
Language Engineering with the GEMOC Studio

Olivier Barais, Benoit Combemale
INRIA and University of Rennes 1

firstname.lastname@irisa.fr

Andreas Wortmann
University of Rennes 1 and

RWTH Aachen University

wortmann@se-rwth.de

Abstract—This tutorial provides a practical approach for
developing and integrating various Domain-Specific (modeling)
Languages (DSLs) used in the development of modern complex
software-intensive systems, with the main objective to support
abstraction and separation of concerns. The tutorial leverages on
the tooling provided by the GEMOC studio to present the various
facilities offered by the Eclipse platform (incl., EMF/Ecore, Xtext,
Sirius) and introduces the advanced features to extend a DSL
with a well-defined execution semantics, possibly including formal
concurrency constraints and coordination patterns. From such a
specification, we demonstrate the ability of the studio to automat-
ically support model execution, graphical animation, omniscient
debugging, concurrency analysis and concurrent execution of
heterogeneous models. The tutorial is composed of both lectures
and hands-on sessions. Hands-on sessions allow participants to
experiment on a concrete use case of an architecture descrip-
tion language used to coordinate heterogeneous behavioral and
structural components.

I. TUTORIAL TOPIC

The development and evolution of an advanced model-

ing environment for a Domain-Specific (modeling) Language

(DSL) is a tedious task, which becomes recurrent with the

increasing number of DSLs involved in the development

and management of complex software-intensive systems. This

proliferation of DSLs is illustrated in a study on the industrial

application of Architecture Description Languages (ADLs)

that found over 120 different languages [1]. Recent efforts

in language workbenches result in advanced frameworks that

support software engineers in the design and implementation

of DSLs. In particular, language workbenches such as Xtext1

or Sirius2 automatically provide syntactic tooling such as

advanced textual and graphical editors respectively. However,

defining and coordinating the execution semantics of DSLs,

and developing the associated tooling, remains mostly hand

crafted. Similarly to editors that share code completion or

syntax highlighting, the development of advanced debuggers,

animators, co-simulation tools and others execution analysis

tools shares common facilities, which are highly sought by

(architecture) modeling practitioners [2], should be reused

among various DSLs.

In this tutorial, we introduce the facilities provided by the
GEMOC studio3 to extend a DSL with a well-defined execution
semantics, possibly including formal concurrency constraints
and coordination patterns. From such a specification, we

1https://www.eclipse.org/Xtext/
2https://www.eclipse.org/sirius
3http://gemoc.org/studio

demonstrate the ability of the studio to automatically support
model execution, graphical animation, omniscient debugging,
concurrency analysis and concurrent execution of heteroge-
neous models.

The GEMOC Studio is an Eclipse package atop the Eclipse

Modeling Framework (EMF), which includes:

• The GEMOC Language Workbench: to be used by lan-

guage designers to build and compose new DSLs,

• The GEMOC Modeling Workbench: to be used by domain

designers to create, execute and coordinate, possibly

heterogeneous, models.

The different concerns of a DSL, as defined with the

tools of the language workbench, are automatically deployed

into the modeling workbench. They parametrize a generic

execution framework that provides various generic services,

such as graphical animation, debugging tools, trace and event

managers, timeline visualizations, etc.

More generally, the GEMOC studio is intended to federate

the research results regarding the support of the coordinated

use of various DSLs that will lead to the concept of the

globalization of DSLs [3], that is, the use of multiple DSLs to

support the socio-technical coordination required in systems

and software engineering. As such, the project is intended to

develop techniques, frameworks, and environments to facilitate

the creation, integration, and automated processing of hetero-

geneous DSLs.

II. TUTORIAL IMPLEMENTATION

The proper duration for the proposed tutorial, including

lectures and hands-on sessions, is half-day. The tutorial will

be organized in three consecutive parts: the first one will intro-

duce the basics of DSL development to create a tool-supported

DSL supporting model simulation, graphical animation and

omniscient debugging. The second session will be an hands-

on session where the participants can experiment on a concrete

use case. Finally the last part will introduce advanced features

for weaving concurrency constraints in language semantics

definition, and leverage them for concurrency analysis and

concurrent execution of, possibly heterogeneous, models.

Part 1: Breathe Life Into Your Metamodel to Support Model
Simulation, Animation and Debugging

Domain-specific models are used in the development pro-

cesses to reason and assess specific properties over the system

under development as early as possible. This usually leads

to a better and cheaper design as more alternatives can be

2017 IEEE International Conference on Software Architecture Workshops

978-1-5090-4793-2/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSAW.2017.61

189

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on January 22,2024 at 13:47:55 UTC from IEEE Xplore. Restrictions apply.

explored. While many models only represent structural aspects

of systems, a large amount express behavioral aspects of the

same systems. Behavioral models are used in various areas

(e.g., enterprise architecture, software and systems engineer-

ing, scientific modeling, etc.), with very different underlying

formalisms (e.g., business processes, orchestrations, functional

chains, scenarios, protocoles, activity or state diagram, etc.).

To ensure that a behavioral model is correct with regard to

its intended behavior, early dynamic validation and verification

(V&V) techniques are required, such as simulation, debugging,

model checking or runtime verification. In particular, debug-

ging is a common dynamic facility to observe and control

an execution in order to better understand a behavior or to

look for the cause of a defect. Standard (stepwise) debugging

only provides facilities to pause and step forward during an

execution, hence requiring developers to restart from the be-

ginning to give a second look at a state of interest. Omniscient

debugging extends stepwise debugging by relying on execution

traces to enable free traversal of the states reached by a model,

thereby allowing designers to "go back in time".

Debugging, and all dynamic V&V techniques in general,

require models to be executable, which can be achieved by

defining the execution semantics of modeling languages (i.e.,

DSLs) used to describe them. The execution semantics of a

modeling language can be implemented either as a compiler

or as an interpreter to be applied on models conforming to the

modeling language.

To drastically reduce the development cost of domain-

specific animators and omniscient debuggers, the GEMOC

studio provides a tool-supported approach to complement a

modeling language with an execution semantics, and automat-

ically get an advanced and extensible environment for model

execution supporting graphical animation and omniscient de-

bugging [4].

Part 2: Do-It-Yourself

During the second part of the tutorial, the participants

will develop a simplified version of the MontiArc compo-

nent & connector ADL. The ADL is tailored for designing

component-based distributed interactive systems that reliy on

state-based models to describe component behavior [5]. Dur-

ing the hands-on session, participants will use the GEMOC

Studio to develop a simplified version of MontiArc, including

syntax and semantics, and deploy it in the modeling work-

bench to edit, execute, animate and debug conforming models.

In the modeling workbench, the participants will design a soft-

ware architecture based on predefined components. Based on

such a design, participants will be able to concurrently execute

the various components according to the execution semantics

(message passing) of MontiArc, to graphically animate the

architecture, and to debug the system behavior.

Part 3: Weave Domain-Specific Concurrency Constraints Into
A DSL!

The emergence of modern concurrent systems (e.g., Cyber-

Physical Systems and Internet of Things) and highly-parallel

platforms (e.g., many-core, GPGPU, and distributed platforms)

call for Domain-Specific (modeling) Languages (DSLs) where

concurrency is of paramount importance. Such DSLs are in-

tended to propose constructs with rich concurrency semantics,

which allow system designers to precisely define and analyze

system behaviors. However, implementing the execution se-

mantics of such DSLs is a particularly difficult task. Most of

the time the concurrency model remains implicit and ad-hoc

in the language design and implementation. In the language

design, the concurrency model is usually implicitly inherited

from the concurrency model of the meta-language employed to

design the behavioral semantics (e.g., the default concurrency

model of Xtend/Java), or customized with low-level primitives

(e.g., using Threads). In the language implementation, the

concurrency model is mostly embedded in the underlying

execution environment (e.g., the concurrency model of the

JVM).

The lack of an explicit concurrency model in language

specifications prevents: the precise definition, the variation

and the complete understanding of the DSL’s semantics, the

effective usage of concurrency-aware analysis techniques, and

the exploitation of the concurrency model during the system

refinement (e.g., during its allocation on a specific platform).

During the last part of the tutorial, we introduce the facilities

provided by the GEMOC studio to extend an executable mod-

eling language with a formal model of concurrency to lever-

age on the scheduling properties [6], and offer concurrency

analysis and concurrent execution of, possibly heterogeneous,

models [7].

Conclusion and Perspectives (15min)

A conclusion will be given more from a scientific point

of view, drawing a big picture of the various breakthroughs

achieved to elaborate the current version of the GEMOC

studio (incl., executable metamodeling, language modularity

and composition, cross-fertilization of concurrency theory and

language engineering, etc.)

The tutorial ends with a presentation of the perspectives in

terms of a research and technical road-map. Participants will

be ask to discuss and improve this road-map.

III. TUTORIAL PRESENTERS

Olivier Barais4 is Full Professor at the University of Rennes

1, member of the DiverSE INRIA research team. He passes a

PhD in computer science from the University of Lille 1, France

in 2005. His research interests include Component Based

Software Design, Model-Driven Engineering and Aspect Ori-

ented Modeling. Olivier Barais has co-authored 12 journals,

55 international conference papers, 2 book chapters and 35

workshop papers in conferences and journals such as SoSyM,

IEEE Computer, ICSE, ASE, MoDELS, SPLC and CBSE.

Olivier Barais is also information technology enthusiast. He

enjoys trying new frameworks in particular in MDE and CBSE

community and playing with open-source hardware projects.

4http://olivier.barais.fr

190

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on January 22,2024 at 13:47:55 UTC from IEEE Xplore. Restrictions apply.

Olivier Barais has been involved in the development of the

Gemoc Studio. Olivier Barais has used to provide various

tutorials to Comparch, Middleware, Models.

Benoit Combemale5 is Associate Professor at University of

Rennes 1. He is evolving within the research team DiverSE,

joint to the IRISA and Inria labs. His research interests belong

to software engineering, including model driven software

engineering (MDE), software language engineering (SLE) and

software validation & verification (V&V); mostly in the con-

text of (smart) cyber-physical systems and Internet of things.

Benoit Combemale co-authored 3 books, and more than 80

journal and conference publications in the fields of MDE, SLE

and V&V. He is a member of the Steering Committee of the

SLE conference, and the Editorial Boards of the international

journals SoSyM (Springer), COMLAN (Elsevier), and SCP

(Elsevier). He has been the program co-chair of SLE 2014,

and general co-chair of MODELS 2016 and SLE 2017. He

also used to serve as program committee member for various

conferences and workshops in software engineering. Benoit

Combemale is also very active in setting up and participating

to satellite events of flagship conferences, including organizing

workshops, tutorials and panels. He is a founding member of

the GEMOC initiative.

Andreas Wortmann6 is postdoctoral researcher at University

of Rennes 1 and member of the DiverSE INRIA research

team. He received his PhD from the RWTH Aachen University

in 2016. His research interests include Component Based

Software Design, Model-Driven Engineering, Architecture De-

scription Languages, Software Language Engineering, and

their application to cyber-physical systems. He co-authored

3 books as well as over than 30 publications on MDE, ADLs,

and SLE and has served as program committee member

for various conferences and workshops. He is a member of

the GEMOC initiative and the IEEE robotics & automation

society.

IV. SCOPE OF THE TUTORIAL

The intended audience is both software engineers/re-

searchers and PhD students. The attendants must have a

laptop with Virtual Box installed or a laptop with a JDK

1.8. The attendants must be familiar with Java or any Object

Oriented Technology. Academics and practitioners alike will

benefit from the tutorial. We expect that the presentation is of

particular interest for language designers, both from academia

and industry, who would like to have abstractions to deal with

complex systems.

V. TUTORIAL BACKGROUND

The tutorial is new, and has never been offered previously.

For the first time, the tutorial will cover the various features of

the GEMOC studio from a user perspective. The tutorial ends

on the past and future challenges addressed by the community

working on the GEMOC studio.

5http://combemale.fr
6http://www.andreaswortmann.de

VI. CONCLUSION

Languages workbenches facilitate the development of DSLs,

especially for providing syntactic services. However runtime
services are mostly handcrafted for each different DSL and

each different metaprogramming approach.

Based on a common API, we proposed a framework to

integrate any kind of metaprogramming approach used to

define discrete-event operational semantics into an execution

engine. Notably, implementing this API allows to use and

reuse of generic or user-defined runtime services as addons
that send and receive generic messages to and from the

execution engines.

As our project is open-source and available online, we are

very open to any contributors for implementing additional

execution engines (e.g., to support operational semantics de-

fined with other metaprogramming approaches) and additional

runtime services.

REFERENCES

[1] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What
Industry Needs from Architectural Languages: A Survey,” Software
Engineering, IEEE Transactions on, vol. 39, no. 6, pp. 869–891, 2013.

[2] P. Lago, I. Malavolta, H. Muccini, P. Pelliccione, and A. Tang, “The road
ahead for architectural languages,” IEEE Software, vol. 32, no. 1, pp.
98–105, 2015.

[3] B. Combemale, J. Deantoni, B. Baudry, R. France, J.-M. Jézéquel, and
J. Gray, “Globalizing Modeling Languages,” Computer, pp. 68–71, Jun.
2014. [Online]. Available: http://hal.inria.fr/hal-00994551

[4] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer, J. Deantoni,
and B. Combemale, “Execution Framework of the GEMOC Studio
(Tool Demo),” in Proceedings of the 9th ACM SIGPLAN International
Conference on Software Language Engineering (SLE 2016), ser. SLE
2016, Amsterdam, Netherlands, Oct. 2016, p. 8. [Online]. Available:
https://hal.inria.fr/hal-01355391

[5] R. Heim, B. Rumpe, and A. Wortmann, “Extending Architecture Descrip-
tion Languages With Exchangeable Component Behavior Languages,”
in Conference on Software Engineering & Knowledge Engineering
(SEKE’16). KSI Research Inc., Fredericton, Canada, 2016, pp. 1–6.

[6] B. Combemale, J. Deantoni, M. Vara Larsen, F. Mallet, O. Barais,
B. Baudry, and R. France, “Reifying Concurrency for Executable
Metamodeling,” ser. Lecture Notes in Computer Science, R. F. P.
Martin Erwig and E. van Wyk, Eds. Indianapolis, États-Unis: Springer-
Verlag, 2013. [Online]. Available: http://hal.inria.fr/hal-00850770

[7] M. E. Vara Larsen, J. Deantoni, B. Combemale, and F. Mallet,
“A Behavioral Coordination Operator Language (BCOoL),” in 18th
International Conference on Model Driven Engineering Languages
and Systems (MODELS 2015), Aug. 2015. [Online]. Available:
https://hal.inria.fr/hal-01182773

191

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on January 22,2024 at 13:47:55 UTC from IEEE Xplore. Restrictions apply.

