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1 Introduction

The Rotary Inverted Pendulum is a highly nonlinear system. A rotary inverted
pendulum system (see Figure 1), has a rotating arm, which is driven by a motor
with a pendulum mounted on its rim. The pendulum moves as an inverted
pendulum in a plane perpendicular to the rotating arm. The controller needs

Figure 1: Rotary Inverted Pendulum

to stabilize two angles namely, θ-the angle of the motor joint and α-the angle
of the pendulum. Now, θ has to be stabilized to be within a particular bound
while α has to be made 180 ◦.
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2 Dynamics of the System

In this section the dynamics of the Pendulum is given. The system parameters
were taken from the simulink model provided.

Table 1: Values used for system model
Parameter Description Value

Jeq Equivalent moment of inertia about motor shaft . 1.23 × 10−4kg-m2

m Mass of the pendulum assembly 0.027kg
r Length of arm pivot to pendulum pivot 0.08260m
Jm Motor shaft moment of inertia 0.00011kg-m2

L Total length of pendulum. 0.191m

Beq Arm viscous damping 0.0015 N−m
rad/s

g gravitational constant 9.81 m/s2

Km Motor back-electromotive force constant 0.02797 V
rad/s

Kt Motor torque constant 0.02797N-m
Rm Motor armature resistance. 3.30 Ω

Using the values of Table(1) following constants were calculated.

a = Jeq + Jm +mr2

b = mLr

c =
4mL2

3
d = mgL

G =
KtKm +BeqRm

Rm


(1)

The nonlinear state equation of the system is given below:

ẋ1 = x2 = α̇

ẋ2 = F1(X) +G1(X)u

ẋ3 = x4 = θ̇

ẋ4 = F2(X) +G2(X)u

(2)

(3)

(4)

(5)
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where F1, F2, G1, G2 are:

F1(X) =
−0.5b2sin(2x1)x2

2 −Gbx4cos(x1) + adsin(x1)

ac− b2cos2x1

G1(X) =
Ktbcos(x1)

Rm(ac− b2cos2x1)

F2(X) =
cF1(X)− dsin(x1)

bcos(x1)

G2(X) =
Ktc

Rm(ac− b2cos2x1)

T =
(u−Kmθ̇)Kt

Rm

(6)

(7)

(8)

(9)

(10)

3 Sliding Mode Controller

The sliding mode controller for the inverted pendulum is designed as described
in [1]. Here two sliding surface are considered for sliding mode control. They
are defined below:

s1 = x2 + λ1x1

s2 = x4 + λ3x3

(11)

(12)

The Lyapunov function is taken as:

V = |s1|+ λ2|s2| (12)

To guarantee the stability of the feedback system, the control signal u is taken
such that

V̇ = −k × sat(V
Φ

)

where saturation function is defined as

sat(
V

Φ
) =

V

Φ
if Φ < |V |

sat(
V

Φ
) = sign(V ) otherwise

(13)

(14)

The final control signal is shown below:

u =
−ksat(V

Φ )− (λ1x2 + F1(X))sign(s1)− λ2(λ3x4 + F2(X))sign(s2)

G1(X)sign(s1) + λ2G2(X)sign(s2)
(14)

4 Result

With this sliding mode controller with two sliding surfaces, there are five con-
stants λ1,λ2,λ3, k, Φ.The values of the constants are given in Table 2

3



Table 2: Values used for modeling
Constant Value

λ1 0.2
λ2 0.9
λ3 0.9
k 20
Φ 0.5

Figure 2: variation of θ and α with initial disturbance α=25◦

The results achieved for the initial value of α being 27 ◦ is shown in Figures(2).
The above figures show that the controller is able to stabilize both θ and α. We
can see the prevailing chattering that is present in our output. The α has a
maximum chattering of 5◦. This controller is able to stablilize the inverted pen-
dulum with an initial α in the range of 27◦. Now we can reduce chattering to
3◦ by changing the constants, but that will reduce the maximum range of α for
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which this controller can stabilize the system.
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