
Axelar
Token Linker & Forecall Service

by Ackee Blockchain

12.8.2022



Contents
1. Document Revisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

2. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

2.1. Ackee Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

2.2. Audit Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

2.3. Review team. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

2.4. Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

3. Executive Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

4. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

4.1. Contracts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

4.2. Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

4.3. Trust model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

5. Vulnerabilities risk methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

5.1. Finding classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

6. Findings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

H1: The forecall and forecallWithToken can be called repeatedly with a

same payload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

M1: The tokenAddress is missing zero-address check . . . . . . . . . . . . . . . . . . . . .  16

M2: TokenLinker has insufficient data validation . . . . . . . . . . . . . . . . . . . . . . . .  18

W1: Usage of solc optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

W2: Floating dependency on AxelarGateway . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

W3: Mulitple ways to receive ether can lead to loss of funds. . . . . . . . . . . . .  22

W4: The forecall function is missing any checks by default . . . . . . . . . . . . .  24

I1: Typo in the error name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

Endnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

Appendix A: How to cite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Appendix B: Glossary of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

Blockchain audits | Blockchain security assessment

2 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


1. Document Revisions
1.0 Final report 12.8.2022

Blockchain audits | Blockchain security assessment

3 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


2. Overview
This document presents our findings in reviewed contracts.

2.1. Ackee Blockchain
Ackee Blockchain is an auditing company based in Prague, Czech Republic,

specialized in audits and security assessments. Our mission is to build a

stronger blockchain community by sharing knowledge – we run a free

certification course Summer School of Solidity and teach at the Czech

Technical University in Prague. Ackee Blockchain is backed by the largest VC

fund focused on blockchain and DeFi in Europe, Rockaway Blockchain Fund.

2.2. Audit Methodology
1. Technical specification/documentation - a brief overview of the system is

requested from the client and the scope of the audit is defined.

2. Tool-based analysis - deep check with automated Solidity analysis tools

and Slither is performed.

3. Manual code review - the code is checked line by line for common

vulnerabilities, code duplication, best practices and the code architecture

is reviewed.

4. Local deployment + hacking - the contracts are deployed locally and we

try to attack the system and break it.

5. Unit and fuzzy testing - run unit tests to ensure that the system works as

expected, potentially write missing unit or fuzzy tests.

Blockchain audits | Blockchain security assessment

4 of 29

https://github.com/ackee-blockchain
https://www.ackeeblockchain.com/summer-school-of-solidity
https://rbf.capital/
https://ackeeblockchain.com
https://ackeeblockchain.com


2.3. Review team

Member’s Name Position

Jan Kalivoda Lead Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

2.4. Disclaimer
We’ve put our best effort to find all vulnerabilities in the system, however our

findings shouldn’t be considered as a complete list of all existing issues. The

statements made in this document should not be interpreted as investment

or legal advice, nor should its authors be held accountable for decisions made

based on them.

Blockchain audits | Blockchain security assessment

5 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


3. Executive Summary
The first objective of the audit is Token Linker, a set of contracts that is used

to link any tokens across two or more different EVM-compatible chains on a

one-to-one basis using only Axelar’s general message passing. The second

objective of the audit is a Forecall Service that allows an application that

receives messages from Axelar to accept messages before they have been

approved on Gateway.

Axelar engaged Ackee Blockchain to perform a security review of the Token

Linker and the Forecall Service with a total time donation of 5 engineering

days in a period between August 1 and August 5, 2022 and the lead auditor

was Jan Kalivoda.

The audit was performed on two repositories with the following commits and

files.

• Token Linker - 5e1d4bb

◦ contracts/*.sol

• Forecall Service - db238d7

◦ contracts/executables/AxelarForecallable.sol

We began our review by using static analysis tools, namely Slither and the

solc compiler. This yielded issues such as M1: The tokenAddress is missing zero-

address check. We then took a deep dive into the logic of the contracts.

During the review, we paid special attention to:

• execution logic in Forecall Service is matching requirements,

• token linking is not leading to unauthorized access to funds,

• detecting possible reentrancies in the code,

Blockchain audits | Blockchain security assessment

6 of 29

https://github.com/axelarnetwork/token-linker/tree/5e1d4bb648f15c8579bdaa1d93e8eba958a8a05e
https://github.com/axelarnetwork/axelar-utils-solidity/tree/db238d7eea7d62eec04094ab781e985f324cbf0e
https://github.com/crytic/slither
https://github.com/ethereum/solidity
https://ackeeblockchain.com
https://ackeeblockchain.com


• ensuring access controls are not too relaxed or too strict,

• looking for common issues such as data validation.

Our review resulted in 8 findings, ranging from Info to High severity. The most

severe one is a violation of an intended behavior in Forecall Service (see H1:

The forecall and forecallWithToken can be called repeatedly with a same

payload).

Ackee Blockchain recommends Axelar:

• add documentation including Natspec comments,

• write a more extensive test suite,

• address all other reported issues.

Blockchain audits | Blockchain security assessment

7 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


4. System Overview
This section contains an outline of the audited contracts. Note that this is

meant for understandability purposes and does not replace project

documentation.

4.1. Contracts
Contracts we find important for better understanding are described in the

following section.

TokenLinker

An abstract contract for other token linker contracts. It is a subclass of

AxelarExecutable. It allows to call execute which triggers _giveToken function

that is responsible for token retrieval and sendToken function that is

responsible for token sending. Both of these functions (_giveToken and

_takeToken) are implemented in child contracts.

TokenLinkerLockUnlock

The contract is for a pre-existing ERC20, that needs to be locked/unlocked on

a chain. The _giveToken and _takeToken functions are implemented as a simple

call on tokenAddress.

TokenLinkerMintBurn

The contract is for a newly deployed ERC20, which can be minted/burned by

Axelar’s token linker (and only this token linker). Since it is ERC20 token, the

_giveToken and _takeToken functions are implemented as a simple burn and

mint function on ERC20 contract

Blockchain audits | Blockchain security assessment

8 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


TokenLinkerNative

The contract is for a native currency of a chain, such as ETH for Ethereum. Via

_giveToken token can be transferred to the user and the deposit is working

through the payable function updateBalance, or sendToken to call atomically

with _takeToken.

TokenLinkerProxy

The proxy contract with the upgradeability pattern from Axelar core project.

This proxy is planned to be deployed on each chain (that is going to be

linked) with a same address.

AxelarForecallable

It allows an application that receives messages from Axelar to accept

messages before they have been approved on Gateway from a configured

forecaller address. This could be useful when receiving messages from chains

with long confirmation times, such as Ethereum.

4.2. Actors
This part describes actors of the system, their roles, and permissions.

Gateway

Gateway is Solidity CGP Gateway project by Axelar. It is used for validating

calls in execute functions.

4.3. Trust model
The contracts don’t have any ownership or other escalated privileges. The

only thing that should be ensured is a correctly chosen Gateway and thus

users have to trust Gateway and specific implementations such as

AxelarForecallable.

Blockchain audits | Blockchain security assessment

9 of 29

https://github.com/axelarnetwork/axelar-cgp-solidity
https://ackeeblockchain.com
https://ackeeblockchain.com


5. Vulnerabilities risk methodology
A Severity rating of each finding is determined as a synthesis of two sub-

ratings: Impact and Likelihood. It ranges from Informational to Critical.

If we have found a scenario in which an issue is exploitable, it will be assigned

an impact rating of High, Medium, or Low, based on the direness of the

consequences it has on the system. If we haven’t found a way, or the issue is

only exploitable given a change in configuration (such as deployment scripts,

compiler configuration, use of multi-signature wallets for owners, etc.) or

given a change in the codebase, then it will be assigned an impact rating of

Warning or Info.

Low to High impact issues also have a Likelihood which measures the

probability of exploitability during runtime.

5.1. Finding classification
The full definitions are as follows:

Severity

Likelihood

High Medium Low -

Impact

High Critical High Medium -

Medium High Medium Medium -

Low Medium Medium Low -

Warning - - - Warning

Info - - - Info

Table 1. Severity of findings

Blockchain audits | Blockchain security assessment

10 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


Impact

• High - Code that activates the issue will lead to undefined or catastrophic

consequences for the system.

• Medium - Code that activates the issue will result in consequences of

serious substance.

• Low - Code that activates the issue will have outcomes on the system that

are either recoverable or don’t jeopardize its regular functioning.

• Warning - The issue cannot be exploited given the current code and/or

configuration (such as deployment scripts, compiler configuration, use of

multi-signature wallets for owners, etc.), but could be a security

vulnerability if these were to change slightly. If we haven’t found a way to

exploit the issue given the time constraints, it might be marked as a

"Warning" or higher, based on our best estimate of whether it is currently

exploitable.

• Info - The issue is on the borderline between code quality and security.

Examples include insufficient logging for critical operations. Another

example is that the issue would be security-related if code or

configuration (see above) was to change.

Likelihood

• High - The issue is exploitable by virtually anyone under virtually any

circumstance.

• Medium - Exploiting the issue currently requires non-trivial preconditions.

• Low - Exploiting the issue requires strict preconditions.

Blockchain audits | Blockchain security assessment

11 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


6. Findings
This section contains the list of discovered findings. Unless overriden for

purposes of readability, each finding contains:

• a Description,

• an Exploit scenario, and

• a Recommendation

Many times, there might be multiple ways to solve or alleviate the issue, with

varying requirements in terms of the necessary changes to the codebase. In

that case, we will try to enumerate them all, making clear which solve the

underlying issue better (albeit possibly only with architectural changes) than

others.

Summary of Findings

Severity Impact Likelihood

H1: The forecall and

forecallWithToken can be

called repeatedly with a

same payload

High Medium High

M1: The tokenAddress is

missing zero-address check

Medium High Low

M2: TokenLinker has

insufficient data validation

Medium High Low

W1: Usage of solc optimizer Warning Warning N/A

W2: Floating dependency

on AxelarGateway

Warning Warning N/A

Blockchain audits | Blockchain security assessment

12 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


Severity Impact Likelihood

W3: Mulitple ways to

receive ether can lead to

loss of funds

Warning Warning N/A

W4: The forecall function is

missing any checks by

default

Warning Warning N/A

I1: Typo in the error name Info Info N/A

Table 2. Table of Findings

Blockchain audits | Blockchain security assessment

13 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


H1: The forecall and forecallWithToken can be
called repeatedly with a same payload

High severity issue

Impact: Medium Likelihood: High

Target: Forecall

Service/contracts/executable

s/AxelarForecallable.sol

Type: Data validation

Listing 1. Excerpt from AxelarForecallable.forecall

43     function forecall(
44         string calldata sourceChain,
45         string calldata sourceAddress,
46         bytes calldata payload,
47         address forecaller
48     ) external {
49         _checkForecall(sourceChain, sourceAddress, payload, forecaller);
50         if (getForecaller(sourceChain, sourceAddress, payload) !=
   address(0)) revert AlreadyForecalled();
51         _setForecaller(sourceChain, sourceAddress, payload, forecaller);
52         _execute(sourceChain, sourceAddress, payload);
53     }

Description

The contract is not checking if the forecaller address is not equal to zero-

address. As a result, the check preventing double execution on line 50 (see

Listing 1) can be bypassed. This violation can be performed by anyone and

anytime since forecall (resp. forecallWithToken) is a publicly-accessible

function. However, after discussion with the team, double execution should

not cause any critical scenario.

Blockchain audits | Blockchain security assessment

14 of 29

https://github.com/axelarnetwork/axelar-utils-solidity/tree/db238d7eea7d62eec04094ab781e985f324cbf0e
https://github.com/axelarnetwork/axelar-utils-solidity/tree/db238d7eea7d62eec04094ab781e985f324cbf0e
https://github.com/axelarnetwork/axelar-utils-solidity/tree/db238d7eea7d62eec04094ab781e985f324cbf0e/contracts/executables/AxelarForecallable.sol#L43-L53
https://ackeeblockchain.com
https://ackeeblockchain.com


Exploit scenario

Bob calls the forecall function with the forecaller address equal to zero-

address and some specific payload A (the remaining function parameters).

This payload gets executed. Since he passed forecaller as a zero-address he

executes payload A again and repeatedly[1].

Recommendation

Add a zero-address check for the forecaller address in both functions

(forecall and forecallWithToken).

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

15 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


M1: The tokenAddress is missing zero-address
check

Medium severity issue

Impact: High Likelihood: Low

Target: Token

Linker/contracts/TokenLinker

LockUnlock.sol

Type: Data validation

Listing 2. Excerpt from TokenLinkerLockUnlock.constructor

14     constructor(
15         address gatewayAddress_,
16         address gasServiceAddress_,
17         address tokenAddress_
18     ) TokenLinker(gatewayAddress_, gasServiceAddress_) {
19         tokenAddress = tokenAddress_;
20     }

Description

The contract does not perform any data validation of tokenAddress in its

constructor.

Exploit scenario

A zero-address is passed to the constructor in place of tokenAddress. Instead

of reverting, the call succeeds.

Recommendation

Short term, add a zero-address check for tokenAddress in the constructor.

Long term, use Slither to detect this common issue.

Blockchain audits | Blockchain security assessment

16 of 29

https://github.com/axelarnetwork/token-linker/tree/5e1d4bb648f15c8579bdaa1d93e8eba958a8a05e
https://github.com/axelarnetwork/token-linker/tree/5e1d4bb648f15c8579bdaa1d93e8eba958a8a05e
https://github.com/axelarnetwork/token-linker/tree/5e1d4bb648f15c8579bdaa1d93e8eba958a8a05e/contracts/TokenLinkerLockUnlock.sol#L14-L20
https://github.com/crytic/slither
https://ackeeblockchain.com
https://ackeeblockchain.com


Go back to Findings Summary

Blockchain audits | Blockchain security assessment

17 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


M2: TokenLinker has insufficient data validation

Medium severity issue

Impact: High Likelihood: Low

Target: Token

Linker/contracts/TokenLinker.

sol

Type: Data validation

Listing 3. Excerpt from TokenLinker.constructor

18     constructor(address gatewayAddress_, address gasServiceAddress_) {
19         gatewayAddress = gatewayAddress_;
20         gasService = IAxelarGasService(gasServiceAddress_);
21     }

Description

The contract and its subclasses do not perform any data validation of

gatewayAddress_ in its constructor. The gasService parameter should be also

more validated.

Exploit scenario

By accident, an incorrect gatewayAddress_ is passed to the constructor.

Instead of reverting, the call succeeds.

Recommendation

Add more stringent data validation for gatewayAddress_ (and gasService). At

the very least this would include a zero-address check. Ideally, we

recommend defining a getter such as contractId() (which is already

implemented in token linker contracts) that would return a hash of an

identifier unique to the (project, contract) tuple[2]. This will ensure the call

Blockchain audits | Blockchain security assessment

18 of 29

https://github.com/axelarnetwork/token-linker/tree/5e1d4bb648f15c8579bdaa1d93e8eba958a8a05e
https://github.com/axelarnetwork/token-linker/tree/5e1d4bb648f15c8579bdaa1d93e8eba958a8a05e
https://github.com/axelarnetwork/token-linker/tree/5e1d4bb648f15c8579bdaa1d93e8eba958a8a05e/contracts/TokenLinker.sol#L18-L21
https://ackeeblockchain.com
https://ackeeblockchain.com


reverts for most incorrectly passed values.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

19 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


W1: Usage of solc optimizer

Impact: Warning Likelihood: N/A

Target: **/* Type: Compiler

configuration

Description

The project uses solc optimizer. Enabling solc optimizer may lead to

unexpected bugs.

The Solidity compiler was audited in November 2018, and the audit concluded

that the optimizer may not be safe.

Vulnerability scenario

A few months after deployment, a vulnerability is discovered in the optimizer.

As a result, it is possible to attack the protocol.

Recommendation

Until the solc optimizer undergoes more stringent security analysis, opt-out

using it. This will ensure the protocol is resilient to any existing bugs in the

optimizer.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

20 of 29

https://docs.soliditylang.org/en/latest/bugs.html
https://docs.soliditylang.org/en/latest/bugs.html
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn
https://ackeeblockchain.com
https://ackeeblockchain.com


W2: Floating dependency on AxelarGateway

Impact: Warning Likelihood: N/A

Target: Token Linker Type: Version

mismatch

Description

The configuration file package.json is holding floating dependency on

AxelarGateway (one of the main contracts of the protocol). There is a

possibility of deployment with an unwished version if minor or patch updates

are not properly tested.

Exploit scenario

A developer will use npm i instead of npm ci (clean install) which will overwrite

the lockfile. Contracts are deployed on an untested version and due to that

contracts have different behavior than it’s intended.

Recommendation

Fix the version to the one that is properly tested and functional within the

protocol or ensure that lockfile isn’t overwritten during the deployment.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

21 of 29

https://github.com/axelarnetwork/token-linker/tree/5e1d4bb648f15c8579bdaa1d93e8eba958a8a05e
https://ackeeblockchain.com
https://ackeeblockchain.com


W3: Mulitple ways to receive ether can lead to
loss of funds

Impact: Warning Likelihood: N/A

Target: Token

Linker/contracts/TokenLinker

Native.sol

Type: Front-running

Description

The contract is using two balances. The first one is a real balance of the

account, in Solidity known as address(this).balance and the second balance

is held in a storage slot. This storage slot is updated at the end of each

relevant function of the contract. However, the proxy can receive ether or

any other native currency via receive and that can cause inconsistency in

these balances between transactions if they are not atomic.

Moreover, unlike using only the sendToken function, there is an option to call

updateBalance with sending ether to it and then call sendToken with the null

amount. This introduces non-atomic behavior which can be front-runned and

the potential user can lose his funds.

Exploit scenario

Bob will call updateBalance with sending 1 ether to it (or sending it directly to

the proxy). Alice will notice that the contract has some balance in a storage

slot (or some balance at all). Alice will call sendToken without sending any ether

and it will pass (or call updateBalance to update the balance in a storage slot

and then call sendToken).

Recommendation

Ensure that the users will send tokens atomically.

Blockchain audits | Blockchain security assessment

22 of 29

https://github.com/axelarnetwork/token-linker/tree/5e1d4bb648f15c8579bdaa1d93e8eba958a8a05e
https://github.com/axelarnetwork/token-linker/tree/5e1d4bb648f15c8579bdaa1d93e8eba958a8a05e
https://ackeeblockchain.com
https://ackeeblockchain.com


Go back to Findings Summary

Blockchain audits | Blockchain security assessment

23 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


W4: The forecall function is missing any checks
by default

Impact: Warning Likelihood: N/A

Target: Forecall

Service/contracts/executable

s/AxelarForecallable.sol

Type: Data validation

Listing 4. Excerpt from AxelarForecallable.forecall

43     function forecall(
44         string calldata sourceChain,
45         string calldata sourceAddress,
46         bytes calldata payload,
47         address forecaller
48     ) external {
49         _checkForecall(sourceChain, sourceAddress, payload, forecaller);
50         if (getForecaller(sourceChain, sourceAddress, payload) !=
   address(0)) revert AlreadyForecalled();
51         _setForecaller(sourceChain, sourceAddress, payload, forecaller);
52         _execute(sourceChain, sourceAddress, payload);
53     }

Description

The contract is abstract and the _checkForecall function is left

unimplemented. This is presenting a risk because there are not by default

performed any checks and thus execution logic can be arbitrarily triggered

by anyone.

Recommendation

Ensure that the implementation of this contract will be properly validated as

it is done externally in AxelarExecutable in Gateway.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

24 of 29

https://github.com/axelarnetwork/axelar-utils-solidity/tree/db238d7eea7d62eec04094ab781e985f324cbf0e
https://github.com/axelarnetwork/axelar-utils-solidity/tree/db238d7eea7d62eec04094ab781e985f324cbf0e
https://github.com/axelarnetwork/axelar-utils-solidity/tree/db238d7eea7d62eec04094ab781e985f324cbf0e/contracts/executables/AxelarForecallable.sol#L43-L53
https://ackeeblockchain.com
https://ackeeblockchain.com


I1: Typo in the error name

Impact: Info Likelihood: N/A

Target: Token

Linker/contracts/TokenLinker

Native.sol

Type: Typo

Listing 5. Excerpt from TokenLinkerNative._takeToken

40         if (balance + amount > address(this).balance) revert
   TranferFromNativeFailed();

Description

The error name TranferFromNativeFailed should be probably

TransferFromNativeFailed.

Recommendation

Fix the typo.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

25 of 29

https://github.com/axelarnetwork/token-linker/tree/5e1d4bb648f15c8579bdaa1d93e8eba958a8a05e
https://github.com/axelarnetwork/token-linker/tree/5e1d4bb648f15c8579bdaa1d93e8eba958a8a05e
https://github.com/axelarnetwork/token-linker/tree/5e1d4bb648f15c8579bdaa1d93e8eba958a8a05e/contracts/TokenLinkerNative.sol#L40-L40
https://ackeeblockchain.com
https://ackeeblockchain.com


Endnotes

[1] In a happy scenario, he wouldn’t be able to execute payload A again, because the

forecaller will be a non-zero-address in the contract’s storage.

[2] An example would be keccak256("Axelar - Solidity CGP Gateway")

Blockchain audits | Blockchain security assessment

26 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


Appendix A: How to cite
Please cite this document as:

Ackee Blockchain, Axelar: Token Linker & Forecall Service, 12.8.2022.

Blockchain audits | Blockchain security assessment

27 of 29

https://github.com/ackee-blockchain
https://ackeeblockchain.com
https://ackeeblockchain.com


Appendix B: Glossary of terms
The following terms might be used throughout the document:

Superclass/Ancestor of C

A contract that C inherits/derives from.

Subclass/Child of C

A contract that inherits/derives from C.

Syntactic contract

A Solidity contract. May have an inheritance chain, and may be deployed.

Deployed contract

An EVM account with non-zero code. If its source was written in Solidity, it

was created through at least one syntactic contract. If that contract had

superclasses (parents), it would be composed of multiple syntactic

contracts.

Init/initialization function

A non-constructor function that serves as an initializer. Often used in

upgradeable contracts.

External entrypoint

A public or external function.

Public/Publicly-accessible function/entrypoint

An external or public function that can be successfully executed by any

network account.

Mutating function

A non-view and non-pure function.

Blockchain audits | Blockchain security assessment

28 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


 Blockchain  audit   |   Blockchain security assessment 

 Thank You 
 Ackee Blockchain a.s. 

 Prague, Czech Republic 

 hello@ackeeblockchain.com 

 h�ps://discord.gg/z4KDUbuPxq 

 1 

https://ackeeblockchain.com/

	Axelar: Token Linker & Forecall Service
	Contents
	1. Document Revisions
	2. Overview
	2.1. Ackee Blockchain
	2.2. Audit Methodology
	2.3. Review team
	2.4. Disclaimer

	3. Executive Summary
	4. System Overview
	4.1. Contracts
	4.2. Actors
	4.3. Trust model

	5. Vulnerabilities risk methodology
	5.1. Finding classification

	6. Findings
	H1: The forecall and forecallWithToken can be called repeatedly with a same payload
	M1: The tokenAddress is missing zero-address check
	M2: TokenLinker has insufficient data validation
	W1: Usage of solc optimizer
	W2: Floating dependency on AxelarGateway
	W3: Mulitple ways to receive ether can lead to loss of funds
	W4: The forecall function is missing any checks by default
	I1: Typo in the error name
	Endnotes

	Appendix A: How to cite
	Appendix B: Glossary of terms

