reuse models defined in
the model library, and (3) in case he uses predefined models,
he can adapt them to the exact needs of the desired DT. Our
DT low-code platform is specifically designed for CPPS, thus
providing a set of standard concepts in the model library that
are often required to describe CPPS, like temperature sensors.
The LCDP allows also to store and reuse own models which
were defined in previous configurations.

Definition of constraints. Once the domain is defined,
the designer can apply constraints on the concepts in the
domain model, e.g., defining limits and boundaries on specific
parameters. In order to enrich the domain model with further
information, a tagging language can be used to apply tags to
classes and attributes.

Digital shadow type definition. The types of the digital

shadows encapsulate data about the physical entity that the
DT requires for service provision. There are various types of
DS, each tackling special information needs. The DT gathers
information from the system and other external services (CPS,
CPPS, apps) via the DSs. During the configuration of the
LCDP a DT designer defines DS types which describe how
the different DSs are created. First, the connection to external
services and especially to the CPPS over the data lake has to
be configured. This is done by specifying the incoming data
structure in a class diagram and tagging it with API infor-
mation such as a REST service. This allows for referencing
of classes and attributes and how they should be aggregated.
From that, the DT designer chooses the now discoverable data

DT Behavior

Expression

Evaluator

SAT

Evaluator

Command

Executor

Local

Executor

DataProcessor Reasoning Executor

FD

Communi

cation

JSON Binary Kafka PDDL CBR SCIP Java

OPC MQTT REST WS

Evaluator

mandatory

optional
XOR

OR

Figure 7: Feature diagram (FD) for the digital twin behavior.

points they want to include for the data traces. Next, the DT
designer specifies the classes defining the data source and
system asset in the domain model and implement the DS meta
model by extending the corresponding classes. Now they can
choose the DS’s structure from those, the system’s models,
other DSs and the data traces. In addition, the very specific
purpose for this DS is assigned. With all that given, all data
can be aggregated with some description from the models. A
standard aggregation language is provided which holds most
functions a DT designer might need. Additional functions can
be provided and implemented with an extension mechanism.

Digital twin service selection. The LCDP offers different
digital twin services to interact with the underlying physical
entity and influence its behavior. Thus, the DT low-code
platform offers the possibility to define which services should
be active in a specific DT and state the service’s behavior
explicitly. For this purpose, we provide graphical interfaces
where the DT designer can choose available services for
the generated DT (see Figure 8). Besides selection of the
desired behavior and services (top left) and communication
protocols (top right), additional information can be added
for each selection, e.g., for case-based reasoning a set of
predefined cases can be uploaded, or MQTT requires to define
an endpoint and the subscribed topics.

Digital twin roles. As different kind of users should be
able to have different kinds of interaction and different views
of the data, a role and permission infrastructure is used. That
allows for different user groups, e.g., a machine operator who
only wants to see the information and interact with a specific
CPPS. Thus, the user does not need to have access to the data
of other machines. We can use tagging models to map roles
and permissions to the domain models.

In addition, such restrictions can also be used for different
DT services. This enables us to allow only specific user
groups to add new communication endpoints or new reasoning
models. Similar to the use of the tagging language in the CD,
the service configuration allows the digital twin designer to
connect roles and permissions to the different services.

Select and describe the visualization. Finally, the digital
twin designer can (1) select predefined, (2) automatically
derive, and (3) define new user interaction models. The model
library already includes various GUI models in relation to
the provided domain and data models that can be selected
by the DT designer. Preexisting views and components are
used to systematically show the DT data. Another possibility
is to automatically generate the user interface models from
the domain models, as the important information such as data
structure or needed permissions are already defined (see for an
approach in [15]). Moreover, the LCDP allows the digital twin
designer to define handwritten GUI models. The designer can
define the GUI via drag-and-drop of graphical components or
in a textual model. The LCDP provides an editor to define
how the data from the domain is displayed in the DT (e.g.,

usage of tables and charts) in GUI models. This allows for
individually adaptable views in a digital twin. The data models
needed for the UI can be extracted automatically, as the GUI
models already define what data should be shown. This is,
e.g., the value of an attribute or aggregated information, such
as a minimum value or the last few historic values in a time
series. The LCDP already provides commonly used visual
components and data aggregation methods. If those are not
sufficient additional components can be added to the generated
DT.

C. Generating the digital twin

Once the domain expert has selected and defined the models
and selected the digital twin services, he can generate the DT
instance tailored to the designer’s requirements. The generated
DT has a database to store data about the physical entity
or the user interaction, it provides a frontend for visualizing
data about the physical entity and the status of the DT. This
generations step automatically integrates the corresponding
digital twin components into the DT architecture. The DT
services realize the DT’s behavior, e.g., the kinds of events that
it should react to, the actions it may trigger on the physical
entity, and also smartness. Furthermore, the frontend also

DT Services ?

Reasoning: Case Based Reasoning

Configuration Details
Dashboard > Configuration > Details

Add

Selection Overview ?

DT Communication ?

MQTT Add

Endpoint Address

Topic Name

Endpoint

Topic

Model SelectionModels

Date File Name

30.04.2021 Case 1

30.04.2021 Case 2

30.04.2021 Case 3

Service

Feature Type Name Information

Evaluator SAT Evaluator

Communication MQTT Endpoint: localhost:1234, Topic: temperature

Communication REST Endpoint: 192.168.1.1, Topic: pressure

Figure 8: Low-code digital twin platform configuration view.

supports adaptation of the DT, e.g., by adding or exchanging
parts of the data structure.

What needs to be done when the DT has to be changed?

As the DT is completely generated, each change regarding
its core structure has to be made in the LCDP to recreate
the DT. This has some consequences for an already existing
digital twin: 1) handwritten additions to the DT might need
to be adapted to a changed structure, and 2) when there is
already data created in the existing DT the data might have to
be migrated to the new structure. The LCDP saves the current
DT configuration and provided models so the DT designer can
easily continue or make changes. Nonetheless, changes which
only affect interpreted models can be done during run-time.
Adding new cases to the case base adapts the DT behavior
while adding an additional DS type creates new DSs and can
be visualized in a default GUI component.

VI. DIGITAL TWINS DURING RUN-TIME

The digital twin provides the functionalities specified in the
digital twin services during run-time of the application. Fur-
thermore, the application users (domain experts) can customize
the DT during run-time. They can, e.g., specify new reasoning
models, define new event models, set planning goals, or edit
or create new DS types.

A. Functionalities of the digital twin at run-time

The digital twin continuously gathers data from the CPPS
and processes it. On the one hand, it visualizes data and
presents it to the users using GUI components. They can then
decide to interact with the machine. On the other hand, the DT
evaluates the system’s current state and automatically adjusts

the machine’s settings if the system tends to reach a critical
state.

The DataProcessor handles conversion between the data
received from or send to external sources, e.g., CPPS or other
applications, and the internal structure. There are different
protocols or data descriptions like binary format, JSON, or
Apache Kafka streams. This allows the services to convert
data and to just work on the internal data structure. The DS

types hold all information on how to construct a DS. The
DataProcessor then searches for the DS type for the correct
asset with the corresponding purpose and obtains a structured
DS. It adds all data points to the DS’s data traces and can then
calculate aggregated data based on the underlying aggregation
models. The result is a structured DS for the specific purpose
which contains all data from the machine and its aggregation
to fulfill this purpose. The next steps then decide on how those
DSs are utilized.

The behavior of the DT is realized though specific im-
plementations of the evaluator and reasoner component in
Figure 2: The Evaluator should handle constraints and expres-
sions and are evaluated when checks have to be performed,
e.g., if a temperature value is valid or in a specific range. The
Evaluator is used by other services like the Reasoner and the
Executor. The Reasoner service handles actions, that have to
be executed when specific events occurred. These components
monitor the behavior of the physical entity and choose when
and how to interfere.

The Executor is the part that performs actions which have
arisen by the logic of other services. The executor creates
a command that can be sent to a given endpoint. Such a

command differs between CPPS and is defined in combination
with the communication.

To communicate with other services the DT provides a
range of communication interfaces which can be configured
to customize and adapt to different circumstances. Such con-
figuration can consist of the definition of the other endpoint,
such as IP/port address, the topics of the connection, i.e., which
information should be exchanged, and which service uses this
communication endpoint. Current supported communication
interfaces are MQTT, OPC UA, WebSocket, and REST. The
DT itself communicates via the defined communication end-
points in the DT services or via the DSs. Each service can
communicate with any given endpoint, e.g., other applica-
tions, CPPS, or even with other services of the same DT.
The topics fulfill different requirements and each of the DT
services has already predefined topics to work with. Additional
communication topics can be added to match the endpoint to
communicate with. A topic can be any identifier that both
endpoints agree on. The communication with topics is handled
by the DT services. Data can be created and send to other
registered endpoints, or the service is triggered by new data
on registered topics.

The supported communication interfaces provide different
kinds of registration and communication setup:

• MQTT uses a message broker where clients can register
with specific topics and get a data update when data is
sent with the registered topic. The client just has to know
the central message broker and does not need to know
which other endpoints exists.

• OPC UA provides two different modes: (1) a broadcast
mode, which works similar to MQTT and (2) a peer-to-
peer mode where a client and server communicate.

• WebSockets connect a client to a server and can be
used to send any kind of data. The server endpoint has
to be known to establish a connection. Topics can be
realized by either have a connection per topic or send
each message through the same connection but handle
them with different logic depending on the content.

• REST provides a simple but restricted communication
interface. A connection is opened with a request by
the client and closed, when a response is sent back.
There are extensions like REST keep-alive that retain
a connection for multiple information exchanges. REST
usually provides one endpoint per specific logic like a
single topic.

User Access Control. Finally the DT supports role based
user access control. This allows for the setup of different
roles, which can be granted different permissions, e.g., having
a supervisor role and a operator role that are permitted to
perform different tasks on the DT. The user interface can be
configured to display different views based on the roles, thus
getting user specific UIs e.g., a machine operator may take an
interest in the health state, current order, and capacity rate of
one specific CPPS while the head of production at a production
location rather requires an overview of current activity at this

location.

B. Configuration of the DT during run-time

In contrast to the more static configuration of the DT
in the LCDP, we allow for a dynamic configuration of DT
services during run-time. The following aspects can be edited
by platform users at run-time, through settings and editors in
the user interface of the DT itself. Each of the DT services can
support configurations/models which are interpreted/executed
during run-time. Each of the services can have different
implementations and execution logic (see Figure 7). This
allows the DT users to modify the behavior of the DT. The
DT needs to be regenerated, in case there are changes needed
in the models mentioned before.

Define event models. Different services are able to interpret
event models. These define behavior and reactions in case
specific events should occur. One frequent task of DTs is
reacting to changes in the physical entity or the context
in which the physical entity operates. Thus, the low-code
platform provides an event language for specifying events and
how the DT reacts if these events occur.

Define cases for the case base. DTs of CPS often operate
in changing environments where, e.g., significant temperature
changes can occur. In addition, their configuration depends
on many variables like the raw material, wear and tear of
the machine, and the produced parts. Case-based reasoning is
a reasoning mechanism that resembles the way that humans
deal with new situations. They remember a previous situation
in the past and try to adapt the solution that worked in the past
to the problem at hand. Thus, we chose case-based reasoning
as a way to inject domain knowledge into the DT. For this
purpose, we created a domain-specific language that helps
domain experts to formulate their knowledge but in addition
is machine-processable and thus can be processed by the DT.

Configure communication. The generated DT provides
communication infrastructure to access, e.g., a machine in-
terface and change process parameter, or to read recent sensor
values. It supports multiple different communication inter-
faces. Which one is used and how it is configured can be
set in the DT itself.

Edit or create new DS types. If a DT user needs to
investigate a different part of the machine, they can decide
to adapt existing DS types or create new ones. Since visu-
alizations and information displaying is generated from the
GUI models, only a generic view on the new incoming DSs is
possible. This presentation contains its structural elements and
a plain view on the data traces in tables. Data aggregation is
possible for interpretable aggregation models. The aggregation
language, which is provided within the LCDP, is limited to
the predefined functions in this case. For different aggregation
models or extended functions a regeneration is necessary.

There exist different situations where and when models for
the DT services are created or changed. They can be

1) provided by the DT user through the UI,
2) retrieved from external sources, or
3) automatically adapted by the DT services.

An initial knowledge base could be provided by the user. and
then get adapted by the execution of a reasoner. This allows
for constant adaption and optimization of the DT.

New models at run-time can influence the application by
being added to the list of available models. The new models
can be used in the next iteration of the model execution.
This also allows for multiple people to add new models
simultaneously.

Model checks and validation. To make sure that a user
supplied configuration or models are valid, the application
contains logic that checks such models and provide errors.
Depending on the kind and usage of a model it might be
necessary to check some basic models of the DT such as the
domain CD.

Aspects which can not be changed during runtime are
especially the domain model, as it defined the database of the
digital twin. This requires a regeneration process and, thus,
has to be done in the LCDP. Furthermore, it requires a data
migration of the digital twin database.

VII. CASE STUDY

This example guides through the model-driven development
process of the LCDP for digital twins for the use case of a
digital twin for injection molding. The example starts with
the configuration and generation of the LCDP, then presents
the configuration of the digital twin via the generated LCDP,
and finally shows the resulting DT for injection molding and
modifications possible at runtime.

A. Modeling a low-code development platform

Modeling the low-code development platform for digital
twins consists of 1) defining MontiGem design-time models
that describe the domain, the data structures, and the ap-
pearance of the LCDP, and 2) selecting appropriate language
plugins.

For generating the LCDP configuration view (see Figure 8)
with MontiGem, a domain model and GUI model is necessary.
An excerpt of the domain model is shown in Figure 9. It
shows a class diagram model LCDP_data (l. 1) that amongst
others, defines classes for DTServices (ll. 2-5), that enable
users to get an overview over all available DT services and
associated models, and DTCommunication (ll. 6-8), that
lets users choose from available communication kinds and
configure them via the LCDP. The service and communication
domain classes are referenced by a corresponding GUI model.
From this, MontiGem generates a UI dialogue similar to the
one in Figure 8.

In this example, the digital twin uses case-based reason-
ing to react to occurring events, thus, users of the LCDP
configuring the DT should be able to formulate models of
the case-based reasoning language in the platform. Language
plugins bundle language definitions via DSL components, their
editor and viewer in the LCDP, and a MontiArc component for
processing models of the language in the digital twin archi-
tecture. Figure 10 shows the language plugin for case-based
reasoning. At the top, the DSL component CBR defines the

classdiagram LCDP_data {

class DTServices {

List<Service> serviceList;

List<Model> modelList;

}

class DTCommunication {

List<CommunicationService> communicationServiceList;

}

class Service {…}

// further LCDP domain classes

1

2

3

4

5

6

7

8

9

10

Figure 9: Excerpt of the class diagram for injection molding.

language constituents of the case-based reasoning language.
It references the grammar of the language (l. 2) defining the
syntax of case-based reasoning models and lists elements the
language provides, for instance, the production for defining
cases (l. 3), a Java generator (l. 4), and a set of well-
formedness rules (l. 5) for checking the correctness of models
of the language. Additionally, the plugin contains a MontiArc
digital twin component CaseBasedReasoner that can be
integrated into the digital twin architecture as a subcomponent
of the Reasoner to which a generated dispatcher subcompo-
nent connects to. The Reasoner comprises a subcomponent
Reasoner translating incoming lists of goal instances ob-
tained from the Evaluator into lists of the required goal
subtype. This exploits that the Dispatcher is generated
after knowing all language plugins, and, hence, available goal
subtypes. Using this knowledge, it checks the types of incom-
ing goals, transforms, and dispatches these to the respective
specialized subcomponent, here CBRReasoner expecting a
list of CBRGoal instances.

It features a distinct input port accepting a list of CBRGoal
instances. The Dispatcher subcomponent takes a list of
Goal instances (the super class of all specialized Goals)
and uses reflection over the known Goal subclasses to (i)
identfiy which subcomponent should receive the goals and (ii)
transforms the List<Goal> into a list of the required subclass
instances. This is possible due to the Dispatcher being
generated after knowing all supported language plugins, i.e., its
behavior is an if-then-else block as illustrated for the example
of supporting CBR and PDDL.

The implementation of the CBR component can interpret
models of the case-based reasoning language. To enable users
to view and edit CBR models, the plugin also contains GUI
models from which the MontiGem generator produces an edi-
tor in the LCDP platform (compare the bottom of Figure 10).

B. Using the LCDP to model a DT for injection molding

After generating the LCDP, it enables the digital twin
designer to model a DT, e.g., for injection molding. The
following presents different models describing the digital twins
structure, constraints on this structure, its communication, and
its visualization in the digital twin cockpit.

Figure 11 shows a class diagram in the domain model
viewer of the LCDP displaying an excerpt of a do-
main for a DT. The CD defines two new classes
(PlasticizingPhase and PlasticizingUnit) and
reuses existing classes from the DT library such as the

dsl component CBR {
grammar CaseBaseLanguage;
provides production CaseDefinition;
provides generator Case2Java;
wfr set DefinitionCorrect { … }

requires optional production Condition; //…
}

1
2
3
4
5
6
7

DSLC

grammar CaseBaseLanguage {
CaseDefinition = (SolvedCase | UnsolvedCase);
SolvedCase = "case" Name

"{" ICondition SolutionPart+ Consequence "}";
interface Condition = "if" expression:ConditionExpression;
//…

}

1
2
3
4
5
6
7

MCG

references

CBR DSL

Component

Digital Twin

Components

1
2
3
4
5
6

component CaseBasedReasoner {
port

in List<CBRGoal> goals,
in List<ExecutionFeedback> ExecutionFeedback,
out List<Solution> solutions;

}

MA

Editor

Viewer

Case-based Reasoning Language Plugin

Overheating.case

case Overheating(ReduceTempGoal goal) {
if goal.currentValue > goal.targetValue;
do HeatingUnit.reduceTemp(targetValue);
yields goal.currentValue <= goal.targetValue;

}

01
02
03
04
05

Figure 10: Excerpt of a language plugin for case-based rea-
soning.

Domain Model Viewer

Dashboard > Configuration > Domain > lcp

lcp.InjectionMolding

Pressure

double value

Temperature

double value

controls

provides

5..8 2

PlasticizingPhase

int machineCycle

double dosingVolume

double switchOverVolume

PlasticizingUnit

String serialNumber

String location

TemperatureSensor

String id

Date lastMaintenance

PressureSensor

double maxValue

String location

provides

5..8

DT type library

TemperatureHistory

String id

Date lastMaintenance

machine

operator

- read

machine

operator

- update

CD

Figure 11: Excerpt of the class diagram for injection molding
with tagged permissions.

TemperatureHistory which stores a list of recent tem-
peratures, or Temperature which contains the temperature
value. In addition, the diagram contains permissions that are
added to the classes via tagging. These restrictions add a
requirement for specific permissions when an object is ac-
cessed. Permissions can be required for reading a whole object

OCL Editor
Dashboard > Configuration > Domain > lcp

InjectionMolding.ocl

package lcp;

import lcp.InjectionMolding;

ocl InjectionMolding {

context PlasticizingUnit

inv pressureMax:

forall p in pressureSensor:

p.maxValue > 5.5

}

01

02

03

04

05

06

07

08

09

Figure 12: OCL model constraining the model from Figure 11.

Communication Editor
Dashboard > Configuration > Communication

InjectionMolding.comm

package lcp;

communication InjectionMolding {

communicate temperature {

endpoint: localhost:1234

topic: temperature

protocol: MQTT

link:

PlasticizingUnit["pu62"].tempSensor[2]

} ...}

01

02

03

04

05

06

07

08

09

Figure 13: Communication model that specifies an MQTT
communication of temperature values in an injection molding
machine.

or even specific attributes. A class in the class diagram can
have multiple different access permissions to provide further
customization.

The model defined in Figure 12 adds additional restrictions
to classes of the class diagram. Every class (l. 7), attribute
(ll. 7-8), and association can be navigated, referenced, and
extended with some constraints. Those constraints can be used
for run-time validation checks, e.g., the target pressure value
should always be greater than 5.5 psi. The generator creates
checks in the user frontend and application back-end of the DT
to provide checks for the data input by the user or retrieved
from other endpoints.

Figure 13 specifies the communication endpoint for the
channel (l. 4) and the topic through which to communicate
changes in the temperature value (l. 5). The communication
protocol is MQTT (l. 6). Also, the communication model is
linked to the physical entity that produces these values (l. 8),
so in the example model, the temperature originates from the
second temperature sensor in the PlasticizingUnit with
serial number pu6235. Every attribute of the given domain
class diagram can be linked and sent or received from the
specified endpoint.

After the communication is established and the domain

Digital Shadow Type

Creation

Structure ?

Digital Shadow

Rejection Rate

Minimize DS

Asset

PlasticizingUnit

Purpose

Minimize

Rejection Rate

fullfills

stands

for

Linked Shadows

Rejection Rate DS

Digital Shadow

links to

Models

Production Process

Model

uses

Data Traces ?

Source

Temp_DataTraceIdentifier

Data Points

Temp1

ID_DataTraceIdentifier

PlasticizingUnit[pu62]

• PlasticizingUnit[pu62]

• CPSAnalysis

Trigger ?

PlasticizingUnit[pu62].

tempSensor[1].value > 100✁ C

Type Condition

IntervalType every h24

Sensor

• Sensor

• Service

Category

Name

Name Temp2

tempSensor[2]

• tempSensor[1]

• tempSensor[2]

Sensor

last h48

• newest

• last

Interval

Figure 14: Configuration of the DS structure, including its defining asset, purpose, models, linked shadows and data traces. A
trigger can optionally be given.

Digital Shadow Type

Creation

Aggregation ?

RejectionRateMinimizeDS.aggr

Temp2Max {

value = max(Temp2(now() – 24h, now())

.value);

timestamp = now();

}

01

02

03

04

05

RejectionRateMinimizeDS.cd

class Temp2Max {

Long value;

Datetime timestamp;

}

01

02

03

04

Figure 15: Aggregation of the machine’s second temperature
sensor using an aggregation language.

model implements the Digital Shadow meta model, the DT
designer models the DS types to link the CPPS to the DT.
Figure 14 shows exemplary the configuration of a DS type.
First, on the left side, she chooses the asset the shadow stands
for, the models that are used or delivered together with the DS,
other linked shadows and a purpose. In this case, the DS stands
for the injection molding machine and its unique purpose

is to minimize the machine’s rejection rate for temperatures
too high. One of its data traces contains data points of the
machine’s temperature sensors. In addition, triggers in form of
a schedule or a trigger condition decide when a new instance
of this DS is constructed. To act purposefully the DS type
needs some form of data aggregation. Figure 15 shows how
the given aggregation language is utilized to model the sensor’s
maximum value of the past 24 hours. The upper class diagram
specifies the return type, the lower aggregation model uses a
maximum function over the time interval. Commonly used
functions are included but the language is also extendable by
self-implemented functions as well.

A given textual GUI model (Figure 16 a) from the model
library (see Figure 6) is used to create the graphical view (b)
for the user interface. The GUI language provides an easy-to-
use abstraction to describe the graphical alignment of compo-
nents. MontiGem already provides standard components like
the card (ll. 1-10) and datatable (ll. 3-9). The GUI model
connects different values (eventStart, eventEnd, ...) to columns
of the datatable to indicate which values should be shown.
The datatable then loads the information and displays a row
for each event received.

In addition to defining DT models, the digital twin archi-
tecture can be configured. Figure 8 shows the architecture
configuration view of the low-code development platform.
The view facilitates choosing from different DT services that
should be available in the digital twin instance. In our case, we
select case-based reasoning as a service for reasoning about

GUI Model Editor
Dashboard > Configuration > GUI > DT

DTStateGUI.gui

card "State" {

head { label "Current State" }

body { datatable "State" {

rows < states {

column "Start", time(eventStart);

column "End", time(eventEnd);

column "State", colorBox(state);

column "Report", message;

}}}

...}

01

02

03

04

05

06

07

08

09

10

(a) GUI model for a state logger for the injection molding DT.

(b) Graphical result of the GUI model in the frontend

Figure 16: excerpt of a GUI with (a) the textual GUI model
and (b) the corresponding graphical representation.

events occurring during the runtime of the digital twin. With
this, the interpreter for case-based reasoning is available in
the digital twin instance, and models of the language can be
added or modified during runtime (see Sec. VII-C).

C. Operating the DT

After designing the DT for injection molding via the LCDP,
the DT can be generated, deployed, and operated. The digital
twin cockpit of the resulting digital twin instance is similar
to the view displayed in the bottom left of Figure 5. This
view strongly depends on the models defined in the LCDP
in the previous step. During runtime, the DT is adjustable
via runtime models, e.g., adding new event models for new
events occurring and adding new cases to handle events to
the case base. Figure 17 shows a common event in the
injection molding process, which handles the overheating of
the injection nozzle when its temperature is higher than 500
degrees (ll. 3-4). When the event occurs, a rule applies (l. 9),
that reduces the temperature by sending a ReduceTempGoal
parameterized with current temperature and target temperature
(ll. 6-8).

Figure 18 shows a case that can handle the goal sent
by the event. The case Overheating compares both
currentValue and targetValue (l. 4) and calls a
method on the heating unit of the plasticizing unit to reduce

Event Editor
Dashboard > Events > Add Event

TemperatureTooHigh.event

behavior ControlPlasticizingTemperature {

event TempTooHigh for PlasticizingPhase {

checkTemp@(-1) > 500

&& checkTemp@(0) > 500

}

action ReduceTemp for PlasticizingPhase {

new ReduceTempGoal(checkTemp@(0), 500);

}

rule TempTooHigh => ReduceTemp;

}

01

02

03

04

05

06

07

08

09

10

Figure 17: Specification on how to react to temperatures too
high for the system. Here, the evaluator returns an action goal
to reduce the temperature. The current temperature and the
upper limit are forwarded as goal parameters.

Case Editor
Dashboard > Cases > Add Case

Overheating.case

import injectionmolding.HeatingUnit;

case Overheating(ReduceTempGoal goal) {

if goal.currentValue > goal.targetValue;

do HeatingUnit.reduceTemp(targetValue);

yields

goal.currentValue <= goal.targetValue;

}

01

02

03

04

05

06

07

08

Figure 18: Case model in the case base which specifies the
reaction to the previously defined goal.

the temperature (l. 5) such that the current temperature is lower
or equals the target value. Whenever a case with a condition
matching the situation is found, its solution is applied to the
situation and the system monitors whether the desired target
situation has been reached. If no matching case is found, the
reasoner searches in the vector space of conditions for a similar
case. If a case is found this way, its solution is applied as well
and if it yields the desired situation, a new case is synthesized
based on the undesired situation and the actions of the found
similar care. This way, the system learns new behavior based
on existing cases to some degree.

VIII. RELATED WORK

Related to our approach, we discuss existing low-code
platforms, approaches to develop digital twins and possibilities
to configure digital twins during runtime.

Model-driven digital twins. Model-driven software devel-
opment is a well established software development paradigm,
therefore several approaches for the development of digital
twins exist [58], [59], [17], [60]. Li et al. [58] describe a
model-driven digital twin for a robotic assembly. Magargle et

al. [59] describe a model-driven approach for a digital twin of a
breaking system. Kirchhof et al. [17] describe how to connect
a CPS with a digital twin using MDE methods. Bordeleau
et al. [61] identify various MDE techniques to tackle three
different challenges in digital twin development: (i) "manage-
ment of heterogeneous models from different disciplines", (ii)
"bidirectional synchronization of digital twins and the actual
systems" and (iii) "the support for collaborative development
throughout the complete life-cycle" showcasing that MDE can
be used effectively to develop digital twin platforms. Similar to
Bordeleau, Mandi and Lucero [62] demonstrate the benefits of
using a model-based approach to develop and integrate digital
twins. They however remain on a model-based approach in
contrast to a model-driven one. Muñoz et al. [60] explore the
use of different modeling languages to build and test digital
twins of a high degree of abstraction. A prototype of that
framework was validated as a proof of concept with a digital
twin of a Lego car. To the best of our knowledge, they do not
provide a more general approach to generate digital twins for
various application domains.

Low-code development platforms. Low-code development
platforms move MDE technologies from research to practice.
Prominent examples are, e.g., structr6 for data modeling and
service API generation through a graphical editor, VisionX7

for developing mobile and web apps, and Mendix8 for busi-
ness applications. Book and Frank compare in [63] multiple
LCDPs, similar to [64]. Highlighting the differences between
platforms like A12 [65], Appian [66], Bonita Platform [67],
Mendix [68], Microsoft Power Apps [69], MontiGem [70],
Now Plattform [71], Out Systems [72], Pega Plattform [73],
Quickbase [74] or Salesforce [75], all of these focus on
providing a specific platform for specific kinds of applications.

Research also investigates advancing various aspects of
LCDPs. This includes improving the user experience of by
exploiting augmented reality in scenarios where modelers
have to place objects in the environment is presented and
evaluated [76] as well as integrating DevOps and MDE
principles and practices in low-code engineering [77] to reduce
learning curve for DevOps tasks. Other research investigates
making LCDPs more intelligent using machine learning tech-
niques [78]. All of these focus on specific improvements
to LCDPs but not in the integrated engineering of a low-
code development platform together with its connected digital
twins.

Developing digital twins. Regarding the development
of digital twins, various modeling frameworks have been
conceived. For instance, Eclipse Ditto9 is a framework for
developing DTs that provides standardized APIs for IoT
devices. In combination with the Vorto modeling language10

for describing device interfaces, it can be used to describe
digital twins that are connected to (Cyber-Physical) Systems.

6https://structr.com
7https://visionx.sibvisions.com
8https://www.mendix.com
9https://www.eclipse.org/ditto/
10https://www.eclipse.org/vorto/

This framework focuses on data structures and does not pro-
vide means for specifying DT behavior. Similar commercial
solutions are Amazon Greengrass11 and Microsoft’s Digital
Twin Definition Language12. However, their main focus is on
the data exchanged between the digital twin and its physical
counterpart. Compared to our solution, the behavior, i.e.,
the evaluation, reasoning, and communication, of the digital
twin cannot be defined via low-code modelling, and, instead,
requires hand crafted executable code to be deployed to
the respective cloud platform. Consequently, they are only
suited for software engineers, whereas our solution does not
require domain experts to have any programming skills. Major
advantages of Greengrass and Microsoft’s digital twin platform
is that their digital twins are embedded into their respective
cloud ecosystems accompanying data processing algorithms,
machine learning capabilities, and CI/CD functionalities. By
deploying the generated digital twin of our approach to one of
these platforms, however, enables users to experience all these
advantages of the platforms, too. Furthermore, the MontiGem
digital twin language plugins could be extended with concepts
of the commercial platforms to ease the deployment of our
digital twin to one of these platforms.

Siemens MindSphere13 is another commercial solution that
tackles visualizing the physical entity and thus can speed up
the design phase of new CPS. These solutions focus on the
digital twin and do not consider the platform bringing these
to life.

Configuration of digital twins during runtime. Our
method also relates to using models@run.time [79], which en-
ables the bi-directional synchronization between digital twins
and actual systems [80]. For instance, Vogel and Giese [81]
introduce different models@run.time to capture different sys-
tem concerns for self-adaptive systems, Mayerhofer et al. [82]
proposes a methodology for developing executable DSLs by
providing mechanisms to describe model behavior when inter-
preted, or Combemale and Wimmer [83] suggest transferring
design-time models to run-time for CPS development. Natu-
rally, these approaches focus only on models of the system,
not on the design time models to create the platform itself.

To the best of our knowledge no solutions for the integrated
development of DTs with their LCDPs exist yet. Projects such
as the Lowcomote14 training network aim at facilitating the
engineering of LCDPs for various application domains and
might contribute into this direction.

IX. DISCUSSION

Our method focuses on generating an easy to use LCDP
that can be used to create and configure DTs. This includes
the definition of important structures of the digital twin with
common domain specific methods and the adaptation of the
digital twin during the run-time. As such, various design
decisions were made, which we will discuss in the following.

11https://aws.amazon.com/de/greengrass/
12http://www.aka.ms/dtdl
13https://siemens.mindsphere.io/en
14https://www.lowcomote.eu

The low-code development platform

The generated low-code development platform provides
a web-interface for digital twin designers to configure and
generate digital twins.

Graphical interfaces vs. mixed graphical and textual LCDP

inputs. Our approach for a LCDP focuses on textual mod-
els which can be manipulated in editors, we provide visual
representations for models in viewers and we provide forms
to create and edit some of the models. Low-code approaches
are often related with graphical interfaces for modeling. This
makes sense for various DSLs, however, in some cases such
as a case base this might not be helpful. There exists also
other low-code approaches which do not consider graphical
models [26]. We consider a mix between textual models and
visual representations useful for the creation of digital twins.
However, graphical editors could be included as extensions.

Mixing graphical and textual modeling. In our platform,
we support mixing graphical and textual modeling, depending
on the provided viewers and editors. While we are aware
of differences between both approaches [84], we believe that
the platform itself should not prescribe one way or the other.
Instead, through selecting suitable language plugins, platform
owners can tailor it to the needs of their users.

Usability of a textual GUI modeling language. Since it is
not very common to use textual languages for the formulation
of graphical user interfaces, one can ask whether the GUI
language provides an easy-to-use method for describing the
graphical orientation of components. We are using the GUI
language since 2019 for the engineering of a real-world
full-size enterprise information system within the MaCoCo
project [49]. This includes more than thousand lines of code
in 71 GUI models until now. As far as we have experienced
it, it is a convenient way to precisely define the essentials of
a GUI, which uses well defined graphical components.

Adaption of models and the code. Following Bock and
Frank [85], various low-code development platforms do not
provide or only partly provide adaptation mechanisms for data
and process models. Our approach allows full adaptation of the
models as well as of the generated application. Using an ex-
tension mechanism within the generator [48], the handwritten
additions in the software code are kept during regeneration.

Modeling language modularity and evolution. To support
addressing evolving challenges with a LCDP for DTs, the
employed modeling languages and language infrastructure
must allow for modularity within the language. This includes
the combination of building blocks and the establishment of
language hierarchies [86], which, for instance, is important
if DTs for different application areas in smart manufacturing
request different depths of, e.g., event or reasoning models.
As we allow to select the languages within LCDP language
plugins, our approach allows to select different depths of
languages with according components which are able to handle
them. However, research on modeling language modularity
and evolution has to be deepened.

Reuse of models. In existing LCDPs, reuse is addressed
at a generic architectural level and not at a domain-specific

level [85]. Our approach allows to reuse domain-specific
models created for digital twins in a former configuration.
Moreover, we provide a model library including different
concepts that are often required to describe CPPS. This pro-
vides digital twin designers more freedom in the engineering
process. Challenges when using model libraries, however, are
the need to keep them in the same version as the used modeling
languages as well as the need for model version management.

Collaborative Development. DTs of production systems will
address multiple concerns of the twinned system and its, e.g.,

strategic, context. Consequently, multiple stakeholders, such as
shop-floor experts and managers, might interact with the DT
collaboratively. Textual modeling techniques generally support
this. Within the last years, a variety of collaborative modeling
tools evolved as browser- or cloud-based solutions [87], [88],
[89]. However, within the application domains of DTs, areas
such as support for graphical modeling, identifying and re-
solving modeling conflicts, as well as considering roles, rights,
and corresponding views for successful collaborative intra- and
inter-organizational modeling remain to be investigated.

Comparison with existing IoT-platforms. Currently, the dig-
ital twin has to be defined in the LCDP and can be configured
during run-time in our proprietary environment comprising
of DSLs for describing aspects of the platform, the DTs
and the dashboard. There already exist industrial solutions by
major software companies like Microsoft and Amazon and
their cloud platforms to develop digital twins, Azure IoT and
IoT Greengrass respectively. Today, our environment is not
integrated with these platforms, yet. However, in its current
state, the LCPD as well as the digital twin created with it,
could easily be deployed as applications to each of these cloud
platforms and use the computational power and scalability
of these platforms. This integration would be beneficial as
both platforms support MQTT for communicating with the
CPPS and the data lake out-of-the-box. Furhtermore, since
we do not specify where the data lake is located, it could be
realized via the cloud platforms storage options. Besides their
infrastructure, the platforms also provide own functionality to
develop and operate digital twins. For instance, the Azure
digital twin provides a Digital Twins Definition Language
(DTDL) that enables to specify the structure of the digital
twin and its data exchanged with the physical counterpart
in a DTDL model. AWS, however, has a strong focus on
edge computing and provides a software that can be deployed
directly on edge devices to execute applications and interact
with the cloud. How to integrate and reuse these functional
features of the platforms is up to future endeavours.

Challenges arising from using our framework. When using
our framework challenges for the three different roles partic-
ipating in our method for engineering LCDPs for DTs arise.
It is necessary that the roles of subsequent LCDP develop-
ment steps communicate and exchange about requirements,
and that they understand the respective modeling techniques
employed by the development steps they are responsible. For
the LCDP engineer to model the capabilities of the low-code
development platform, she needs exchange with the digital

twin designer about what she is going to require to model
current and future digital twins. Once the LCDP for DTs is
generated, employing changes becomes challenging because
of a necessary regeneration of the whole platform whenever
MontiGem design-time models are changed or LCDP language
plugins are added. For both, the LCDP engineer and the digital
twin designer, it is necessary to understand the modeling
techniques necessary to carry out their step of our method
for engineering LCDPs for DTs. The DT designer again has
to communicate and exchange with the domain experts about
their requirements about the developed DT.

The digital twins

Each of the generated digital twins provides a web-interface
which displays information about the physical system for
domain experts and allows them to influence the digital twin
as well as the CPPS.

Conflicting rules at run-time. If all competing models such
as event or triggers that activate on the same values are
executed at the same time, then there could be conflicting
goals which makes it hard to decide which trigger should be
executed. Approaches to solve this are e.g., LIFO or FIFO
approaches or the calculation of heuristics which rule might
fit best. Another possibility would be to analyze and simulate
the occurrence of events and triggers with realistic values
before they occur and check if such conflicts exist. However,
as different DSLs can be used during runtime, these checks
have to implemented for each individual combination. Clearly,
this is a research topics on its own.

Limitations of the Architecture. The presented architecture
is just one possible implementation for a digital twin. Clearly,
there exist other digital twin architectures with a different
set of components. Our approach is extensible towards other
implementations as the architectural model used within the
LCDP and the LCDP language plugins which are provided in
the LCDP could be changed. Moreover, the digital twin can
be connected via the communication interfaces to digital twin
services, e.g., for optimization, process mining or artificial
intelligence on digital twin data, as suggested in [85]. This
allows to provide more functionalities within the implementa-
tion.

Debugging during runtime of a digital twin. Being able to
debug, trace, and replay the digital twin’s behavior is necessary
for experimentation, identification of problems and reconfigu-
ration. There exist various means to provide debugging for
modeling languages but none of these provide generic or
generative web-based interfaces. The generated digital twin
could be extended for such a service.

Intelligent assistive functionalities within DTs. Another
functionality which would be important to include are intel-
ligent assistive services to support human operators. Digital
twins could assist operators in making the best possible
decisions when handling an increasing amount and detail
of information in production processes in a goal-oriented
approach [50]. Assistive services are able to analyze a current
action, identify next actions and suggest their execution [90]

within production steps which are not fully automated. If the
monitoring of human behavior is needed additionally to the
monitoring of the physical object, models could be used to
connect the DT with activity recognition systems [91], [92].
Further research is needed to discuss how to incorporate this
functionality within the system architecture, what modeling
languages could be used for support and how the digital twin
cockpit could provide this functionality on different devices.

Digital twins as part of an ecosystem

One big DT vs. multiple separate DTs. A factory can have
multiple areas where they have a multitude of CPPS and it
might be feasible to have multiple separate DTs. The DT
developer can decide what information should be included
or how the parts are separated. A DT could contain as little
as a single machine, a product line, or a complete factory.
However, our current implementation still leaves some aspects
unsolved: It is unclear how digital twins and their digital
shadows should be composed, if an own digital twin exist for
these different levels. These digital twins can communicate
via the provided interfaces, however, it would be helpful to
generate this communication in future.

X. CONCLUSION

Our approach to configure and generate digital twins is
based on a sophisticated tool chain for the generation of
information systems and an extensible base architecture for
self-adaptive digital twins. Within the configurator, a digital
twin designer selects the configuration for the DT. She can
set up an own domain model or select standard types from
libraries, add constraints, select services which should be
available in the resulting DT and is able to define or select
from available visualizations. The MontiGem generator is
the used to generate one or more digital twins with the
selected configuration. During run-time of the digital twin,
communication parameters, event models, knowledge bases
and user access control can be set and re-configured according
to changing environmental contexts and needs.

Even though the proposed LCDPs facilitates creation and
configuration of digital twins, it has to evolve due to require-
ments from practice. Although the approach already enables
a lot of choice, communication techniques will evolve and
so should the provided communication protocols to improve
interoperability of the digital twin with different systems of
various vendors. The complexity of the domain can make it
necessary for different domain experts to participate in the
development of a DT, which requires the LCDP to support
collaborative development (in the presence of CPPS being
controlled by the DTs). Also, various production systems are
not fully automated which requires to keep the human-in-the-
loop and to provide human-centered assistive services [50]
along with other DT services. Different application areas in
production might request different depths of, e.g., reasoning or
event models, which requires that the used modeling languages
and language infrastructure must allow for modularity.

Such LCDPs empower domain experts without in-depth
software engineering expertise to create running systems and
to operate them. To use models and model-driven engineering
methods enables abstraction, analysis and automation, which
are crucial for the success of LCDPs.

ACKNOWLEDGEMENTS

The authors of RWTH Aachen University were supported
by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy –
EXC 2023 Internet of Production - 390621612. Website:
https://www.iop.rwth-aachen.de.
The authors of Universität Stuttgart were supported by the
Deutsche Forschungsgemeinschaft (DFG, German Research-
Foundation) under grant no. 441207927.

REFERENCES

[1] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital
twin in manufacturing: A categorical literature review and classification,”
IFAC-PapersOnLine, vol. 51, no. 11, pp. 1016–1022, 2018.

[2] K. Shubenkova, A. Valiev, V. Shepelev, S. Tsiulin, and K. H. Reinau,
“Possibility of digital twins technology for improving efficiency of the
branded service system,” in 2018 Global Smart Industry Conference

(GloSIC). IEEE, 2018, pp. 1–7.
[3] G. Zhou, C. Zhang, Z. Li, K. Ding, and C. Wang, “Knowledge-driven

digital twin manufacturing cell towards intelligent manufacturing,” Inter-

national Journal of Production Research, vol. 58, no. 4, pp. 1034–1051,
2020.

[4] N. Lauzeral, D. Borzacchiello, M. Kugler, D. George, Y. Rémond,
A. Hostettler, and F. Chinesta, “A model order reduction approach to
create patient-specific mechanical models of human liver in compu-
tational medicine applications,” Computer methods and programs in

biomedicine, vol. 170, pp. 95–106, 2019.
[5] X. Chen, E. Kang, S. Shiraishi, V. M. Preciado, and Z. Jiang, “Digital

behavioral twins for safe connected cars,” in Proceedings of the 21th

ACM/IEEE International Conference on Model Driven Engineering

Languages and Systems, 2018, pp. 144–153.
[6] N. Karanjkar, A. Joglekar, S. Mohanty, V. Prabhu, D. Raghunath, and

R. Sundaresan, “Digital twin for energy optimization in an smt-pcb
assembly line,” in 2018 IEEE International Conference on Internet of

Things and Intelligence System (IOTAIS). IEEE, 2018, pp. 85–89.
[7] N. K. Chakshu, J. Carson, I. Sazonov, and P. Nithiarasu, “A semi-

active human digital twin model for detecting severity of carotid
stenoses from head vibration—A coupled computational mechanics and
computer vision method,” International journal for numerical methods

in biomedical engineering, vol. 35, no. 5, p. e3180, 2019.
[8] Y. Lu and X. Xu, “A digital twin reference model for smart manufac-

turing,” 12 2018.
[9] P. Sharma, H. Hamedifar, A. Brown, R. Green et al., “The dawn of the

new age of the industrial internet and how it can radically transform
the offshore oil and gas industry,” in Offshore Technology Conference.
Offshore Technology Conference, 2017.

[10] I. Verner, D. Cuperman, A. Fang, M. Reitman, T. Romm, and G. Balikin,
“Robot online learning through digital twin experiments: A weightlifting
project,” in Online Engineering & Internet of Things, M. E. Auer and
D. G. Zutin, Eds. Cham: Springer International Publishing, 2018, pp.
307–314.

[11] G. Knapp, T. Mukherjee, J. Zuback, H. Wei, T. Palmer, A. De, and
T. DebRoy, “Building blocks for a digital twin of additive manufactur-
ing,” Acta Materialia, vol. 135, pp. 390–399, 2017.

[12] L. Wright and S. Davidson, “How to tell the difference between a
model and a digital twin,” Advanced Modeling and Simulation in

Engineering Sciences, vol. 7, no. 1, p. 13, 2020. [Online]. Available:
https://doi.org/10.1186/s40323-020-00147-4

[13] B. R. Barricelli, E. Casiraghi, and D. Fogli, “A survey on digital twin:
Definitions, characteristics, applications, and design implications,” IEEE

Access, vol. 7, pp. 167 653–167 671, 2019.

[14] J. Cabot, “Positioning of the low-code movement within the field of
model-driven engineering,” in 23rd ACM/IEEE Int. Conf. on Model

Driven Engineering Languages and Systems: Companion Proceedings,
ser. MODELS ’20. ACM, 2020.

[15] A. Gerasimov, J. Michael, L. Netz, B. Rumpe, and S. Varga, “Con-
tinuous Transition from Model-Driven Prototype to Full-Size Real-
World Enterprise Information Systems,” in 25th Americas Conference

on Information Systems (AMCIS 2020), ser. AIS Electronic Library
(AISeL), B. Anderson, J. Thatcher, and R. Meservy, Eds. Association
for Information Systems (AIS), 2020, pp. 1–10.

[16] M. Dalibor, J. Michael, B. Rumpe, S. Varga, and A. Wortmann,
“Towards a Model-Driven Architecture for Interactive Digital Twin
Cockpits,” in Conceptual Modeling, ser. LNCS, vol. 12400. Springer,
oct 2020, pp. 377–387.

[17] J. C. Kirchhof, J. Michael, B. Rumpe, S. Varga, and A. Wortmann,
“Model-driven Digital Twin Construction: Synthesizing the Integration
of Cyber-Physical Systems with Their Information Systems,” in 23rd

ACM/IEEE Int. Conf. on Model Driven Engineering Languages and

Systems. ACM, October 2020, pp. 90–101.
[18] P. Bibow, M. Dalibor, C. Hopmann, B. Mainz, B. Rumpe, D. Schmalz-

ing, M. Schmitz, and A. Wortmann, “Model-Driven Development of a
Digital Twin for Injection Molding,” in International Conference on

Advanced Information Systems Engineering (CAiSE’20), ser. Lecture
Notes in Computer Science, S. Dustdar, E. Yu, C. Salinesi, D. Rieu,
and V. Pant, Eds., vol. 12127. Springer International Publishing, June
2020, pp. 85–100.

[19] J. Michael and A. Wortmann, “Towards Development Platforms for
Digital Twins: A Model-Driven Low-Code Approach,” in Advances in

Production Management Systems. Artificial Intelligence for Sustainable

and Resilient Production Systems. Springer International Publishing,
September 2021, pp. 333–341.

[20] D. V. Rosato and M. G. Rosato, Injection molding handbook. Springer
Science & Business Media, 2012.

[21] F. Tao, H. Zhang, A. Liu, and A. Y. Nee, “Digital twin in industry:
State-of-the-art,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 4, pp. 2405–2415, 2018.

[22] C. Richardson, J. R. Rymer, C. Mines, A. Cullen, and D. Whittaker,
“New development platforms emerge for customer-facing applications,”
Forrester: Cambridge, MA, USA, 2014.

[23] H. Lieberman, F. Paternò, M. Klann, and V. Wulf, “End-user develop-
ment: An emerging paradigm,” in End user development. Springer,
2006, pp. 1–8.

[24] M. Tisi, J.-M. Mottu, D. Kolovos, J. De Lara, E. Guerra, D. Di Ruscio,
A. Pierantonio, and M. Wimmer, “Lowcomote: Training the next gen-
eration of experts in scalable low-code engineering platforms,” in STAF

2019 Co-Located Events Joint Proceedings: 1st Junior Researcher Com-

munity Event, 2nd International Workshop on Model-Driven Engineering

for Design-Runtime Interaction in Complex Systems, and 1st Research

Project Showcase Workshop co-located with Software Technologies:

Applications and Foundations (STAF 2019), 2019.
[25] R. Waszkowski, “Low-code platform for automating business processes

in manufacturing,” IFAC-PapersOnLine, vol. 52, no. 10, pp. 376–381,
2019, 13th IFAC Workshop on Intelligent Manufacturing Systems
IMS 2019. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2405896319309152

[26] G. Daniel, J. Cabot, L. Deruelle, and M. Derras, “Xatkit: A Multimodal
Low-Code Chatbot Development Framework,” IEEE Access, vol. 8, pp.
15 332–15 346, 2020.

[27] M. Bexiga, S. Garbatov, and J. a. C. Seco, “Closing the gap between
designers and developers in a low code ecosystem,” in 23rd ACM/IEEE

Int. Conf. on Model Driven Engineering Languages and Systems:

Companion Proc., ser. MODELS ’20. ACM, 2020.
[28] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting

the understanding and comparison of low-code development platforms,”
in 2020 46th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), 2020, pp. 171–178.
[29] M. Di Maio, G.-D. Kapos, N. Klusmann, L. Atorf, U. Dahmen,

M. Schluse, and J. Rossmann, “Closed-loop systems engineering (close):
Integrating experimentable digital twins with the model-driven engi-
neering process.” in 2018 IEEE International Systems Engineering

Symposium (ISSE). IEEE, 2018, pp. 1–8.
[30] A. Gurjanov, D. Zakoldaev, A. Shukalov, and I. Zharinov, “Formation

principles of digital twins of cyber-physical systems in the smart

factories of industry 4.0,” in IOP conference series: materials science

and engineering, vol. 483, no. 1. IOP Publishing, 2019, p. 012070.
[31] H. Sun, C. Li, X. Fang, and H. Gu, “Optimized throughput improvement

of assembly flow line with digital twin online analytics,” in 2017 IEEE

International Conference on Robotics and Biomimetics (ROBIO). IEEE,
2017, pp. 1833–1837.

[32] S. Settemsdal et al., “Updated case study: The pursuit of an ultra-
low manned platform pays dividends in the north sea,” in Offshore

Technology Conference. Offshore Technology Conference, 2019.
[33] M. Uzun, M. U. Demirezen, E. Koyuncu, and G. Inalhan, “Design of a

hybrid digital-twin flight performance model through machine learning,”
in 2019 IEEE Aerospace Conference. IEEE, 2019, pp. 1–14.

[34] Q. Qiao, J. Wang, L. Ye, and R. X. Gao, “Digital twin for machining tool
condition prediction,” Procedia CIRP, vol. 81, pp. 1388–1393, 2019.

[35] N. Alaei, A. Rouvinen, A. Mikkola, and R. Nikkilä, “Product pro-
cesses based on digital twin,” in Commercial Vehicle Technology 2018.
Springer, 2018, pp. 187–194.

[36] C. Dufour, Z. Soghomonian, and W. Li, “Hardware-in-the-loop testing
of modern on-board power systems using digital twins,” in 2018 Interna-

tional Symposium on Power Electronics, Electrical Drives, Automation

and Motion (SPEEDAM). IEEE, 2018, pp. 118–123.
[37] T. Ruohomäki, E. Airaksinen, P. Huuska, O. Kesäniemi, M. Martikka,

and J. Suomisto, “Smart city platform enabling digital twin,” in 2018

International Conference on Intelligent Systems (IS). IEEE, 2018, pp.
155–161.

[38] F. Becker, P. Bibow, M. Dalibor, A. Gannouni, V. Hahn, C. Hopmann,
M. Jarke, M. Kröger, J. Lipp, J. Maibaum, J. Michael, B. Rumpe,
P. Sapel, N. Schäfer, G. J. Schmitz, G. Schuh, and A. Wortmann, “A
Conceptual Model for Digital Shadows in Industry and its Application,”
in 40th Int. Conf. on Conceptual Modeling (ER’21). Springer, 2021.

[39] A. Butting, B. Rumpe, and A. Wortmann, “Embedding Component
Behavior DSLs into the MontiArcAutomaton ADL,” in Globalization

of Modeling Languages Workshop (GEMOC’16), ser. CEUR Workshop
Proceedings, vol. 1731, 2016.

[40] A. Butting, A. Haber, L. Hermerschmidt, O. Kautz, B. Rumpe, and
A. Wortmann, “Systematic Language Extension Mechanisms for the
MontiArc Architecture Description Language,” in European Conference

on Modelling Foundations and Applications (ECMFA’17), ser. LNCS
10376. Springer, July 2017, pp. 53–70.

[41] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What
industry needs from architectural languages: A survey,” IEEE Transac-

tions on Software Engineering, vol. 39, no. 6, pp. 869–891, 2012.
[42] B. Rumpe, Modeling with UML: Language, Concepts, Methods.

Springer International, July 2016. [Online]. Available: http://www.
se-rwth.de/mbse/

[43] T. Bolender, G. Bürvenich, M. Dalibor, B. Rumpe, and A. Wortmann,
“Self-Adaptive Manufacturing with Digital Twins,” in 2021 Interna-

tional Symposium on Software Engineering for Adaptive and Self-

Managing Systems (SEAMS). IEEE Computer Society, May 2021, pp.
156–166.

[44] K. Adam, J. Michael, L. Netz, B. Rumpe, and S. Varga, “Enterprise
Information Systems in Academia and Practice: Lessons learned from a
MBSE Project,” in 40 Years EMISA: Digital Ecosystems of the Future:

Methodology, Techniques and Applications (EMISA’19), ser. LNI, vol.
P-304. Gesellschaft für Informatik e.V., 2020, pp. 59–66.

[45] A. Gerasimov, J. Michael, L. Netz, and B. Rumpe, “Agile Generator-
Based GUI Modeling for Information Systems,” in Modelling to Pro-

gram: 2nd Int. Workshop (M2P 2020), Revised Selected Papers, ser.
Communications in Computer and Information Science, vol. 1401.
Springer International Publishing, 2021, pp. 113–126.

[46] T. Greifenberg, M. Look, S. Roidl, and B. Rumpe, “Engineering Tagging
Languages for DSLs,” in Conference on Model Driven Engineering

Languages and Systems (MODELS’15). ACM/IEEE, 2015, pp. 34–
43.

[47] M. Dalibor, N. Jansen et al., “Tagging Model Properties for Flexible
Communication,” in MODELS 2019. Workshop MDE4IoT. CEUR
Workshop Proceedings, 2019, pp. 39–46.

[48] K. Hölldobler and B. Rumpe, MontiCore 5 Language Workbench Edition

2017, ser. Aachener Informatik-Berichte, Software Engineering, Band
32. Shaker Verlag, December 2017.

[49] A. Gerasimov, P. Heuser, H. Ketteniß, P. Letmathe, J. Michael, L. Netz,
B. Rumpe, and S. Varga, “Generated Enterprise Information Systems:
MDSE for Maintainable Co-Development of Frontend and Backend,” in

Comp. Proc. of Modellierung 2020 Short, Workshop and Tools & Demo

Papers. CEUR Workshop Proceedings, 2020, pp. 22–30.
[50] J. Michael, B. Rumpe, and S. Varga, “Human behavior, goals and

model-driven software engineering for assistive systems,” in Enter-

prise Modeling and Information Systems Architectures (EMSIA 2020),
A. Koschmider, J. Michael, and B. Thalheim, Eds., vol. 2628. CEUR
Workshop Proceedings, 2020, pp. 11–18.

[51] J. Michael, L. Netz, B. Rumpe, and S. Varga, “Towards Privacy-
Preserving IoT Systems Using Model Driven Engineering,” in MOD-

ELS 2019. Workshop MDE4IoT, N. Ferry, A. Cicchetti, F. Ciccozzi,
A. Solberg, M. Wimmer, and A. Wortmann, Eds. CEUR Workshop
Proceedings, 2019, pp. 595–614.

[52] A. Butting, J. Pfeiffer, B. Rumpe, and A. Wortmann, “A Compositional
Framework for Systematic Modeling Language Reuse,” in Proc. of the

23rd ACM/IEEE International Conference on Model Driven Engineering

Languages and Systems. ACM, 2020, pp. 35—-46.
[53] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, and A. Wortmann,

“Systematic Composition of Independent Language Features,”
Journal of Systems and Software, vol. 152, pp. 50–69,
June 2019. [Online]. Available: http://www.se-rwth.de/publications/
Systematic-Composition-of-Independent-Language-Features.pdf

[54] ——, “Modeling Language Variability with Reusable Language Com-
ponents,” in Int. Con. on Systems and Software Product Line (SPLC’18).
ACM, September 2018.

[55] B. Rumpe and A. Wortmann, “Abstraction and Refinement in Hier-
archically Decomposable and Underspecified CPS-Architectures,” in
Principles of Modeling: Essays Dedicated to Edward A. Lee on the

Occasion of His 60th Birthday, ser. LNCS 10760, Lohstroh, Marten
and Derler, Patricia Sirjani, Marjan, Ed. Springer, 2018, pp. 383–406.

[56] A. Butting, O. Kautz, B. Rumpe, and A. Wortmann, “Continuously
Analyzing Finite, Message-Driven, Time-Synchronous Component &
Connector Systems During Architecture Evolution,” Journal of Systems

and Software, vol. 149, pp. 437–461, March 2019.
[57] T. Brockhoff, M. Heithoff, I. Koren, J. Michael, J. Pfeiffer, B. Rumpe,

M. S. Uysal, W. M. P. van der Aalst, and A. Wortmann, “Process
Prediction with Digital Twins,” in Companion Proc. ACM/IEEE 24th Int.

Conf. on Model Driven Engineering Languages and Systems (MODELS-

C ’21). IEEE, 2021.
[58] X. Li, B. He, Y. Zhou, and G. Li, “Multisource model-driven digital

twin system of robotic assembly,” IEEE Systems Journal, vol. 15, no. 1,
pp. 114–123, 2020.

[59] R. Magargle, L. Johnson, P. Mandloi, P. Davoudabadi, O. Kesarkar,
S. Krishnaswamy, J. Batteh, and A. Pitchaikani, “A simulation-based
digital twin for model-driven health monitoring and predictive main-
tenance of an automotive braking system,” in Proceedings of the 12th

International Modelica Conference, Prague, Czech Republic, May 15-

17, 2017, no. 132. Linköping University Electronic Press, 2017, pp.
35–46.

[60] P. Munoz, J. Troya, and A. Vallecillo, “Using uml and ocl models
to realize high-level digital twins,” in 2021 ACM/IEEE International

Conference on Model Driven Engineering Languages and Systems

Companion (MODELS-C). ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems Companion, 2021.

[61] F. Bordeleau, B. Combemale, R. Eramo, M. van den Brand, and
M. Wimmer, “Towards model-driven digital twin engineering: Current
opportunities and future challenges,” in International Conference on

Systems Modelling and Management. Springer, 2020, pp. 43–54.
[62] A. M. Madni, C. C. Madni, and S. D. Lucero, “Leveraging digital twin

technology in model-based systems engineering,” Systems, vol. 7, no. 1,
p. 7, 2019.

[63] J. I. Panach, O. Dieste, B. Marín, S. Espaã, S. Vegas, O. Pastor, and
N. Juristo, “Evaluating model-driven development claims with respect
to quality: A family of experiments,” IEEE Transactions on Software

Engineering, vol. 47, no. 1, pp. 130–145, 2021.
[64] G. Fulya and T. Gabriele, “Using microsoft powerapps, mendix and

outsystems in two development scenarios an experience report,” in
2021 ACM/IEEE International Conference on Model Driven Engineer-

ing Languages and Systems Companion (MODELS-C). ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems Companion, 2021.

[65] mgm technology partners GmbH. (2021) Widget showcase. [Online].
Available: https://a12.mgm-tp.com/showcase/#/

[66] Appian. (2021) Low-code application development. [On-
line]. Available: https://appian.com/platform/low-code-development/
low-code-application-development.html

[67] Bonitsoft. (2021) Bonita platform. [Online]. Available: https://www.
bonitasoft.com/bonita-platform

[68] M. Henkel and J. Stirna, “Pondering on the key functionality of
model driven development tools: The case of mendix,” in International

Conference on Business Informatics Research. Springer, 2010, pp.
146–160.

[69] Microsoft. (2021) Microsoft power apps and microsoft power automate.
[Online]. Available: https://www.microsoft.com/en-us/microsoft-365/
business/microsoft-powerapps

[70] K. Adam, J. Michael, L. Netz, B. Rumpe, and S. Varga, “Model-
Based Software Engineering at RWTH Aachen University,” in 40 Years

EMISA: Digital Ecosystems of the Future: Methodology, Techniques

and Applications (EMISA’19), ser. LNI, vol. P-304. Gesellschaft für
Informatik e.V., 2020, pp. 183–188.

[71] ServiceNow. (2021) Now platform. [Online]. Available: https://www.
servicenow.com/now-platform.html

[72] R. Martins, F. Caldeira, F. Sá, M. Abbasi, and P. Martins, “An overview
on how to develop a low-code application using outsystems,” in 2020 In-

ternational Conference on Smart Technologies in Computing, Electrical

and Electronics (ICSTCEE). IEEE, 2020, pp. 395–401.
[73] Pega. (2021) Pega platform. [Online]. Available: https://www.pega.com/

products/platform
[74] Quickbase. (2021) Quickbase platform. [Online]. Available: https:

//www.quickbase.com/product/product-overview
[75] Salesforce. (2021) Salesforce platform. [Online]. Available: https:

//www.salesforce.com/products/platform/overview/
[76] L. Brunschwig, R. Campos-López, and E. G. J. de Lara, “Towards

domain-specific modelling environments based on augmented reality,”
in 2021 IEEE/ACM 43nd International Conference on Software Engi-

neering (ICSE), 2021, pp. 335–346.
[77] A. Colantoni, L. Berardinelli, and M. Wimmer, “Devopsml: Towards

modeling devops processes and platforms,” in 23rd ACM/IEEE

Int. Conf. on Model Driven Engineering Languages and Systems:

Companion Proc., ser. MODELS ’20. ACM, 2020. [Online]. Available:
https://doi.org/10.1145/3417990.3420203

[78] P. Kourouklidis, D. Kolovos, N. Matragkas, and J. Noppen, “Towards a
low-code solution for monitoring machine learning model performance,”
in 23rd ACM/IEEE Int. Conf. on Model Driven Engineering Languages

and Systems: Companion Proc., ser. MODELS ’20. ACM, 2020.
[Online]. Available: https://doi.org/10.1145/3417990.3420196

[79] G. Blair, N. Bencomo, and R. B. France, “Models@ run.time,” Com-

puter, vol. 42, no. 10, pp. 22–27, 2009.
[86] A. N. Johanson and W. Hasselbring, “Hierarchical combination of in-

ternal and external domain-specific languages for scientific computing,”
in European Conference on Software Architecture Workshops (ECSAW

’14), U. Zdun, Ed. New York, USA: ACM Press, 2014, pp. 1–8.

[80] F. Bordeleau, B. Combemale, R. Eramo, M. van den Brand, and
M. Wimmer, “Towards model-driven digital twin engineering: Current
opportunities and future challenges,” in Systems Modelling and Manage-

ment, Ö. Babur, J. Denil, and B. Vogel-Heuser, Eds. Cham: Springer
International Publishing, 2020, pp. 43–54.

[81] T. Vogel and H. Giese, “Requirements and assessment of languages and
frameworks for adaptation models,” in Models in Software Engineering,
J. Kienzle, Ed. Springer, 2012, pp. 167–182.

[82] T. Mayerhofer, P. Langer, M. Wimmer, and G. Kappel, “xMOF:
Executable DSMLs based on fUML,” in International conference on

software language engineering. Springer, 2013, pp. 56–75.

[83] B. Combemale and M. Wimmer, “Towards a model-based devops
for cyber-physical systems,” in International Workshop on Software

Engineering Aspects of Continuous Development and New Paradigms

of Software Production and Deployment. Springer, 2019, pp. 84–94.

[84] R. Jolak, M. Savary-Leblanc, M. Dalibor, A. Wortmann, R. Hebig,
J. Vincur, I. Polasek, X. Le Pallec, S. Gérard, and M. R. Chaudron,
“Software engineering whispers: The effect of textual vs. graphical soft-
ware design descriptions on software design communication,” Empirical

Software Engineering, vol. 25, no. 6, pp. 4427–4471, 2020.

[85] A. C. Bock and U. Frank, “In Search of the Essence of Low-Code:
An Exploratory Study of Seven Development Platforms,” in Companion

Proc. ACM/IEEE 24th Int. Conf. on Model Driven Engineering Lan-

guages and Systems (MODELS-C ’21). IEEE, 2021.
[87] J. Gray and B. Rumpe, “The evolution of model editors: browser- and

cloud-based solutions,” Software and Systems Modeling, vol. 15, no. 2,
pp. 303–305, 2016.

[88] J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio, “Collaborative
repositories in model-driven engineering [software technology],” IEEE

Software, vol. 32, no. 3, pp. 28–34, 2015.

[89] M. Franzago, D. Di Ruscio, I. Malavolta, and H. Muccini, “Collaborative
model-driven software engineering: A classification framework and a
research map,” IEEE Transactions on Software Engineering, vol. 44,
no. 12, pp. 1146–1175, 2018.

[90] K. Hölldobler, J. Michael, J. O. Ringert, B. Rumpe, and A. Wortmann,
“Innovations in Model-based Software and Systems Engineering,” The

Journal of Object Technology, vol. 18, no. 1, pp. 1–60, July 2019.

[91] H. C. Mayr, J. Michael, V. A. Shekhovtsov, S. Ranasinghe, and
C. Steinberger, “A Model Centered Perspective on Software-Intensive
Systems,” in Enterprise Modeling and Information Systems Architec-

tures (EMISA’18), ser. CEUR Workshop Proceedings, M. Fellmann and
K. Sandkuhl, Eds., vol. 2097. CEUR-WS.org, May 2018, pp. 58–64.

[92] V. A. Shekhovtsov, S. Ranasinghe, H. C. Mayr, and J. Michael, “Domain
Specific Models as System Links,” in Advances in Conceptual Modeling

Workshops (ER’18). Springer International Publishing, November 2018,
pp. 330–340.

