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Abstract

This thesis presents the analysis on light and background events measured with a Transition-
Edge-Sensor. It will be implemented in the experimental setup of the Any Light Particle Search
II experiment at DESY in Hamburg and is a key component of the setup. The Transition-
Edge-Sensor is used for the detection of axions, which are postulated particles and a possible
candidate for dark matter. They belong to the group of weakly interacting sub-eV particles. The
analysis in this thesis includes the characterization of pulses from light and background events.
Hereafter, machine learning algorithms have been applied to data of a test setup to determine their
performance for signal and background discrimination. For this, the random forest algorithm and
the K-nearest-neighbor algorithm have been used. Both classifiers provide promising results for
the accuracy of signal and background discrimination. Especially, the evaluation by using the
random forest algorithm gives the best accuracy of discrimination with Pacc−test = 99.8826%.
The statistical significance obtained for the K-nearest-neighbor algorithm, is slightly lower than
the acceptance level of the model: S = 3.12. Lastly, the background events are investigated more
in detail. For this purpose the Gaussian mixture model, which is a clustering algorithm based
on machine learning, is applied to the background data. The goal of this procedure is to identify
clusters from the background events recorded by the Transition-Edge-Sensor.





Zusammenfassung

Diese Arbeit präsentiert die Analyse von Licht- und Hintergrundereignissen, die mit einem Transition-
Edge-Sensor gemessen wurden. Er wird in den experimentellen Aufbau des Any Light Particle
Search II Experiments bei DESY in Hamburg implementiert und ist eine Schlüsselkomponente
des Aufbaus. Der Transition-Edge-Sensor dient dem Nachweis von Axionen, die als Teilchen pos-
tuliert werden und ein möglicher Kandidat für dunkle Materie sind. Sie gehören zur Gruppe der
schwach wechselwirkenden sub-eV-Teilchen. Die Analyse in dieser Arbeit umfasst die Charakter-
isierung von Pulsen aus Licht- und Hintergrundereignissen. Anschließend wurden Algorithmen
des maschinellen Lernens auf Daten eines Testaufbaus angewandt, um ihre Leistung bei der Un-
terscheidung von Signal und Hintergrund zu bestimmen. Dazu wurden der Random-Forest- und
der K-nearest-neighbor-Algorithmus verwendet. Beide Klassifikatoren liefern vielversprechende
Ergebnisse für die Genauigkeit der Signal- und Hintergrundunterscheidung. Insbesondere die
Auswertung mit dem Random-Forest-Algorithmus liefert die beste Unterscheidungsgenauigkeit mit
Pacc−test = 99, 8826%. Die statistische Signifikanz, die für den K-nearest-neighbor-Algorithmus
erhalten wurde, ist geringfügig niedriger als das Signifikanzniveau, bei dem das Model akzeptiert
wird: S = 3.12. Schließlich werden auch die Hintergrundereignisse genauer untersucht. Zu diesem
Zweck wird das Gaussian Mixture Model, ein auf maschinellem Lernen basierender Clustering-
Algorithmus, auf die Hintergrunddaten angewendet. Ziel dieses Verfahrens ist es, Cluster aus den
vom Transition-Edge-Sensor aufgezeichneten Hintergrundereignissen zu identifizieren.
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1 Introduction

The search of particles beyond the Standard Model is a huge field of study in physics. One of
the unsolved problems in the research field of physics is the explanation of dark matter. In the
universe dark matter plays a major role. It is postulated that the contribution of dark matter to
the entire energy in the universe is up to 30% (see [1] for review).

In the field of physics there are many approaches to identify the existence of dark matter. The
Any Light Particle Search II (see [2]) at DESY is one experiment that provides an experimental
setup and therefore an approach to detect dark matter. As a solution of the Strong CP-problem
(see section 2), axions are theoretical particles which are postulated mathematically and are one of
the candidates for dark matter. They belong to the group of weakly interacting sub-eV particles
(WISPs). For the detection of axions, the Any Light Particle Search II experiment in Hamburg
implemented a light shining through a wall system. It is based on the axion-photon conversion
and therefore the main goal is to detect photons converted from axions. A major role in the
experiment has the detector, for which two types of detectors are considered. First the hetero-
dyne detector will be build in, which is not the subject of this thesis (see [2] for description of
heterodyne detection). In this thesis, the focus is on the foreseen second detector in Any Light
Particle Search II: A Transition-Edge-Sensor. In order to characterize the detector and its data
acquisition it is important to analyse the detection scheme of light and background events with
the goal to distinguish light pulses from background pulses. This will be the main part of this work.

The analysis of data is one of many important tasks, especially in particle physics. By exam-
ining data, it is possible to make statements about the physical processes and their occurrences in
an experiment. Currently, machine learning is a great field which comes into operation in many
areas for the purpose of analysis in particle physics. In particular for classification tasks the usage
of machine learning is a common method [3]. In relation to the Any Light Particle Search II
experiment and its Transition-Edge-Sensor, machine learning could help to discriminate actual
signal events and background events which are detected as well.

This thesis focuses on the analysis of the data with the goal to understand the properties of
the Transition-Edge-Sensor and the events measured. Since the detector is highly sensitive, the
recorded background has a significant contribution to the data in total. In addition to that, a very
small signal rate is anticipated for what reason the background must be suppressed as efficiently as
possible. In order to understand the recorded events, the discrimination of signal and background
events are analysed to create a classification. For that purpose, machine learning algorithms are
used and optimized to make sure that the results are as accurate as possible. Furthermore the
background events are investigated to create a classification again with the goal to characterize
different background sources which have an impact on the Transition-Edge-Sensor.
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2 Theoretical foundations

This chapter introduces the fundamental physical aspects which are relevant for this thesis. At
first, in section 2.1, a theoretical motivation for axions and axion-like-particles (ALPs), as an
extension of the Standard Model is discussed. In section 2.2 the physical background of axions
and axion-like-particles are introduced. After this, the setup for the Any-Light-Particle-Search
experiment (ALPS II) and its functionality are briefly explained in section 2.3. Finally, in section
2.4, the underlying physical and technical properties of the Transition-edge sensor detector as it
will be used for ALPS II are described.

2.1 Motivation for extension of the Standard Model

The Standard Model (SM) (see figure1) gives a fundamental description of known elementary
particles and most of their interactions with each other (see [4] for review). It is built on the
one hand of fermions such as quarks and leptons. On the other hand there are bosons, which
are the force carriers. In the SM three of the four fundamental forces are well described: the
electromagnetic force, the weak force and the strong force. Even though the characteristics of

Figure 1: Table of Standard Model. It is a summary of all known elementary particles and it
consists of the fermions(quarks and leptons) and the bosons, which are the force carriers. Figure
from [4]

many physical processes are successfully explained by this model, in fact it is incomplete. One of
the major incomplete explanations is the gravitational force, which can not be taken into account
in the SM. Since dark matter interacts via gravitational forces, it can not be considered either.
However, due to the observation that around 30% of the energy in the universe is made of dark
matter, it is a great indication that further elementary particles beside the SM do exist [1]. This
motivates the search of particles beyond the SM.

2.2 Axions & axion-like-particles

QCD-Axion

The axion is a possible candidate for dark matter. It is postulated as a solution for the strong CP-
problem in quantum chromodynamics (QCD) and for that reason it is also called QCD-axion[5].
Experimentally, CP-violation is already known in weak interactions [6], but also QCD allows a
CP-violating term in the Lagrangian:

LCP−viol. =
αs

4π
θtrGµνG̃

µν (1)
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in which αs is the strong coupling constant, Gµν is the gluonic field strength and the parameter
θ ∈ [0, 2π] describes an angle and can be found experimentally [7]. One well known approach to
validate the strong CP-problem is the measurement of the electric dipole moment of the neutron.
Theoretical considerations introduce an effective angle parameter θ̄ = θ+det(M), where M is the
quark mass matrix. From that, it can be derived that the electric dipole moment of a neutron is
roughly [7]:

|dn| ∼ 10−16|θ̄|e cm (2)

Experimentally, the measurement delivers an upper bound for the electric dipole moment of the
neutron dn < 10−26e cm [8] and thus for the effective angle parameter |θ̄| < 10−10. The strong
CP-problem describes the fact that the effective angle parameter θ̄ is suppressed to such a small
value. One solution for this phenomenon was introduced by Peccei and Quinn, saying that a chiral
symmetry gets spontaneously broken and generates a boson which is called ”axion” [9]. Axions
are low in mass (ma < 1eV [2]) and are weakly interacting, which should not be mixed up with the
weak force. It rather means that axions are rarely interacting and therefore they are categorized
as Weakly interacting Sub-eV particles (WISP’s).

Axion-like-particles

The class of axion-like-particles(ALPs) can be derived from string theory [7]. In general, ALPs
have the same characteristics as QCD-axions but do not solve the strong CP-problem. The main
difference is that the coupling constant of ALPs with photons is not necessarily different than zero
and in addition to that, the coupling constant is not proportional to its mass[7]. In the following,
the QCD-axion and ALPs will be treated analogously as ALPs. ALPs can be generated by mak-
ing use of the Primakoff effect, which states that photons can convert to ALPs by coupling to a
magnetic field [2]. The conversion also occurs for ALPs to photons by the coupling of ALPs to a
magnetic field. The Primakoff effect is the fundamental principle of the ALPS II experiment (see
2.3).

2.3 Experiment for the search of ALPs

The underlying concept of the Any Light Particle Search II (ALPS II) experiment is a light shining
through a wall arrangement. All components of the experiment can be seen in figure 2.

Figure 2: Experimental setup for the Any Light Particle search experiment [10]

This experiment makes use of the conversion of ALPs to photons. It is build in a straight part of
HERA (former used particle accelerator) at DESY. In this arrangement a laser with wavelength
λ = 1064nm is used as a photon source and a detector (see next section 2.4) to record the signal.
In the middle of the setup, in a distance of 106m [2] from each side, a barrier is placed, which
the photons can not cross. A static magnetic field of B = 5.3T is created by dipole magnets from
HERA. They are located on both sides of the barrier (see figure2). The fundamental idea is to
make use of the effect that photons, which are passing through a magnetic field, can be converted
to ALPs. This effect is the so called Primakoff effect[2]. The basic idea of the conversion process
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can be seen in figure3. Since ALPs interact weakly with matter, they can pass the wall which is
not valid for photons. After crossing the wall, this time the ALPs can couple with the magnetic
field and convert back to photons again. The eventually back-converted photons are measured
with the detector.
Since the coupling coefficient of ALPs to photons is rather low (gaγγ ≤ 2 · 10−11GeV−1 [2]), the
expected photon rate is at 1 photon per day.

Figure 3: Photons propagating through a magnetic field get converted to ALPs which can pass
the wall. Behind the wall, they convert back to photons in a second magnetic field. [10]

2.4 Detection system

For the ALPS II experiment, two different types of detection principles are considered to be used
in the arrangement. First the heterodyne detector will be implemented, which is not covered in
this thesis. As a second detector a Transition-Edge-Sensor (TES) is planned to be deployed and
it is the main subject of this work. A TES is a superconducting microcalorimeter and makes use
of its thermal and electrical components in a way that energy depositions of single photons can
be detected. Since the expected photons arriving at the detector from ALPs conversion have low
energy (Eγ ≈ 1eV) and the expected photon rate is rather low, the detector must be high in
sensitivity and energy resolution [11]. Due to its characteristics, a TES is perfectly suited for the
detection of photons in ALPS II.

2.4.1 Superconductivity

The funcionality of a Transition-edge sensor (TES) is based on superconductivity. Superconductiv-
ity is a specific property of certain conducting material. Below a certain temperature, the so called
critical temperature TC , the current flows without resistance. The fundamental reason for this
behaviour of the conducting material is described by BCS-theory (J. Bardeen, L.N. Cooper, J.R.
Schrieffer - 1957) which results in the creation of Cooper-Pairs. Two electrons with anti-parallel
spin and opposite momenta in a lattice can be attracted to each other and create a Cooper-pair
[12]. Although electrons are fermions, the Cooper-pairs behave like bosons. They can stay in the
same quantum-mechanical state and as a result, the system of Cooper-pairs can be described as
one macroscopic wave function [13]. A supercurrent arises and flows with zero resistance [14].

2.4.2 TES-detector

The core component of the TES-detector is the microchip. In the setup of ALPS II a Tungsten
microchip (25µm × 25µm, 20nm thick) is used and is developed by NIST (National Institute for
Standards and Technology, USA) [11]. The absorptivity of pure Tungsten is rather low. Mea-
surements of the quantum efficiency for pure Tungsten at 1310nm and 1550nm gives a quantum
efficiency QE ≈ 20% [14]. To increase the absorptivity and with that the quantum efficiency
the microchip has been stacked with multiple layers of other material, mainly Silicon (for further
information see [14], [11]). Through that, the absorptivity of the microchip increased to 97% for
1550nm [14].
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The working principle in the TES for ALPS II is based on the change of resistance of the Tungsten
chip. It is on one side connected to a thermal bath which will be cooled down. The exact
temperature of the thermal bath in the ALPS II setup is not known yet. Previous characterizations
of the TES made it possible to cool down the bath to T ≈ 80mK± 25mK [14]. On the other side,
the chip is connected to an electrical circuit. The circuit is connected to a constant bias voltage,
which is applied through the TES.

Figure 4: Behaviour of resistance and temperature for a scenario where one single photon with
wavelength 1064nm deposits its energy to the Tungsten Chip. Figure from [15]

The microchip is adjusted to its working point, where it is in the transition region between con-
ducting and superconducting. If now a 1064nm photon hits the chip, its energy is absorbed and
the resistance increases by ∼ 1Ω for a temperature increase of ∼ 0.1mK [15]. As a result, the
TES is not superconducting anymore, but rather normal conducting, depending on the energy
deposition. This change in the transition region of the TES can be seen in figure 4.

Figure 5: Circuit of a transition-edge sensor. The Tungsten chip with its resistance R(T, I) as
a function of the temperature T and the current I is connected to a thermal bath with thermal
conductivity G. A bias voltage Vbias is applied through the circuit. The electromagnetic coil L
creates the magnetic field which is read out by SQUIDs. The resistance RL describes the parasitic
resistance of the coil. Figure from [14]
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For the purpose of registering the change in current, due to the change in conductivity, an elec-
tromagnetic coil is incorporated. When the current is changing, the strength of the magnetic field
will change as well. A general sketch of the electrical circuit is given in figure 5. The change
of magnetic field strength can be read out by a Superconducting Quantum Interference Device
(SQUID). SQUIDs are useful to detect slight changes in magnetic field strengths. It consists of
a superconducting loop with 2 zones in the loop, where the material is not a superconducter or
at least the superconduction is weaker [16]. The external magnetic flux creates a current in the
superconducting loop. Due to the so called Josephson junctions, the voltage is fluctuating peri-
odically, which can be recorded. Since the change in voltage is rather small, it must be amplified
with electronics.
Further information and detailed discussions about the properties of SQUIDs can be found in [16].
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3 Preliminary work on data

This chapter introduces the preliminary work that is made for the further analysis. In section 3.1
the first processing of the data is described. Essencially, the fitting of the data with the purpose
to obtain the parameters, which will be the base of the further work, with regard to use machine
learning for classification tasks, are explained.
Hereafter, in section 3.2, the mathematical foundations of the Principal Component Analysis are
summarized and it is applied on the parameters coming from the fitting process, with the goal to
prepare the parameters and improve the outcome of the used machine learning algorithms.

3.1 Fitting procedure

As explained in section 2.4, the change of the magnetic field strength, detected by the SQUIDs,
is converted to a voltage which os read out. The readout of the SQUIDs is the data which will
be analyzed. A timeline measured with the detector contains the voltage values, and the time
when the voltage is measured. A distinction is made between light pulses and background pulses.
The data used in this thesis is obtained by using a 1064nm laser connected to the TES via an
optical fiber. The pulses caused by the laser light are called light pulses. On the other hand,
the data collected without a light source and where the fiber is unplugged are called background
pulses. In particular, these kind of pulses are categorized in the group of the intrinsic background.
Radioactive sources in the detector material or cosmic rays are examples for the intrinsic back-
ground pulses. There are also extrinsic background pulses, which describe the pulses where the
fiber is connected to the TES, but no photons are send from the laser. Since the TES is cooled
down to ∼ 80mK, the room in which the TES is located, can be interpreted as a black body. In
particular, photons from the black body radiation which arise at the other end of the fiber at room
temperature, can reach the TES via the fiber. However, this thesis only focusses on the intrinsic
background. For the analysis, there are all together 2627 light pulses and 39580 background pulses
collected over an observation time of 517.91 hours with 10000 data values in each timeline. The
sampling rate for the readout is f = 50MHz. One of each pulses is shown in figure 6, which shows
a light and a background pulse how it is commonly expected with its typical time length of 200µs.
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Figure 6: On the left a light pulse and on the right a background pulse. The shapes of the pulses
are characteristic for light/background.
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To achieve a better understanding of the data, it is helpful to fit a model function. With the aid
of this function, one can obtain parameters which describe the shape and properties of the light
or background pulses. The function used to fit the data is the following:

V (t) = c− 2A ·
(
exp(− t− t0

τrise
) + exp(

t− t0
τdecay

)

)−1

(3)

The parameters in this model function are the constant c, the amplitude A, the decay time τdecay,
the rise time τrise and the trigger time t0 which will be determined through the fitting process.
The fit is implemented with the Python module iminuit. For fitting the model to the data iminuit
takes a so called cost function, which will be the function to minimize and in addition to that it
takes an initial guess for the parameters. As a cost function, the built-in least sqaures function
is used, which is calculating the sum of squares for the residuals of the model and the data [17].
The least-squares function needs also an error as in input which is chosen to σ = 1.5mV. With
that one can find the fit parameters and their errors as well. Another advantage of iminuit is that
the χ2 can also be calculated through the fitting procedure, by which the reduced χ2/ndof with
ndof=”number degrees of freedom” can be calculated easily. Further information about iminuit
is given in the documentation in [17].

As mentioned above, the parameters can describe the properties of a pulse. Mathematically, the
parameters represent the following:

• Trigger time t0: The trigger time marks a time value at which the fitted pulse is between
the starting point of the dip and the maximum value in voltage.

• Rise time τrise: The rise time describes how much time it takes for the pulse to get to the
maximum value.

• Decay time τdecay: The decay time characterizes the time the pulse takes to get back to
normal level after the maximum.

• Amplitude A: The amplitude determines how high in voltage the fitted pulse is.

• Constant c: The constant represents a constant value at which the noise of the pulse is.

Since iminuit takes initial guesses for each parameter as an input for the fit, it is necessary to
make these guesses as accurate as possible. By doing that, the minimizing process in iminuit can
achieve a better estimation of the parameters. The choices of the starting values which are given
in the Fit are the following:

• Trigger time: First, a lowpass filter has been applied on the data and after that, the
derivative is calculated numerically. The peaks of the derivative are identified and they are
used for the estimation for t0. The purpose of the lowpass filter is to suppress the noise
for high frequencies. With aid of the lowpass filter high frequencies are dampened. The
minimum value of the derivative is chosen as the inital guess for t0. The observation shows
that the value for t0 in the timelines fluctuates around 30µs.

• Rise time: τrise = 2µs

• Decay time: τdecay = 2µs

• Amplitude: A = 25mV

• Constant: c = 0
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As an example, the result of the fitting procedure is given in figure 7 where on the left the model
is fit to a light pulse and on the right a background pulse. These shapes of the model curves are
typical for light and background pulses, respectively.
Under consideration of the pulses, there are some differences between light and background pulses
which can be seen by the shape. The light pulses seem to be sharper in its peak, which means that
the rise and decay times are smaller than in a background pulse. In particular, the decay time
for a background pulse is much higher. In addition to that, the peak of a light pulse is higher.
Another noticeable aspect is that the integral of the pulses seem to be different. For that reason
the pulse integral is also considered for the further work, especially in section 4 & 5.
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Figure 7: Fit of the model function V (t) to pulses coming out of the TES. On the left a typical
light pulse and on the right a typical background pulse is illustrated.

Trigger time t0: 30.201µs± 0.013µs
Rise time τrise: 0.344µs± 0.01µs
Decay time τdecay: 3.84µs± 0.04µs
AmplitudeA: 20.07mV ± 0.15mV
Constant c: −1.383mV ± 0.016mV
χ2/ndof: 2.449

Table 1: Values of parameters for light pulse from figure7 which are achieved by the fit.

Trigger time t0: 26.82µs± 0.06µs
Rise time τrise: 2.10µs± 0.04µs
Decay time τdecay: 20.13µs± 0.17µs
AmplitudeA: 12.50mV ± 0.17mV
Constant c: −0.388mV ± 0.020mV
χ2/ndof : 1.675

Table 2: Values of parameters for background pulse from figure7 which are achieved by the fit.
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The parameters obtained by the fitting process for the light and background pulses in figure 7 can
be seen in Table 1 & 2. As already visible by eye, the amplitude A is higher for the light pulse,
and the rise- and decay times of the background pulse are larger. Especially the decay time is
significantly higher.

The procedure of obtaining the parameters by fitting the model to the data is repeated for all
timelines. Therefore, in total 42207 timelines are taken into consideration. To get an overview of
the parameters and their distribution it is useful to plot histograms which can be seen in figure 8.
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Figure 8: Distribution of the parameters for light and background pulses. The pulse integral for
each timeline is also shown.
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Signal pulse integral Isignal 7.790 · 10−6 Vs
Background pulse integral Ibackground 25.538 · 10−6 Vs

Table 3: Calculated integrals of fitted model function for signal and background pulse

In addition to the parameters as given in the function V (t) from equation 3, the pulse integral
is calculated. The integral of each timeline is computed by integrating over the fit function with
the given parameters. After that the absolute value is taken. The unit of the pulse integral is
V oltage× time [V s]. For the given pulses in figure 7, the values for the pulse integrals are given in
Table 3. Due to the small amount of light pulses in comparison to background pulses, the counts
of the background are much higher. For that reason, the light counts in the histograms seem to be
very small. By looking at the histogram of the pulse integral, it is noticeable that there are many
pulses whose integral is closer to zero than the integral computed for light pulses. This could
result from the fitting process, where some pulses can not be characterized properly. However, it
could be beneficial to investigate the reduced χ2. The distribution of the reduced χ2 can be seen
in figure 9.
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Figure 9: Reduced χ2 distributions for all light and background pulses.

To take a better look at the reduced χ2 the counts in the histogram above are normalized in a way
that the integral over the distributions is equal to one for both the backgrounds and also for the
signals. Statistically, the goal is to have χ2/ndof = 1. It gives information about how good the fit
actually worked. As it can be seen, in figure 9, the values for the reduced χ2 have a large spread.
Since in this thesis the parameters play the main role for the analysis, it was decided to make a
cut. In particular, the analysis for the discrimination of signal and background in section 4 and
the background analysis in section 5 considers only the timelines and therefore the parameters for
which χ2/ndof < 6 is valid.

One goal in this thesis is the classification of signal and background events. By looking at the
histograms in figure 8, it is noticeable which parameters could be used to this distinction. For
instance, the trigger time t0, the amplitude A and the constant c look quite similar to the back-
ground, just with less counts due to the unequal amount of timelines for light and background.
However, for the rise- and decay time τrise & τdecay and for the pulse integral it is visible that
the signal distribution of these parameters are distinguishable from the background distribution.
This first observation is used and discussed more in detail in section 4.
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3.2 Principal Component Analysis

The Principal Component Analysis is a widely used technique to preprocess data [18]. Since one
of the main goals in this thesis is the classification of signal and background pulses, applying
Principal Component Analysis to the data can help increasing the success of classification tasks.
In the first section the mathematical procedure of Principal Component Analysis is briefly ex-
plained. The main reference for section 3.2.1 from which all information are taken is [18] in which
the mathematical discussions of Principal Component Analysis can be found in more detail. In
the second section the Principal Component Analysis is applied to the parameters and the results
are discussed.

3.2.1 Theory

The Principal Component Analysis (PCA) is a mathematical method. It can be used to decrease
the dimensionality of a large dataset with minimum information loss, which makes it easier to
interpret the data. This will be used in section 4 & 5. Next to the reduction of dimensionality,
PCA is also useful to improve the results in classification tasks. Since the principal components
can be seen as vectors along the axes with the highest covariances, it might help classifiers to
obtain better results. An example for that is shown in figure 10.

Figure 10: Illustration of principal components, which are represented by the black arrows. Figure
from [19].
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In general, a dataset can be described as a matrix X with the dimension n × p, where n is the
number of rows and p the number of columns. The columns of the matrix are noted as x which
represent column vectors. The goal of the PCA technique is to find a linear combination of all
vectors x which are the columns of X where the covariance matrix Σ = 1

pXXT [20] is maximized.
We introduce a vector a in which the entries are constant values and their dimension is the
same as the dimension of x. With aid of the vector a the linear combinations can be written as∑p

i=1 aixi = Xa, for which the variance can be computed by var(Xa) = aTΣa. For the purpose
of maximizing the covariance matrix Σ, it is made use of the method of Lagrange-multiplier (for
further information, see [18]). The maximizing problem results in the equation Σa = λa where λ
is the Lagrange multiplier. It can be seen that a describes the eigenvector of the matrix S with λ
as its eigenvalues. For the PCA the largest eigenvalues λk are interesting, since they represent the
highest variances. The principle components as an outcome of the PCA are the linear combinations
of the data matrix X multiplied with the corresponding eigenvector ak from the largest eigenvalues
λk. These linear combinations or principle components produce the eigenspace with dimension p,
which can be chosen beforehand.

3.2.2 Principal Component Analysis of parameters

With the purpose to make the data more suitable for the further work, the PCA is applied to
the parameters. Besides the parameters that are coming from the model function V (t), the pulse
integral I and the reduced χ2 are appended to the matrix of parameters. As a result, the matrix
has seven columns: t0, τrise, τdecay, A, c, χ2/ndof & I.

In advance, the parameters are getting standardized. This means that all fit parameters be-
longing to one variable from the fit are processed in a way, so that the mean value becomes zero
and the standard deviation one. To implement that, the StandardScaler module from scikit-learn
[21] is used. The standardization is a useful tool, especially with regards to machine learning
applications. By using this, the machine learning algorithms may provide results that are more
meaningful. After the standardization, the PCA is applied to the new matrix containing the
standardized parameters. The PCA is implemented by the PCA funktion from scikit-learn. The
eigenspace of the principle components has the dimension seven, since all seven parameters have
been used for the PCA.
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Figure 11: Illustration of the principle components. Each line corresponds to one component in the
eigenspace of the principle components. This plot shows the weights in every principle component
in its eigenspace for every parameter.

In figure 11 the different principle components are shown. Each colored line represents one princi-
pal component. From this, it is observable how the parameters in the principle components space
behave. On the y-axis the weights of the parameters in the eigenspace of the principle components
are illustrated. The weights may help giving a look into the importance of the parameters, when
doing classification tasks as in section 4 & 5. In particular, for the rise and decay time the weights
seem to be for all principle components in one direction and for one of them it takes a large value,
where in comparison reduced χ2 is spread in both directions at large values. This may lead to the
conclusion to focus on the rise and decay time, but in fact the pulse integral and decay time are
the most promising parameters regarding the classification tasks in section 4 & 5.
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4 Signal & background discrimination with machine learn-
ing

In this section machine learning algorithms are used to discriminate signal and background events.
At first, the section 4.1 introduces the used algorithms theoretically, which are used to implement
the classification tasks. The algorithms applied to the data are routines provided by scikit-learn
[21]. The results of each classifier are presented and discussed in 4.2 & 4.3.

4.1 Theory of used algorithms

Machine learning (ML) is a widely used technique for the purpose of analyzing data. In this thesis
it is applied to the best-fit parameters found in section 3 to make a distinction between signal
and background pulses. This means that the ML algorithms used for the discrimination serve the
purpose to do a classification task.
The underlying principle of the used machine learning algorithms is to train the classifier models
with a certain proportion of the best-fit parameters. The used training data is labeled in a way
that the algorithm knows which data belongs to which class of pulses. By that, the model learns
the properties of the different classes, which are to be distinguished at the end. After the training,
the classifier can use its experience for the evaluation of unknown data to make a distinction be-
tween the different classes. This sort of learning principle is called supervised learning. Typically,
80% of the data is used for training and 20% is used to evaluate and test the model after the
learning procedure.

The scikit-learn module provides multiple classifier models. For the discrimination of signal and
background in this thesis two of them are chosen: the Random Forest Classifier and the K-Nearest
Neighbor Classifier.

• Random Forest
Random forests are ensemble methods provided by scikit-learn [21]. It is based on decision
trees. In particular, a random forest is built of a certain number of randomized decision
trees which are uncorrelated [22].

Decision trees are another method based on supervised learning. The algorithm can also
be used for classification tasks. Every decision tree starts with a root node and is built with
consecutive nodes. In each node, the data is split under a certain condition. This procedure
repeats until the node is pure. A node is called pure, when all data in the node is from
one single class. During the learning process of a decision tree it categorizes the parameters
in a way, that the true labels of the samples are equal to each other [21]. Considering the
light and background pulses it would mean that all light pulses and all background pulses
are put into two different groups. From the training the decision tree is built and it consists
of nodes where the decisions are made. In the leafs of a decision tree the outcome of the
classification can be found. The depth of a tree can be chosen in advance. In each node
the algorithm verifies if the input is lower or higher than a specific threshold value, that
is learned by the model during the training process. By doing that, the test data can be
evaluated. To make the clearest decision at a node, decision trees calculate the impurity
[22], for which scikit-learn offers the Gini-impurity or the Shannon-information gain. In this
work the Gini-impurity is used as a criteria for the classification tasks. Consider the number
of outcomes K of the classifier, i.e. signal or background, which is in this case K = 2. The
Gini-impurity is calculated with the following formula [22]:

G =

K∑
k=1

pmk · (1− pmk) (4)

where m is the index for the node and pmk describes the probability for each outcome. By
minimizing the Gini-impurity it is made sure that the decision tree works in an efficient way.
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Consider the training data to be a matrix of n lines and p columns. In this thesis, each
column p describes one parameter obtained from the fit and the number of lines n contain
the parameter values for the different pulses. The first step in the random forest algorithm
is called bootstrapping. Bootstrapping is a technique where from all available lines in the
training data the same amount of lines are picked randomly [22]. It is also possible that
the algorithm picks the same line multiple times. By applying this technique a new sample
of training data is generated. Since the underlying principle of random forests are decision
trees, this new sample are given as an input to decision trees. Another randomly chosen fea-
ture is the use of parameters in the nodes of the decision tree. The process of bootstrapping
and building new decision trees is repeated many times. In particular, the random forest is
developed by repeating this procedure. After the training, the outcome of the test data is
evaluated by the majority of votes in all leafs of the decision trees [22].

• K-Nearest Neighbor
The K-Nearest Neighbour method is similar to the random forest and very common for clas-
sification. In contrast to random forests, it is not a model which is fit to data. In fact, the
algorithm remembers the properties of the training data which are used on the test data.
For that reason, the K-nearest neighbor algorithm is called memory-based [22].

As the training data is labeled, it can be assumed that the data given into the K-nearest
neighbor algorithm is described by N pairs (x1, y1)...(xN , yN ), where N is the total number
of pulses [22]. In general, x contains the data and y is the label belonging to the data, as it is
commonly used in supervised learning. In the context of this thesis, x is multi dimensional
and can not be described by a single column vector. In K-nearest neighbor the label yi of
each xi, where i describes the i-th entry of N -pairs is remembered by the algorithm. To
do a classification the algorithm takes the new data x0 and computes the distance to the
neighbors, where the number of neighbors K can be chosen in advance. In this work the
Euclidian distance is used as a distance measurement [22]:

di = ∥xi − x0∥ =
√
(xi − x0)2 (5)

In particular, this is done for all neighbors K. The distances di are calculated for the unla-
beled test data x0. The label of each distance di is the same as the label of the corresponding
training sample xi. For the classification the distances are sorted by length. The number of
neighbors K decides how many of the closest neighbors are considered for the classification.
The outcome for the test data is the label with the most votes based on the number K of
closest neighbors.
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4.2 Results of random forest

The data used in this algorithm contains the following parameters coming out of the fitting proce-
dure: t0, τrise, τdecay, A, χ2/ndof & I. First the natural logarithm was applied on all parameters.
Since the constant c contains values that are negative, it was not considered as a parameter for
random forests.

Since the results in a machine learning algorithm are desired to be as accurate as possible, it
is necessary to do more preprocessing to optimize the training process and the outcome of the
algorithm as well. Typically the data is split into training and test data, where the training data
contains 80% of the data and the test is done with 20% of the data. In reality it is risky, since
one training data set and one test data set could give a great accuracy in its combination due to
overfitting of the parameters. In fact, the goal is to train a model, by which accurate results can
be obtained with slightly different test data sets. For that, performing a cross validation is an
appropriate approach. There are several techniques to perform a cross validation. In this work
the k-fold cross validation technique is implemented. In fact, the k-fold cross validation method
is enhanced to the so called stratified-k-fold cross validation. Stratifying data is necessary, since
the amount of signal and background data is highly unequal. As already mentioned, the total
data contains 2627 light pulses and 39580 background pulses. Without stratifying, it could be
possible that the test data does not contain any signal data. In that scenario the algorithm would
be missing the goal of the classification in general. The stratifying makes sure that the training
and test data includes the same fraction of signal and background data. The k-fold technique
describes the procedure of splitting the data into k equal pieces in which the training and test is
performed. A basic illustration of stratified-k-fold can be seen in figure 12.

Figure 12: Procedure of K-fold cross validation. First the split of training and test data is done.
The cross validation procedure splits the training data k times where in each split the training
and test data are evaluated. It is common to determine the best hyper parameters from each split
for the final evaluation. Figure from [21].

It is provided by the module scikit-learn and in this thesis the number of folds k equals 5. In
practice, all data is split into 80% as training data and 20% as test data under stratifying. The
training data is then split, where in the split 20% of the whole training data set is used as the
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test data. This is repeated 5 times under the condition that the 20% of test data is changing in
each fold. It is suitable to perform a grid search to find the best hyper parameters for the final
evaluation of the test data.

Before training and evaluating the model in the stratified-k-fold for each group of data, the data
is standardized and PCA is applied on the data. The model is trained and in each fold the accu-
racy of the test data is calculated. The accuracy P is calculated by dividing the number of true
prediction by the total number of predictions. The mean accuracy of the 5 folds is the following:

Pacc−kfold = 99.6413%± 0.0967%

In addition to the stratified-k-fold cross validation a grid search is implemented to find the best
hyper parameters. In figure 12 this is denoted as ”Finding parameters”. The features used for
the random forest are the number of trees, the maximum depth of each tree and the pruning
parameter α. The α is a real-valued parameter that prunes the trees in a way that the cost-
complexity function Rα(T ) of a tree T is minimized [21] [22] (see [22] for deeper mathematical
formulation). Basically, the pruning parameter cuts of leafs from trees in the random forest under
the condition to minimize the cost-complexity and avoids overfitting in that way.
For the grid search, the used features are searched over a certain range that can be chosen in
advance:

• Number of trees: 30− 80 trees with stepsize of 10 trees

• Maximum depth of trees: 5− 15 leafs with stepsize of 1 leaf

• Pruning parameter: 5 · 10−5 − 9 · 10−5 with stepsize 10−5

After doing the grid search, the best hyper parameters found by the search are used for the final
test. As a condition for the determination of the best hyper parameters, the accuracy is used. For
the number of trees the best found value is 30 trees, the depth of the trees is 8 and the pruning
parameter α is 5 · 10−5.

The outcome of classifier tasks can be visualized with help of a so-called confusion matrix, as
it can be seen in figure 13. The y-axis corresponds to the true label of the data where the x-axis
is the predicted label of the test data set. As it can be seen, the majority of the test data was
predicted correctly. The accuracy of the random forest algorithm used on the test data is:

Pacc−test = 99.8826%

This speaks in favor of assuming that the model worked successfully. The discrimination of signal
and background events by using the random forest algorithm provides highly precise predictions.
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Figure 13: Confusion matrix of random forest, in which the classification with its labels is illus-
trated.

Especially, the increase of the accuracy compared to the mean accuracy shows that the grid search
and the choice of the best parameters has a significant influence on the evaluation of the model.

From the entries in the confusion matrix, more properties can be calculated. Interesting is the
False-Positive-Rate (FPR) to see how many wrong predictions are made of signal events. For that
the number of false positives, in this case 7, is divided by the total length of time in day, which
amounts 21 days. Since the amount of data in the test split is 20% of the total data, the 21 days
are multiplied with 0.2. The result is:

FPR = 1.67 d−1 = 1.85 · 10−5Hz

The true positive rate (TPR) or the precision of signal events can be calculated by dividing the
correct predicted signal events by the total signal events in the test data. For this, the result is
the following:

TPR = 97.25%

In order to evaluate the false positive rate FPR, it is necessary to calculate the statistical signifi-
cance. It can be calculated with [23]:

S = 2
(√

ϵdϵansT + nbT −
√
nbT

)
(6)

The factors in equation 6 are explained in the following [23]:

• Detection efficiency ϵd = 0.5

• Efficiency to classify signal events correctly ϵa = TPR = 0.9725

• Signal rate ns = 2 · 10−5Hz [24]

• Observation time T = 517.91h

• Rate of mis-identified background events nb = FPR = 1.85 · 10−5Hz
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With the factors described above, the significance S can be computed:

S = 2.76

Since the expectation of axions converting to photons which can be detected then is at 1 con-
version per day, the FPR seems to be rather high. This means that 1.67 wrong light pulses are
predicted for each day. The acceptance threshold for the statistical significance is chosen to be
S ≥ 5. Therefore the false positive rate is to high. In order to obtain a significance of 5, the false
positive rate must be about ∼ 10−6.

In figure 14 the test data with its prediction is shown. Since the PCA was applied on the data,
the principal components span a six-dimensional space. Therefore the first two components are
shown in the plot. It can be seen that the trained model is capable of discriminating between
signal and background events since the scatter points of each group are close to each other.
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Figure 14: Scatter plot of the first two principle components in which the light and background
events are classified, which are coming out of evaluating the test data after training the random
forest model.
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4.3 Results of K-nearest-neighbour

The procedure for the classification with the K-nearest-neighbor algorithm is the same as for
random forests. First the logarithm is applied on all data. The stratified-k-fold is made and a
grid search for the best hyper parameters is performed. Since the most important feature for
K-nearest-neighbor algorithms are the number of neighbors K, the grid search was focused on
finding the best accuracy for it. The range of the search of the best value for the number of
neighbors is the following:

• Number of neighbors: 5-15 with step size of 1

The cross validation provides the accuracy for each fold again. The mean accuracy calculated
from all folds is the following result:

Pacc−kfold = 99.5370%± 0.1327%

From the cross validation, the highest obtained accuracy is for K = 6. In figure 15 the confusion
matrix is shown. The result speaks for an accurate prediction of signal and background events.
The accuracy of the final test data amounts:

Pacc−test = 99.8174%

Analogously, as it was done for random forests, the FPR and TPR can be calculated for this model
as well:

FPR = 1.19 d−1 = 1.38 · 10−5Hz

TPR = 97.97%
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Figure 15: Confusion matrix for the K-nearest-neighbor model. The classification of the light and
background data with its labels is illustrated.

The K-nearest neighbor algorithm provides a better result for the false positive rate, but in fact
it is still rather high in comparison to the expectation of the axion-photon conversion which could
be detected.
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The significance for the K-nearest neighbor algorithm is:

S = 3.12

Due to the lower false positive rate the statistical significance is slightly higher compared to the
significance obtained by the random forest algorithm. However, it is still lower than 5 and therefore
the model should be rejected.
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Figure 16: Scatter plot of the first two principle components in which the light and background
events are classified, which are coming out of evaluating the test data after training the K-nearest-
neighbor model.

In figure 16 the first two principle components are shown again. It can be seen again, that the
data points in the plot are very close to each other and the K-nearest neighbor algorithm provides
a possibility to discriminate the two different events. Since the plots of random forest and K-
nearest neighbor are built up on the same way and the first two principle components are shown
in each scatter plot, they look similar to each other. In both of the plots in figure 14 & 16 there
are outliers of background data which have a higher value for the first principle component. The
number of outliers in the total data could be higher, since the test data contains only 20% of the
total data. That could be an indicator for different background events as it will be discussed in
the next section.
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5 Investigation of background

This section investigates the intrinsic background recorded with the TES. To analyze the back-
ground another machine learning algorithm is used. The theoretical background of the algorithm
is explained in section 5.1. The section 5.2 presents the results obtained by using the algorithm
on the parameters of the intrinsic background.

5.1 Theory of Gaussian Mixture Model

The Gaussian Mixture Model is a clustering algorithm. It is not a usual classification task where a
model is trained under supervised learning. The clustering algorithm belongs to the unsupervised
learning models, which means that the data given into the algorithm is not labeled with certain
outcomes. The unsupervised algorithm is useful in this case, since it is not known in advance how
many background sources contribute to the background events.

The base of the Gaussian Mixture Models is the multi-dimensional Gaussian distribution, which
is described by the following [22]:

f(x) =

M∑
m=1

αm · Φ(x;µm,Σm) (7)

The function Φ describes the Gaussian density function depending on the data x, the multi-
dimensional µm and the covariance matrix Σm. The multi-dimensional Gaussian density function
can be written in the following way [25]:

Φ(x;µ,Σ) =
1

(2π)n/2|Σ|−1
· exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(8)

Here, the mean has the dimension µ ∈ Rn and the vector x, which contains the data, can be
written as x = (x1, ..., xn). The covariance matrix is defined in the following equation [25]:

Σ = E[xxT ]− µµT (9)

where E[xxT ] is the expectation value of the product. In equation 7 the number M is the total
number of clusters. The factor αm is a weight factor, analogously to the probability and describes
the mixing proportion of the different clusters [22]. Therefore, the mixing proportions for all clus-
ters M sum up to 1.

The fitting procedure of the data to the Gaussian Mixture Model is implemented by the method
of Maximum-Likelihood. In this method the Likelihood function

L(θ) =

N∏
i=1

f(θ, xi) (10)

is maximized, from where the parameter θ can be obtained. In fact, the maximization of the
Likelihood function in Gaussian Mixture models is rather difficult [22]. In particular, using the
logarithm on the Likelihood function provides the Log-Likelihood function which can be written
as the following:

l(θ) = logL(θ) =

N∑
i=1

log f(θ, x) (11)

The summation over the logarithms for each cluster makes the differentiation and therefore the
maximization complicated [22]. To solve this particular problem, the Gaussian Mixture Model
uses an algorithm called the Expectation-Maximization algorithm (EM-algorithm) [22]. Basically,
the EM-algorithm provides different random Gaussian distributions over the data and computes
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for each data point the probability to make a decision in which gaussian distribution the data
point could belong and after this, the parameters are getting optimized to maximize the Likelihood
function [21]. By doing that, the different clusters belonging to the different Gaussian distributions
evolve. A mathematical explanation in detail can be found in [22].

5.2 Background analysis

In addition to the discrimination of signal and background pulses, it is also important to under-
stand where the background originates from. As already explained in section 3.1, the background
data in this thesis contains the intrinsic background which includes radioactive material in the
detector itself or cosmic rays that are depositing energy to the TES. In order to interpret the
background events better, the Gaussian Mixture Model (GMM) is applied to achieve a clustering
of the events. In advance preprocessing is applied to the data. In particular all data points with
a greater reduced χ2 than 6 are not considered. The parameters used for the algorithm are the
same as for the classification in section 4.

In figure 17 the decay time and pulse integral are illustrated after the fit of GMM to the pa-
rameters. Each cluster is represented by a color, and the plus sign marks the mean value of the
clusters found by the algorithm. It can be seen that the data points can be split in sections by
eye. This will be investigated in detail in the following.
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Figure 17: Clusters as a result of the Gaussian Mixture Model. As an example, the decay time
and pulse integral is shown. The mean location of each Gaussian distribution is marked. The
different colors represent the clusters.
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The number of clusters chosen for the algorithm is 3. To get an accurate number of clusters the
’elbow-method’ is a common used technique in clustering algorithms [21]. For that the Akaike
information criterion (AIC) is used, which can be computed with the following formula:

AIC = −2 · l(θ) + 2 · d (12)

where l(θ) is the log-Likelihood function and d is the number of parameters used. The AIC is
computed then for a range of numbers for the clusters and the elbow represents the point in which
the sharp kink is visible. This can be seen in figure 18. Unfortunately, the fit of the data to GMM
does not provide a proper kink, which makes it difficult to chose a certain number of clusters.
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Figure 18: The values of the Akaike information criterion calculated for the number of clusters.

Since the Gaussian Mixture Model is based on the parameters of a Gaussian distribution as means
and covariances, they can be observed in the histograms in figure 8. In particular the histogram
of the decay time τdecay is used to plot Gaussian distributions over the histogram. This can be
seen in figure 19. The histograms and the Gaussian density function are normalized in a way, that
the integral is 1.
The Gaussian distributions for 5 and 6 clusters seem to be arbitrary. By looking at the histograms
for 3 and 4 clusters, they seem quite reasonably since the clusters can be seen in the histograms
as well. But for 5 and 6 clusters it is becoming more difficult to interpret and identify the clusters
by observing the distribution of the decay time.
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Figure 19: The density functions of the Gaussian distributions coming out of the Gaussian Mixture
Model are plotted over the histograms of the decay time. By that, the different clusters can be
identified.

26



To understand the clusters better, it is useful to take a look at the time dependence and the
evolving process of the clusters. Since the AIC plot did not deliver a certain number of clusters
for which the model is the most appropriate, different numbers of clusters are investigated. More
precisely, the numbers of clusters from 4-8 are explored.

The evolving procedure starts with fitting 500 data points to the GMM. These 500 data points
are getting clustered by the algorithm. This is repeated where in the next step 500 + 500 data
points are fitted. In total, this is done until all of the data is included. To interpret the evolving
over the 21 days of observation the time is noted for each step of 500 data points. Some examples
of the evolving process can be seen on the next pages in figure 20, 21 & 22. Unfortunately, the
colors of the clusters do not match in the evolving procedure. The reason is, that the fit of the
GMM labels the clusters automatically. Therefore the colors for all clusters change in each fitting
process. Nevertheless, it can be seen in comparison of the figures 20, 21 & 22 that the big cluster
in the middle at around 120µs appears in the middle of the observation time (see fig. 21). Figure
20 shows the state of the clusters at the beginning of the observations and figure 22 shows the
final state.
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Figure 20: This figure shows the beginning state of the clusters after an observation time around
2 days.
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Evolution of clusters: final state

Figure 21: In this figure the appearance of the new cluster is illustrated. After an observation
time of around 11 days the cluster in the middle can be seen. The plots above present the state
after around 12 days.
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Evolution of clusters: appearance of new cluster

Figure 22: This figure shows the final state of the clusters at an observation time of around 21
days.

30



The beginning state can be seen in figure 20. The data collected over 2 days can be clustered
in 3 − 4 clusters. This amount of data to more clusters seems to be arbitrary, since it can also
be described by a lower number of clusters properly. The event occurred at day 12 is shown in
figure 21. It is difficult to make a statement about the exact origin of this event, but this will
be discussed in the following. With the appearance of the new cluster, which can be seen in
figure 21, the number of clusters needed has to increase to at least 5 − 6, as it can be seen in
figure 21. The final state of the clusters is shown in figure 22, where the shapes of the clusters do
not differ much from figure 21. For that reason, the needed number of clusters should stay at 5−6.

In order to understand the clusters better, the mean timelines are calculated. For this, each
member of every cluster was identified and was traced back to its initial timeline, where the pa-
rameters are coming from. Then the mean was calculated from every entry in the timelines. The
mean timelines are shown in figure 23
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Figure 23: The mean timelines for each cluster are calculated and plotted, after fitting the data
to the Gaussian Mixture Model with different numbers of clusters.

In the figure above it is recognizable that each mean timeline for the clusters has different proper-
ties. Since the data used for the clustering is only the background data, it is quite interesting that
the a few of the mean timelines in the clusters look similar to light pulses. The typical background
pulse that could be expected has a high decay time and could be compared with the blue mean
timeline in figure 23. The red mean timeline in the figure above looks rather like a light pulse.
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It could be assumed that this comes from fluorescence, emitted by the material around the TES.
An approach to explain that in more detail could be to compute the energy deposition to the
TES and compare it to the energy deposition from the used light source. The background energy
deposition seems to be in the same magnitude as the used laser.
The observation of the cluster appearing after 11 days could lead to the idea that the mean time-
lines could differ as well. First, all background data has been split in two halves where the first
half contains the background events until 11 days and the second half the last 10 days of events.
The result can be seen in figure 24.

Figure 24: In this figure the mean timeline of all detected events in the first half of observation
time and second half of observation time are shown.

It can be seen clearly that there is a difference between the two mean timelines in figure 24. In
particular, the decay time differs. For the last 10 days of data the decay time is greater than for
the first 11 days of observations and therefore the pulse integral is higher. However, regarding
the cluster development it is not really useful. The shapes of the two mean pulses are to similar
to each other to make a statement about the properties of the cluster evolving after 11 days of
observation time. With the purpose of analyzing the evolving procedure the methods used for
figure 23 and figure 24 are combined. Instead of looking at the mean timelines of each cluster as
it is done in figure 23, the data is split again exactly as it was done for figure 24. This can be seen
in figure 25 where the plots on the left show the mean timelines of each cluster until 11 days and
the plots on the right after 11 days.

For 3 and 4 clusters coming from the GMM no significant difference in shape is observable. The
only difference is the amplitude. It seems to become lower for the data after 11 days and by that
the pulse integral decreases. By looking at 5 and 6 clusters it can be seen that some clusters are
appearing after 11 days. More precisely, for 5 clusters the clusters number 4 and 5 appear after
11 days and for 6 clusters there are 2 new clusters which appear after 11 days as well: cluster
1 and 6. Due to that observation, one can say as a first statement that the number of clusters
given to the algorithm should be more than 4. By that the analysis of the background events
can be more accurate. As a second point, the fact that some clusters appear after 11 days which
have a different shape leads to the assumption that there has been a significant change in the
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background. This could have happened by electronic noise at the SQUIDs. But it is also possible
that the appearance of the cluster is human made. As an example one could think of electronic
devices and its electromagnetic fields which affect the TES.
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Figure 25: The mean timelines of each cluster achieved by the Gaussian Mixture Model are
presented. The left shows the mean timelines for the clusters generated by the first 11 days of
observation time and the right presents the clusters generated in the last 10 days of observation.
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6 Conclusion and Outlook

In this thesis it can be seen that machine learning provides a solid perspective for the analysis
of data. The classification of signal and background events was done at a rather high accuracy,
but for the purpose of the ALPS II experiment it requires an improvement. The false positive
rate was higher than the expected rate of axions. The statistical significance of both classifiers in
this thesis is too low. However, by tuning the algorithms and optimizing the hyper parameters
the desired significance level could be obtained. Furthermore, machine learning is a big field with
many applications that can be implemented as methods for the analysis. In this work the used
algorithms are quite basic. This can surely be expanded to Deep Learning and therefore neural
networks, which are also used for classification. By that it could be possible to achieve even better
results for the discrimination of signal and background events and also for the significance.

The Gaussian Mixture Model algorithm is an accurate method to analyse the clustering of events.
It can deliver information, which can be used to analyse the background events in detail. With
this information it is possible to prevent mistakes that could be caused by human interference.
Further analysis of the background could provide insights in the environment of the detector and
a characterisation of background events could maybe be in much more detail. An example for
that is radioactive material in the detector which could be identified. In this work no energies of
the background pulses have been calculated or considered, which could be done as a next step and
give an insight of the magnitude in which the background events occur.

Furthermore in this work only the intrinsic background was considered in the analysis of the
background events. To be more accurate with the analysis it is necessary to analyse the extrinsic
background as well, since the extrinsic background includes the intrinsic background. This could
help in order to understand the external influences of the laboratory.
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Springer Berlin Heidelberg, 2010.

[13] Wolfgang Hansen. Lecture notes on solid state physics, July 2021.

[14] Jan Dreyling-Eschweiler. ”A superconducting microcalorimeter for low-flux detection of near-
infrared single photons” - PhD Thesis. 2014.

[15] Noemie Alice Chloe Bastidon. The cryogenic photon detection system for the ALPS II exper-
iment: characterization, optimization and background rejection. PhD thesis, Hamburg U., 1
2017.

[16] Dietmar Drung. High-tc and low-tc dc squid electronics. Superconductor Science and Tech-
nology, 16(12):1320, oct 2003.

[17] Hans Dembinski and Piti Ongmongkolkul et al. scikit-hep/iminuit -
https://doi.org/10.5281/zenodo.3949207. Dec 2020, last seen: 20.11.2022.

[18] Ian T. Jolliffe and Jorge Cadima. Principal component analysis: a review and recent de-
velopments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 374(2065):20150202, 2016.



[19] Wikipedia contributors. Covariance matrix —Wikipedia, the free encyclopedia, 2022. [Online;
accessed 9-December-2022].

[20] Jonathon Shlens. A tutorial on principal component analysis. CoRR, abs/1404.1100, 2014.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[22] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

[23] Manuel Meyer. A first application of machine and deep learning for background rejection
in the ALPS II TES detector, poster presentation at the 17th Patras Workshop on Axions,
WIMPs and WISPs, 8-12 August, 2022, Mainz, Germany.

[24] Rikhav Shah. ”a TES Detector for ALPS II - Characterising a cryogenic, low-background,
low energy single photon detector” - PhD Thesis. 2022.

[25] Chuong B Do. The multivariate gaussian distribution. Section Notes, Lecture on Machine
Learning, CS, 229, 2008.


	Introduction
	Theoretical foundations
	Motivation for extension of the Standard Model
	Axions & axion-like-particles 
	Experiment for the search of ALPs
	Detection system
	Superconductivity
	TES-detector


	Preliminary work on data
	Fitting procedure
	Principal Component Analysis
	Theory
	Principal Component Analysis of parameters


	Signal & background discrimination with machine learning
	Theory of used algorithms
	Results of random forest
	Results of K-nearest-neighbour

	Investigation of background
	Theory of Gaussian Mixture Model
	Background analysis

	Conclusion and Outlook

