{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Convolutional Neural Network Example\n", "\n", "Build a convolutional neural network with TensorFlow.\n", "\n", "- Author: Aymeric Damien\n", "- Project: https://github.com/aymericdamien/TensorFlow-Examples/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## CNN Overview\n", "\n", "![CNN](http://personal.ie.cuhk.edu.hk/~ccloy/project_target_code/images/fig3.png)\n", "\n", "## MNIST Dataset Overview\n", "\n", "This example is using MNIST handwritten digits. The dataset contains 60,000 examples for training and 10,000 examples for testing. The digits have been size-normalized and centered in a fixed-size image (28x28 pixels) with values from 0 to 1. For simplicity, each image has been flattened and converted to a 1-D numpy array of 784 features (28*28).\n", "\n", "![MNIST Dataset](http://neuralnetworksanddeeplearning.com/images/mnist_100_digits.png)\n", "\n", "More info: http://yann.lecun.com/exdb/mnist/" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Extracting /tmp/data/train-images-idx3-ubyte.gz\n", "Extracting /tmp/data/train-labels-idx1-ubyte.gz\n", "Extracting /tmp/data/t10k-images-idx3-ubyte.gz\n", "Extracting /tmp/data/t10k-labels-idx1-ubyte.gz\n" ] } ], "source": [ "from __future__ import division, print_function, absolute_import\n", "\n", "import tensorflow as tf\n", "\n", "# Import MNIST data\n", "from tensorflow.examples.tutorials.mnist import input_data\n", "mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Training Parameters\n", "learning_rate = 0.001\n", "num_steps = 500\n", "batch_size = 128\n", "display_step = 10\n", "\n", "# Network Parameters\n", "num_input = 784 # MNIST data input (img shape: 28*28)\n", "num_classes = 10 # MNIST total classes (0-9 digits)\n", "dropout = 0.75 # Dropout, probability to keep units\n", "\n", "# tf Graph input\n", "X = tf.placeholder(tf.float32, [None, num_input])\n", "Y = tf.placeholder(tf.float32, [None, num_classes])\n", "keep_prob = tf.placeholder(tf.float32) # dropout (keep probability)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Create some wrappers for simplicity\n", "def conv2d(x, W, b, strides=1):\n", " # Conv2D wrapper, with bias and relu activation\n", " x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')\n", " x = tf.nn.bias_add(x, b)\n", " return tf.nn.relu(x)\n", "\n", "\n", "def maxpool2d(x, k=2):\n", " # MaxPool2D wrapper\n", " return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],\n", " padding='SAME')\n", "\n", "\n", "# Create model\n", "def conv_net(x, weights, biases, dropout):\n", " # MNIST data input is a 1-D vector of 784 features (28*28 pixels)\n", " # Reshape to match picture format [Height x Width x Channel]\n", " # Tensor input become 4-D: [Batch Size, Height, Width, Channel]\n", " x = tf.reshape(x, shape=[-1, 28, 28, 1])\n", "\n", " # Convolution Layer\n", " conv1 = conv2d(x, weights['wc1'], biases['bc1'])\n", " # Max Pooling (down-sampling)\n", " conv1 = maxpool2d(conv1, k=2)\n", "\n", " # Convolution Layer\n", " conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])\n", " # Max Pooling (down-sampling)\n", " conv2 = maxpool2d(conv2, k=2)\n", "\n", " # Fully connected layer\n", " # Reshape conv2 output to fit fully connected layer input\n", " fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])\n", " fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])\n", " fc1 = tf.nn.relu(fc1)\n", " # Apply Dropout\n", " fc1 = tf.nn.dropout(fc1, dropout)\n", "\n", " # Output, class prediction\n", " out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])\n", " return out" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Store layers weight & bias\n", "weights = {\n", " # 5x5 conv, 1 input, 32 outputs\n", " 'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),\n", " # 5x5 conv, 32 inputs, 64 outputs\n", " 'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),\n", " # fully connected, 7*7*64 inputs, 1024 outputs\n", " 'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),\n", " # 1024 inputs, 10 outputs (class prediction)\n", " 'out': tf.Variable(tf.random_normal([1024, num_classes]))\n", "}\n", "\n", "biases = {\n", " 'bc1': tf.Variable(tf.random_normal([32])),\n", " 'bc2': tf.Variable(tf.random_normal([64])),\n", " 'bd1': tf.Variable(tf.random_normal([1024])),\n", " 'out': tf.Variable(tf.random_normal([num_classes]))\n", "}\n", "\n", "# Construct model\n", "logits = conv_net(X, weights, biases, keep_prob)\n", "prediction = tf.nn.softmax(logits)\n", "\n", "# Define loss and optimizer\n", "loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(\n", " logits=logits, labels=Y))\n", "optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)\n", "train_op = optimizer.minimize(loss_op)\n", "\n", "\n", "# Evaluate model\n", "correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))\n", "accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))\n", "\n", "# Initialize the variables (i.e. assign their default value)\n", "init = tf.global_variables_initializer()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Step 1, Minibatch Loss= 63763.3047, Training Accuracy= 0.141\n", "Step 10, Minibatch Loss= 26429.6680, Training Accuracy= 0.242\n", "Step 20, Minibatch Loss= 12171.8584, Training Accuracy= 0.586\n", "Step 30, Minibatch Loss= 6306.6318, Training Accuracy= 0.734\n", "Step 40, Minibatch Loss= 5113.7583, Training Accuracy= 0.711\n", "Step 50, Minibatch Loss= 4022.2131, Training Accuracy= 0.805\n", "Step 60, Minibatch Loss= 3125.4949, Training Accuracy= 0.867\n", "Step 70, Minibatch Loss= 2225.4875, Training Accuracy= 0.875\n", "Step 80, Minibatch Loss= 1843.3540, Training Accuracy= 0.867\n", "Step 90, Minibatch Loss= 1715.7744, Training Accuracy= 0.875\n", "Step 100, Minibatch Loss= 2611.2708, Training Accuracy= 0.906\n", "Step 110, Minibatch Loss= 4804.0913, Training Accuracy= 0.875\n", "Step 120, Minibatch Loss= 1067.5258, Training Accuracy= 0.938\n", "Step 130, Minibatch Loss= 2519.1514, Training Accuracy= 0.898\n", "Step 140, Minibatch Loss= 2687.9292, Training Accuracy= 0.906\n", "Step 150, Minibatch Loss= 1983.4077, Training Accuracy= 0.938\n", "Step 160, Minibatch Loss= 2844.6553, Training Accuracy= 0.930\n", "Step 170, Minibatch Loss= 3602.2524, Training Accuracy= 0.914\n", "Step 180, Minibatch Loss= 175.3922, Training Accuracy= 0.961\n", "Step 190, Minibatch Loss= 645.1918, Training Accuracy= 0.945\n", "Step 200, Minibatch Loss= 1147.6567, Training Accuracy= 0.938\n", "Step 210, Minibatch Loss= 1140.4148, Training Accuracy= 0.914\n", "Step 220, Minibatch Loss= 1572.8756, Training Accuracy= 0.906\n", "Step 230, Minibatch Loss= 1292.9274, Training Accuracy= 0.898\n", "Step 240, Minibatch Loss= 1501.4623, Training Accuracy= 0.953\n", "Step 250, Minibatch Loss= 1908.2997, Training Accuracy= 0.898\n", "Step 260, Minibatch Loss= 2182.2380, Training Accuracy= 0.898\n", "Step 270, Minibatch Loss= 487.5807, Training Accuracy= 0.961\n", "Step 280, Minibatch Loss= 1284.1130, Training Accuracy= 0.945\n", "Step 290, Minibatch Loss= 1232.4919, Training Accuracy= 0.891\n", "Step 300, Minibatch Loss= 1198.8336, Training Accuracy= 0.945\n", "Step 310, Minibatch Loss= 2010.5345, Training Accuracy= 0.906\n", "Step 320, Minibatch Loss= 786.3917, Training Accuracy= 0.945\n", "Step 330, Minibatch Loss= 1408.3556, Training Accuracy= 0.898\n", "Step 340, Minibatch Loss= 1453.7538, Training Accuracy= 0.953\n", "Step 350, Minibatch Loss= 999.8901, Training Accuracy= 0.906\n", "Step 360, Minibatch Loss= 914.3958, Training Accuracy= 0.961\n", "Step 370, Minibatch Loss= 488.0052, Training Accuracy= 0.938\n", "Step 380, Minibatch Loss= 1070.8710, Training Accuracy= 0.922\n", "Step 390, Minibatch Loss= 151.4658, Training Accuracy= 0.961\n", "Step 400, Minibatch Loss= 555.3539, Training Accuracy= 0.953\n", "Step 410, Minibatch Loss= 765.5746, Training Accuracy= 0.945\n", "Step 420, Minibatch Loss= 326.9393, Training Accuracy= 0.969\n", "Step 430, Minibatch Loss= 530.8968, Training Accuracy= 0.977\n", "Step 440, Minibatch Loss= 463.3909, Training Accuracy= 0.977\n", "Step 450, Minibatch Loss= 362.2226, Training Accuracy= 0.977\n", "Step 460, Minibatch Loss= 414.0034, Training Accuracy= 0.953\n", "Step 470, Minibatch Loss= 583.4587, Training Accuracy= 0.945\n", "Step 480, Minibatch Loss= 566.1262, Training Accuracy= 0.969\n", "Step 490, Minibatch Loss= 691.1143, Training Accuracy= 0.961\n", "Step 500, Minibatch Loss= 282.8893, Training Accuracy= 0.984\n", "Optimization Finished!\n", "Testing Accuracy: 0.976562\n" ] } ], "source": [ "# Start training\n", "with tf.Session() as sess:\n", "\n", " # Run the initializer\n", " sess.run(init)\n", "\n", " for step in range(1, num_steps+1):\n", " batch_x, batch_y = mnist.train.next_batch(batch_size)\n", " # Run optimization op (backprop)\n", " sess.run(train_op, feed_dict={X: batch_x, Y: batch_y, keep_prob: dropout})\n", " if step % display_step == 0 or step == 1:\n", " # Calculate batch loss and accuracy\n", " loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,\n", " Y: batch_y,\n", " keep_prob: 1.0})\n", " print(\"Step \" + str(step) + \", Minibatch Loss= \" + \\\n", " \"{:.4f}\".format(loss) + \", Training Accuracy= \" + \\\n", " \"{:.3f}\".format(acc))\n", "\n", " print(\"Optimization Finished!\")\n", "\n", " # Calculate accuracy for 256 MNIST test images\n", " print(\"Testing Accuracy:\", \\\n", " sess.run(accuracy, feed_dict={X: mnist.test.images[:256],\n", " Y: mnist.test.labels[:256],\n", " keep_prob: 1.0}))\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 0 }