Formal Topology in Univalent Foundations

Ayberk Tosun and Thierry Coquand (Supervisor)
February 27, 2020

Chalmers University of Technology



Topology
understood ) constructively
Pointless topology
understood U predicatively

Formal topology



What locales are like

= Abstraction of open sets of a topology.
= Logic of observable properties.

= CS view: logic of semidecidable properties.



What locales are like

= Abstraction of open sets of a topology.
= Logic of observable properties.
= CS view: logic of semidecidable properties.

= “Junior-grade topos theory”.



Locales

A poset O such that

= finite subsets of @ have meets,
» all subsets of O have joins, and

= binary meets distribute over arbitrary joins:
an (\/ b,-) = \/ (aAb),
i€l i€l

for any a € O and Fkindexed family b over O.



Locales of downward-closed subsets

Given a poset

A o Typenm
C : A— A— hProp,

the type of downward-closed subsets of A is:

Z H xeU—yCx—=ye U,
(U:P(A) (xy: A)

where

P Typem — Typemt1
P(A) := A — hProp,,.



This forms a locale:

A1

Ax. (x€ A) x (x€ B)

AX. ZXG B;
(i



Nuclei for locales

Question: can we get all locales out of posets in this way?
One way is to employ the notion of a nucleus.

Let F be a locale. A nucleus on Fis an endofunction j : |F| — |F]

such that

(1) H x C j(x) [extensiveness],
(x A

(2) H JixAy)=jJ(x) Aj(y) [meet preservation], and
(xy: A

(3) H i0(x) Ej(x) [idempotence].
(x : A



Closure operators

In the particular case where F is the locale of downward-closed
subsets for a poset A : Type,, the nucleus can be seen as a closure
operator—if it can be shown to be propositional.

» :  P(A)—=P(A)
—_——

This is what we want.



Closure operators

In the particular case where F is the locale of downward-closed
subsets for a poset A : Type,, the nucleus can be seen as a closure
operator—if it can be shown to be propositional.

» : P(A)— A— hProp,,

This is what we want.



Closure operators

In the particular case where F is the locale of downward-closed
subsets for a poset A : Type,,, the nucleus can be seen as a closure
operator—if it can be shown to be propositional.

» : P(A)— A— Typen

This is what we have.




Baire space (N — N)

data D : Typeo where
[1 =D
~ :D-N-D

IsDC : (D » Typeo) - Typeo
IsbDCP=(g:D) (n: N)+Pg-»P(ag~n)



Baire space (N — N)

data _«_ (o : D) (P : D~ Typeo) : Typeo where
dir :Po-0«P
branch : ((n : N) > (6~n) «P)->0«P
squash : (pq: a0«P)+p=qg

We can now show that this defines a nucleus, without choice!



Baire space (N — N)

Using the following, and then truncating from the outside does not
work.

data _«x_ (o : D) (P : D~ Typeo) : Typeo where
dir :Po-ro0«wP
branch : ((n: N)»(@6~n) «xP) >0« P
— squash : (o U : 0 «P) » ¢ =



Baire space (N — N)

We can now prove the following idempotence law, without using
countable choice ([];.  [IBill = I TI; .  Bill)-

d:0«P->((v:D)>Pv-v«()-0<«0

d (dir  ueP) =0 _ueP

d (branch f) ¢ = branch (\n» 3 (f n) ¢) —> problem
d (squash u«Po u«P1 i) ¢ = squash (3 u«Po ¢) (d u«Pq ¢) i

idempotence :  « (A -+ - «P) + g «P
idempotence u««P = 5 u«<P (A _ v«P » v<«P)

10



Baire space (N — N)

— C inference a la Brouwer.
C:(n:N)-IsDCP+c«P~>»(c~n)«P

{ndc (dir  ogP) = dir (dc _ n oeP)

¢ n dc (branch f) = branch Am~» ¢ mdc (f n)

¢ n dc (squash o«P g«P’ i) = squash (¢ n dc 0«P) (Z ndc o«P’) i

¢ : IsDCP-»1IsDC(A-~-«P)
¢’ P-dc o no<P = { n P-dc g<«P

11



Baire space (N — N)

This example can be accessed at:

https://ayberkt.gitlab.io/msc-thesis/BaireSpace.html

12


https://ayberkt.gitlab.io/msc-thesis/BaireSpace.html

