

1

Babelfish Compass: User Guide

Document history:

Apr-2024 v.2024-04: small enhancements, incl. for -rewrite

Nov-2023 v.2023-11: added sections on scaling and advanced features; additional functionality for

 effort estimation

Oct-2023 v.2023-10: added object dependency tracking with -pgimport

Aug-2023 v.2023-08: additional functionality for effort estimation; complexity defaults

Jun-2023 v.2023-06: added automatic DDL generation; expanded scope of -optimistic option

Mar-2023 v.2023-03: added predefined 'optimistic' user-defined .cfg file and -optimistic option

Dec-2022 v.2022-12: added executive summary, analysis of dynamic SQL, reporting of complexity

 score for not-supported items, -userconfigfile option

Oct-2022 v.2022-10: added support for processing queries captured through extended events

Sep-2022 v.2022-09: generating .csv file for complexity/effort estimation

Jun-2022 v.2022-06-a: added -importfmt option to process captured query files; various report

 enhancements

Jun-2022 v.2022-06: added -pgimporttable option

Apr-2022 v.2022-04: added automatic check for new Compass version and -noupdatechk option

Mar-2022 v.2022-03: added -recursive, -include, -exclude options

Feb-2022 v.2022-02: new Compass version numbering

Jan-2022 added compatibility matrix with Babelfish

Dec-2021 v.1.2: added -rewrite option

Nov-2021 correct typo in section about BabelfishCompassUser.cfg; edit for grammar

Nov-2021 v.1.1: added user-definable overrides, example for -pgimport, Mac/Linux support

Oct-2021 v.1.0: first version

Document location

This document is located at https://raw.githubusercontent.com/babelfish-for-

postgresql/babelfish_compass/main/BabelfishCompass_UserGuide.pdf .

https://raw.githubusercontent.com/babelfish-for-postgresql/babelfish_compass/main/BabelfishCompass_UserGuide.pdf
https://raw.githubusercontent.com/babelfish-for-postgresql/babelfish_compass/main/BabelfishCompass_UserGuide.pdf

2

Contents
Licensing .. 3

What Is Babelfish Compass? ... 4

Compatibility with Babelfish for PostgreSQL .. 5

Installing Babelfish Compass ... 6
Prerequisites...6
Downloading Babelfish Compass ...6
Installation ..6

Running Babelfish Compass on Windows ... 7

Running Babelfish Compass (Mac/Linux).. 8

Reports, applications, and input files .. 9
Report root directory location ...9

Specifying the Babelfish version ... 10

Command-line options .. 10
Examples ... 14

Automatic rewriting of unsupported features .. 16

Files & Directories for a Report ... 17

The BabelfishFeatures.cfg file ... 18
SQL feature classifications ... 18
Example: BabelfishFeatures.cfg ... 19

The BabelfishCompassUser.cfg file (classification overrides) ... 20
Example: overriding default classification and reporting group ... 21
Predefined 'Optimistic' .cfg file ... 21

User-defined estimates & .csv file... 23
'Flat' format for .csv file ... 23
Complexity score estimates .. 24
Complexity score defaults ... 24
Effort estimates ... 25
Real-life effort estimate in executive summary .. 26
Examples ... 26
Effort estimate defaults ... 27

Uploading details into PostgreSQL with -pgimport ... 27
Schema for imported items ... 28
Example queries .. 29

Processing captured SQL queries .. 31
SQL Server Profiler .. 32
SQL Server Extended Events .. 32
Examples ... 32

Automatic DDL generation .. 33
Command-line options .. 33
How it works .. 34
Generating only DDL ... 34
Example ... 35

Security .. 37
The -pgimport option ... 37
The -sqlpasswd option.. 37
Automatic update check ... 38

Scaling Compass: Analyzing Multiple Applications ... 39

3

Scaling Compass: Analyzing Many Applications.. 40
Improvement 1: Generate DDL in batch ... 40
Improvement 2: Capture 1-line metrics per report .. 41

Advanced Compass Usage .. 42
Manually copying imported files ... 42
A single Compass report for very large amounts of SQL ... 42
Locating items in very large SQL scripts when cross-ref links are slow ... 43

Using Babelfish Compass to migrate to PostgreSQL ... 44

Troubleshooting .. 46

Example of BabelfishCompassItemID.csv ... 48

Licensing
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

SPDX-License-Identifier: Apache-2.0

GitHub: https://github.com/babelfish-for-postgresql/babelfish_compass

http://amazon.com/
https://github.com/babelfish-for-postgresql/babelfish_compass

4

What Is Babelfish Compass?
The Babelfish Compass tool (short for “COMPatibility ASSessment”) analyzes SQL/DDL code for one or

more Microsoft SQL Server databases to identify the SQL features which are not compatible with

Babelfish for PostgreSQL.

You can use Babelfish Compass to analyze the SQL/DDL code for your current SQL Server-based

applications for compatibility with Babelfish. The purpose of this analysis is to gather information so

you can make a Go/No Go decision about starting a migration project from SQL Server to Babelfish.

For this purpose, Babelfish Compass produces an assessment report which lists -in great detail- all of

the SQL features found in your SQL/DDL code, and whether or not these are supported by the latest

version of Babelfish.

A new version of Babelfish Compass will be available as part of each Babelfish release containing new

or changed functionality.

Note that Babelfish Compass is a stand-alone, on-premises tool. While Babelfish Compass is part of

the Babelfish product, it is technically separate from Babelfish itself as well as from the Babelfish code,

and is located in a separate GitHub repository.

5

Compatibility with Babelfish for PostgreSQL
The Babelfish Compass tool supports the following Babelfish versions.

In principle, any version of Babelfish Compass will support whichever Babelfish version the

BabelfishFeatures.cfg file has been updated for. However, a full version of Babelfish Compass, also

including fixes and enhancements, will in principle be published for every Babelfish release with

added support for new T-SQL features.

Babelfish Compass version Supported Babelfish versions

(includes versions supported by earlier releases, per below)

2024-04 4.1.x (PG 16), 3.5.x (PG 15)

2024-02 4.0.x (PG 16)

2023-12[-a] 3.4.x (PG 15)

2023-10, 2023-11 3.3.x (PG 15)

2023-06, 2023-08 3.2.x (PG 15)

2.5.x (PG 14)

1.6.x, 1.5.x (PG 13)

2023-03[-a] 3.1.x (PG 15)

2.4.x (PG 14)

2022-12 2.3.x (PG 14)

1.4.x (PG 13)

2022-09, 2022-10, 2022-11 2.2.x (PG 14)

2022-07, 2022-06[-a] 2.1.x (PG 14)

1.3.x (PG 13)

2022-03, 2022-04 1.2.x (PG 13)

2022-02 same as below

1.2 1.1.x (PG 13)

1.0, 1.1 1.0.x (PG 13)

In February 2022, Babelfish Compass changed to a different version numbering schema (YYYY-MM) to
avoid confusion with Babelfish version numbers. Consequently, Compass version 1.2 was followed by
version 2022-02.
Note that there are no Babelfish version 2.0.x and 3.0.x.

6

Installing Babelfish Compass

Prerequisites
Before installing Babelfish Compass, you must install a Java Runtime Environment (JRE) version 8 or

higher (64-bit version).

Babelfish Compass produces compatibility assessment reports in HTML format. To view the HTML

output, we recommend using a recent release of the Google Chrome or Mozilla Firefox browser.

On Mac/Linux, you need to be able to run a bash script (e.g. with #!/bin/bash).

Downloading Babelfish Compass
Babelfish Compass is available as an open-source project at https://github.com/babelfish-for-

postgresql/babelfish_compass.

A binary version can be downloaded from:

https://github.com/babelfish-for-postgresql/babelfish_compass/releases/latest ; choose the most

recent BabelfishCompass_<version>.zip file.

The installation instructions that follow are based on this version.

Installation
Babelfish Compass is distributed as an executable JAR file, which requires no CLASSPATH settings. The

only environmental requirement is that the Java JRE is in the PATH.

Installation steps on Windows:

1. Download the BabelfishCompass.zip file as detailed in the previous section.

2. Unzip the file so that the contents are placed in your installation directory of choice; this

document will assume the file resides in C:\BabelfishCompass.

a. Do not install Babelfish Compass into C:\Users\username\Documents\BabelfishCompass

since this is where the generated reports will be placed, and this location should be kept

separate from the installation directory; Babelfish will not run when installed in this

location.

b. If a previous installation is already present in your installation directory, you can overwrite

the installation (but we recommend you make a backup copy first).

3. Installation is complete.

Installation steps on Mac/Linux:

https://github.com/babelfish-for-postgresql/babelfish_compass
https://github.com/babelfish-for-postgresql/babelfish_compass
https://github.com/babelfish-for-postgresql/babelfish_compass/releases/latest

7

1. Download the BabelfishCompass.zip file as detailed in the previous section.

2. Unzip this file so that the contents are placed in your directory of choice, for example

/home/username/BabelfishCompass (Linux) or /Users/username/BabelfishCompass (Mac)

a. Do not install Babelfish Compass into /home/username/BabelfishCompassReports (Linux)

or /Users/username/BabelfishCompassReports (Mac), since this is where the generated

reports will be placed, and this location should be kept separate from the installation

directory; Babelfish will not run when installed in this location.

b. If a previous installation is already present in your installation directory, you can overwrite

the installation (but we recommend you make a backup copy first).

3. Verify the BabelfishCompass.sh shell script is executable by running ./BabelfishCompass.sh .

If it is not executable, run the command: chmod +x BabelfishCompass.sh .

4. Installation is complete.

Running Babelfish Compass on Windows
To run Babelfish Compass on Windows, open a cmd prompt (a "DOS box") and navigate to the

Babelfish Compass installation directory.

Then, select the command line options that you need to include when invoking Babelfish Compass.

The command line options are detailed in the Command-line options section of this guide, or you can

review them on the command line by running:

C:\BabelfishCompass> BabelfishCompass[.bat] -help

Then, invoke BabelfishCompass[.bat] with your choice of command-line options.

Babelfish Compass usage typically starts by creating an assessment report file. The assessment report

output file provides a detailed summary of the supported and unsupported SQL features in Babelfish

for the analyzed SQL Server script(s). In the simplest usage case, a single SQL/DDL script is analyzed.

To analyze a single script, simply specify a report name and an input file with your call to Babelfish

Compass. For example:

C:\BabelfishCompass> BabelfishCompass[.bat] MyFirstReport C:\temp\AnyCompany.sql

This command creates an assessment report named MyFirstReport, containing the analysis for

SQL/DDL script AnyCompany.sql.

When a report is created, BabelfishCompass will automatically:

8

1. Open an explorer window in the directory where the report files are stored.

2. Open the generated assessment report in the default browser.

3. Print the full pathname of the report file to stdout.

There are many additional command-line options you can include that support functionality to

process multiple input scripts (for one application or multiple applications), generate more detailed

output reports, and so on. See Command-line options for details.

Running Babelfish Compass (Mac/Linux)
To run Babelfish Compass on Linux, open a bash command prompt and navigate to the Babelfish

Compass installation directory.

Then, select the command line options that you need to include when invoking Babelfish Compass.

The command line options are detailed in the Command-line options section of this guide, or you can

review them on the command line by running:

$./BabelfishCompass.sh -help

Then, invoke BabelfishCompass.sh with your choice of command-line options.

Babelfish Compass usage typically starts by creating an assessment report file. The assessment report

output file provides a detailed summary of the supported and unsupported SQL features in Babelfish

for the analyzed SQL Server script(s). In the simplest usage case, a single SQL/DDL script is analyzed.

To analyze a single script, simply specify a report name and an input file with your call to Babelfish

Compass. For example:

$./BabelfishCompass.sh MyFirstReport /tmp/AnyCompany.sql

This command creates an assessment report named MyFirstReport, containing the analysis for

SQL/DDL script AnyCompany.sql.

When a report is created, BabelfishCompass will automatically:

1. Open a file browser in the directory where the report files are stored.

2. Open the generated assessment report in the default browser. Please note that on Linux, the

browser will not open automatically; instead, simply open the file manually.

3. Print the full pathname of the report file to stdout.

There are many additional command-line options you can include that support functionality to

process multiple input scripts (for one application or multiple applications), generate more detailed

output reports, and so on. See Command-line options for details.

9

Reports, applications, and input files
The Babelfish Compass tool generates a report with a user-specified report name. The report is the

result of analyzing one or more SQL/DDL scripts. In the simplest case, a single SQL/DDL script is

analyzed. Babelfish Compass also supports combined analysis of multiple input scripts and multiple

applications.

Each input script is associated with an application name. By default, the application name is taken

from the input script file name. For example, a script named Accounts.sql is created for an application

named Accounts. You can specify the application name with the -appname flag. A report can cover

multiple input scripts for the same application, as well as multiple scripts for different applications.

Examples:

The following command generates a report for a single input file, with an application named Accounts:

BabelfishCompass MyReport C:\temp\Accounts.sql

The following command generates a report for a single input file, with an application named Sales:

BabelfishCompass MyReport C:\temp\ddl.20210913.sql -appname Sales

The following command generates a report for multiple input files, with an application named Sales:

BabelfishCompass MyReport C:\temp\ddl.20210913*.sql -appname Sales

The following command generates a report for multiple input files, with applications named Accounts,

Sales and HR:

BabelfishCompass MyReport C:\temp\Accounts.sql C:\temp\Sales.sql C:\temp\HR.sql

When you create a report for multiple applications, the assessment can optionally indicate which

applications contribute to a particular line item. To include this content, specify the -reportoption

apps option. The report will contain lines in the following format:

SOUNDEX() : 45 #apps=3: Accounts(16), Support(20), HR(9)

This means 45 cases of the SOUNDEX() built-in function were found, in three applications as indicated.

Report root directory location
By default, the Babelfish Compass report is created in the following location (the 'Compass report

root' directory):

• C:\Users\username\Documents\BabelfishCompass (on Windows)

10

• /Users/username/BabelfishCompassReports (on Mac)

• /home/username/BabelfishCompassReports (on Linux)

A report is created as a .html file in a directory below this location. For example, on Windows,

Babelfish Compass creates a report named MyReport.html in the following directory:

C:\Users\username\Documents\BabelfishCompass\MyReport.

Technically, the location of the report root directory is determined by the value of

System.getProperty("user.home") in Java. The locations shown above are typical defaults. It is

currently not possible specify a different, user-defined location instead.

Specifying the Babelfish version
By default, Babelfish Compass delivers a compatibility assessment for the most recent version of

Babelfish, as indicated in the BabelfishFeatures.cfg file. You can perform an assessment for an earlier

version of Babelfish by specifying the older version with the -babelfish-version option; for example:

 -babelfish-version 2.2.0

The initial GA version of Babelfish was version 1.0.0. This is the oldest version you can specify.

When the patch version (the third part in the version number) is omitted, '.0' is assumed: specifying

2.2 is equivalent to 2.2.0 .

Command-line options
To display all of the command-line options, run BabelfishCompass -help. Note that all command-line

options are optional:

• -version: displays the version of the Babelfish Compass tool.

• -explain: displays some high-level guidance on how to use the Babelfish Compass tool.

• -encoding <encoding>: specifies the encoding of the input files, if the files are not ASCII or the

default encoding (this default is shown by -help).

The specified -encoding is applied to all input files. To process multiple input files with

different encodings, import each file separately (with -add), specifying the correct encoding for

each input file.

Unicode-formatted files with BOM bits are automatically detected and processed accordingly,

so -encoding does not need to be specified.

To review a list of supported encodings, run -encoding help

11

• -babelfish-version <version>: performs the analysis for an older BBF version. See Specifying
the Babelfish version for more information.

• -add: imports an additional SQL/DDL script to an existing report, performs an analysis, and

generates a report.

• -replace: replaces an already-imported SQL/DDL script in an existing report, performs an

analysis, and generates a report

• - delete: deletes all the files for an already existing report before recreating it.

• -noreport: performs an analysis without generating a report. This is useful when multiple files

are imported; without -noreport, a report will be generated after every imported file. To

generate a report after importing all files, include the -reportonly option.

• -reportfile: specifies the filename for the report. This does not affect the directory where the

report files are located. See the Examples.

• -importonly: imports the SQL/DDL script, but does not perform an analysis or generate a

report. This can be useful when importing multiple files, as the analysis will otherwise be

performed after every imported file.

• -analyze: performs an analysis on imported files, and generates a report. This can be used after

importing files with -importonly, or to re-run an analysis on imported files from an earlier

report (for example, when re-running the analysis when a later version of Babelfish has

become available).

• -userconfigfile filename : as of v.2022-12, this specifies the user-defined .cfg file to be used

(default = BabelfishCompassUser.cfg).

• -optimistic : as of v.2023-03, this is shorthand for specifying -userconfigfile

BabelfishCompassUser.Optimistic.cfg (see here) plus -rewrite.

• -sqlendpoint , -sqllogin, -sqlpasswd, -sqldblist : see Automatic DDL generation

• -nooverride: do not use classification/report group overrides from the user-defined .cfg file.

12

• -noreportcomplexity: as of v.2022-12, estimated complexity for not-supported items will not

be included in the Compass report.

• -list: displays the files/applications that have been imported for a report.

• -reportonly: generates a report for already-imported and analyzed SQL/DDL scripts. Specify a

report name; do not specify input files. This option is useful when generating additional

detailed assessment reports, for example with a cross-reference or additional filtering

(see -reportoption).

• -reportoption <options>: specifies options for generating the final assessment report. Specify

different options in a comma-separated list (without spaces), and/or by using

multiple -reportoption flags. The cross-reference is not generated by default, as this

potentially makes the assessment report very long.

Possible options are:

o xref or xref=all: generates two cross-references for all items that are marked as "not

supported" or "review". One cross-reference is ordered by SQL feature, the other by

objects for which such items were detected.

Warning: for large schemas, the report generated with xref (and even more so when

combined with status=all), may become very large and may take longer to load in your

browser. For this reason, the xref option is off by default, and you have to specify it

explicitly with -reportoption.

In addition (v.2022-07 or later) object names are listed for which issues (or no issues)

were identified by Compass. These lists can be reached by clicking on the "without

issues" link in the Object Count section (without xref, this link is not present):

o xref=feature or xref=object generates only the cross-reference by feature, or by object,

respectively.

o status=<status>: with xref, specifies the categories for which the cross-reference should

be generated. Without this option, a cross-reference is generated only for items

marked as "not supported" or "review". To generate a cross-reference for a different

category, specify (for example) status=supported or status=ignored. With status=all, a

13

cross-reference for all items is generated.

Note that using this option can result in a longer assessment report.

o detail: with xref, generates additional detail for a reported item. For example, when

reporting an object which cannot be created, specifying detail will include the name of

the object. The report may get significantly longer as a result.

o filter=<string>: with xref, only includes items which match the specified string (case-

insensitive). This can be useful when the generated cross-reference is very long, for

example to cross-reference only specific items of interest. Note that the Summary

section is not affected by this option.

o linenrs=<number>: with xref, defines the maximum number of line numbers

mentioned in the cross-reference before suppressing the rest and adding "+ NNN

more". By default, the maximum number is 10.

o notabs: with xref, opens the hyperlinks to the original SQL source code in the same

browser window instead of in a new tab. By default, a hyperlink opens in a new tab.

NB: For large SQL source files, it may take some time before the browser displays the

desired line. If this takes too long, it is also possible to manually access the

corresponding flat text file (same filename, but with a .dat suffix instead of .html).

o apps: shows which applications contribute to a particular line item in the Summary

section when a report covers multiple applications. For example, the following means

that 45 cases of the SOUNDEX() built-in function were found, in three applications as

indicated:

SOUNDEX() : 45 #apps=3: Accounts(16), Support(20), HR(9)

o batchnr: with xref, displays the location of an item as a combination of the batch

number in the file, the starting line number of the batch in the source file, and the line

number in the batch. By default, the location is shown as the line number in the source

file.

o hints: (Compass v.2022-07 and later) lists all popup hints in the SQL Summary section at

the end of the report (so that they can be read without requiring mouse action)

• -quotedid {on|off}: sets QUOTED_IDENTIFIER at the start of each SQL/DDL script. Default is ON

• -pgimport "pg-connection-attributes": creates a database table in a PostgreSQL database, and

loads all captured items into the table. This table can then be accessed with SQL queries for

further processing (see Using -pgimport). By default, this table is named public.BBFCompass,

but a different name can be specified with -pgimporttable.

The PostgreSQL connection attributes are specified in a comma-separated list as follows:

14

host,port,username,password,dbname . The import is performed through a script created in

the captured subdirectory. This script uses the PostgreSQL psql utility, which must be installed

on your system, and in your PATH.

Note that the password is not saved anywhere and not written to any file (including temporary

files).

• -pgimportappend: with -pgimport, appends content to an already-existing PostgreSQL table.

Without this option, -pgimport will drop the table if it exists, before recreating it.

• -pgimporttable: with -pgimport, specifies the name of the table to import the data into.

• -rewrite: for certain T-SQL constructs that are currently unsupported by Babelfish, performs

automatic rewriting of the applicable syntax with T-SQL features supported by Babelfish (see

Automatic rewriting of unsupported features).

• -exclude <list> : specifies a comma-separated list of file type suffixes to be excluded. By

default, a series of file types are excluded (unless overridden with -include); to display these,

use -help exclude.

• -include <list> : specifies a comma-separated list of file type suffixes to be included; only the

filetypes specified with -include will be processed.

• -recursive : any subsequent directory names are processed recursively, using all files in the

directory tree as input. Both -include and -exclude (if specified) are applied to any files found.

With -recursive, it is recommended to specify -appname as well, otherwise each input file will

be assumed to represent a different application.

• -noupdatechk : do not perform a check for a newer version of Babelfish Compass

• -importfmt <format> : process an XML file from SQL Server Profiler with captured SQL queries

(see Processing captured SQL queries)

• -nodedup : with -importfmt, do not perform de-duplication of captured SQL

• -csvformat { default | flat } : as of v.2023-08, with flat, generates the .csv file in a flat format

rather than the default 'structured' format (see User-defined estimates in .csv file)

Examples
Generate a default report without cross-references for an application named Sales:

BabelfishCompass MyReport C:\temp\Sales.sql

15

Generate a default report without cross-reference for an application named Sales,

deleting the report directory first if it already exists:

BabelfishCompass MyReport C:\temp\Sales.sql -delete

Generate a report for applications named Accounts and Sales, cross-referencing all categories,

including additional detail, and allowing up to 100 line numbers to be enumerated in the cross-

reference:

BabelfishCompass MyReport2 C:\temp\account*.sql -appname Accounts -add -noreport

BabelfishCompass MyReport2 C:\temp\sales.sql -add -noreport

BabelfishCompass MyReport2 -reportoptions xref,status=all,detail,linenrs=100

Display all files and applications imported for MyReport2:

BabelfishCompass MyReport2 -list

Re-run an analysis for an existing report, but specifically for Babelfish version 1.5.0 (this example

assumes the latest version of Babelfish is later than 1.5.0):

BabelfishCompass MyReport3 -analyze -babelfish-version 1.5.0

Import all captured items into a PostgreSQL database table:

BabelfishCompass MyReport3 -pgimport

"mybighost.anycompany.com,5432,bob,B!gbob72,mydb"

Generate a cross-referenced report named : C:\...\BabelfishCompass\MyReport4\MyApp.xref.html.

(without the -reportfile option, the report file name would be something like

C:\...\BabelfishCompass\ MyReport4\report-MyReport4-2021-Sep-13-21.22.23.html):

BabelfishCompass MyReport4 C:\temp\MyApp.sql -reportfile MyApp.xref -reportoption xref

Generate a combined report for applications Sales and two applications Finance and Inventory, each

of which consists of a directory tree containing .sql files on multiple levels, and perform automatic

rewriting where possible:

 BabelfishCompass MyReport5 -importonly C:\temp\Sales.sql

 BabelfishCompass MyReport5 -add -importonly -appname Finance -recursive C:\Finance\install

16

 BabelfishCompass MyReport5 -add -importonly -appname Inventory -recursive C:\Inventory\install

 BabelfishCompass MyReport5 -analyze -rewrite -reportoption apps

Automatic rewriting of unsupported features
As of version 1.2 of Babelfish Compass, you can use the -rewrite option to address certain SQL

features which are not currently supported by Babelfish, by rewriting the SQL feature in question in

such a way that Babelfish is able to process it. One example is the MERGE statement.

• When not specifying the -rewrite option, the assessment report will include a section

"Automatic SQL Rewrite Opportunities" which lists the SQL features that could be addressed

with -rewrite, but without actually rewriting them.

• When specifying the -rewrite option, Babelfish Compass creates a subdirectory rewritten in

the report directory, containing a copy of the original SQL source file in which specific features

have been rewritten (if nothing is rewritten, no copy will be created in rewritten).

The assessment report will contain a section with the specific rewritten features.

When -reportoption xref is used, the cross-reference links in the 'rewritten' sections point to

the rewritten SQL file (instead of to the original SQL file).

In a rewritten SQL file, the bottom of the file contains a list of all changes made by Babelfish Compass.

When using the -rewrite option, you should execute the rewritten SQL file against Babelfish instead of

the original SQL file.

Notes:

• Using -rewrite may cause Babelfish Compass to run slower than without -rewrite, especially

for large files in which many features are rewritten. For very large input files, it may therefore

be practical to first run an analysis without -rewrite; when the Compass report indicates that

rewrite opportunities were identified, then re-run Compass with the -analyze -rewrite flags.

• For dynamic SQL queries which contain unsupported-but-rewritable SQL features, no rewrite is

performed. The SQL feature will be reported as 'Not Supported'.

17

Files & Directories for a Report
An assessment report is an HTML file located in the report directory:

• On Windows: %USERPROFILE%\BabelfishCompass\<report-name>

A flat text version of the report is available in the same directory as the HTML file; this text version is

named identically, but ends in .txt instead of .html.

The report directory contains multiple subdirectories as described below. You should not rename or

edit the files in these subdirectories, as future invocations of Babelfish Compass for this report may no

longer work correctly (or at all):

• imported: contains a copy of the original SQL/DDL input scripts. These are stored to allow re-

running the analysis at a later time (for example, for a newer version of Babelfish). If the

original input files used a specific encoding, the files in the imported directory are in UTF8

format.

These files have cryptic-looking names like SalesDDL.sql.bbf~imported.SalesApp: here,

SalesDDL.sql is the name of the original input file and SalesApp is the application name for the

application. bbf~imported is added by Compass. Do not rename these files!

For each imported file, an HTML version is also located in the imported\html directory. When

generating a cross-reference in the assessment report, hyperlinks are generated to the actual

line in the original document where the SQL feature was found.

• imported\sym: contains files with symbol table information, for Compass-internal use.

• captured: contains files that contain items that were captured during analysis. These are SQL

features and options, which are reflected in the assessment report. When using the -pgimport

option, the files in this directory are imported into a PG table.

• log: contains the session log file for each invocation of Babelfish Compass.

• errorbatches: is a directory created only when syntax errors were found in the imported

SQL/DDL scripts. In this case, the input batches with the errors are saved in a file so that the

user has access to this information. If desired, you can rename or delete these files as they are

not used as input for any further processing steps.

• rewritten: contains rewritten input files as a result of using the -rewrite option. Only input files

where actual rewriting was performed, will be present here.

18

The BabelfishFeatures.cfg file
The compatibility assessment performed by the Babelfish Compass tool is driven by the file

BabelfishFeatures.cfg, which is located in the Babelfish Compass installation directory. This file

contains definitions of features that are (not) supported in a specific Babelfish version.

For each Babelfish release containing changes in functionality, a new version of the

BabelfishFeatures.cfg will also be released as part of Babelfish Compass. When Babelfish Compass is

already installed, the existing version of BabelfishFeatures.cfg should be replaced (overwritten) by the

newer version of this file.

BabelfishFeatures.cfg should be treated as a read-only file: do not edit, modify, or rename the

BabelfishFeatures.cfg; Babelfish Compass will detect changes, and terminate immediately.

SQL feature classifications

The general principle behind BabelfishFeatures.cfg is that features which are not listed in this file are

supported by Babelfish. Features that are not supported may fall in either of these categories:

• Not Supported : the feature is currently not supported by Babelfish.

• Review Semantics : the feature involves aspects which cannot be addressed by Babelfish, but

requires review to determine whether or not it requires changes to be made as part of the

migration process.

• Review Performance : the feature involves a performance-related aspect in SQL Server, and

therefore you should review this carefully to determine if performance may be impacted when

running on Babelfish.

• Review Manually : the feature cannot be assessed by Babelfish Compass, but needs to be

manually examined. For example: SET LANGUAGE @v : Babelfish Compass cannot determine if

@v contains a Babelfish-supported language name.

• Ignored : the feature is currently ignored by Babelfish.

19

Example: BabelfishFeatures.cfg

The following example denotes that ALTER VIEW is not supported, and is reported in a group named

Views:

[ALTER VIEW]

rule=create_or_alter_view

report_group=Views

The following example denotes that the only supported option for FETCH is FETCH NEXT; any FETCH

options are reported in a group named Cursors:

[FETCH cursor]

rule=fetch_cursor

list=NEXT,PRIOR,FIRST,LAST,ABSOLUTE,RELATIVE

supported-1.0.0=NEXT

report_group=Cursors

For more information about the contents of BabelfishFeatures.cfg, see the file's header.

20

The BabelfishCompassUser.cfg file (classification
overrides)
As described in the previous section, the BabelfishFeatures.cfg file defines which features are or are

not supported in a particular version of Babelfish. For SQL features that are not supported, you can

override the classification defined by BabelfishFeatures.cfg. For this purpose, Babelfish Compass

generates a file named BabelfishCompassUser.cfg, which is located in the report root directory; see

Report root directory location for more information. The default location of this file is

C:\Users\username\Documents\BabelfishCompass\BabelfishCompassUser.cfg (on Windows). You

can edit this file (unlike BabelfishCompass.cfg, which should not be modified by the user).

BabelfishCompassUser.cfg is not overwritten when installing a new version of Babelfish Compass, as

opposed to BabelfishFeatures.cfg, which will always be replaced in a new version of Babelfish

Compass.

In v.2022-12, the user-defined .cfg file to be used can be specified with -userconfigfile; the default

remains BabelfishCompassUser.cfg.

Use of the BabelfishCompassUser.cfg file is not recommended for new users of Babelfish Compass.

However, if you are an experienced user, you can use BabelfishCompassUser.cfg to tailor your

assessment reports by putting more or less focus on specific SQL features.

The user-defined .cfg file allows you to:

• Override the classification of a not-supported SQL feature (e.g. 'Ignored' instead of 'Not

Supported')

• Override the default complexity estimate (see next section)

• Define a user-defined effort estimate (see next section)

BabelfishCompassUser.cfg contains all of the sections that are present in BabelfishFeatures.cfg, like

[Datatypes] or [Built-in functions]. You shouldn’t modify these section headers, but can add certain

items to a section, as described below.

Note that any modifications made to the BabelfishCompassUser.cfg will not be saved or stored by

Babelfish Compass. Ensure that BabelfishCompassUser.cfg is properly backed up.

Babelfish Compass will create the BabelfishCompassUser.cfg file if it does not exist. If new sections

have been defined in BabelfishFeatures.cfg, which are not yet in BabelfishCompassUser.cfg, the new

sections will be appended. If you manually delete sections from BabelfishCompassUser.cfg, those

section will be appended again the next time Babelfish Compass runs.

Note:

• User-defined overrides are applied during analysis, and any overridden values are recorded in

the captured items; the assessment report is generated from these captured items. When only

21

generating a report (e.g. with -reportonly), no overrides will be applied.

When the user has modified override entries in BabelfishCompassUser.cfg and wants to apply

this to a report, the -analyze flag should be used.

• When a user-defined override is applied, the captured items will reflect the values after the

overrides have been applied; the original values have been lost. This means that it is not

possible to determine for individual captured items whether an override was applied (for

example, after using -pgimport).

Example: overriding default classification and reporting group
By default, CLUSTERED indexes and constraints are classified as Review Semantics by Babelfish

Compass. If you decide you don’t care about those aspects, and you want these to be ignored in the

assessment report, the classification can be overridden in BabelfishCompassUser.cfg by adding

default_classification=Ignored :

[CLUSTERED index]

default_classification=Ignored

Likewise, the FORMAT() and STR() functions are not supported in Babelfish version 1.0.0, and will be

reported accordingly. If you want these functions to be classified as Review Manually and reported

under Formatting functions, then add the following lines to the section [Built-in functions] in

BabelfishCompassUser.cfg :

[Built-in functions]

default_classification-ReviewManually=FORMAT,STR

report_group-Formatting functions=FORMAT,STR

Note that these changes only affect how SQL features are classified in the Babelfish Compass report.

There is no impact on how Babelfish itself processes the SQL features for which you changed the

classification.

For more information about possible modifications that you can make to BabelfishCompassUser.cfg,

see the file's header.

Predefined 'Optimistic' .cfg file
As of v.2023-03, a predefined file named BabelfishCompassUser.Optimistic.cfg is included with
Babelfish Compass. After installing the new Babelfish Compass version, this file is copied from the
installation directory to C:\Users\username\Documents\BabelfishCompass (on Windows) the next
time Compass runs.
When specifying -userconfigfile BabelfishCompassUser.Optimistic.cfg , various T-SQL features which
are unsupported by Babelfish will be reclassified as 'Ignored', thus removing them from the list of 'Not

22

Supported' features. This concerns T-SQL features that are unlikely to affect the actual application
functionality and have a make-or-break effect on the success of migration the application, like ALTER
DATABASE, or functions like FILEGROUP_NAME().
The reason for providing this .cfg file is that users are sometimes scared away from Babelfish by the
initial Compass report which contains some of these 'false positive' T-SQL features. By removing these
from the 'Not Supported' list, the Compass reports will present a more realistic -or, if you will, a more
optimistic- view of how well the application qualifies for migration to Babelfish.
This predefined 'optimistic' .cfg file is intended primarily for such first impressions when no deep dive
on the actual T-SQL feature in the application is performed. Once the actual migration is undertaken,
there is no reason to use this .cfg file since all actual SQL aspects in the application will need to be
handled regardless.

Compass users can modify BabelfishCompassUser.Optimistic.cfg as any other user-defined .cfg file
(see above) but should be aware that each new version of Compass may include a new copy of this
file, which will overwrite the existing copy. Therefore, if users want to customize
BabelfishCompassUser.Optimistic.cfg, they should rename this file and apply the customizations to
the renamed copy – and use that copy with the -userconfigfile flag.

When using the -optimistic flag, this is equivalent to specifying -userconfigfile
BabelfishCompassUser.Optimistic.cfg plus specifiying -rewrite.

23

User-defined estimates & .csv file
The features in this section are aimed at advanced and experienced Compass users.

As of Compass version 2022-12, Compass supports a complexity estimate for not-supported items, as

well as a user-defined effort estimate. A complexity estimate can be LOW, MEDIUM or HIGH reflecting

a very rough complexity estimate for resolving the item in question. The Compass report includes the

complexity score for each non-supported item, displayed between square brackets:

Compass defines a default complexity score, which can be overridden by the user (described below).

In addition, Compass users can define an effort estimate in terms of minutes or hours, reflecting the

amount of time it may take to address a particular non-supported item.

Compass generates a .csv file with the same filename as the report file, to assist advanced Compass

users in qualifying/quantifying the migration work required to address not-supported items (as

reported by Compass).

The .csv file contains the complexity score (either Compass default or the user-defined override) as

well as any user-specified effort estimates.

The .csv file is intended to be imported into a spreadsheet, and Compass user should add their own

formulas to the spreadsheet for performing calculations.

By specifying the -noreportcomplexity flag, the complexity scores will not be included in the Compass

report; the .csv file containing the complexity scores will however always be generated.

'Flat' format for .csv file
As of version 2023-08, the .csv file can be generated in a 'flat' format (by using flag -csvformat flat)

which may be more suitable for automated processing that the default 'structured' format.

As of version 2023-11, the .csv file contains an additional ItemID column allowing each item to be

uniquely numbered. These numbers must be defined by the user: if a file named

BabelfishCompassItemID.csv exists (in the Compass report root directory) , then the ItemID definition

in that file will be picked up. When the file does not exist or when no itemID is specified for an item, a

value of -1 is assigned. A different file name can be specified with flag -csvitemidfile .

The file BabelfishCompassItemID.csv must be defined by the user and must be semicolon-delimited.
A line must follow this layout (also see Example of BabelfishCompassItemID.csv)

itemID; itemDescription ; hint (optional)

Here, itemID is a number that will be assigned to the item with the text in the second field, using the

steps described below. itemDescription is the actual text of an item as it is shown in the Compass

24

report. The hint field is optional but allows specifying free text with solution hints that will copied into

the final Compass-generated .csv file, overriding any default Compass hint, if present.

To match an itemID to an itemDescription in the report, the following steps are applied. When a

match is found, processing stops for the item in question:

1. When an itemDescription contains one of the 3-char pattern strings \d+ or \w+, the itemID is
applied if the string and pattern match the start of the item being reported. These patterns are
interpreted as standard POSIX regular expression patterns; other patterns are not supported and
will be treated as literal text.

2. When an entry is identical to the item being reported, it is applied.
3. When an entry matches the start of the item being reported, it is applied.
4. If no matching value is found, -1 is used.

Given this order of processing, the most specific itemDescription in the file should come before the
more generic ones (like those with a pattern or only matching the start).
When matching, commas and semicolons are ignored (note that semicolons cannot be used anyway
as the file must be semicolon-separated) and whitespace is collapsed.
For a template for BabelfishCompassItemID.csv , see Example of BabelfishCompassItemID.csv .

Complexity score estimates
The Compass user can override the default complexity scores by adding their own complexity scores in

the BabelfishCompassUser.cfg file using the complexity_score keys (see examples below).

It should be noted that the default Compass complexity scores are generalized and somewhat

arbitrary since the experience and expertise of the team performing the migration is a much more

deciding factor for the overall effort required. These Compass-provided complexity estimates should

therefore be taken as very rough high-level guidance only; Compass users are urged to evaluate and

adjust all values in the context of the actual customer application being analyzed.

The user-specific override values in BabelfishCompassUser.cfg can be LOW, MEDIUM or HIGH, but

also an arbitrary number between 0 and 100 (so as to allow Compass users to use more detail).

When uploading analysis details into PG using the -pgimport option, the complexity score is available

in column misc; user-defined effort estimates are uploaded as of version 2023-06.

Complexity score defaults
As of v.2023-08, a default complexity can optionally be defined in the BabelfishCompassUser.cfg file

for items with a particular status (except for status = 'Supported'). This default is applied when no

complexity has been specified for an item in neither the BabelfishFeatures.cfg file nor the

BabelfishCompassUser.cfg file. If no default is defined for a particular status value, MEDIUM will be

25

assumed.

The complexity defaults must be specified in a section [Complexity Score Defaults] which must occur

towards the top of the in the BabelfishCompassUser.cfg file before any of the regular sections.

Example:

[Complexity Score Defaults] # these complexity values are arbitrary examples; do not copy!

complexity_score_default_NotSupported=high

complexity_score_default_ReviewPerformance=high

complexity_score_default_ReviewSemantics=low

complexity_score_default_ReviewManually=low

complexity_score_default_Ignored=low

Effort estimates
It is also possible to define your own effort estimates, expressed in minutes, hours or days, in the

BabelfishCompassUser.cfg file using the effort_estimate keys (see examples below). These values are

not shown in the generated report, but only in the generated .csv file.

As of release 2023-08, two values can be specified for the effort estimate, one for 'scaling' and one for

'one-time learning curve'. Here, 'scaling' is the estimated effort per occurrence of a particular item,

and 'one-time learning curve' is an effort estimate that reflects the one-time effort that needs to be

spent for devise a solution for a particular item. As an example, there could be a on-time learning

curve effort estimate of 1 hour, and an additional scaling effort estimate of 5 minutes per occurrence.

The effort estimates are specified as <number><unit>:<number><unit>, where the value before the ':'

is the 'scaling' effort and behind the ':' is the 'one-time learning curve' effort. Either value is optional.

When the colon id omitted, the value represents the 'scaling' effort.

Examples (these all represent the same values: 10 minutes for each occurrence of an item, and 2

hours for the one-time learning curve for the type of item):

• 10m:2h

• 10 mins : 2 hrs

• 10 minute : 2 hours

When user-defined effort estimates are used, these values will show up in additional 'Effort' columns

in the .csv file: the first column is a textual representation of the user-configured value (e.g. '5

minutes' or '1 hour' or '1 day'), and the second is the corresponding number of minutes, for

calculation purposes (e.g. 5 , 60, 480 minutes, respectively).

Prior to 2023-08, only one effort estimate value could be specified, which represented 'scaling' effort.

When uploading analysis details into PG using the -pgimport option, as of v.2023-06, user-defined

effort estimates for 'scaling' are available in column misc2; as of v.2023-08, user-defined effort

estimates for 'one-time learning curve' are available in column misc3.

26

Real-life effort estimate in executive summary
As of release 2023-11, if user-defined effort estimates have been specified, the executive summary at

the top of the Compass report will contain a summary of the total estimated effort for functional SQL

migration, like this:

User-defined SQL migration effort estimate (excl. data migration, tuning, testing, etc.): 5 weeks (5

days/week, 8 hours/day)

(based on user-defined estimates in MyCompassEffortEstimates.cfg)

The calculation of weeks/days is intended to provide a rough real-life, order-of-magnitude indication

of the level of human effort required. Please note that this number is derived from the user's own

effort estimate definitions. Compass is not providing such estimates itself. Interpreting and validating

these effort numbers are the exclusive responsibility of the Compass user.

The final number of weeks/days shown here depends on how many hours are counted per day

(default=8), and days per week (default=5). Different values may however be desired to reflect some

real-life considerations about time effectiveness. Such values can be defined by adding these lines to

the user-defined .cfg file:

effort_estimate_default_Hours_Per_Day=6

effort_estimate_default_Days_Per_Week=4

Note that this definition of hours/day is used only for calculating the final total effort in the executive

summary section. When defining an effort estimate for a particular item as '1 day' (as described in the

rest of this section), that means 8 hours or 240 minutes.

When the number of days/weeks calculated as above is less than 2, it is rounded upwards to avoid

showing an unrealistic small number.

Examples
The precise way of specifying these values is explained a bit more in the header of the

BabelfishCompassUser.cfg file. The sections in this file correspond to the same section in

BabelfishFeatures.cfg (which you cannot edit yourself), and in most cases correspond quite obviously

to the grouping of reported items in the Compass report.

(NB. the actual values shown below are chosen arbitrarily and should not be used as guidance)

[Built-in functions]

complexity_score-HIGH=SOUNDEX # complexity = HIGH for this function, if unsupported

complexity_score=LOW # complexity = LOW for any other unsupported function

complexity_score-60=COL_LENGTH # complexity = 60 for this function, if unsupported

27

[Cursor options]

effort_estimate-4hours=SCROLL,FOR_UPDATE # 4 hours for these options, if unsupported

effort_estimate=1hour:1day # 1 hour/1 day for other unsupp'd options

Effort estimate defaults
As of release 2023-08, default effort estimates can optionally be defined in the

BabelfishCompassUser.cfg file for items with a particular status (except for status = 'Supported').

These defaults are defined by the lines effort_estimate_default_{NotSupported|Review…Ignored} as

shown below, and are applied when no effort estimate has been specified for an item in neither the

BabelfishFeatures.cfg file nor the BabelfishCompassUser.cfg file. In case no effort estimate default is

defined, then an effort estimate default for the complexity of the item is used, as defined below by

lines effort_estimate_default_{low|high} . If the latter is not defined either, zero effort is assumed.

The effort estimate defaults must be specified in a section [Effort Estimate Defaults] which must

occur towards the top of the in the BabelfishCompassUser.cfg file before any of the regular sections.

Example:

[Effort Estimate Defaults] # these effort estimate values are arbitrary examples; do not copy!

effort_estimate_default_high=1h:4h

effort_estimate_default_medium=10m:30m

effort_estimate_default_low=1m

effort_estimate_default_NotSupported=30m:1h

effort_estimate_default_ReviewPerformance=1h:2h

effort_estimate_default_ReviewSemantics=15m

effort_estimate_default_ReviewManually=5m

effort_estimate_default_Ignored=1m

Uploading details into PostgreSQL with -pgimport
The -pgimport flag lets you load all captured items into a PostgreSQL table. From there, you can

perform customized additional operations on this data. Before you can use -pgimport, the PostgreSQL

psql client needs to be installed on your system, and needs to be in your session's PATH.

By default, data is imported into a table named public.BBFCompass, but a different name can be

specified with the -pgimporttable option.

Note: when using the -pgimport flag, any user-defined complexity estimates or effort estimates in the
user-defined .cfg file will only be included in the uploaded data when the user-defined .cfg file is
specified together with -pgimport (for the "optimistic" .cfg file, you can specify -optimistic instead).

https://www.postgresql.org/docs/current/app-psql.html
https://www.postgresql.org/docs/current/app-psql.html

28

Examples of what you may be able to do with -pgimport:

• Run SQL queries to find objects with a complex combination of attributes. For example: find all

SQL functions with at least two parameters, including a MONEY-type parameter, a

SMALLDATETIME result type, and a table variable operation in the function body.

• The Babelfish Compass assessment report deliberately does not report any 'compatibility

percentage', because it is difficult to define such a number in a meaningful way. A simple way

to calculate such a percentage would be to take the ratio of non-supported features vs.

supported features. However, some unsupported features may be very difficult to work

around while other may be easy. Yet, they would both weigh equally heavy in such a

calculation.

You can decide how to calculate a viable compatibility percentage for your evaluation. For

example, you could write a SQL-based application that assigns different weights to different

non-supported features, thus calculating a more realistic compatibility percentage on the basis

of the captured items that were loaded with -pgimport.

Note: any such calculations are the exclusive responsibility of the Babelfish Compass user.

• When a migration opportunity is discussed, a key question is to estimate the time and cost of

performing a migration. While this question is realistic, the Babelfish Compass tool does not

attempt to make any estimates with respect to the amount of time or effort it may require to

address the non-supported issues that were identified. The reason is that the actual effort

required will be highly dependent on skills and experience of the individuals doing the actual

work (picture a team of seasoned DBAs with decades of database experience vs. a team of

newly arrived university graduates). Since it is not realistic to generalize such effort estimates,

Babelfish Compass does not attempt this.

However, you could try to build such functionality yourself on the basis of the captured items

that were loaded with -pgimport. Imagine an experienced team of migration experts who have

collected detailed data points from their past migration projects; such a team might be able to

quantify the effort required for the non-supported items in the Babelfish Compass assessment

report, specifically aimed at their own team with their specific experience. The -pgimport

function makes it possible to build an application using the imported items for making effort

estimates.

Note: any such estimates are the exclusive responsibility of the Babelfish Compass user.

Schema for imported items
When you include the -pgimport flag, Babelfish Compass creates a PostgreSQL table with the

following definition:

CREATE TABLE BBFCompass(

 babelfish_version VARCHAR(20) NOT NULL,

 date_imported TIMESTAMP NOT NULL,

29

 item VARCHAR(200) NOT NULL,

 itemDetail VARCHAR(200) NOT NULL,

 reportGroup VARCHAR(50) NOT NULL,

 status VARCHAR(20) NOT NULL,

 lineNr INT NOT NULL,

 appName VARCHAR(100) NOT NULL,

 srcFile VARCHAR(300) NOT NULL,

 batchNrinFile INT NOT NULL,

 batchLineInFile INT NOT NULL,

 context VARCHAR(200) NOT NULL,

 subcontext VARCHAR(200) NOT NULL,

misc VARCHAR(20) NOT NULL,

misc2 BIGINT NOT NULL, -- as of v.2203-06

misc3 BIGINT NOT NULL -- as of v.2203-08

);

The columns represent the following:

• babelfish_version : is the Babelfish version for which analysis was performed.

• date_imported : is the date/time that -pgimport ran.

• item : is a line item as shown in the report.

• itemDetail : is additional info about a line item.

• reportGroup : is the report group as show in the report.

• status : is the classification of the item; for example, SUPPORTED or NOTSUPPORTED.

• lineNr : is the line number of the item in the T-SQL batch.

• appName : is the application name.

• srcFile : is the SQL source file name.

• batchNrInFile : is the batch number of the T-SQL batch in SQL source file.

• batchLineInFile : is the line number in the file at the start of the batch.

• context : is the name of an object, or T-SQL batch.

• subContext : is the (optional) name of a table in the object.

• misc : as of 2022-12: complexity score; in previous versions: not used.

• misc2 : added in 2023-06: 'scaling' effort estimate in minutes, if defined.

• misc3 : added in 2023-08: 'one-time learning curve' effort estimate in minutes, if defined.

Example queries
You can run SQL queries against the imported items to derive information on a more detailed level

than can be presented in the Compass report Some examples are shown below.

30

On large tables, performance may benefit from adding indexes to one or more columns of this table.

This is left for the user to explore.

Example 1: complex filtering

To find this information:

"find all SQL functions with at least two parameters, including a MONEY-type parameter, a

SMALLDATETIME result type, and a table variable operation in the function body"

…use this SQL query:

select distinct context from BBFCompass

-- filter on table variable operation:

where item like '% @tableVariable'

-- filter on function with >= 2 parameters:

and context in (

 select context from BBFCompass

 where context like 'FUNCTION %'

 and item like '% parameter'

 group by context

 having count(*) >= 2)

-- filter on MONEY-type parameter:

and context in (

 select context from BBFCompass

 where context like 'FUNCTION %'

 and item like 'MONEY %function parameter%')

-- filter on function result type:

and context in (

 select context from BBFCompass

 where context like 'FUNCTION %'

 and item like 'SMALLDATETIME %scalar function result%')

Example 2: object dependencies

As of release 2023-10, it is possible to extract object dependencies from the uploaded data (for

reports generated by previous Compass releases, data for object dependencies is incomplete). Use

this query:

select * from (

select 'SELECT' as DMLStatement, itemDetail as objectReferenced,

'SELECT' as accesstype, context from public.BBFCompass where item like

'SELECT FROM @tableVariable%'

 union all

select reportgroup as DMLStatement, itemDetail as objectReferenced,

item as accesstype, context from public.BBFCompass where

status='OBJECTREFERENCE' and reportgroup <> 'DDL'

 union all

select substring(item from E'^(.+?)\\W') as DMLStatement, itemDetail

as objectReferenced, 'SELECT' as accesstype, context from

31

public.BBFCompass where item similar to '(INSERT|UPDATE|DELETE|MERGE)

@tableVariable%' and item not like 'Cross-database%'

 union all

select substring(item from E'^(.+?)(\\W|$)') as DMLStatement,

itemDetail as objectReferenced, substring(item from E'^(.+?)(\\W|$)')

as accesstype, context from public.BBFCompass where item similar to

'(INSERT|UPDATE|DELETE|MERGE)%' and item not like '%(target)%' and

item not like '%@tableVariable%'

 union all

select item as DMLStatement, itemdetail, item as accesstype, context

from public.BBFCompass where item like '%SELECT..INTO%'

 union all

select 'INSERT..EXECUTE' as DMLStatement, itemDetail as

objectReferenced, 'INSERT' as accesstype, context from

public.BBFCompass where item like 'INSERT..EXECUTE%'

 union all

select 'EXECUTE' as DMLStatement, itemDetail as objectReferenced,

'EXECUTE' as accesstype, context from public.BBFCompass where item

like 'EXECUTE %'

 union all

select item as DMLStatement, itemDetail as objectReferenced, item as

accesstype, context from public.BBFCompass where reportgroup = 'DDL'

and item not like 'Option %' and item not like 'Constraint %' and item

not like 'Index%' and item not like 'CREATE INDEX%' and context not

like 'TABLE %' and subcontext not like 'TABLE %'

 union all

select item as DMLStatement, itemDetail as objectReferenced, item as

accesstype, context from public.BBFCompass where item in ('TRUNCATE

TABLE')) t

where context not like 'TABLE %'

order by context;

Processing captured SQL queries
Apart from server-side DDL, also client-side SQL queries should be considered during a database

migration. When capturing client-side SQL queries as described below, Babelfish Compass can extract

the SQL queries from the capture files and perform a Compass assessment on them.

In order to process capture files, specify the command-line option -importfmt format, as shown

below.

Since captured SQL often contains many near-duplicate statements that only differ in the value of a

lookup key or a constant, by default Compass de-duplicates the captured SQL prior to analysis. De-

duplication is performed by masking the values of all string/numeric/hex constants.

To suppress de-duplication, specify the command-line option -nodedup.

32

The extracted and de-duplicated SQL queries/batches are saved into a file in directory extractedSQL: a

file named MyCapture.xml will be saved into extractedSQL/MyCapture.xml.extracted.sql. This file is

then used as input for the Compass analysis.

SQL Server Profiler
To capture SQL statements with SQL Server Profiler, take these steps:

1. In SQL Server Profiler, under "Trace Properties", use the TSQL_Replay template

2. Initiate the tracing in SQL Server Profiler

3. Run the client application against the SQL Server database

4. When done capturing the client application's SQL, save the captured results (in SQL Server

Profiler) with Save As➔Trace XML File for Replay . This creates an XML file containing the

captured SQL batches.

5. Run Babelfish Compass with the just-created XML file as input, and specify the command-line

option -importfmt MSSQLProfilerXML

o The extracted SQL batches are saved into a file in directory extractedSQL: a file named

MyCapture.xml will be saved into extractedSQL/MyCapture.xml.extracted.sql

SQL Server Extended Events
To capture SQL statements with SQL Server Extended Events, take these steps:

1. Run the client application against the SQL Server database

2. Use SQL Server Extended Events to capture SQL queries

3. Extract the captured events from the .xel file as .xml files containing <event…> …

</event> XML documents. Note that the .xel files cannot be processed by Compass.

4. Run Babelfish Compass with the XML file as input, and specify the command-line option -

importfmt extendedEventsXML

Examples

BabelfishCompass MyReport C:\temp\MyProfilerCapture.xml -importfmt MSSQLProfilerXML

BabelfishCompass MyReport C:\temp\MyXECapture.xml -importfmt extendedEventsXML

33

Automatic DDL generation
As of Babelfish Compass release 2023-06, Compass may optionally perform the DDL generation

directly for the SQL Server database(s) for which analysis needs to be performed. This means that the

Compass user does not have to manually generate the DDL script using SQL Server Management

Studio. This may not always be the most optimal solution (see below), but it can simplify the overall

process.

Command-line options
To let Babelfish Compass perform the DDL generation, the following command-line options must be

specified. Compass will then connect to the SQL Server, generate the DDL file(s), and run a Compass

analysis on the generated files:

• -sqlendpoint : the hostname or IP address of the SQL Server; optionally, the port number can

also be specified (e.g. 10.123.45.67 or mybigbox,1433).

• -sqllogin : the login name to connect to the SQL Server; this login should typically be a member

of the sysadmin role so as to have permission to generate the DDL.

• -sqlpasswd : the corresponding password.

• -sqldblist : optional; when omitted or when 'all' is specified, DDL is generated for all user

databases in the server; alternatively, a comma-separated list of database names can be

specified.

Notes:

• While generating DDL, Compass creates a network connection to the SQL Server specified,

through a Powershell script (see below).

• When one of options -sqlendpoint , -sqllogin or -sqlpasswd is specified, the others must be

specified as well.

• These options cannot be combined with specifying input files; also, this cannot be used to add

DDL files to an existing report with -add or -replace, so you must either create a new report or

use the -delete flag. Other Compass options such as -rewrite , -optimistic and -reportoption

can be specified as usual.

• One DDL file is generated per T-SQL user database. When more than one database is

processed, the flag -reportoption apps is automatically applied so that the Compass report

shows how the T-SQL features are distributed over the different databases.

• The DDL files are generated into a directory named similar to CompassAutoDDL-2023-Jun-07-

13.22.51 under your session's %TEMP% location (on Windows) or /tmp (Mac/Linux). The

directory is reported by Compass on the console output. The directory is not deleted

afterwards so the original DDL files are retained.

34

• The speed of generating the DDL is highly dependent on the network proximity to the SQL

Server since this involves many client-server roundtrips. When a few thousand objects exist in

the database, it may take minutes to hours to complete, depending on the network proximity.

You can tell that DDL generation has completed when the message 'DDL generated in

<directory>' occurs, and Compass starts its analysis of the generated DDL.

If it takes an unreasonably long time to generate the DDL, then you might want to consider to

use SQL Server Management Studio instead.

• Even with optimal network connectivity, generating the DDL will likely take more time than

analyzing it by Compass.

• On Windows, if the password contains a ^ character (a.k.a. 'caret', 'circumflex', or SHIFT-6),

enclose the password in double quotes since this is an escape character in Windows .bat and

Powershell.

How it works
Babelfish Compass uses .Net SQL Management Objects (SMO) to perform the DDL generation.
Compass invokes a Powershell script named SMO_DDL.ps1, which is located in the Babelfish
installation directory. This script uses SMO and connects to the SQL Server specified by the user,
requiring a network connection.

On Windows, Powershell is available by default. On Linux and Mac, Powershell first needs to be
installed by the user before running Compass (see https://learn.microsoft.com/en-
us/powershell/scripting/install/installing-powershell-on-linux) .
When Powershell script SMO_DDL.ps1 is invoked, it will install SMO if needed (typically this only
happens when it runs for the first time); this installation may take some time, and requires a network
connection.
On Windows, in order to run the Powershell script, your Windows environment must have the
'Powershell Execution Policy' set to Unrestricted; in release 2023-08, Compass checks this and tells
you whether the setting is as required.

This Powershell script, and the installation of SMO, have been tested successfully on Windows, Linux
and Mac. However, in rare cases installing SMO might fail. The remedy would be to install SMO
manually but that may not be trivial given that the installation steps in the script have already failed
(this user guide does not provide guidance how to install SMO manually). Alternatively, use the
manual approach to generate DDL via SQL Server Management Studio.

Generating only DDL
The script SMO_DDL.ps1 can also be used stand-alone to generate DDL. This can be useful when there
are many SQL Server instances and/or many databases per instance, and perhaps you want to inspect
or consolidate the DDL scripts before running a Compass analysis on them. For instructions how to run
the script stand-alone, see the header of the script.
Notes:

https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-linux
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-linux

35

• Do not make any changes to the SMO_DDL.ps1 script, since Compass expects this script to be
available without any changes. If you want to make changes, take a copy and modify the copy.

• As above, Powershell needs to be installed and available.

Example

C:\BabelfishCompass> BabelfishCompass.bat SMOTest -sqlendpoint mybigbox -sqllogin

sa -sqlpasswd MyS3cret -sqldblist Sales,Ledger

Babelfish Compass v.2023-06, June 2023

Compatibility assessment tool for Babelfish for PostgreSQL

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

Reading BabelfishFeatures.cfg

Latest Babelfish version supported: 3.2.0: BabelfishFeatures.cfg

Reading

C:\Users\johnsmith\Documents\BabelfishCompass\BabelfishCompassUser.Optimistic.cfg

Running Powershell/SMO script to generate DDL for server 'mybigbox' into directory

C:\Users\johnsmith\AppData\Local\Temp\CompassAutoDDL-2023-Jun-07-13.22.51...

Note: run times strongly depend on network proximity to the SQL Server.

Alternatively, generate DDL manually through SQL Server Management Studio on the

SQL Server host.

You can abort by hitting CTRL-C

DDL generated in C:\Users\johnsmith\AppData\Local\Temp\CompassAutoDDL-2023-Jun-07-

13.22.51 :

 Volume in drive C is OSDisk

 Volume Serial Number is FC25-F714

 Directory of C:\Users\johnsmith\AppData\Local\Temp\CompassAutoDDL-2023-Jun-07-

13.22.51

07-Jun-2023 13:24 <DIR> .

07-Jun-2023 13:24 <DIR> ..

07-Jun-2023 13:24 1,959,008 Ledger_SMO_DDL_2023-Jun-07.sql

07-Jun-2023 13:23 925,052 Sales_SMO_DDL_2023-Jun-07.sql

 2 File(s) 2,884,060 bytes

 2 Dir(s) 204,604,514,304 bytes free

Creating C:\Users\johnsmith\Documents\BabelfishCompass\SMOTest

Run starting : 07-Jun-2023 13:22:51 (Windows)

BabelfishFeatures.cfg file : v.3.2.0, Jun-2023

Target Babelfish version : v.3.2.0 (PG 15.3)

Command line arguments : SMOTest -sqlendpoint mybigbox -sqllogin sa -sqlpasswd

******** -sqldblist Sales,Ledger

[…rest of Compass session…]

36

37

Security
The Babelfish Compass tool is a stand-alone, on-premises program which does not store any

confidential or sensitive information: all information stored is derived from the SQL/DDL scripts which

the user provides as input.

The Babelfish Compass tool operates offline and does not perform any network access, with these

exceptions:

• The -pgimport option, which connects to a PG instance.

• The automatic DDL generation with -sqlendpoint, -sqllogin, -sqlpasswd, which connects to a

SQL Server instance.

• The automatic check-for-updates, which connects to GitHub (see below).

Other than in these cases, the Babelfish Compass tool makes no network connections that are

invisible to the user. Also, Babelfish Compass does not "phone home".

The -pgimport option
The -pgimport option connects to a PostgreSQL instance and loads captured items into a database

table.

Technically, Babelfish Compass creates files pg_import.bat (on Mac/Linux, pg_import.sh) and

pg_import.psql in the captured directory. The pg_import.bat/pg_import.sh file executes

pg_import.psql, which runs a CREATE TABLE and a COPY statement in PostgreSQL.

Babelfish Compass executes this function by spawning a subprocess to run

pg_import.bat/pg_import.sh.

To make a connection to the PostgreSQL instance, the user must specify connection attributes on the

Babelfish Compass command line, including the PostgreSQL username and password. These

connection attributes are not written to any file, but are supplied as environment variables in the

short-lived spawned subprocess. These environment variables are not accessible from outside the

spawned subprocess.

Note that the connection attributes may be accessible through the command-line history in the

command-line session that runs Babelfish Compass.

As for the uploaded captured items, it is assumed that the user owns the PostgreSQL instance and is

responsible for granting access to the uploaded data.

The -sqlpasswd option
When using the -sqlpasswd option (see Automatic DDL generation), the specified password is passed

on to the Powershell script. This script connects to the SQL Server specified with -sqlendpoint. The

password itself is not stored or logged anywhere by Babelfish Compass. The -sqlendpoint

38

and -sqllogin options are included in the Compass report header under "Command line arguments".

Note that the password and other connection attributes may be accessible through the command-line

history in the command-line session that runs Babelfish Compass.

Automatic update check
Starting with Babelfish Compass version 2022-04, Compass checks whether a more recent version of

itself is available at GitHub by making a REST call to GitHub repository. If so, it will print a message to

inform the user, but not take any further action: the user must still download and install the update

manually.

No information about these REST calls is collected or stored, other than by GitHub's default behavior.

To suppress the update check, specify the -noupdatechk option.

39

Scaling Compass: Analyzing Multiple Applications
In most cases where Babelfish is considered, the focus is on a single specific application only.

In case there are have multiple applications, the default approach would be to run Compass for each

application and produce one Compass report for each application.

In some cases it may be more convenient to generate a single combined Compass report for multiple

applications. The key to generating such a report is to use the flag -reportoption apps (see Command-

line options).

For each item in the Compass report, this option will report the various applications in which the item

was found. The following shows how 45 calls of the function SOUNDEX() occur in three different

applications:

SOUNDEX() : 45 #apps=3: Product(16), Sales(20), HR(9)

Assuming there is one DDL script for each application, there are multiple ways to generate such a

combined Compass report:

• Enumerate all DDL scripts to be processed:

BabelfishCompass MyReport C:\tmp\Product.sql C:\tmp\Sales.sql C:\tmp\HR.sql -reportoption apps

• If the input scripts are in the sae location, use a wildcard:

BabelfishCompass MyReport C:\tmp*.sql -reportoption apps

When running the above without -reportoption apps, the generated Compass report will be identical, but it

will not show the breakdown of each item across the various application. Note that -reportoption apps is

silently ignored when there is only one application in the report.

40

Scaling Compass: Analyzing Many Applications
Imagine a large SQL Server customer which is running thousands of SQL Server

databases/applications, and a top-10 list of candidate applications must be identified for a Babelfish

PoC. Let's say a candidate app should have a smaller number of lines of SQL code in procedures/

functions/triggers/views, the fewest number of unsupported features, and no high-complexity

unsupported features at all.

How would you approach this?

In its simplest, and also its most laborious form, you could take these steps:

1. For each of those thousands SQL Server databases, run SSMS to generate the DDL

2. For each DDL script, run Babelfish Compass to produce a Compass report

3. Examine each Compass report to identify the best candidate. The Executive Summary at the

top should contain the high-level metrics allowing you to make a first selection, e.g.:

The problem is that each of these steps must be done as many times as there are SQL Server

databases, which makes this a non-feasible approach when the numbers are large.

Fortunately, Compass offers various features to make this task more manageable.

Improvement 1: Generate DDL in batch
Using the -sqlendpoint option of Compass (and -sqllogin/-sqlpasswd), the DDL for a database can be

generated by Compass directly, without having to go through SSMS. Assuming you have a list of all SQL

Server databases and the required login/password, you can now write a script that generates the DDL

for each database, and generates a Compass report for it. This script can run unattended as a batch

job, without requiring further manual action.

Note that using -sqlendpoint works best when Compass is located close to the SQL Server from a

network proximity perspective, since the process requires many client/server round trips.

Using unattended DDL generation is clearly a step forward, but we still need to dig through thousands

of Compass reports to identify candidate applications.

To optimize, you could consider using tools like grep, awk or perl to extract the numbers from the

Executive Summary in the Compass reports. But there is a better way!

41

NB. When using -sqlendpoint, the generated DDL script is placed in the directory indicated

by %TEMP% (Windows) or in /tmp (Linux/Mac), as shown in the Compass report header. You can copy

the DDL script from this location if desired. A copy of the processed input files is always located in the

imported directory for the report.

Improvement 2: Capture 1-line metrics per report
As of Compass release 2023-11, the metrics in the Executive Summary are printed to stdout on a

single line like this (shown wrapped around here because the line exceeds the page width but it is all

printed as a single line):

CompassExecutiveSummary:3.3.0 report:MyBigApp linesSQL:117821 featuresSQL:70894/920

sqlObjects:1160 tables:1003 featuresNotSupported:631/32 complexityLow:29/2

complexityMedium:469/10 complexityHigh:133/20

When scripting the Compass analysis of all those databases as a batch job as described above, you

should also the output of the batch job in a file. You can then search for CompassExecutiveSummary

to get 1 line for each Compass report. When importing these lines into a spreadsheet, you can easily

sort the reports on a metric of choice and generate a top-X of Babelfish PoC candidates.

(if you did not capture the batch job output, you can still find these lines by searching through the

session log files in the log subdirectory for each Compass report).

42

Advanced Compass Usage
This section describes some ways to use Compass that most users will never need, but may still be

useful at some point.

Manually copying imported files
Each Compass report consists of a set of files and directories under the Compass reports root

directory. These files and directories are self-contained, platform-independent and transportable: you

can copy the directory for a report to a different host (into the Compass reports root on that host) and

run Compass against it. This also works between Windows / Linux /Mac.

The reason why you can move a report around is that a copy of all input files is saved in the imported

directory for the report (see Files & Directories for a Report)

When re-running analysis with the -analyze flag, the files in imported are re-read as input, so the

original DDL scripts are not accessed.

Technically, it is possible to manually combine multiple reports into one:

1. Copy one or more files named *bbf~imported* into the imported directory of another report.

Note that the copied files should not be renamed.

2. Re-run Compass for the target report with the -analyze flag: this will take the files in the

imported directory as input and reprocess them. The resulting report is the same as when the

original input files would have been specified.

A single Compass report for very large amounts of SQL
Compass scales quite well until a few million lines of SQL code per report. When the amount of SQL

code becomes much larger, processing time may get dramatically worse (depending on the resources

in your system, this could happen quicker or later).

Let's say a large SQL Server customer is running thousands of SQL Server databases/applications, and

you want a single Compass report covering all of these applications.

If you tried to process all DDL scripts in a single Compass operation, this would likely be too slow and

might seem to never complete. The same would happen when copying all DDL scripts from each

imported directory into a single Compass report and running -analyze (as described in Manually

copying imported files).

In such a case, the processing can be split up in an analysis part for each application, and a final

reporting step for all of the analyzed applications together, as follows:

• Run Compass for each application or database (use -analyze if the report already exists) and

add the (undocumented) flag -mergereport MyBigReport . Do this for all applications.

• The -mergereport flag will copy all files for that report into a separate report directory called

MyBigReport

43

• When all applications have been analyzed, generate the final collective report as follows:

BabelfishCompass MyBigReport -reportoption apps

NB. Running BabelfishCompass MyBigReport -analyze will likely exhibit the slow-processing

behaviour which we are trying to avoid by following the steps above.

Locating items in very large SQL scripts when cross-ref links are slow
Compass can generate a cross-reference to the original SQL code with the flag -reportoption xref (see

Command-line options). This creates hyperlinks in the Compass report that lead to the location of the

item in the original SQL script file.

If the original SQL script is very large (e.g. > 500,000 lines) your browser may take considerable time

after clicking a cross-ref hyperlink (depending on your browser and resources available). If this takes

too long, there is a shortcut to finding the location by directly looking into the file in the captured

directory. Such files are named similar to captured.SalesDDL.sql.bbf~captured.SalesApp , where

SalesDDL.sql is the original SQL script filename and SalesApp is the application name. These files

contain the information that was extracted from the original SQL code by Compass, and this is what

the final report is generated from.

Let's say a case of a dynamically created cursor is reported by Compass, and you want to fund its

location. You search in the captured.* file for 'Dynamically created cursor' and you find the following

line, which is semicolon-separated:

Dynamically created cursor;PrdCurs;Cursors;NOTSUPPORTED;91;MyBigApp;c:\\temp\\MyBigApp.sql;

5564;565164;PROCEDURE dbo.p_R3285_2;;;~;

Without getting into too much detail, what we see from this line is:

• This feature occurs in a procedure named dbo.p_R3285_2 (this could be enough of a pointer

already) and the cursor is named PrdCurs

• The batch in which this feature occurs starts at line 565164 in the SQL source file (it's batch

#5564, but that information is probably not very helpful)

• The feature occurs at (or around) line 91 in the batch; so that means it's at line 565164 + 91 – 1

= 565254 in the original file (c:\temp\MyBigApp.sql) .

• A copy of the original SQL file is in the imported directory. In this case it would be named

MyBigApp.sql.bbf~imported.MyBigAppApp . Note that this file has one additional line

inserted at the top of the file, so you should look for line 565255.

NB. When looking in the captured.* files, ignore any lines that have XREFONLY, OBJECTCOUNTONLY, or

OBJECTREFERENCE in the 4th field (just don't ask – but the Compass code is all on Github if you really

want).

44

Using Babelfish Compass to migrate to
PostgreSQL
Babelfish Compass analyzes the SQL/DDL code for a SQL Server-based application for compatibility

with Babelfish. The purpose of this analysis is to inform a Go/No Go decision about starting a

migration project from SQL Server to Babelfish. For this purpose, Babelfish Compass produces an

assessment report which lists (in great detail) all SQL features found in the SQL/DDL code, and

whether or not these are supported by the latest version of Babelfish.

On a high level, the sequence of steps involved in a migration is as follows:

1. The application owner identifies the SQL Server databases required for the application that is

considered for migration to Babelfish. The application owner must ensure there are no legal

restrictions with respect to migrating the application in question.

2. Reverse-engineer the SQL Server database(s) in question with SQL Server Management Studio

(SSMS). This is done in the SSMS Object Explorer by right-clicking a database and selecting

Tasks ➔ Generate Scripts, and following the dialog (making sure to turn on triggers, collations,

logins, owners and permissions (turned off in SSMS by default), by clicking the Advanced

button and turning on the respective options).

• Babelfish Compass requires input scripts to be syntactically valid T-SQL, using go as a

batch delimiter (i.e. sqlcmd-style scripts). Some tools may be able to reverse-engineer,

but don’t do this correctly or completely, or don’t generate the required batch

delimiters (like DBeaver). Therefore, we recommend using SSMS to generate a DDL

script of the database(s).

3. SSMS produces a DDL/SQL script as output. Use this script (or scripts) as input for Babelfish

Compass to generate an assessment report (see instructions and examples earlier in this User

Guide).

4. Optionally, generate additional cross-reference reports to obtain additional details about the

unsupported features.

5. Discuss the results of the Babelfish Compass assessment and interpret the findings in the

context of the application to be migrated. In these discussions, it may be possible to descope

the migration by identifying outdated or redundant parts of the application which do not need

to be migrated.

6. Use the assessment results that show the unsupported SQL features in the SQL/DDL code, to

decide if it is opportune to start a migration project to Babelfish. If the current version of

Babelfish is deemed to be insufficiently compatible with the application in question, we

45

recommended you re-run the analysis when future releases of Babelfish are available which

will provide more functionality.

7. If proceeding with a migration, modify the SQL/DDL scripts to rewrite or remove the SQL/DDL

statements that are reported as not supported or requiring review. Then, invoke the SQL/DDL

script against Babelfish (with sqlcmd) to recreate the schema in Babelfish.

8. Finally, perform a data migration, and reconfigure the client applications to connect to

Babelfish.

Please keep the following in mind:

• Admittedly, the amount of detail in a Babelfish Compass assessment report can be large. When

discussing the Babelfish Compass findings with an application owner, make sure to highlight

the many aspects that are supported by Babelfish: experience has shown that when focusing

primarily on the non-supported features, SQL Server users may easily end up with an

unnecessary negative perception of Babelfish's capabilities.

• A Babelfish migration involves more than just the server-side SQL/DDL code, for example,

interfaces with other system; ETL/ELT; SSIS/SSRS, replication, etc. These aspects may not be

reflected in the server-side view provided by Babelfish Compass.

46

Troubleshooting
This section contains some troubleshooting tips. If you encounter unexpected behavior by Babelfish

Compass, we recommend you first read this User Guide in detail.

• Syntax errors: while the SQL/DDL input scripts are reverse-engineered from existing applications

and their contents are assumed to contain syntactically valid SQL code, it is possible that the SQL

code contains syntax errors. A syntax error might be the result of manual editing or

inconsistencies. For example, MERGE statements must be terminated with a semicolon in T-SQL,

while such a terminator is optional for most other T-SQL statements.

In case of a syntax error, this will be printed to stdout, and the offending batch will be logged in a

file in the errorbatches subdirectory of the report directory. A batch containing syntax errors is not

analyzed by Babelfish Compass.

Remedy: correct any SQL syntax errors in the input script and re-process the script through the

Babelfish Compass tool using the -replace flag.

• If syntax errors are printed that show garbage characters, it may be that the input file encoding is

not correctly specified. The default encoding, and all available encodings, are displayed with the

-encoding help option.

Remedy: specify the correct encoding with -encoding on the command line.

• Memory: In case Compass runs out of memory, there will be a Java stack trace starting with a line

like this:

Exception in thread "main" java.lang.OutOfMemoryError : Java heap space

By default, Compass is allowed a maximum of 12GB. This can be increased by editing

BabelfishCompass.bat or BabelfishCompass.sh and modifying the following line (located towards

the end of the file):

java -server -Xmx12g -enableassertions -jar compass.jar %*

Here, change 12g to something bigger, for example 20g. Obviously, the host needs to have this

amount of memory available otherwise Compass will still run out of memory.

47

48

Example of BabelfishCompassItemID.csv
See 'Flat' format for .csv file for details.

BabelfishCompassItemID.csv : item IDs for Compass .csv file

This file must be located in the report root folder, i.e.

%USERPROFILE%\BabelfishCompass on Windows.

This file is applied only when flag '-csvformat flat' is specified.

The filename can be overridden with flag -cvsitemidfile

When the file is present if will be used to supply values for the .csv file;

if not present the .csv is generated without item ID values.

See the Compass User Guide for details about how to use this file.

File layout: .csv with semicolon as field separator

- field 1 = item ID

- field 2 = item description

- field 3 = item hint (optional)

NB: the lines below are examples! Do not copy these but define your own.

1233;ALTER ROLE db_datareader ADD MEMBER

1234;ALTER ROLE db_owner ADD MEMBER; This overrides any hint by Compass

1246;Option ALLOW_PAGE_LOCKS=ON constraint PRIMARY KEY in CREATE TABLE

1247;Option ALLOW_PAGE_LOCKS=ON Index in CREATE INDEX

9000;Number of procedure parameters (115) exceeds 100

9009;Number of procedure parameters (\d+) exceeds 100 # this matches any

number of parameters; if this comes before the previous line, the line with 115

would never be matched

9002;GRANT INSERT # This matches any item starting with GRANT INSERT

9003;GRANT; # This matches any item starting with GRANT, except GRANT

INSERT which is matched by the previous line

end of file

