Argennon: A Scalable Cloud Based Smart Contract
Platform Using Argument of Knowledge Systems

aybehrouz

January 2021

Abstract

Argennon is a next generation cloud based blockchain and smart contract platform. The
Argennon blockchain uses a hybrid proof of stake (HPoS) consensus protocol, which
is capable of combining the benefits of a centralized and a decentralized system. In
Argennon, ledger storage and transaction processing are outsourced to the cloud and
normal personal computers or smartphones, with limited hardware capabilities, are able
to validate transactions and actively participate in the Argennon consensus protocol.
This property makes Argennon a truly decentralized and democratic blockchain and one
of the most secure existing platforms.

The Argennon cloud is trustless and publicly verifiable. Computational Integrity
(CI) is achieved by using succinct argument of knowledge systems (STARK/SNARK)
and data integrity is guaranteed by cryptographic accumulators.

The Argennon protocol strongly incentivizes the formation of a permission-less net-
work of Publicly Verifiable Cloud (PVC) servers. A PVC server in Argennon, is a
conventional data server which uses its computational and storage resources to help the
Argennon network process transactions.

Contents

2 The Argennon Smart Contract Execution Environment|

2.9 The ArgC Language| oo
2.9.1 The ArgC Standard Library|.
[2.10 Data Dependency Analysis|,
[2.10.1 Memory Dependency Graph|.
[2.10.2 Memory Spooling|.
2.10.3 Concurrent Counters|.o

[3 The Argennon Prover Machine)

[4 Persistence Layer|

4.1 Storage Pages|

4.2 Publicly Veriiable Database Servers|

4.3 Object Clustering Algorithm|
[5 Networking Layer|

b1 Normal Model e

5.2 Censorship Resilient Mode|.

[6 The Argennon Blockchain|

6.2.3 The Recovery Protocol[.

16.2.4 Estimating Stake Values|

[6.2.5 Analysis| . .
6.3 Applications|. . . .

[6.3.1 The Root Application|

6.3.2 The ARG Application|

6.4 Accounts
6.5 External Requests|

16.5.1 Resource Declaration Object|

6.6 Resource Management|

26
26
26
28
30
30
31
34
40
41
42
42
42
43
43
43
44
46
46
46
47
47

49
49

Chapter 1

Introduction

The most common use for blockchains is in financial applications. This gives a crucial
importance to the security of the consensus protocol used in a blockchain. Unfortu-
nately, many currently used blockchains are vulnerable to a certain type of consensus
attack, known as the bribery attack. In a bribery attack, an adversary tries to corrupt
participants of a protocol by offering them money and seducing them to violate the
protocol.

At the time of writing of this document, the total mining reward for a Bitcoin block
is around $150,000, and the Bitcoin network approximately produces 5 blocks per hour.
If we assume, in decision theoretic terminology, that the mining reward solely defines
the utility functionE] of a Bitcoin miner, one should be able to hire all hashing power of
the Bitcoin network for one hour by spending only $750,000. The situation is not much
different for PoS blockchains, as long as the total stakeE] of the validator set is a relatively
small value. This problem is even more severe in blockchains that use randomly selected
small sets of validators. These small sets usually have low total stake and could be easily
bribed and corrupted. Selecting these random sets by hidden random procedures would
not help, since the validator himself knows he has been selected before casting his vote.

It appears that the only solution to this important vulnerability is to effectively
participate all the stakeholders of the system in the consensus protocol. This large par-
ticipation makes the protocol resilient against bribery or collusion because the adversary
would need to spend unrealistic amounts of money to bribe enough users.

However, for effective participation in the consensus protocol, a validator needs to be
able to detect illegal transactions. Detecting illegal transactions can be done by accessing
the ledger state and executing transactions according to the protocol rules. The ledger
state, even for small blockchains, could be several hundreds of gigabytes, and executing
transactions could easily become costly when a blockchain is acting as a smart contract

'In decision theory, the utility function measures the preference, worth or value of different alternatives
for a decision maker.

2Here by stake, we mean a real number measuring the total interest of a user in the system, and we
are not referring, in particular, to some locked amount of a user’s money that is known as stake in some
PoS protocols.

platform. This computational and storage overhead, in practice, could prevent most of
ordinary users from any type of participation in the consensus protocol of a blockchain.

A fully decentralized blockchain based on the participation of every user looks appeal-
ing, though it is not as perfect as it might seem. The consensus protocol of a blockchain
relies on a network of computers, not humans. Ordinary users use simple and similar
computer systems. That means, they all have similar vulnerabilities and weaknesses
which could be used by an adversary to catastrophically attack the consensus protocol.
For instance, if a malware, probably using a common zero-day vulnerability, has the
ability to infect a large portion of normal personal computers, an adversary can use it to
take control of the majority of participants in the consensus protocol and compromise
the security of the blockchain.

Securing a computer system against cyberattacks needs planning ahead and access
to engineering resources. Special software and hardware, like custom-built operating
systems and isolated specialized hardware are required. This is not something a normal
user can afford. Powerful centralized entities, having large financial and technical re-
sources, could build systems that are resilient against sophisticated cyberattacks. In this
regard, we have to admit, a centralized system is arguably superior to a decentralizedﬁ
system.

To overcome these difficulties, Argennonlﬂ uses a Hybrid Proof of Stake consensus
protocol, which is capable of combining the benefits of a centralized and a decentralized
system. A small committee of delegates is democratically elected by users via the Argen-
non Decentralized Autonomous Governance system (ADAGs). This committee usuallyﬂ
is elected for a one-year term, has five members, and is responsible for minting new
blocks of the Argennon blockchain. Each minted block gets certified by all members
of the delegates committee and after that it must get approved by its corresponding
validator assembly.

Validator assemblies are very large sets of validators including at least three percent
of the maximum possible stake of the Argennon network. Every validator assembly has
an index between 0 and m — 1, and is responsible for validating block number n, if n
modulo m equals the index of the assembly. A block is approved if it takes approval
votes from at least 2/3 of the total stake of its validator assembly.

In case the main committee fails to generate new blocks or behaves maliciously, a
special recovery protocol is initiated by validators. This recovery protocol can recover
the functionality of the Argennon blockchain as long as more than 2/3 of the total stake
of every validator assembly is controlled by honest users and any network partition
resolves after a finite amount of time. The recovery protocol uses two main emergency
procedures to recover the functionality of the Argennon blockchain: Emergency Forking
and Emergency Agreement protocol.

In Argennon, a block is considered final after its next block gets certified by both
the delegates committee and its validator assembly. The Argennon protocol ensures that

3Note that decentralized and distributed are two different concepts.
“The classical pronunciation should be used:/ar'gen.non/
®The election term and the number of committee members can be changed by the ADAGs.

as long as more than 2/3 of the total stake of validators is controlled by honest users, the
probability of discarding a final block is near zero even if all the delegates are malicious.

Each block of the Argennon blockchain contains a set of Computational Integrity (CI)
statements and a commitment to the final ledger state of the block (i.e. the ledger state
after executing all transactions of the block). The CI set defines how the final state of the
block can be reached from the state of its previous block via a set of intermediate state
transitions. Each individual CI statement defines an ordered list of external requests’|
and determines the state before and after executing those requests.

More formally, each CI statement has the form § := 7(S,R), and states that S is
the commitment of the next state after executing an ordered list of external requests
with commitment R on a state which has commitment S. Commitments to states are
produced by a cryptographic accumulator. 7 is a transition function and is known to
both the validator and the prover.

Validators carﬂ receive succinct cryptographic proofs (STARK/SNARK) of these CI
statements from the Argennon cloud and validate blocks without storing the ledger state
or performing costly computation.

Verifying a succinct proof can be exponentially faster than replaying the computation.
Moreover, verifications of different CI statements are independent of each other and can
be done in parallel. As a result, a validator can use multiple cores for verifying CI
statements of a single block and different validator assemblies can simultaneously and
independently verify different blocks. In addition, proof generation of different CI
statements similarly can be done in parallel. However, for parallel proof generation, the
state transition needs to be known in advance. That’s why in Argennon, delegates do
not try to generate proofs and focus all their computational power on executing external
requests and generating the state transition as fast as possible.

On the blockchain, Argennon applications (i.e smart contracts) are stored in a high
level text based language, called the Argennon Standard Application Representation
(ASAR). The ASAR is intended for preserving the high level information of the appli-
cation logic to facilitate platform specific compiler optimization at a host machine. This
enables delegates to compile and optimize Argennon applications for their specific hard-
ware platforms and execute applications efficiently, ensuring the state transition can be
found as fast as possible.

In addition to the ASAR, an Argennon application is stored on the blockchain in the
Argennon Prover Machine (APM) code. This code is used by validators for CI proof
verifications. The Argennon Prover Machine is a virtual machine tailored for efficient
verification of AscEE computations by argument systems. The APM has a minimal
RISC architecture with a very compact instruction set. This ensures that its transition
function has an efficient circuit complexity. However, the Argennon protocol does not
enforce the usage of the APM. Validators and PVC servers can use any argument system
with any arithmetization, and if required, the ASAR of an application can be used for
generating the appropriate arithmetization instead of the APM.

SExternal requests in Argennon are similar to transactions in older blockchains.
"Using the Argennon cloud is optional for a validator.

Independence of CI statements is useful, but is not enough for having a truly scalable
blockchain. To increase parallelism, the Argennon protocol enforces all external requests
to pre-declare their memory access locations. That would enable a block proposelﬁ to
use Data Dependency Analysisﬂ (DDA) to indicate independent sets of external requests
(i.e. transactions) and use those sets for parallel processing. More importantly, these sets
can be used for generating CI statements that are defined on the same initial state
and their proof can be generated independently without the need to calculate the state
transition in advance.

Centralized block generation brings some interesting features to the Argennon plat-
form, such as flexible and lower fees, off chain fee payment, optimistic instant transaction
confirmation, and front running protection. However, it also increases the possibility of
transaction censorship. In Argennon, this problem is addressed by a special High Priority
Request (HPR) protocol.

Using Succinct Argument of Knowledge systems makes the main functionalities of an
Argennon validator light enough to be implemented as a smart contract. By deploying a
validator contract on another platform, Argennon could use more established blockchains
as an extra layer of security, specially during the bootstrapping phase, when ARG is not
well distributed yet. In addition, this contract will facilitate trustless bridging of assets
from that platform to the Argennon blockchain. To reduce execution fee, only roll-ups
of the state transition can be validated by the contract.

The Argennon protocol strongly incentivizes the formation of a permission-less
network of Publicly Verifiable Cloud (PVC) servers. To do so, the Argennon protocol
conducts repetitive automatic lotteries between PVC servers. A PVC server can increase
its chance of winning by (i) generating proofs for more CI statements, (ii) storing all
parts of the ledger state and providing proofs of storage.

A PVC server in Argennon, is a conventional data server which uses its computa-
tional and storage resources to help the Argennon network process transactions. This
encourages the development of conventional networking, storage and compute hardware,
which can benefit all areas of information technology. This contrasts with the approach
of some older blockchains that incentivized the development of a totally useless technol-
ogy of hash calculation.

8In Argennon, delegates are the only block proposers.
9See Section

Chapter 2

The Argennon Smart Contract
Execution Environment

2.1 Introduction

The Argennon Smart Contract Execution Environment (AscEE) is an abstract high level
execution environment for executing Argennon smarts contracts a.k.a Argennon applica-
tions in an efficient and isolated environment. An Argennon application essentially is an
HTTP server whose state is kept in the Argennon blockchain and its logic is described
using an Argennon Standard Application Representation (ASAR).

An Argennon Standard Application Representation is a programming language for
describing Argennon applications, optimized for the architecture and properties of the
Argennon platform. This text based representation is low level enough to enable easy
compilation from any high level programming language and is high level enough to
preserve the high level information of the application logic and facilitate platform specific
compiler optimization at a host machine. In this regard, the ASAR can be considered
as an Intermediate Representation (IR).

The state of an Argennon application is stored in byte addressable finite arrays of
memory called heap chunks. An application may have several heap chunks with different
sizes, and can remove or resize its heap chunks or allocate new chunks. Every chunk
belongs to exactly one application and can only be modified by its owner. Besides
heap chunks, every application has a limited amount of non-persistent local memory for
storing temporary data.

The AscEE executes the requests contained in each block of the Argennon blockchain
in a three-step procedure. The first step is the preprocessing step. In this step, the
required data for executing requests are retrieved and verified and the helper data struc-
tures for next steps are constructed. This step is designed in a way that can be done fully
in parallel for each request without any risk of data races. The second step is the Data
Dependency Analysis (DDA) step. In this step by analyzing data dependency between
requests, the AscEE determines requests that can be run in parallel and requests that
need to be run sequentially. This information is represented using an ezrecution DAG

and in the final step, the requests are executed using this data structure.

2.2 Execution Sessions

The Argennon Smart Contract Execution Environment can be seen as a machine for
executing Argennon applications to fulfill external HTTP requestﬂ produce their HT'TP
responses and update related heap chunks. The execution of requests can be considered
sequentia]ﬂ and each request has a separate execution session. An execution session is
a separate session of executing application’s code in order to fulfill an external HTTP
request. This external request is the initiator of the execution session.

The state of an execution session will be destroyed at the end of the session and only
the state of heap chunks is preserved. If a session fails and does not complete normally,
it will not have any effects on any heap chunks.

During an execution session an application can make internal HTTP requests to
other applications. These requests will not start a new execution session and will be
executed within the current session. In AscEE making an internal HT'TP request to an
application is similar to a function invocation, and for that reason, we also refer to them
as application calls.

2.3 Memory

Every Argennon application has two types of memory: local memory and heap. Local
memory is not persistent and is destroyed when the application call ends. Heap, on the
other hand, is persistent and can be used for persisting data between application calls.
Local memory is used for storing local variables and is not directly addressable. Heap
is addressable and provides low level direct access. Both local memory and heap are
limited, but the limit is not specified by the AscEE. If an application tries to use too
much memory, that may cause the execution session to end abruptly. In that case, the
execution session will not have any effects on the state of heap.

2.3.1 Heap Chunks

The AscEE heap is split into chunks. Each heap chunk is a continuous finite array of
bytes, has a unique identifier, and is byte addressable. An application may have several
heap chunks with different sizes and can remove or resize its chunks or allocate new ones.
Every chunk belongs to exactly one application. Only the owner application can modify
a chunk but there is no restrictions for reading a chunklﬂ

!External requests are requests that are not made by other Argennon applications.

2 Actually requests may be executed in parallel but by performing data dependency analysis the result
is guaranteed to be identical with the sequential execution of requests.

3The reason behind this type of access control design is the fact that smart contract code is usually
immutable. That means if a smart contract does not implement a getter mechanism for some parts of
its internal data, this functionality can never be added later, and despite the internal data is publicly
available, there will be no way for other smart contracts to use this data on-chain.

When an application allocates a new heap chunk, the identifier of the new chunk
is not generated by the AscEE. Instead, the application can choose an identifier itself,
provided the new identifier has a correct format. This is an important feature of the
AscEE heap which enables applications to use the AscEE heap as a map data structureﬂ
Since the chunkID is a prefix code, any application has its own identifier space, and an
application can easily find unique identifiers for its chunks. (See Section

During an execution session every heap chunk has an access-type which may disallow
certain operations during that session. This access-type is declared by the initiator
request of the execution session for every chunk:

e check_only: only allows check operations. These operations query the persistence
status of a memory location.

e read_only: only allows read and check operations.
e writable: allows reading and writing.

e additive: only allows additive operations. By additive, we mean an addition-like
operator without overflow checking which is associative and commutative. Note
that the content of the chunk cannot be read.

Chunk Resizing

At the start of executing requests of a block, a validator can consider two values for
every heap chunk, the size: chunkSize and a size upper bound: sizeUpperBound. The
value of chunkSize can be determined uniquely at the start of every execution session,
and it may be updated during the session by the owner application. On the other
hand, the value of sizeUpperBound can be determined uniquely at the start of block
validation and is proposed by the block proposer for each block. This value is calculated
based on resizing values declared by external requests (i.e. transactions) that want to
perform chunk resizing and needs to be an upper bound of all the declared resizing
values, indicating an upper bound of chunkSize during the execution of the requests of
a block.

The address space of a chunk starts from zero and only offsets lower than sizeUpperBound
are valid. Trying to access any offset higher than sizeUpperBound will always cause the
execution session to end abruptly. The value of sizeUpperBound is always greater than
chunkSize and there is no way for an application to query sizeUpperBound. As a result,
in the view of an application, accessing offsets higher than chunkSize results in undefined
behaviour, while the behaviour is well-defined in the view of a validator. This enables
validators to determine the validity of an offset at the start of the block validation in a
preprocessing phase without actually executing requests, while sizeUpperBound can be
determined in a simple parallelized algorithm.

The value of chunkSize, can be modified during an execution session. However,
the new values of size can only be increasing or decreasing. More precisely, if a request

4also called a dictionary.

declares that it wants to expand (shrink) a chunk, it can only increase (decrease) the
value of chunkSize and any specified value during the execution session, needs to be
greater (smaller) than the previous value of chunkSize. Any request that wants to
expand (shrink) a chunk needs to specify a max size (min size). The value of chunkSize
can not be set higher (lower) than this value.

The value of chunkSize at the end of an execution session will determine if a memory
location at an offset is persistent or not: Offsets lower than the chunk size are persistent,
and higher offsets are not. Non-persistent locations will be re-initialized with zero at the
start of every execution session.

Usually an application should not have any assumptions about the content of memory
locations that are outside the chunk. While these locations are zero initialized at the
start of every execution session, multiple invocations of an application may occur in a
single execution session, and if one of them modifies a location outside the chunk, the
changes can be seen by next invocations.

While an application can use chunkSize to determine if an offset is persistent or
not, that is not considered a good practice. Reading chunkSize decreases transaction
parallelization, and should be avoided. Instead, applications should use a built-in AscEE
function for checking the persistence status of memory addresses.

An application may load any chunk with a valid prefix identifier even if that chunk
does not exist. For a non-existent chunk the value of chunkSize is always zero.

2.4 Identifiers

In Argennon a unique identifier is assigned to every application, heap chunk and account.
Consequently, three distinct identifier types exist: appID, accountID, and chunkID. All
these identifiers are prefiz codes, and hence can be represented by prefix treesﬂ

Argennon has four primitive prefix trees: applications, accounts, local and varUint.
All these trees are in base 256, with the maximum height of 8.

An Argennon identifier may be simple or compound. A simple identifier is generated
using a single tree, while a compound identifier is generated by concatenating prefix
codes generated by two or more trees:

e appID is a prefix code built by the applications prefix tree. An appID cannot be
0x0.

e accountID is a prefix code built by the accounts prefix tree. An accountID cannot
be 0x0 or 0x1.

e chunkID is a composite prefix code built by concatenating an applicationID to
an accountID to a prefix code made by the local prefix tree:

chunkID = (applicationID|accountID|<local-prefix-code>) .

All Argennon prefix trees have an equal branching factor ﬂﬂ and we can represent

5Also called tries.
SA typical choice for 3 is 28.

10

Algorithm 1: Finding a prefixed identifier

input : A sequence of n digits in base 5: dids...d,
A prefix tree: < AD, A@) AG) ... >

output: Valid identifier prefix of the sequence.

for : =1 to n do
if (0.didy...d;)5 < AY) then
‘ return dids...d;
end
end
return NIL

an Argennon prefix tree as a sequence of fractional numbers in base 3:
(A(l),A(Z),A(3),...) 7

where A% = (0.ayaz . ..a;)5, and we have A < A+,

One important property of prefix identifiers is that while they have variable and
unlimited length, they are uniquely extractable from any sequence. Assume that we
have a string of digits in base 5, we know that the sequence starts with an Argennon
identifier, but we do not know the length of that identifier. Algorithm [I] can be used
to extract the prefixed identifier uniquely. Also, we can apply this algorithm multiple
times to extract a composite identifier, for example chunkID, from a sequence.

When we have a prefixed identifier, and we want to know if a sequence of digits is
marked by that identifier, we use Algorithm [2| to match the prefixed identifier with the
start of the sequence. The matching can be done with only three comparisons, while
invalid identifiers can be detected and will not match any sequence.

In Argennon the shorter prefix codes are assigned to more active accounts and ap-
plications which tend to own more data objects in the system. The prefix trees are
designed by analyzing empirical data to make sure the number of leaves in each level is
chosen appropriately.

2.5 Request Attachments

The attachment of a request is a list of request identifiers of the current block that are
attached to the request. That means, for validating this request a validator first needs
to inject the digest of attachments into its HI'TP request text. By doing so, the called
application will have access to the digest of attachments in a secure way, while it is
ensured that the attached requests are included in the current block.

The main usage of this feature is for fee payment. A request that wants to pay the
fees for a number of requests, declares those requests as its attachments. For paying fees

Tt’s possible to have a; = 0. For example, AW = (0.2000)10 is correct.

11

Algorithm 2: Matching a prefixed identifier

input : A prefixed identifier in base § with n digits: id = a1as...a,
A sequence of digits in base §: didads . . .
A prefix tree: < 0, AD, A AG) ... >

output: TU RFE if and only if the identifier is valid and the sequence starts with
the identifier.

if (0.a1...a,)3 = (0.d;...dy)s then
if A(n_l) < (0.(11(12 R an)g < A(n) then
‘ return TRUFE
end

end
return FALSE

the payer signs the digest of requests for which he wants to pay fees. After injecting the
digest of those request by validators, that signature can be validated by the application
that handles fee payment, and it is guaranteed that the attached requests are actually
included in the current block.

2.6 Authorization

In blockchain applications, we usually need to authorize certain operations. For example,
for sending an asset from a user to another user, we need to make sure that the sender
has authorized that operation.

The AscEE uses Authenticated Message Passing for authorizing operations. In this
method, every execution session has a set of authenticated messages, and those messages
are explicitly passed in requests to applications for authorizing operations. These mes-
sages act exactly like digital signatures and applications can ensure that they are issued
by their claimed issuer accounts. The only difference is that the process of message au-
thentication is performed by the AscEE internally and an application does not explicitly
verify cryptographic signatures.

Each execution session has a list of authenticated messages. Each authenticated
message has an index which will be used for passing the message to an application as a
request parameter. The AscEE uses cryptographic signatures to authenticate messages
for user accounts. The signatures are validated during the preprocessing step in parallel,
and any type of cryptographic signature scheme can be used.

Also, applications can use built-in functions of the AscEE to generate authenticated
messages in run-time. This enables an application to authorize operations for another
application even if it is not calling that application directly.

In addition to authenticated messages, the AscEE provides a set of cryptographic
functions for validating signatures and calculating cryptographic entities. By using these
functions and passing cryptographic signatures as parameters to methods, a programmer,

12

having users’ public keys, can implement the required logic for authorizing operations.
Authorizing operations by Authenticated Message Passing and explicit signatures
eliminates the need for approval mechanisms or call back patterns in ArgennonF_;]

2.7 Reentrancy Protection

The AscEE provides optional low level reentrancy protection by providing low level
entrance locks. When an application acquires an entrance lock it cannot acquire that
lock again and trying to do so will result in a revert. The entrance lock of an application
will be released when the application explicitly releases its lock or when the call that
has acquired that lock completes.

The AscEE reentrancy protection mechanism is optional. An application can allow
reentrancy, it can protect only certain areas of its code, or can completely disallow
reentrancy.

2.8 Deferred Calls

2.9 The ArgC Language

This section is outdated...

2.9.1 The ArgC Standard Library

In Argennon, some applications (smart contracts) are updatable. The ArgC Standard Li-
brary is an updatable smart contract which can be updated by the Argennon governance
system. This means that bugs or security vulnerabilities in the ArgC Standard Library
could be quickly patched and applications could benefit from bugfixes and improvements
of the ArgC Standard Library even if they are non-updatable. Many important and use-
ful functionalities, such as fungible and non-fungible assets, access control mechanisms,
and general purpose DAOs are implemented in the ArgC Standard Library.

All Argennon standards, for instance ARC standard series, which defines standards
regarding transferable assets, are defined based on how a contract should use the ArgC
standard library. As a result, Argennon standards are different from conventional
blockchain standards. Argennon standards define some type of standard logic and be-
haviour for a smart contract, not only a set of method signatures. This enables users
to expect certain type of behaviour from a contract which complies with an Argennon
standard.

8The AscEE has no instructions for issuing cryptographic signatures.

13

2.10 Data Dependency Analysis

2.10.1 Memory Dependency Graph

Every block of the Argennon blockchain contains a list of transactions. This list is an
ordered list and the effect of its contained transactions must be applied to the AscEE
state sequentially as they appear in the ordered listﬂ

The fact that block transactions constitute a sequential list, does not imply they can
not be executed and applied to the AscEE state concurrently. Many transactions are ac-
tually independent and the order of their execution does not matter. These transactions
can be safely validated in parallel by validators.

A transaction can change the AscEE state by modifying either the code area or the
AscEE heap. In Argennon, all transactions declare the list of memory locations they want
to read or write. This will enable us to determine the independent sets of transactions
which can be executed in parallel. To do so, we define the memory dependency graph
Gy as follows:

e (54 is an undirected graph.
e Every vertex in (G4 corresponds to a transaction and vice versa.

e Vertices u and v are adjacent in G4 if and only if u has a memory location L in its
writing list and v has L in either its writing list or its reading list.

If we consider a proper vertex coloring of G4, every color class will give us an inde-
pendent set of transactions which can be executed concurrently. To achieve the highest
parallelization, we need to color G4y with minimum number of colors. Thus, the chro-
matic number of the memory dependency graph shows how good a transaction set could
be run concurrently.

Graph coloring is computationally NP-hard. However, in our use case we don’t need
to necessarily find an optimal solution. An approximate greedy algorithm will perform
well enough in most circumstances.

After constructing the memory dependency graph, we can use it to construct the
execution DAG of transactions. The execution DAG of transaction set T is a directed
acyclic graph G = (Ve, E.) which has the ezecution invariance property:

e Every vertex in V, corresponds to a transaction in 7" and vice versa.

e Executing the transactions of T in any order that respects G will result in the
same AscEE state.

— An ordering of transactions of T respects G, if for every directed edge (u,v) €
FE, the transaction u comes before the transaction v in the ordering.

9This ordering is solely chosen by the block proposer, and users should not have any assumptions
about the ordering of transactions in a block.

14

Having the execution DAG of a set of transactions, using Algorithm [3] we can apply
the transaction set to the AscEE state concurrently, using multiple processor, while we
can be sure that the resulted AscEE state will always be the same no matter how many
processor we have used.

Algorithm 3: Executing DAG transactions

Data: The execution dag G, = (V, E) of transaction set T
Result: The state after applying T with any ordering respecting G,

R + the set of all vertices of V with in degree 0
while V # & do
wait until a new free processor is available
if the execution of a transaction was finished then
remove the vertex of the finished transaction v; from G,
for each vertex u € Adj[vs] do

if u has zero in degree then

R.+ R.Uu

end

end

end
if R. # @ then

‘ remove a vertex from R, and assign it to a processor
end

end

By replacing every undirected edge of a memory dependency graph with a directed
edge in such a way that the resulted graph has no cycles, we will obtain a valid execu-
tion DAG. Thus, from a memory dependency graph different execution DAGs can be
constructed with different levels of parallelization ability.

If we assume that we have unlimited number of processors and all transactions take
equal time for executing, it can be shown that by providing a minimal graph coloring to
Algorithm [4] as input, the resulted DAG will be optimal, in the sense that it results in
the minimum overall execution time.

The block proposer is responsible for proposing an efficient execution DAG alongside
his proposed block. This execution DAG will determine the ordering of block transac-
tions and help validators to validate transactions in parallel. Since with better paral-
lelization a block can contain more transactions, a proposer is incentivized enough to
find a good execution DAG for transactions.

2.10.2 Memory Spooling

When two transactions are dependant and they are connected with an edge (u,v) in the
execution DAG, the transaction u needs to be run before the transaction v. However, if v
does not read any memory locations that u modifies, we can run » and v in parallel. We

15

Algorithm 4: Constructing an execution DAG

input : The memory dependency graph G4 = (Vy, Ey) of transaction set T
A proper coloring of Gy
output: An execution dag G, = (V,, E,) for the transaction set T’

Ve Vy
E.+— o
define a total order on colors of Gy
for each edge {u,v} € E4 do
if color|u] < color[v] then
‘ E. < E. U (u,v)
else
‘ E. + E.U (v,u)
end
end

just need to make sure u does not see any changes v is making in AscEE memory. This
can be done by appropriate versioning of the memory locations which is shared between
u and v. We call this method memory spooling. After enabling memory spooling between
two transactions the edge connecting them can be safely removed from the execution
DAG.

2.10.3 Concurrent Counters

We know that in Argennon every transaction needs to transfer its proposed fee to the
feeSink accounts first. This essentially makes every transaction a reader and a writer
of the memory locations which store the balance record of the feeSink accounts. As a
result, all transactions in Argennon will be dependant and parallelism will be completely
impossible. Actually, any account that is highly active, for example the account of an
exchange or a payment processor, could become a concurrency bottleneck in our system
which makes all transactions interacting with them dependant.

This problem can be easily solved by using a concurrent counter for storing the
balance record of this type of accounts. A concurrent counter is a data structure which
improves concurrency by using multiple memory locations for storing a single counter.
The value of the concurrent counter is equal to the sum of its sub counters and it can
be incremented or decremented by incrementing/decrementing any of the sub counters.
This way, a concurrent counter trades concurrency with memory usage.

Algorithm [5|implements a concurrent counter which returns an error when the value
of the counter becomes negative.

It should be noted that in a blockchain application we don’t have concurrent threads
and therefore we don’t need atomic functions. For usage in a smart contract, the atomic
functions of this pseudocode can be implemented like normal functions.

Concurrent counter data structure is a part of the ArgC standard library, and any

16

Algorithm 5: Concurrent counter

Function GetValue (Counter)

s« 0

Lock.Acquire()

for i <+ 0 to Counter.size — 1 do
s < s + Counter.cell[i]

end

Lock.Release()

return s

Function Increment (Counter, value, seed)
1 < seed mod Counter.size
AtomicIncrement (Counter.cell[i], value)

Function Decrement (Counter, value, seed, attempt)
if attempt = Counter.size then
restore Counter by adding back the subtracted value
return Error
end
1 < seed mod Counter.size
i < (i + attempt) mod Counter.size
if Counter.cell[i] > value then
‘ AtomicDecrement (Counter.cell[i], value)
else
r < value — Counter.cell[i]
AtomicSet (Counter.cell[i], 0)
Decrement (Counter, 7, seed, attempt + 1)

end

17

smart contract can use this data structure for storing the balance record of highly active
accounts.

18

Chapter 3

The Argennon Prover Machine

3.1 Introduction

The Argennon Prover Machine (APM) is a virtual machine tailored for efficient verifi-
cation of AscEE computations by argument systems. The APM has a minimal RISC
architecture with a very compact instruction set. This ensures that its transition func-
tion has an efficient circuit complexity. Here by circuit complexity we mean the size of
the smallest circuit that, given two adjacent states in the trace, verifies that the tran-
sition between the two states indeed respects the APM specification. The APM is a
stack machine and has a random access key-value memory. The word size of the APM
is 64-bit.

The Argennon Prover Machine gets as its primary input a vector (Cg, Cp, Cr) where
Cpy is a commitment to the AscEE heap, Cp is a commitment to the AscEE program
area and Cpg is a commitment to an ordered list of requests. The APM then outputs
the updated commitments to the AscEE heap and program area and a final accept flag
which indicates if the execution has ended successfully or not: (Cpg/, Cps,accept).

Producing the required outputs from these inputs is not computationally feasible,
so the APM receives an auxiliary input vector (H,np, P,7p, R,mr,h), where mx is a
proof that proves X can be opened w.r.t Cx and h is a hint that helps the APM make
nondeterministic choices correctly.

The APM consists of four main modules:

e Preprocessor: This module prepares the input data for other modules. It verifies
that H, P, R are valid w.r.t the provided commitments. It also processes the input
data and ensures it has the correct format and is valid. For example, it verifies the
signatures of authenticated messages or checks that the proposed chunk bounds
are valid.

e Normal Execution Unit (NEU): This module executes the requests whose ex-
ecution completes normally. It outputs the updated heap chunks and an accepty
flag. More formally it evaluates H' accepty = P(H, Rgooq), where H' is the up-
dated heap chunks and accept 5 flag will be set to false, If an application terminates

19

abruptly.

e Failure Repeater Unit (FRU): This module evaluates accepty = P(H', Rpaq),
where Rp.q is those requests whose execution terminates abnormally, H' is the
output of the NEU and acceptr flag is set to false if a request execution completes
normally.

The FRU has a higher circuit complexity than the NEU. Unlike the NEU, the FRU
is able to restore the initial state of the heap when an application fails. It also
calculates the execution cost of every instruction and if the application’s execution
cost exceeds its predefined cap, the FRU will terminate the application.

e Postprocessor: This module is responsible for calculating the updated commit-
ments (Cgr, Cpr) and the final accept flag. Installing new applications or updat-
ing the code of existing application is performed by this module.

The configuration of the APM can be considered as a tuple:

(S, Lnev, LFrU, TNEU, TFRU) »

where S is the size of the internal stack, Lngu, Lrryu are the amount of local memory
of the normal execution and failure repeater units respectively, and Tngu, TFrU are the
number of cycles that the NEU and FRU runs for. It should be noted that the APM
does not use a different local memory for each application call.

20

3.2 Simplifying Complex Components

Assume that we have a computing machine M, that accepts an input ¢n and produces
an output out. We want to calculate the output that results from applying M on an
initial input for n times. Note that M may or may not be state-less:

M, (iny1, outy, outs, . .., out,—1) = out,

We assume that M is composed of a number of subcomponents. Every subcomponent
is like a computing machine and accepts an input and produces an output. Like M,
subcomponents are not necessarily state-less. When M receives an input, based on the
input, a number of subcomponents gets activated, they generate their output from the
input, and then their outputs are combined to produce the output of M.

To build a verifying circuit for this computation, we need to construct a circuit
for M and then repeat this circuit n times to compute out, at the final step of the
computationﬂ

Assume that M contains a subcomponent that has a considerable arithmetic circuit
complexity. Even if this subcomponent is active in only a few computation steps, We
will still have to repeat its circuit in every step of the computation. This will increase the
complexity of proof generation considerably. Fortunately, there is a workaround. Instead
of repeating the circuit of the subcomponent, we can use a simpler cryptographic hash
calculator circuit during the computation. At the end, we use a final verification circuit
to verify the functionality of the component.

Every subcomponent accepts an input ¢n and produces an output out. If the compo-
nent gets activated for k steps, we can denote it by a deterministic function that maps
an input sequence with length k, to an output sequence with the same lengthﬂ

f((iny,ing, ... ing)) = (outy, outs, ..., outy)

In every step of the computation, we replace this component with a cryptographic hash
calculator which receives in and out as its inputs and gets activated in the same com-
putation steps that the component must be active. When the hash calculator is active,
it hashes its inputs, so at the end of the computation it has computed a digest:

h(iny,outy,ing,outy, ... inyg, outy) = digest;

where k is the number of steps that our component must have been active.
Now the prover needs to prove that he knows values iny, outy, ins, outs, . . ., ing, out
such that they are correctly produced by the component:

f((iny, ... ing)) = (outy, ..., outy)

1Since M is not state-less, we may have to feed inputs from steps, say, i — 1,4 — 2,... to step i.
2Note that subcomponents are not active in every step of the computation, so in; is not indicating
the input of the component at the ith step of the computation.

21

and their digest is also correct:
h(iny,outy, ..., ing, outy) = digest

where functions f and h, are both known to the prover and verifier.

The circuit for verifying this assessment usually is straight forward. When the com-
putation involves a large number of steps and the component is complex, this approach
can reduce the cost of proof generation considerably. Memory components are good
candidates for being simplified by this method.

Interestingly, this approach can also reduce the number of computation steps. When
we use a hash calculator circuit instead of our component, out will be available in the
same computation step that in is available. This will eliminate one computation step
that is needed for generating out by the component’s circuit.

22

Chapter 4

Persistence Layer

The Argennon Smart Contract Execution Environment has two persistent memory ar-
eas: program area, and heap. Program area stores the ASAR and the APM code of
applicationsﬂ and heap stores heap chunks. Both of these data elements can be con-
sidered as continuous arrays of bytes. Throughout this chapter, we shall call these data
elements chunks.

4.1 Storage Pages

In the AscEE persistence layer, similar objects are clustered together and constitute a
bigger data element which we call a pageE] A page is an ordered list of an arbitrary
number of chunks. Every page has a native chunk that has the same identifier as the
page. In addition to the native chunk, a page can host any number of migrant chunks.
A page of the AscEE storage should consist of chunks that have very similar access
patterns. Ideally, when a page is needed for validating a block, almost all of its chunks
should be needed for either reading or writing. We prefer that the chunks are needed for
the same access type. In other words, the chunks of a page should be chosen in a way
that for validating a block, we need to either read all of them or modifyfﬂ all of them.

When a page contains migrants, its native chunk can not be migrated. If the page
does not have any migrants, its native chunk can be migrated and after that the page
will be converted into a special <moved> page. When a non-native chunk is migrated to
another page, it will be simply removed from the page.

4.2 Publicly Verifiable Database Servers

Pages of the AscEE storage are persisted using dynamic universal accumulators. Argen-
non has two dynamic accumulators: program database, which stores the AscEE program

also it stores applications’ constants.

2We avoid calling them clusters, because usually a cluster refers to a set. AscEE chunk clusters are
not sets. They are ordered lists, like a page containing an ordered list of words or sentences.

3and probably read.

23

area, and heap database, which stores the AscEE heap. The commitment of these ac-
cumulators are included in every block of the Argennon blockchain. In the Argennon
cloud, nodes that store these accumulators are called Publicly Verifiable Database (PV-
DB) serversﬁ

We consider the following properties for a PV-DB:

e The PV-DB contains a mapping from a set of keys to a set of values.
e Every state of the database has a commitment C.

e The PV-DB has a method (D, 7) = get(z), where x is a key and D is the associated
data with x, and 7 is a proof.

e A user having C' and 7 can verify that D is really associated with x, and D is not
altered. Consequently, a user who can obtain C' from a trusted source does not
need to trust the PV-DB.

e Having m and C' a user can compute the commitment C’ for the database in which
D’ is associated with z instead of D.

The commitments of the AscEE cryptographic accumulators are affected by the way
chunks are clustered in pages. Therefore, the Argennon clustering algorithm has to be
a part of the consensus protocol.

Every block of the Argennon blockchain contains a set of clustering directives. These
directives can only modify pages that were used for validating the block, and can include
directives for moving a chunk from one page to another or directives specifying which
pages will contain newly created chunks. These directives are applied at the end of block
validation, after executing requests.

A Dblock proposer is allowed to obtain clustering directives from any third party
sourceﬂ This will not affect Argennon security, since the integrity of a database can not
be altered by clustering directives. Those directives can only affect the performance of
the Argennon network, and directives of a single block can not affect the performance
considerably.

4.3 Object Clustering Algorithm

not yet written...

4Usually PVC servers are also PV-DB servers.
®We can say the AscEE clustering algorithm is essentially off-chain.

24

Chapter 5

Networking Layer

5.1 Normal Mode

Unlike conventional blockchains, Argennon does not use a P2P network architecture.
Instead, it uses a client-server topology, based on a permission-less network of PVC
servers. PVC servers are a crucial part of the Argennon ecosystem, and they form the
backbone of the Argennon networking layer.

not yet written...

5.2 Censorship Resilient Mode

not yet written...

25

Chapter 6

The Argennon Blockchain

6.1 Blocks

The Argennon blockchain is a sequence of blocks. Every block represents an ordered
list of external requests, intended to be executed by the Argennon Smart Contract
Execution Environment (AscEE). The first block of the blockchain, the genesis block, is
a spacial block that fully describes the initial state of the AscEE and every block of the
Argennon blockchain thus corresponds to a unique AscEE state which can be calculated
deterministically from the genesis block.

A block of the Argennon blockchain contains the following information:

H Block H
height: h

commitment to the program database: Cp
commitment to the heap database: Cg
commitment to the ordered list of requests: Cp
clustering directives: dir

certificate of the validator assembly for
the block with height h — k: v-cert,_y

previous block hash

6.1.1 Block Certificate

An Argennon block certificate is an aggregate signature of some predefined subset of
accounts. This predefined subset is called the certificate assembly or committee and
their signature ensures that the certified block is conditionally valid given the validity
of some previous block.

26

Because it is not usually possible to collect the signatures of all members of a certifi-
cate committee, an Argennon block certificate essentially is an Accountable-Subgroup
Multi-signature (ASM).

The Argennon network uses a parallel algorithm to produce block certificates and
therefore the signature scheme needs to satisfy certain properties:

e Associative aggregation: the signature aggregation operator is associative.

e Efficient cancellation: if S is a predefined and fixed set of users and U is an
arbitrary subset of S, verifying an aggregate signature of S — U can be done in
time O(T + |U]), if the aggregate signature of S can be verified in O(T).

An example for a signature scheme that supports all these properties is the BLS
signature scheme.
BLS Signatures

The BLS signature scheme operates in a prime order group and supports simple threshold
signature generation, threshold key generation, and signature aggregation. To review,
the scheme uses the following ingredients:

e An efficiently computable non-degenerate pairing e : Go x Gy — G in groups
Go, Gy and Gr of prime order q. We let gg and g; be generators of Gy and Gy
respectively.

e A hash function Hy : M — Gg, where M is the message space. The hash function
will be treated as a random oracle.

The BLS signature scheme is defined as follows:

e KeyGen(): choose a random « from Z, and set h < g € G;. output pk := (h)
and sk = ().

e Sign(sk,m): output o + Hy(m)* € Gy. The signature o is a single group element.

e Verify(pk,m,o): if e(g1,0) = e(pk, Hg(m)) then output “accept”, otherwise
output “reject”.

Given triples (pk;, m;, o;) for i = 1,...,n, anyone can aggregate the signatures
o1,...,0n € Gg into a short convincing aggregate signature o by computing
o010, €G- (6.1)

Verifying an aggregate signature o € Gg is done by checking that

e(g1,0) = e(pky, Ho(ma)) - e(pk,, Ho(my)) - (6.2)

27

When all the messages are the same (m = m; = ... = my,), the verification relation (6.2)
reduces to a simpler test that requires only two pairings:

e(g91,0) = e(pk1 -+ pkn, Ho(m)) - (6.3)

We call apk = pky - - - pk,, the aggregate public key.

To defend against rogue public key attacks, Argennon uses Prove Knowledge of the
Secret Key (KOSK) scheme. As we explained in Section when an account is created
its public keys need to be registered in the ARG smart contract. Therefore, the KOSK
scheme can be easily implemented in Argennon.

Argennon uses a simple ASM scheme based on BLS aggregate signatures. Argennon
block certificates constitute an ordered sequence based on the order of blocks they certify.
If we show the i-th certiﬁcateﬂ of committee C with cert;, and the set of signers with
S;, then the block certificate cert; can be considered as a tuple:

cert; = (o, C —S;) , (6.4)

where o; is the aggregate signature issued by .5;.
The aggregate public key of the certificate can be calculated from:

apk; = apkcapkgl g, (6.5)

where apk 4 shows the aggregate public key of all accounts in A.
Alternately, we can use apk,_; to calculate the aggregate public key:

apk; = apk;_japkg, _g. | apkgil_l_si . (6.6)

When an Argennon account is created, both its pk and pk~" is registered in the ARG
smart contract, so the inverse of any aggregate public key can be easily computedﬂ

6.1.2 Block Validation

To validate a block three main conditions need to be validated: (i) commitments to the
program and heap database are resulted from applying the request list and clustering
directives of the block to the previous AscEE state, (ii) previous block is valid and has
height h — 1, (iil) v-cert,_y, is valid.

We can denote condition (i) by a Computational Integrity (CI) statement:

Cph, CHh = T(CPh_u CHh—l’ CRh, di?“h> N (6.7)

where 7 is a transition function that encodes the AscEE computation logic and the
necessary preprocessing and postprocessing stepsﬂ

Inote that the i-th certificate is not necessarily the certificate of the i-th block.
2since the group operator of a cyclic group is commutative, we have (ab)™* = a " 'b™ 1.
3including opening and updating the state commitments

28

Verifying statement can be done by either replaying the AscEE computation
and performing the required preprocessing and postprocessing steps, or alternatively by
verifying a computational integrity prooﬁ To use computational integrity proofs the
verifier and prover need to share an arithmetized representation of 7 and use it for both
proof generation and verification.

The Argennon Prover Machine provides a convenient and universal way for arith-
metization of any Argennon application. Moreover, since a compiled version of every
Argennon application to the APM code is stored in the AscEE program area, validators
that use the APM do not need to locally store the APM code of applications.

The Argennon protocol does not enforce the usage of the APM. Validators and PVC
servers can use any argument system with any arithmetization, and if required, the
ASAR of an application can be used for generating the appropriate arithmetization
instead of the APM arithmetization.

For validating the previous block, instead of directly validating the contents of the
block, a validator only verifies the block certificates. Each block of the Argennon
blockchain has two certificates: the certificate of validators, v-cert, and the certificate of
delegates, d-cert. Verifying d-certy_1 is straightforward but verifying v-cert,_; is more
challenging. v-cert,_; is an aggregate signature and validating it requires accessing the
staking database at block h — 1 — m, where m is the total number of validator assem-
blies, to obtain public keys and stake values. Again, in addition to direct verification, a
validator can use computational integrity proofs, received from the Argennon cloud, to
perform cheaper verification of this certificate.

The block at height h includes a certificate of validators for block h — k which is used
to record the participation of validators and facilitate reward calculation. This certificate
needs to be validated based on stake and public key database at block h—k—m, and can
be cheaply done by using computational proofs, obtained from the Argennon cloud. Here
k is the maximum allowed length of the unvalidated part of the Argennon blockchain.
(See Section

This type of block validation only validates the transition from block h—1 to block h,
and the block is valid only if its previous block is valid. We call this type of block vali-
dation conditional block validation, since the validity of the current block is conditioned
on the validity of the previous block.

Interestingly, conditional block validation of multiple blocks can be done in parallel.
Moreover, the required proofs can be generated independently and by different PVC
servers. As we will see in Section this property plays an important role in the
Argennon consensus protocol.

In summary, a validator validates a block by verifying three computational integrity
proofs: 7, which proves the transition is correct, 7j,_1; which proves the previous block
has a correct certificate of validators and 7j,_; which proves the validity of the included
certificate of validators of block h — k. It should be noted that these proofs are not part
of the block contents and therefore the exact argument system used for generating them

4More accurately we should call it an argument instead of a proof. However, using the word argument
can confuse a reader who is not familiar with the subject, so we avoid it here.

29

is not specified by the Argennon protocol.

6.2 Consensus

The credibility of a block of the Argennon blockchain is determined by the certificates it
receives from different sets of users, known as committees. There are two primary types
of certificate committee in Argennon: the committee of delegates and the assembly of
validators. Argennon has one committee of delegates and m assemblies of validators.

The committee of delegates issues a certificate for every block of the Argennon
blockchain, and each assembly of validators issues a certificate every m blocks. A valida-
tor assembly will certify a block only if it has already been certified by the committee of
delegates. Every assembly of validators has an index between 0 and m — 1, and it issues
a certificate for block with height h, if A modulo m equals the assembly index.

Every block of the Argennon blockchain needs a certificate from both the committee
of delegates and the assembly of validators. A block is considered final after its next
block receives both of its certificates. In Argennon as long as more than 2/3 of the
total stake of validators is controlled by honest users, the probability of discarding a
final block is zero even if all the delegates are malicious.

Having multiple assemblies gives validators some “resting” time and allows a valida-
tor to be out of sync with the network for some time, without losing the opportunity to
vote for any blocks.

In addition to primary committees, Argennon could have several community driven
committees. Certificates of these committees are not required for block finality, but they
could be used by members of validator assemblies to better decide about the validity of
a block.

When an anomaly is detected in the consensus mechanism, the recovery protocol is
initiated by validators. The recovery protocol is designed to be resilient to many types
of attacks in order to be able to restore the normal functionality of the system.

6.2.1 The Committee of Delegates

The committee of delegates is a small committee of trusted delegates, elected by Ar-
gennon users through the Argennon Decentralized Autonomous Governance system
(ADAGEEI). At the start of the Argennon main-net, this committee will be elected for
one-year terms and will have five members. Later, this can be changed by the ADAGs
in a procedure described in Section [7.1

The committee of delegates is responsible for creating new blocks of the Argennon
blockchain, and issues a certificate for every block of the Argennon blockchain. The
certificate needs to be signed by all the committee members in order to be considered
valid.

Besides the main committee, a reserve committee of delegates consisting of three
members is elected by validators either through the ADAGs or by the emergency agree-

Spronounced /er-dagz/.

30

ment during the recovery protocol. In case the main committee fails to generate new
blocks or behaves maliciously, the task of block generation will be assigned to the reserve
committee until the main committee comes back online or a new committee is elected
through the ADAGs.

A block certified only by the committee of delegates is relatively credible, but it is
not considered final until its next block receives the certificate of its validator assembly.
Since a block at height h contains the validators certificate of the block at height h — k,
the unvalidated part of the Argennon blockchain can not be longer than k blocks.

The committee of delegates may use any type of agreement protocol to reach con-
sensus on the next block. Usually the delegates are large organizations, and they can
communicate with each other efficiently using their reliable networking infrastructure.
This mostly eliminates the complications of their consensus protocol and any protocol
could have a good performance in practice. Usually a very simple and fast protocol can
do the job: one of the members is randomly chosen as the proposer, and other members
vote “yes” or “no” on the proposed block. For better performance, the delegates should
run their agreement protocol for reaching consensus about small batches of transactions
in their mem-pools, instead of the whole block.

If one of the delegates loses its network connectivity, no new blocks can be generated
until the reserve committee gets activated. For this reason, the delegates should invest
on different types of communication infrastructure, to make sure they will never lose
connectivity to each other and to the Argennon network.

6.2.2 The Assemblies of Validators

The Argennon protocol calculates a stake value for every account, which is an esti-
mate of a user’s stake in the system, and is measured in ARGs. Any account whose
stake value is higher than minValidatorStake threshold is considered a wvalidator. The
minValidatorStake threshold is determined by the ADAGs, but it can never be higher
than 1000 ARG.

Every AssemblyLifeTime number of blocks, randomly m assemblies are selected
from validators, in a way that the total stakes of different assemblies are almost equal,
and every account is a member of at least one assemblyﬁ

The value of m is determined by the ADAGs, but it can never be higher than 32.
This way, it is guaranteed that on average, any block of the Argennon blockchain is
validated by at least 2% of the total ARG supply.

Signing the Block Certificate

The delegates can generate blocks very fast. Consequently, the Argennon blockchain
always has an unvalidated part which contains the blocks that have a certificate from
the committee of delegates but have not yet received a certificate from the validators.
As we mentioned before, the block with height h needs a certificate from the assembly
of validators with index A modulo m. To decide about signing the certificate of a block

5An account can be a member of multiple assemblies.

31

which already has a certificate from the delegates, a validator checks the conditional
validity of the block (See Section , and if the block is valid, he issues an “accept”
signature. If the block is invalid, he initiates the recovery protocol. The validator will
broadcast the signature only after he sees the certificate of the validator assembly of
the previous block. Some validators may also require seeing a certificate from some
community based committees. An honest validator never signs a certificate for two
different blocks with the same height.

Consequently, in Argennon the block validation by assemblies is performed in parallel,
and validators do not wait for seeing the validators certificate of the previous block to
start block validation. On the other hand, the block certificates are published and
broadcast sequentially. A validator does not publish his vote, if the certificate of the
validator assembly of the previous block has not been published yet. This ensures that
an invalid fork made by malicious delegates can not receive any valid certificates from
any validator assemblies.

Signature Aggregation

The validators certificate of a block is an aggregate signature of members of the cor-
responding assembly of validators. Validator assemblies could include millions of users
and calculating their aggregate signature requires an efficient distributed algorithm.

In Argennon, signature aggregation is mostly performed by PVC servers. To dis-
tribute the aggregation workload between different servers, every validator assembly is
divided into pre-determined groups, and each PVC server is responsible for signature
aggregation of one group. To make sure that there is enough redundancy, the total
number of groups should be less than the number of PVC servers and each group should
be assigned to multiple PVC servers.

Any member of a group knows all the servers that are responsible for signature ag-
gregation of his group. When a member signs a block certificate, he sends his signature
to all the severs that aggregate the signatures of his group. These PVC servers aggregate
the signatures they receive and then send the aggregated signature to the delegates. Fur-
thermore, the delegates aggregate these signatures to produce the final block certificate
and then broadcast it to the PVC servers network.

The role of the delegates in the signature aggregation algorithm is limited. The
important part of the work is done by PVC servers and slightly modified versions of this
algorithm can perform signature aggregation even if all the delegates are malicious, as
long as there are enough honest PVC servers.

Activity Status

Every validator has a status which can be either online or offline. This status is stored
in the ARG application and is part of the staking database. A validator can change his
status to offline through an external request (transaction) to the ARG application.
In this request he exactly specifies for how long he wants to be offline and after this
period his status will be automatically considered online again. When a validator sets

32

his status to offline for some period of time, he will receive a small portion of the
maximum possible reward that a validator can receive in that period of time by actively
participating in the consensus protocol. This ensures that a validator has an incentive
for changing his status to offline rather than simply becoming inactive.

The staking database of a validator assembly can be updated only by the assembly
itself. That means, an external request which changes the status of a validator can be
included only in a block that is validated by the assembly of that validator.

There is no transaction type for changing the status of a validator to online. A
malicious committee of delegates would be able to censor this type of transactions and
prevent honest validators from coming back online. For this reason the status of a
validator is considered online automatically when the specified period of time for being
offline ends.

A Dblock certificate issued by some members of a validators assembly is considered
valid, if according to the staking database of the previous block certified by the same
assembly, we have{|

e The total stake of online members of the assembly is higher than minOnlineStake
fraction of the total stake of the assembly. This threshold can be changed by the
ADAGs, but it can never be lower than 2/3.

e All signers of the certificate have online status.

e The sum of stake values of the certificate signers is higher than 3/4 of the total
stake of the assembly members that have online status.

If according to the staking database of block h, the total online stake of the assembly
with index h modulo m is lower than minOnlineStake threshold, the block h + m
can never be certified by validators. To prevent the blockchain from halting in such
situations, the validator assembly with index h modulo m will get merged into the
assembly that has the most online stake at block h. This will decrease the number of
assemblies to m — 1, and the indices of assemblies will be updated appropriately.

The merging will continue recursively until the online stake of all remaining assem-
blies is higher than minOnlineStake fraction. If eventually all assemblies get merged
together and only one assembly remains, the condition for validity of block certificates
changes: A certificate of validators will be considered valid if the sum of stakes of the
certificate signers is higher than 2/3 of the total stake of validators and online/offline
status of validators becomes ineffective. This prevents the system from going into tempo-
rary deadlocks and the community will always be able to preserve the liveliness without
waiting for the expiration of offline status of some accounts.

Analysis

We analyze the minimum amount of stake that is required for conducting different types
of attacks against the Argennon blockchain. In these attack scenarios, we assume that a

"If we calculate the stake values based on the previous block, a malicious assembly can select the
validators of the next block by manipulating the staking database.

33

single validator assembly is corrupted, all the delegates are malicious and the adversary
is able to fully control message transmission between nodes and partition the network
arbitrarily.

We denote the total stake of the corrupted validator assembly with s and the total
stake of malicious users of the assembly with m. We use d to denote the stake of users
of the assembly who have offline status and h to denote the stake of users of the
assembly who have online status and do not participate in the protocolﬁ We assume
that a certificate is accepted if it is signed by more than r fraction of the total online
stake of the assembly. We obtain the minimum required malicious stake for three types
of attacks:

e Certifying an invalid block:
m > r(s—d)

e Forking the blockchain by double voting and network partitioning:

m>(2r—1)(s—d)+h

e Halting the blockchain by refusing to vote:

m>(1—-r)(s—d)—h

In Argennon we have r = % and d < %s. Consequently, in Argennon to confirm
an invalid block, the adversary needs at least % of the total stake of an assembly. For
forking the blockchain, interestingly m is minimized when h = 0, thus the minimum
required stake is %s. For halting the blockchain, an adversary requires a stake higher
than %s — h.

In particular, we are interested in comparing the Argennon protocol with a simple
protocol that accepts a certificate if it is signed by more than % of the total stake of the
assembly and there is no online/offline status for users.

We observe that the minimum required stake for halting the blockchain in the Ar-
gennon protocol will be higher, as long as the following inequality holds:

1 1
Z(s—d)—h>§s—(d+h)-

So if d > %s, the minimum required stake for halting the blockchain is higher in the
Argennon protocol and the value of h does not matter.

6.2.3 The Recovery Protocol

The recovery protocol is a resilient protocol designed for recovering the Argennon blockchain
from critical situations. In the terminology of the CAP theorem, the recovery protocol
is designed to choose consistency over availability, and is not a protocol supposed to be

8d stands for deactivated and h stands for hidden.

34

executed occasionally. Ideally this protocol should never be used during the lifetime of
the Argennon blockchain.

We assume that an adversary is able to fully control message transmission between
users and is able to partition the network arbitrarily for finite periods of time. Under
these circumstances, the recovery protocol can recover the functionality of the Argennon
blockchain as long as more than 2/3 of the total stake of every validator assembly is
controlled by honest users. The recovery protocol uses two main emergency procedures
to recover the functionality of the Argennon blockchain: the emergency forking and
emergency agreement protocol.

Emergency Forking

The reserve committee of delegates is able to fork the Argennon blockchain, if it receives
a valid fork request from validators. A valid fork request is an unexpired request signed
by more than half of the total stake of validators.

A fork created by the reserve committee needs to be confirmed by validators and can
never discard more than one block which has received a certificate from validators.

For forking at block h, the reserve committee of delegates makes a special fork block
which only contains a valid fork request, and its parent is the block h. The height of
the fork block therefore is h + 1, and the fork block needs a valid certificate from the
assembly of validators with index h 4+ 1 modulo m. When a fork block gets certified by
validators, its parent is also confirmed and will become a part of the blockchain, even if
it does not have a certificate of validators.

For signing a fork block at height h + 1, a validator ensures that the following con-
ditions hold:

the fork block is signed by the reserve committee.
e the fork block contains a valid fork request.
e the parent block of the fork block is issued by the previous committee.

e the parent block of the fork block is certified by validators, or the parent block
is conditionally valid and there is a fork block with height A which is certified by
validators, or the parent block is conditionally valid and the parent block of the
parent has a validators certificate.

e the validator has not already signed a certificate for a fork or normal block at
height h + 1.

The parent of the fork block does not necessarily need a validators certificate. This
enables the reserve committee to recover the liveliness of the blockchain in a situation
where a malicious committee has generated multiple blocks at the same height. Notice
that the block before the parent always needs a validators certificate.

A validator always chooses a valid fork block over a block of the main chain and may
sign different fork blocks with different heights. However, as we mentioned before, an

35

honest validator never signs a certificate for two different blocks with the same
height. Consequently, a validator never signs two fork blocks at the same height, and
if he has already signed the fork block at height A + 1, he will not sign the block h + 1
of the main chain and vice versa.

The reserve committee of delegates is allowed to generate multiple fork blocks with
different heights, as long as the parent block is generated by the previous committee.
When the reserve committee generates multiple fork blocks at different heights, the next
normal block must be always added after the fork block with the highest height.

The reserve committee of delegates should try to perform the emergency forking in
such a way that valid blocks do not get discarded, including blocks that have not been
certified by the validators yet.

For forking the blockchain, the reserve committee uses a straightforward algorithm:
let h, be the height of the last block with a validator certificate and h,, + k be the height
of the last valid block that the reserve committee has seen. For forking the main chain,
the reserve committee generates all fork blocks with heights h, +1,hy+2,... hy +Ek+ 1.
The parent of the fork block with height h, + ¢ will be the block h, + i — 1 of the
main chain. The reserve committee will wait until the fork block with height A, + k + 1
receives a certificate from validators and then will continue the normal chain after that
fork block. Hence, the fork block with height h, + k 4+ 1 will be the parent of the first
normal block generated by the reserve committee.

Analysis When the reserve committee gets activated, the main committee might have
been malicious, so any number of blocks could exist at each height. However, at each
height at max one block can have a validators certificate. Moreover, if at some height
there are not any blocks with a validators certificate, then no blocks at higher heights
can have a validators certificate either, because validators do not sign the certificate of
a normal block if its parent does not have a certificate.

If hpmax denotes the height of the highest block with a validators certificate, as long
as more than 2/3 stake of every assembly of validators is honest, for a fork block with
height hy we haveﬂ

o if hy < hmax, the fork block can not receive a certificate from validators.

e if hy = hpax + 1, when there is no main block with height hf, the fork block can
always receive a certificate from validators, otherwise the fork block may receive
a certificate or not. It is possible that the validators of the assembly with index
hy modulo m get divided between the fork block and a block at height hy of the
main chain.

o if hy = hpax + 2, the fork block can always receive a certificate from validators, if
network partitions do not last forever.

o if hy > hpax + 3, the fork block can always receive a certificate from validators
only if a fork block at height hy — 1 gets certified by validators.

9This fork block forks the blockchain at height hy — 1.

36

The reserve committee must be able to create at least one fork block which gets a
certificate from validators. The reserve committee may not know the value of hmaxm
However, if the reserve committee creates all fork blocks with heights hqg, hg+1, ho+2, . ..
for some hg < hmax + 2, then every fork block with height h > hpax + 2 will surely get
a certificate. Obviously h, < hmax, so if the main chain contains a block with height
hmax + 1 the reserve committee should be able to eventually find this block and generate
the fork block with height hmax + 2, which will surely get a certificate. If there is no
block in the main chain with height hp.x + 1, then the fork block with height Apax + 1
can get a certificate. This way, the reserve committee will always be able to continue
the chain after the certified fork block with the highest height.

If two fork blocks at heights hg and hg + k& are generated by the reserve committee
and both blocks receive a certified from validators, we must have hg > hyax, and there
must exist fork blocks with heights hg+1,..., hg+k—1 which are certified by validators.
That means if a malicious reserve committee generates a normal block after any fork
block with height less than hg + k, that normal block can not receive a certificate from
validators.

If a malicious reserve committee creates two fork blocks with the same height, either
only one of them can get a certificate, which makes the other one ineffective or validators
get split between blocks and the chain will halt. In this case the emergency agreement
protocol will start.

During the emergency forking, no more than one block with a validators certificate
can be discarded. A fork block with height h + 1 can not receive a certificate without a
certified normal parent block with height h or h — 1, or another certified fork block with
height h.

One certified block may be discarded when the malicious main committee of delegates
has forked the main chain by producing blocks b1 and by with heights h; the block b1 has
received a validators certificate and validators have not certified any blocks at height
h + 1. The reserve committee adds a fork block whose parent is block b2, and that
will essentially discard b;. Notice that if a block at height A + 1 had been certified by
validators the fork block after by could not have received a certificate from validators.

Emergency Agreement

The emergency agreement protocol is a resilient protocol for deciding between a set
of proposals when the committee of delegates is not available or can not be trusted.
For initiating the protocol, a validator signs a message containing the subject of the
agreement and a start time.

A validator enters the agreement protocol if he receives a request that is signed by
more than half of the total stake of the validators and its start time has not passed.
The validator calculates the stake values based on the staking database of the last final
block in his blockchain without considering the online/offline status of validators.

The emergency agreement protocol is essentially an election procedure and involves

10This could happen when the network is partitioned.

37

human interaction. Users need to determine who they want to vote for by interacting
with the software. As long as users can not agree upon electing a candidate, the voting
process has to continue.

The voting process is done in rounds and each round usually lasts for approximately
A units of time. A is selected by the ADAGs and could be several hours. All votes and
messages are tagged in a way that a vote cast in a round can not be used in another
round. Votes are weighted based on users’ stakes and online/offline status of users is
not considered. When we say 2/3 votes, we mean the sum of the stake of voters is 2/3
of the total stake.

A user executes the following procedure in each agreement session:

Voting Phase in Round r:

e if the user has locked his vote on a proposal p, he votes p, otherwise he votes a
single desired proposal.

e when clock = A, if the user has seen more than 2/3 votes for a proposal p, he votes
p-win, otherwise he votes draw. A user votes either p-win or draw, not both.

e if the user sees more than 2/3 draw votes, he goes to the round r + 1 and sets
clock = 0.

e if the user sees more than 2/3 p-lock votes, he goes to the round r+1, sets clock = 0
and locks his vote on p.

e when clock = kX for k = 2,3, ..., if the user has seen more than 2/3 votes for a
proposal p he votes p-lock.

Termination:

e as soon as the user sees more than 2/3 p-win votes for p, he selects p and ends the
agreement protocol. The p-win votes can be for any round, but all must belong to
the same round.

We assume that users have clocks with the same speed, and A > §, where ¢ is
the maximum clock difference between users. We also assume that more than 2/3 of
the total stake of the system is controlled by honest users, and network partitions are
resolved after a finite amount of time. With these assumptions it can be shown that the
emergency recovery protocol has the following important properties:

e 1no two users will end the agreement protocol with two different proposals as the
result of the agreement.

e if honest users can agree upon some proposal value, the agreement protocol will
converge to that value after a finite number of rounds.

38

A honest user during a round only votes a single proposal. This ensures that as long
as more than 2/3 of the total stake of the system is controlled by honest users, no two
different proposals can get more than 2/3 votes. As a result, we can not have 2/3 votes
for both p-lock and p'-lock if p # p’. Also, a honest user either votes p-win or draw,
so only one of p-win or draw can get more than 2/3 votes and when a user sees more
than 2/3 p-win votes, he can be sure that draw has less than 2/3 votes. Therefore, for
going to the next round we will need 2/3 p-lock votes and all honest users will lock their
vote on p when they start the next round. As a result only p can be confirmed by the
agreement protocol.

Note that when a single honest user terminates the protocol, he can convince all
other honest users to terminate their protocol by sending those 2/3 p-win votes that he
has seen.

If honest users can agree upon some proposal value, the agreement protocol will
converge to that value. When a round ends and we go to the next round, all honest
users will lock their vote on the same proposal or no one will lock his vote, so an
agreement could be reached in next rounds. We will never get stuck in a round. If at
some round draw gets less than 2/3 votes, that means at least ¢ honest stake has voted
p—winH That means there must be more than 2/3 votes for some proposal p which
convinced the € honest stake to vote p-win. Therefore, after waiting long enough, all the
honest stake will see those votes and will eventually vote for p-lock, and p-lock will get
more than 2/3 votes.

Initiating the Recovery Protocol

When the validator software does not receive any blocks for blockTimeOut amount of
time, or when it observes an evidence which proves the delegates are malicious, after
prompting the user and after his confirmation, it will initiate the recovery protocol.

To do so, first the validator software activates the censorship resilient mode of the
networking module, then it checks the validity of the blocks that do not have a validators
certificate and determines the last valid block of its version of the blockchain.

In the next step, it will sign and broadcast an emergency fork request message,
alongside some useful metadata such as the last valid block of its blockchain and the
evidence of delegates’ misbehaviourE Before starting the recovery protocol, validators
try to synchronize their blockchains as much as possible.

If the reserve committee of delegates is already active, or if the validator software
sees a valid fork request signed by more than half of the total online stake of the val-
idators, but does not receive the fork block after a certain amount of time, after user
confirmation, it will sign and broadcast a request for emergency agreement on a new
reserve committee. The agreement on new delegates usually needs user interaction and
is not a fully automatic process.

11t is possible that the e stake has not voted yet. However based on the finite time partitioning
assumption, at some point that honest stake should get connected to the network and vote.
2this metadata is not a part of the fork request.

39

The evidence which proves a committee of delegates is malicious is an invalid block
that is signed by at least one delegate:

e a block that is not conditionally valid

e two different blocks with the same parent

6.2.4 Estimating Stake Values

In a proof of stake system the influence of a user in the consensus protocol should be
proportional to the amount of stake the user has in the system. Conventionally in these
systems, a user’s stake is considered to be equal with the amount of native system tokens,
he has “staked” in the system. A user stakes his tokens by locking them in his account
or a separate staking account for some period of time. During this time, he will not be
able to transfer his tokens.

Unfortunately, there is a subtle problem with this approach. It is not clear in a real
world economic system how much of the main currency of the system can be locked and
kept out of the circulation indefinitely. It seems that this amount for currencies like US
dollar, is quite low comparing to the total market cap of the currency. This means that
for a real world currency this type of staking mechanism will result in putting the fate
of the system in the hands of the owners of a small fraction of the total supply.

To mitigate this problem, Argennon uses a hybrid approach for estimating the stake
of a user. Every stakingDuration blocks, which is called a staking period, Argennon
calculates a trust value for each user.

The user’s stake at time step ¢, is estimated based on the user’s trust value and his
ARG balance:

Sut = min(By g, Trusty,) , (6.8)

where:
e Sy is the stake of user u at time step ¢.
e B, is the ARG balance of user v at time step t.
e T'rust,y is an estimated trust value for user u at staking period k.

Argennon users can lock their ARG tokens in their account for any period of time.
During this time a user will not be able to transfer his tokens and there is no way for
cancelling a lock. The trust value of a user is calculated based on the amount of his
locked tokens and the Exponential Moving Average (EMA) of his ARG balance:

Trustyy = Ly g + Mug, (6.9)
where

e L, is the amount of locked tokens of user u, whose release time is after the end
of the staking period k + 1.

40

e My, is the Exponential Moving Average (EMA) of the ARG balance of user u at
time step tg. tx is the start time of the staking period k.

In Argennon a user who held ARGs and participated in the consensus for a long time
is more trusted than a user with a higher balance whose balance has increased recently.
An attacker who has obtained a large amount of ARGs, also needs to hold them for a
long period of time before being able to attack the system.

For calculating the EMA of a user’s balance at time step ¢, we can use the following
recursive formula:

Mu,t = (1 - a)Mu,t—l + aBu,t = Mu,t—l + a(Bu,t - Mu,t—l))

where the coefficient « is a constant smoothing factor between 0 and 1, which represents
the degree of weighting decrease. A higher « discounts older observations faster.

Usually an account balance will not change in every time step, and we can use
older values of EMA for calculating M, ;: (In the following equations the u subscript is
dropped for simplicity)

My=(1-a) " My +[1-(1-0a) "B,
where:
B=By1=Bjo=--=B -

We know that when |nz| < 1 we can use the binomial approximation (1 +)" ~ 1 + nzx.
So, we can further simplify this formula:

M; = My, + (t—k‘)Oz(B—Mk) .

For choosing the value of o we can consider the number of time steps that the trust
value of a user needs for reaching a specified fraction of his account balance. We know
that for large n and |z| < 1 we have (14 2)" = ™, so by letting M, , =0andn =t —k

we can write:
In (1 — Moir
B

o= (6.10)

The value of « for a desired configuration can be calculated by this equation. For
instance, we could calculate the a for a relatively good configuration in which M, =
0.8B and n equals to the number of time steps of 10 years.

6.2.5 Analysis

not yet written...

41

6.3 Applications

An Argennon application or smart contract is an HT'TP server which is represented by an
Argennon Standard Application Representation (ASAR) and whose state is stored in the
Argennon blockchain. Each Argennon application is identified by a unique application
identifier.

An application identifier, applicationID, is a unique prefix code generated by the
applications prefix tree. (See Section An application identifier can be considered as
the address of an application and has the following standard symbolic representation:

<application-id> ::= <decimal-prefix-code>
<decimal-prefix-code> ::= <dec-num>"."<decimal-prefix-code> | <dec-num>

where <dec-num> is a normal decimal number between 0 and 255.

For example 21.255.37, 0, 11.6 and 2.0.0.0.0, are valid symbolic representations
of application addresses.

Argennon has two special smart contracts: the root smart contract, also called the
root application, and the ARG smart contract, which is also called the Argennon smart
contract or the ARG application.

Argennon applications use HT'TP as the application protocol, and they are advised
to have a RESTful API design.

6.3.1 The Root Application

The root application or the root smart contract, with applicationID = 0, is a privileged
smart contract responsible for installation/uninstallation of other smart contracts. The
Argennon’s root smart contract performs three main operations:

e Installation of new Argennon applications and determining the update policy of
a smart contract: if the contract is updatable or not, which accounts or smart
contracts can update or uninstall the contract, and so on.

e Removing an Argennon application (if allowed).

e Updating an Argennon application (if allowed).

The root smart contract is a mutable smart contract and can be updated by the
Argennon governance system. (See Section [7.1))

6.3.2 The ARG Application

The ARG application or the ARG smart contract, with applicationID = 1, controls
the ARG token, the main currency of the Argennon blockchain. This smart contract
also manages a database of public keys and stake values.

The ARG smart contract is a mutable smart contract and can be updated by the
Argennon governance system.

42

6.4 Accounts

Argennon accounts are entities defined inside the ARG application. Every Argennon
account is uniquely identified by a prefix code generated using accounts prefix tree. (See
Section An account identifier can be considered as the address of an account and
has the following standard symbolic representation:

<account-id> ::= "Ox"<hex-num>

where <hex-num> is a hexadecimal number, using lower case letters [a-f] for showing
digits greater than 9.

For example 0x24ffda, 0x0 and 0x03a0000, are valid standard symbolic representa-
tions of account addresses.

A new account can be created by sending a proper HT'TP request to the ARG smart
contract. For creating a new account two public keys need to be provided by the caller
and registered in the Argennon smart contract. One public key will be used for issuing
digital signatures, and the other one will be used for voting. The provided public keys
need to meet certain cryptographic requirementsF_S]

If the owner of the new account is an application, the applicationID of the owner
will be registered in the ARG smart contract and no public keys are needed. An appli-
cation can own an arbitrary number of accounts.

Explicit key registration enables Argemnon to decouple cryptography from the
blockchain design. In this way, if the cryptographic algorithms used become inse-
cure for some reason, for example because of the introduction of quantum com-
puters, they could be easily upgraded.

6.5 External Requests

An Argennon external request (i.e. transaction) consist of an HTTP request made by a
user to an Argennon application, a resource declaration object and a list of signed mes-
sages. External requests can only be issued by users and requests created by applications
are called internal request.

6.5.1 Resource Declaration Object

Every Argennon transaction is required to provide the following information as an upper
bound for the resources it needs:

e Maximum execution cost

e The list of applications the request will call

13 Argennon uses Prove Knowledge of the Secret Key (KOSK) scheme.

43

An Argennon transaction in YAML format

request: |
PATCH /balances/0x95ab HTTP/1.1
Content—Type: application/json; charset=utf—8
Content—Length: 46

{"to":0xaabc,” amount":1399,"sig":0}

messages:
— issuer: 0x95ab000000000000
msg: {"to”:0xaabc000000000000," amount”:1399," forApp" :0x100000000000000," nonce":11}
sig: LNUC49Lhyz702uszzNcfaU3BhPlbdaSgzqDUKzbJzLPTIFS2J9GzHI—cDKb

caps:
maxCost: 150 # the cost of execution by the APM
apps: [1,124.16]
read: [(2654,3),(15642,0),(15642,1),(15642,3)]
write: [(15642,0),(20154,0),(20154,1)]

e The list of chunks the request needs
e maxSize for chunks it wants to expand
e minSize for chunks it wants to shrink

e A list of applications it will update (if any)

If a transaction tries to violate any of these predefined limitations, it will be consid-
ered failed, and the network can receive the proposed fee of that transaction.

6.6 Resource Management

Completing an execution session requires computational resources. The amount of re-
sources used by an execution session should be monitored and managed, otherwise a
malicious user would be able to easily spam and exhaust resources of the execution
environment.

In most consensus protocols, we can assume that the block proposer has enough
incentive to filter out transactions that spam run-time resources. Here by a run-time
resource, we mean a resource that at run-time, a limited amount of it is available, but its
surplus can not be stored for later use. Execution time and local memory are examples
of such a resource but permanent storage is not.

If a proposed block contains many transactions which need a lot of run-time re-
sources, validators would not be able to validate all transactions in a timely manner.

44

Consequently, they may decide to reject the block or if they spend enough resources, the
confirmation of that block could take more than usual. Longer block time is not favoured
by block proposers, because it means less throughput of the system which usually means
less overall rewards for them.

In the Argennon protocol the management of run-time resources, is left to the block
proposer. In Argennon the reference for resource usage is the Argennon Prover Machine.
The APM has two different execution units: the NEU which is used for executing external
requests that the block proposer claims will complete successfully and the FRU which
executes requests that the proposer has classified as failed requests. The FRU has a
more restricted resource management and less resources are available for requests that
use the FRU.

We recall from Chapter [3] that the APM configuration is a tuple:

(S, LnEU, LFRU, TNEU, TFRU)-

When requests are executed by the APM, the following run-time resources should be
considered:

e execution cost: each APM instruction has a protocol defined cost and the execu-
tion cost of a program can be calculated deterministically. Only the FRU performs
these calculations and verifies that an external request does not exceed its prede-
clared execution cost.

For executing the whole requests of a block, at max, The NEU will run for Tngyu
steps and the FRU will run for Tpry steps.

e local memory: denoted by Lngu, Lrryu. The Argennon protocol requires: Lygy =
3LFRuU, so the Normal Execution Unit has three times more local memory.

e stack size: both the FPU and the NEU has the same stack size: S

e heap access list: every session can only access heap locations that are declared
in its access list. In addition, resizing heap chunks can only be done in the range
of the pre-declared lower bound and upper bound. Both the NEU and the FRU
enforce this restriction.

e app access list: a session may only make requests to applications that are declared
in its application access list. Both the NEU and the FRU enforce this restriction.

e call depth: during a session the number of nested application calls can not be
more than a threshold. This threshold is determined by the Argennon protocol. It
should be noted that a differed call is considered like a normal call and increases
the call depth by one level. Only the FRU enforces this restriction.

In Argennon the proposer does not use the APM for executing requests and directly
executes the ASAR of an application. That is much more efficient. Only when the
proposer wants to reject a transaction due to excessive resource usage, he will emulate
the APM to make sure the request will be rejected by the FRU. The differences between
the NEU and FRU ensures that this policy is safe.

45

6.7 Incentive mechanism

6.7.1 Fees

The Argennon protocol does not explicitly define any fees for normal transactions. Only
for high priority transactions a fixed fee is determined by the governance system (See
Section ...). Because the protection of the Argennon network against spams and DOS
attacks is mostly done by the delegates, they are also responsible for determining and
collecting transaction fees. A good fee collection policy could considerably increase the
chance of delegates for being reelected in the next terms, therefore they are incentivized
to use creative and effective methodd™

In Argennon fee payment can be done off-chain or on-chain. Off-chain fee payment is
more efficient and flexible but requires some level of trust in the delegates. For trust-less
fee payment, the Argennon protocol provides the concept of request attachments (See
Section . When a user does not want to use off-chain fee payment methods, he can
simply define his transaction as the attachment of the fee payment transaction. That
way, the fee payment transaction will be performed only if the attached transaction is
also included in the same block.

While transaction fee is not enforced by the Argennon protocol, there are other
types of fee that are mandatory: the database fee and the block fee. Both of these fees
are required to be paid for every block of the Argennon blockchain and are paid by
the delegates. The block fee is a constant fee that is paid for each new block of the
blockchain and its amount is determined by the ADAGs. The database fee depends on
the data access and storage overhead that a new block is imposing on the Argennon
storage cloud. The amount of this fee is determined by the ADAGs, and is collected in
a special account: the dbFeeSink.

6.7.2 Certificate Rewards

The validators who sign the certificate of a block will receive the block fee paid for that
block. Every validator will be rewarded proportional to his stake (i.e voting power). As
we mentioned before the block fee is a constant fee which the delegates pay for each
block.

Rewards will not be distributed instantly, instead they will be distributed at the end
of the staking period. This will facilitate efficient implementations which avoid frequent
updates in the Argennon storage.

As long as ARG is allowed to be minted and its cap is not reached, the delegates
will receive a reward at the end of their election term. This reward will consist of newly
minted ARGs, and its amount will be determined by the ADAGs. In addition, for each
block certificate that is added to the Argennon blockchain some amount of ARGs will
be minted and added to the dbFeeSink account.

YEor example, they may allow a limited number of free transactions per month for every account.

46

6.7.3 Penalties

If an account behaves maliciously, and that behaviour could not have happened due to
a mistake, by providing a proof in a block, the account will be disabled forever in the
ARG smart contract. Disabling an account in the ARG smart contract will prevent that
account from signing any valid signatures in the future.

Punishable behaviours include:

e Signing a certificate for a block that is not conditionally valid.

e Signing a certificate for two different blocks at the same height if none of them is
a fork block or a seal block[™]

6.7.4 Incentives for PVC Servers

The incentive mechanism for PVC servers should have the following properties:

e It incentivizes storing all storage pages and not only those pages that are used
more frequently.

e [t incentivizes PVC servers to actively provide the required storage pages for val-
idators.

e Making more accounts will not provide any advantage for a PVC server.

For our incentive mechanism, we require that every time a validator receives a storage
page from a PVC, after validating the data, he give a receipt to the PVC server. In this
receipt the validator signs the following information:

e ownerAddr: the account address of the PVC server.
e receivedPagelID: the ID of the received page.
e round: the current block number.

In a round, an honest validator never gives a receipt for an identical page to two
different PVC servers.

To incentivize PVC servers, a lottery will be held every roundm and a predefined
amount of ARGs from dbFeeSink account will be distributed between the winners as a
prize. This prize will be divided equally between all winning tickets of the lottery.

One PVC server could own multiple winning tickets in a round.

15Signing a fork block and a normal block at the same height usually is a malicious behaviour. However,
it will not be penalized because there are circumstances that an honest user could mistakenly do that.
16 A round is the time interval between two consecutive blocks.

47

To run this lottery, every round, based on the current block seed, a collection of valid
receipts will be selected randomly as the winning receipts of the round. A receipt is valid
in round r if:

e The signer was a member of the validators’ committee of the block r — 1 and signed
the block certificate.

e The page in the receipt was needed for validating the previous block.
e The receipt round number is r — 1.

e The signer did not sign a receipt for the same storage page for two different PVC
servers in the previous round.

For selecting the winning receipts we could use a random generator:

IF random(seed|validatorPK|receivedPageID) < winProbability THEN
the receipt issued by validatorPK for receivedPageID is a winner

e random() produces uniform random numbers between 0 and 1, using its input
argument as a seed.

e validatorPK is the public key of the signer of the receipt.
e receivedPagelID is the ID of the storage page that the receipt was issued for.
e winProbability is the probability of winning in every round.

e seed is the current block seed.

| is the concatenation operator.

Also, based on the current block seed, a random storage page is selected as the
challenge of the round. A PVC server that owns a winning receipt needs to broadcast
a winning ticket to claim his prize. The winning ticket consists of a winning receipt
and a solution to the round challenge. Solving a round challenge requires the content of
the storage page which was selected as the round challenge. This will encourage PVC
servers to store all storage pages.

A possible choice for the challenge solution could be the cryptographic hash of the
content of the challenge page combined with the server account address:

hash(challenge.content | ownerAddr)

The winning tickets of the lottery of round r need to be included in the block of
the round r, otherwise they will be considered expired. However, finalizing and prize
distribution for the winning tickets should be done in a later round. This way, the
content of the challenge page could be kept secret during the lottery round.
Every winning ticket will get an equal share of the lottery prize.

48

Chapter 7

Governance

7.1 ADAGs
The Argennon Decentralized Autonomous Governance system (ADAGs)

not yet written...

49

Chapter 8

The Argon Language

8.1 Introduction

The Argon programming language is a class-based, object-oriented language designed
for writing Argennon smart contracts. The Argon programming language is inspired by
Solidity and is similar to Java, with a number of aspects of them omitted and a few
ideas from other languages included. Argon is designed to be fully compatible with the
Argennon Virtual Machine and be able to use all advanced features of the Argennon
blockchain.

Argon applications (i.e. smart contracts) are organized as sets of packages. Each
package has its own set of names for types, which helps to prevent name conflicts. Every
package can contain an arbitrary number of classes. Every Argon application is required
to have exactly one main method and one initialize method. The main method is the
only method of an Argon application which would be called by other smart contracts.

The main method is required to have a single parameter named request. The type
of this parameter should be RestRequest or HttpRequest. The return value of the main
function needs to be a RestResponse or HttpResponse.

8.2 Features Overview

8.2.1 Access Level Modifiers

Access level modifiers determine whether other classes can use a particular field or invoke
a particular method.

Class Package Subclass Program

private yes no no no
protected yes no yes no
package yes yes yes no
public yes yes yes yes

50

A simple Argon application

public class MirrorToken {
private static SimpleToken token;
private static SimpleToken reflection;

// ‘initialize' is a special static method that is called by the AVM after the code of a contract

// is stored in the AVM code area.
public static void initialize(double supplyl, double supply2) {
// ‘new’ does not create a new smart contract. It just makes an ordinary object.
token = new SimpleToken(supplyl);
reflection = new SimpleToken(supply2);
}
// ‘main" is the only method of the application (i.e. smart contract) that can be called
// by other applications. Every application should have exactly one main method defined
// in some class. Alternatively, the keyword ‘dispatcher’ could be used instead of ‘main".
public static RestResponse main(RestRequest request) {
RestResponse response = new RestResponse();
if (request.pathMatches(” /balances/{user}")) {
Account sender = request.getParameter<Account>("user");
if (request.operationlsPUT()) {
sender.authorize(request.toMessage(), request.getParameter<byte[|>("sig"));
Account recipient = request.getParameter<Account>("to");
double amount = request.getParameter<double>("amount");
token.transfer(sender, recipient, amount);
reflection.transfer(recipient, sender, Math.sqrt(amount));
return response.setStatus(Http.Status.OK);
} else if (request.operationlsGET()) {
response.append<double>("balance”, token.balanceOf(sender));
response.append<double>("reflection”, reflection.balanceOf(user));
return response.setStatus(Http.Status.OK);
} else {
return response.setStatus(Http.Status.MethodNotAllowed);
}

}

package class SimpleToken {
private Map(Account —> double) balances;

// The visibility of a member without an access modifier will be the package level.
constructor(double initialSupply) {

// initializes the object
}

void transfer(Account sender, Account recipient, double amount) {
if (balances[sender] < amount) throw(" Not enough balance.”);
// implements the required logic...

}

// implements other methods...

8.2.2 Shadowing

If a declaration of a type (such as a member variable or a parameter name) in a particular
scope (such as an inner block or a method definition) has the same name as another
declaration in the enclosing scope, it will result in a compiler error. In other words, the
Argon programming language does not allow shadowing.

52

	Introduction
	The Argennon Smart Contract Execution Environment
	Introduction
	Execution Sessions
	Memory
	Heap Chunks

	Identifiers
	Request Attachments
	Authorization
	Reentrancy Protection
	Deferred Calls
	The ArgC Language
	The ArgC Standard Library

	Data Dependency Analysis
	Memory Dependency Graph
	Memory Spooling
	Concurrent Counters

	The Argennon Prover Machine
	Introduction
	Simplifying Complex Components

	Persistence Layer
	Storage Pages
	Publicly Verifiable Database Servers
	Object Clustering Algorithm

	Networking Layer
	Normal Mode
	Censorship Resilient Mode

	The Argennon Blockchain
	Blocks
	Block Certificate
	Block Validation

	Consensus
	The Committee of Delegates
	The Assemblies of Validators
	The Recovery Protocol
	Estimating Stake Values
	Analysis

	Applications
	The Root Application
	The ARG Application

	Accounts
	External Requests
	Resource Declaration Object

	Resource Management
	Incentive mechanism
	Fees
	Certificate Rewards
	Penalties
	Incentives for PVC Servers

	Governance
	ADAGs

	The Argon Language
	Introduction
	Features Overview
	Access Level Modifiers
	Shadowing

