{ "cells": [ { "cell_type": "raw", "metadata": {}, "source": [ "---\n", "sidebar_label: \"Training-Pytorch-Model\"\n", "sidebar_position: 2\n", "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Training Pytorch Model" ] }, { "cell_type": "markdown", "metadata": { "id": "6WMiFEPLb-j8" }, "source": [ "## Introduction\n", "\n", "PyTorch is a framework developed by Facebook AI Research for deep learning, featuring both beginner-friendly debugging tools and a high-level of customization for advanced users, with researchers and practitioners using it across companies like Facebook and Tesla. Applications include computer vision, natural language processing, cryptography, and more\n", "\n", "In this example we will train a RNN MNIST neural network model" ] }, { "cell_type": "markdown", "metadata": { "id": "DUNzJc4jTj6G" }, "source": [ "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/bacalhau-project/examples/blob/main/model-training/Training-Tensorflow-Model/index.ipynb)\n", "[![Open In Binder](https://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/bacalhau-project/examples/HEAD?labpath=model-training/Training-Tensorflow-Model/index.ipynb)" ] }, { "cell_type": "markdown", "metadata": { "id": "icKstlH3cs4k" }, "source": [ "## Training the model locally\n", "\n", "Prerequisites\n", "- python\n", "- torch\n", "- torchvision\n", "- NVIDIA GPU" ] }, { "cell_type": "markdown", "metadata": { "id": "ph-dOC7rdPQj" }, "source": [ "Cloning the pytorch examples" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "mR9jq2GIpUNb", "outputId": "c7d2eabd-39be-48ee-c80e-f4d49a26e761", "tags": [ "skip-execution" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cloning into 'examples'...\n", "remote: Enumerating objects: 3718, done.\u001b[K\n", "remote: Counting objects: 100% (40/40), done.\u001b[K\n", "remote: Compressing objects: 100% (33/33), done.\u001b[K\n", "remote: Total 3718 (delta 11), reused 32 (delta 7), pack-reused 3678\n", "Receiving objects: 100% (3718/3718), 40.95 MiB | 21.46 MiB/s, done.\n", "Resolving deltas: 100% (1831/1831), done.\n" ] } ], "source": [ "%%bash\n", "git clone https://github.com/pytorch/examples" ] }, { "cell_type": "markdown", "metadata": { "id": "Y2VRMIozgI8R" }, "source": [ "Training a mnist_rnn model\n", "\n", "we add the --save-model flag to save the model" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "N0LxgQ5L08xJ", "outputId": "fbac45ff-4cc7-400f-d41c-44b796bce1fb", "tags": [ "skip-execution" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:1331: UserWarning: dropout2d: Received a 2-D input to dropout2d, which is deprecated and will result in an error in a future release. To retain the behavior and silence this warning, please use dropout instead. Note that dropout2d exists to provide channel-wise dropout on inputs with 2 spatial dimensions, a channel dimension, and an optional batch dimension (i.e. 3D or 4D inputs).\n", " warnings.warn(warn_msg)\n", "Train Epoch: 1 [0/60000 (0%)]\tLoss: 2.257103\n", "Train Epoch: 1 [640/60000 (1%)]\tLoss: 2.343541\n", "Train Epoch: 1 [1280/60000 (2%)]\tLoss: 2.286971\n", "Train Epoch: 1 [1920/60000 (3%)]\tLoss: 2.278690\n", "Train Epoch: 1 [2560/60000 (4%)]\tLoss: 2.325279\n", "Train Epoch: 1 [3200/60000 (5%)]\tLoss: 2.156002\n", "Train Epoch: 1 [3840/60000 (6%)]\tLoss: 2.213600\n", "Train Epoch: 1 [4480/60000 (7%)]\tLoss: 2.205997\n", "Train Epoch: 1 [5120/60000 (9%)]\tLoss: 2.104978\n", "Train Epoch: 1 [5760/60000 (10%)]\tLoss: 2.133132\n", "Train Epoch: 1 [6400/60000 (11%)]\tLoss: 2.141112\n", "Train Epoch: 1 [7040/60000 (12%)]\tLoss: 2.029041\n", "Train Epoch: 1 [7680/60000 (13%)]\tLoss: 2.038753\n", "Train Epoch: 1 [8320/60000 (14%)]\tLoss: 1.982695\n", "Train Epoch: 1 [8960/60000 (15%)]\tLoss: 2.027745\n", "Train Epoch: 1 [9600/60000 (16%)]\tLoss: 1.933618\n", "Train Epoch: 1 [10240/60000 (17%)]\tLoss: 2.001938\n", "Train Epoch: 1 [10880/60000 (18%)]\tLoss: 1.990632\n", "Train Epoch: 1 [11520/60000 (19%)]\tLoss: 1.903336\n", "Train Epoch: 1 [12160/60000 (20%)]\tLoss: 1.927148\n", "Train Epoch: 1 [12800/60000 (21%)]\tLoss: 1.932347\n", "Train Epoch: 1 [13440/60000 (22%)]\tLoss: 1.768175\n", "Train Epoch: 1 [14080/60000 (23%)]\tLoss: 1.793582\n", "Train Epoch: 1 [14720/60000 (25%)]\tLoss: 1.698625\n", "Train Epoch: 1 [15360/60000 (26%)]\tLoss: 1.919402\n", "Train Epoch: 1 [16000/60000 (27%)]\tLoss: 1.819005\n", "Train Epoch: 1 [16640/60000 (28%)]\tLoss: 1.798551\n", "Train Epoch: 1 [17280/60000 (29%)]\tLoss: 1.752450\n", "Train Epoch: 1 [17920/60000 (30%)]\tLoss: 1.580650\n", "Train Epoch: 1 [18560/60000 (31%)]\tLoss: 1.669491\n", "Train Epoch: 1 [19200/60000 (32%)]\tLoss: 1.666683\n", "Train Epoch: 1 [19840/60000 (33%)]\tLoss: 1.746461\n", "Train Epoch: 1 [20480/60000 (34%)]\tLoss: 1.750646\n", "Train Epoch: 1 [21120/60000 (35%)]\tLoss: 1.704663\n", "Train Epoch: 1 [21760/60000 (36%)]\tLoss: 1.545694\n", "Train Epoch: 1 [22400/60000 (37%)]\tLoss: 1.800772\n", "Train Epoch: 1 [23040/60000 (38%)]\tLoss: 1.807309\n", "Train Epoch: 1 [23680/60000 (39%)]\tLoss: 1.531073\n", "Train Epoch: 1 [24320/60000 (41%)]\tLoss: 1.644449\n", "Train Epoch: 1 [24960/60000 (42%)]\tLoss: 1.440658\n", "Train Epoch: 1 [25600/60000 (43%)]\tLoss: 1.572379\n", "Train Epoch: 1 [26240/60000 (44%)]\tLoss: 1.542954\n", "Train Epoch: 1 [26880/60000 (45%)]\tLoss: 1.636800\n", "Train Epoch: 1 [27520/60000 (46%)]\tLoss: 1.732645\n", "Train Epoch: 1 [28160/60000 (47%)]\tLoss: 1.556232\n", "Train Epoch: 1 [28800/60000 (48%)]\tLoss: 1.797165\n", "Train Epoch: 1 [29440/60000 (49%)]\tLoss: 1.550112\n", "Train Epoch: 1 [30080/60000 (50%)]\tLoss: 1.513264\n", "Train Epoch: 1 [30720/60000 (51%)]\tLoss: 1.349926\n", "Train Epoch: 1 [31360/60000 (52%)]\tLoss: 1.168647\n", "Train Epoch: 1 [32000/60000 (53%)]\tLoss: 1.371591\n", "Train Epoch: 1 [32640/60000 (54%)]\tLoss: 1.360642\n", "Train Epoch: 1 [33280/60000 (55%)]\tLoss: 1.319583\n", "Train Epoch: 1 [33920/60000 (57%)]\tLoss: 1.470899\n", "Train Epoch: 1 [34560/60000 (58%)]\tLoss: 1.229612\n", "Train Epoch: 1 [35200/60000 (59%)]\tLoss: 1.355430\n", "Train Epoch: 1 [35840/60000 (60%)]\tLoss: 1.162910\n", "Train Epoch: 1 [36480/60000 (61%)]\tLoss: 1.264161\n", "Train Epoch: 1 [37120/60000 (62%)]\tLoss: 1.304694\n", "Train Epoch: 1 [37760/60000 (63%)]\tLoss: 1.245098\n", "Train Epoch: 1 [38400/60000 (64%)]\tLoss: 1.276992\n", "Train Epoch: 1 [39040/60000 (65%)]\tLoss: 1.224096\n", "Train Epoch: 1 [39680/60000 (66%)]\tLoss: 1.017790\n", "Train Epoch: 1 [40320/60000 (67%)]\tLoss: 1.265200\n", "Train Epoch: 1 [40960/60000 (68%)]\tLoss: 1.095893\n", "Train Epoch: 1 [41600/60000 (69%)]\tLoss: 1.253011\n", "Train Epoch: 1 [42240/60000 (70%)]\tLoss: 1.309954\n", "Train Epoch: 1 [42880/60000 (71%)]\tLoss: 1.072964\n", "Train Epoch: 1 [43520/60000 (72%)]\tLoss: 1.278133\n", "Train Epoch: 1 [44160/60000 (74%)]\tLoss: 1.042409\n", "Train Epoch: 1 [44800/60000 (75%)]\tLoss: 1.204304\n", "Train Epoch: 1 [45440/60000 (76%)]\tLoss: 1.224481\n", "Train Epoch: 1 [46080/60000 (77%)]\tLoss: 1.168465\n", "Train Epoch: 1 [46720/60000 (78%)]\tLoss: 1.225616\n", "Train Epoch: 1 [47360/60000 (79%)]\tLoss: 1.107115\n", "Train Epoch: 1 [48000/60000 (80%)]\tLoss: 0.964020\n", "Train Epoch: 1 [48640/60000 (81%)]\tLoss: 1.150630\n", "Train Epoch: 1 [49280/60000 (82%)]\tLoss: 1.298064\n", "Train Epoch: 1 [49920/60000 (83%)]\tLoss: 1.385769\n", "Train Epoch: 1 [50560/60000 (84%)]\tLoss: 1.130490\n", "Train Epoch: 1 [51200/60000 (85%)]\tLoss: 0.967750\n", "Train Epoch: 1 [51840/60000 (86%)]\tLoss: 1.239161\n", "Train Epoch: 1 [52480/60000 (87%)]\tLoss: 0.985015\n", "Train Epoch: 1 [53120/60000 (88%)]\tLoss: 1.048505\n", "Train Epoch: 1 [53760/60000 (90%)]\tLoss: 0.928015\n", "Train Epoch: 1 [54400/60000 (91%)]\tLoss: 1.156546\n", "Train Epoch: 1 [55040/60000 (92%)]\tLoss: 1.117476\n", "Train Epoch: 1 [55680/60000 (93%)]\tLoss: 1.082589\n", "Train Epoch: 1 [56320/60000 (94%)]\tLoss: 1.037969\n", "Train Epoch: 1 [56960/60000 (95%)]\tLoss: 0.901225\n", "Train Epoch: 1 [57600/60000 (96%)]\tLoss: 0.939105\n", "Train Epoch: 1 [58240/60000 (97%)]\tLoss: 0.977517\n", "Train Epoch: 1 [58880/60000 (98%)]\tLoss: 1.061300\n", "Train Epoch: 1 [59520/60000 (99%)]\tLoss: 1.161198\n", "\n", "Test set: Average loss: 0.7476, Accuracy: 7615/10000 (76%)\n", "\n", "Train Epoch: 2 [0/60000 (0%)]\tLoss: 1.074720\n", "Train Epoch: 2 [640/60000 (1%)]\tLoss: 1.031572\n", "Train Epoch: 2 [1280/60000 (2%)]\tLoss: 0.896288\n", "Train Epoch: 2 [1920/60000 (3%)]\tLoss: 1.111214\n", "Train Epoch: 2 [2560/60000 (4%)]\tLoss: 1.075807\n", "Train Epoch: 2 [3200/60000 (5%)]\tLoss: 0.896091\n", "Train Epoch: 2 [3840/60000 (6%)]\tLoss: 0.898205\n", "Train Epoch: 2 [4480/60000 (7%)]\tLoss: 0.909036\n", "Train Epoch: 2 [5120/60000 (9%)]\tLoss: 0.871763\n", "Train Epoch: 2 [5760/60000 (10%)]\tLoss: 0.809469\n", "Train Epoch: 2 [6400/60000 (11%)]\tLoss: 1.018834\n", "Train Epoch: 2 [7040/60000 (12%)]\tLoss: 0.893395\n", "Train Epoch: 2 [7680/60000 (13%)]\tLoss: 0.832215\n", "Train Epoch: 2 [8320/60000 (14%)]\tLoss: 0.942631\n", "Train Epoch: 2 [8960/60000 (15%)]\tLoss: 0.899457\n", "Train Epoch: 2 [9600/60000 (16%)]\tLoss: 1.078218\n", "Train Epoch: 2 [10240/60000 (17%)]\tLoss: 0.860738\n", "Train Epoch: 2 [10880/60000 (18%)]\tLoss: 0.742847\n", "Train Epoch: 2 [11520/60000 (19%)]\tLoss: 1.037842\n", "Train Epoch: 2 [12160/60000 (20%)]\tLoss: 1.066162\n", "Train Epoch: 2 [12800/60000 (21%)]\tLoss: 0.885088\n", "Train Epoch: 2 [13440/60000 (22%)]\tLoss: 0.996853\n", "Train Epoch: 2 [14080/60000 (23%)]\tLoss: 0.822172\n", "Train Epoch: 2 [14720/60000 (25%)]\tLoss: 0.993543\n", "Train Epoch: 2 [15360/60000 (26%)]\tLoss: 0.810572\n", "Train Epoch: 2 [16000/60000 (27%)]\tLoss: 1.058691\n", "Train Epoch: 2 [16640/60000 (28%)]\tLoss: 0.866646\n", "Train Epoch: 2 [17280/60000 (29%)]\tLoss: 0.772441\n", "Train Epoch: 2 [17920/60000 (30%)]\tLoss: 0.720767\n", "Train Epoch: 2 [18560/60000 (31%)]\tLoss: 0.866728\n", "Train Epoch: 2 [19200/60000 (32%)]\tLoss: 0.705710\n", "Train Epoch: 2 [19840/60000 (33%)]\tLoss: 0.890331\n", "Train Epoch: 2 [20480/60000 (34%)]\tLoss: 0.834183\n", "Train Epoch: 2 [21120/60000 (35%)]\tLoss: 0.774839\n", "Train Epoch: 2 [21760/60000 (36%)]\tLoss: 0.879249\n", "Train Epoch: 2 [22400/60000 (37%)]\tLoss: 0.861507\n", "Train Epoch: 2 [23040/60000 (38%)]\tLoss: 0.725026\n", "Train Epoch: 2 [23680/60000 (39%)]\tLoss: 0.870410\n", "Train Epoch: 2 [24320/60000 (41%)]\tLoss: 0.694554\n", "Train Epoch: 2 [24960/60000 (42%)]\tLoss: 0.808239\n", "Train Epoch: 2 [25600/60000 (43%)]\tLoss: 0.807047\n", "Train Epoch: 2 [26240/60000 (44%)]\tLoss: 0.861262\n", "Train Epoch: 2 [26880/60000 (45%)]\tLoss: 0.760611\n", "Train Epoch: 2 [27520/60000 (46%)]\tLoss: 0.723064\n", "Train Epoch: 2 [28160/60000 (47%)]\tLoss: 0.645913\n", "Train Epoch: 2 [28800/60000 (48%)]\tLoss: 0.794883\n", "Train Epoch: 2 [29440/60000 (49%)]\tLoss: 1.018256\n", "Train Epoch: 2 [30080/60000 (50%)]\tLoss: 0.897736\n", "Train Epoch: 2 [30720/60000 (51%)]\tLoss: 1.036487\n", "Train Epoch: 2 [31360/60000 (52%)]\tLoss: 0.957585\n", "Train Epoch: 2 [32000/60000 (53%)]\tLoss: 0.648525\n", "Train Epoch: 2 [32640/60000 (54%)]\tLoss: 0.908357\n", "Train Epoch: 2 [33280/60000 (55%)]\tLoss: 0.844382\n", "Train Epoch: 2 [33920/60000 (57%)]\tLoss: 0.492543\n", "Train Epoch: 2 [34560/60000 (58%)]\tLoss: 0.767534\n", "Train Epoch: 2 [35200/60000 (59%)]\tLoss: 0.583981\n", "Train Epoch: 2 [35840/60000 (60%)]\tLoss: 0.670485\n", "Train Epoch: 2 [36480/60000 (61%)]\tLoss: 0.812931\n", "Train Epoch: 2 [37120/60000 (62%)]\tLoss: 0.675360\n", "Train Epoch: 2 [37760/60000 (63%)]\tLoss: 0.719999\n", "Train Epoch: 2 [38400/60000 (64%)]\tLoss: 0.733326\n", "Train Epoch: 2 [39040/60000 (65%)]\tLoss: 0.595985\n", "Train Epoch: 2 [39680/60000 (66%)]\tLoss: 0.761033\n", "Train Epoch: 2 [40320/60000 (67%)]\tLoss: 0.547535\n", "Train Epoch: 2 [40960/60000 (68%)]\tLoss: 0.713409\n", "Train Epoch: 2 [41600/60000 (69%)]\tLoss: 0.774444\n", "Train Epoch: 2 [42240/60000 (70%)]\tLoss: 0.536494\n", "Train Epoch: 2 [42880/60000 (71%)]\tLoss: 0.678178\n", "Train Epoch: 2 [43520/60000 (72%)]\tLoss: 0.612846\n", "Train Epoch: 2 [44160/60000 (74%)]\tLoss: 0.596894\n", "Train Epoch: 2 [44800/60000 (75%)]\tLoss: 0.629905\n", "Train Epoch: 2 [45440/60000 (76%)]\tLoss: 0.812533\n", "Train Epoch: 2 [46080/60000 (77%)]\tLoss: 0.749563\n", "Train Epoch: 2 [46720/60000 (78%)]\tLoss: 0.686619\n", "Train Epoch: 2 [47360/60000 (79%)]\tLoss: 0.817192\n", "Train Epoch: 2 [48000/60000 (80%)]\tLoss: 0.521638\n", "Train Epoch: 2 [48640/60000 (81%)]\tLoss: 0.948533\n", "Train Epoch: 2 [49280/60000 (82%)]\tLoss: 0.807676\n", "Train Epoch: 2 [49920/60000 (83%)]\tLoss: 0.609730\n", "Train Epoch: 2 [50560/60000 (84%)]\tLoss: 0.624522\n", "Train Epoch: 2 [51200/60000 (85%)]\tLoss: 0.688772\n", "Train Epoch: 2 [51840/60000 (86%)]\tLoss: 0.576913\n", "Train Epoch: 2 [52480/60000 (87%)]\tLoss: 0.583184\n", "Train Epoch: 2 [53120/60000 (88%)]\tLoss: 0.739166\n", "Train Epoch: 2 [53760/60000 (90%)]\tLoss: 0.768429\n", "Train Epoch: 2 [54400/60000 (91%)]\tLoss: 0.767366\n", "Train Epoch: 2 [55040/60000 (92%)]\tLoss: 0.739564\n", "Train Epoch: 2 [55680/60000 (93%)]\tLoss: 0.969297\n", "Train Epoch: 2 [56320/60000 (94%)]\tLoss: 0.545870\n", "Train Epoch: 2 [56960/60000 (95%)]\tLoss: 0.490728\n", "Train Epoch: 2 [57600/60000 (96%)]\tLoss: 0.738210\n", "Train Epoch: 2 [58240/60000 (97%)]\tLoss: 0.649949\n", "Train Epoch: 2 [58880/60000 (98%)]\tLoss: 0.534231\n", "Train Epoch: 2 [59520/60000 (99%)]\tLoss: 0.701677\n", "\n", "Test set: Average loss: 0.4355, Accuracy: 8636/10000 (86%)\n", "\n", "Train Epoch: 3 [0/60000 (0%)]\tLoss: 0.436861\n", "Train Epoch: 3 [640/60000 (1%)]\tLoss: 0.613573\n", "Train Epoch: 3 [1280/60000 (2%)]\tLoss: 0.751559\n", "Train Epoch: 3 [1920/60000 (3%)]\tLoss: 0.518953\n", "Train Epoch: 3 [2560/60000 (4%)]\tLoss: 0.706350\n", "Train Epoch: 3 [3200/60000 (5%)]\tLoss: 0.463392\n", "Train Epoch: 3 [3840/60000 (6%)]\tLoss: 0.637765\n", "Train Epoch: 3 [4480/60000 (7%)]\tLoss: 0.707880\n", "Train Epoch: 3 [5120/60000 (9%)]\tLoss: 0.705076\n", "Train Epoch: 3 [5760/60000 (10%)]\tLoss: 0.473644\n", "Train Epoch: 3 [6400/60000 (11%)]\tLoss: 0.566550\n", "Train Epoch: 3 [7040/60000 (12%)]\tLoss: 0.554120\n", "Train Epoch: 3 [7680/60000 (13%)]\tLoss: 0.735059\n", "Train Epoch: 3 [8320/60000 (14%)]\tLoss: 0.492775\n", "Train Epoch: 3 [8960/60000 (15%)]\tLoss: 0.705045\n", "Train Epoch: 3 [9600/60000 (16%)]\tLoss: 0.723935\n", "Train Epoch: 3 [10240/60000 (17%)]\tLoss: 0.657871\n", "Train Epoch: 3 [10880/60000 (18%)]\tLoss: 0.546103\n", "Train Epoch: 3 [11520/60000 (19%)]\tLoss: 0.576000\n", "Train Epoch: 3 [12160/60000 (20%)]\tLoss: 0.762758\n", "Train Epoch: 3 [12800/60000 (21%)]\tLoss: 0.672853\n", "Train Epoch: 3 [13440/60000 (22%)]\tLoss: 0.690244\n", "Train Epoch: 3 [14080/60000 (23%)]\tLoss: 0.491185\n", "Train Epoch: 3 [14720/60000 (25%)]\tLoss: 0.819045\n", "Train Epoch: 3 [15360/60000 (26%)]\tLoss: 0.633367\n", "Train Epoch: 3 [16000/60000 (27%)]\tLoss: 0.631507\n", "Train Epoch: 3 [16640/60000 (28%)]\tLoss: 0.742323\n", "Train Epoch: 3 [17280/60000 (29%)]\tLoss: 0.769272\n", "Train Epoch: 3 [17920/60000 (30%)]\tLoss: 0.547987\n", "Train Epoch: 3 [18560/60000 (31%)]\tLoss: 0.726344\n", "Train Epoch: 3 [19200/60000 (32%)]\tLoss: 0.500911\n", "Train Epoch: 3 [19840/60000 (33%)]\tLoss: 0.609957\n", "Train Epoch: 3 [20480/60000 (34%)]\tLoss: 0.567650\n", "Train Epoch: 3 [21120/60000 (35%)]\tLoss: 0.592656\n", "Train Epoch: 3 [21760/60000 (36%)]\tLoss: 0.659012\n", "Train Epoch: 3 [22400/60000 (37%)]\tLoss: 0.792519\n", "Train Epoch: 3 [23040/60000 (38%)]\tLoss: 0.649515\n", "Train Epoch: 3 [23680/60000 (39%)]\tLoss: 0.535163\n", "Train Epoch: 3 [24320/60000 (41%)]\tLoss: 0.510494\n", "Train Epoch: 3 [24960/60000 (42%)]\tLoss: 0.753702\n", "Train Epoch: 3 [25600/60000 (43%)]\tLoss: 0.588570\n", "Train Epoch: 3 [26240/60000 (44%)]\tLoss: 0.524773\n", "Train Epoch: 3 [26880/60000 (45%)]\tLoss: 0.654642\n", "Train Epoch: 3 [27520/60000 (46%)]\tLoss: 0.464091\n", "Train Epoch: 3 [28160/60000 (47%)]\tLoss: 0.517499\n", "Train Epoch: 3 [28800/60000 (48%)]\tLoss: 0.743199\n", "Train Epoch: 3 [29440/60000 (49%)]\tLoss: 0.712906\n", "Train Epoch: 3 [30080/60000 (50%)]\tLoss: 0.898138\n", "Train Epoch: 3 [30720/60000 (51%)]\tLoss: 0.471215\n", "Train Epoch: 3 [31360/60000 (52%)]\tLoss: 0.586351\n", "Train Epoch: 3 [32000/60000 (53%)]\tLoss: 0.619581\n", "Train Epoch: 3 [32640/60000 (54%)]\tLoss: 0.431174\n", "Train Epoch: 3 [33280/60000 (55%)]\tLoss: 0.805528\n", "Train Epoch: 3 [33920/60000 (57%)]\tLoss: 0.434236\n", "Train Epoch: 3 [34560/60000 (58%)]\tLoss: 0.833718\n", "Train Epoch: 3 [35200/60000 (59%)]\tLoss: 0.737563\n", "Train Epoch: 3 [35840/60000 (60%)]\tLoss: 0.814904\n", "Train Epoch: 3 [36480/60000 (61%)]\tLoss: 0.658190\n", "Train Epoch: 3 [37120/60000 (62%)]\tLoss: 0.642526\n", "Train Epoch: 3 [37760/60000 (63%)]\tLoss: 0.528397\n", "Train Epoch: 3 [38400/60000 (64%)]\tLoss: 0.401048\n", "Train Epoch: 3 [39040/60000 (65%)]\tLoss: 0.638031\n", "Train Epoch: 3 [39680/60000 (66%)]\tLoss: 0.885019\n", "Train Epoch: 3 [40320/60000 (67%)]\tLoss: 0.639517\n", "Train Epoch: 3 [40960/60000 (68%)]\tLoss: 0.777474\n", "Train Epoch: 3 [41600/60000 (69%)]\tLoss: 0.529243\n", "Train Epoch: 3 [42240/60000 (70%)]\tLoss: 0.383692\n", "Train Epoch: 3 [42880/60000 (71%)]\tLoss: 0.399004\n", "Train Epoch: 3 [43520/60000 (72%)]\tLoss: 0.602193\n", "Train Epoch: 3 [44160/60000 (74%)]\tLoss: 0.728852\n", "Train Epoch: 3 [44800/60000 (75%)]\tLoss: 0.605767\n", "Train Epoch: 3 [45440/60000 (76%)]\tLoss: 1.022341\n", "Train Epoch: 3 [46080/60000 (77%)]\tLoss: 0.670445\n", "Train Epoch: 3 [46720/60000 (78%)]\tLoss: 0.567436\n", "Train Epoch: 3 [47360/60000 (79%)]\tLoss: 0.486619\n", "Train Epoch: 3 [48000/60000 (80%)]\tLoss: 0.636935\n", "Train Epoch: 3 [48640/60000 (81%)]\tLoss: 0.501475\n", "Train Epoch: 3 [49280/60000 (82%)]\tLoss: 0.448360\n", "Train Epoch: 3 [49920/60000 (83%)]\tLoss: 0.548112\n", "Train Epoch: 3 [50560/60000 (84%)]\tLoss: 0.518546\n", "Train Epoch: 3 [51200/60000 (85%)]\tLoss: 0.460728\n", "Train Epoch: 3 [51840/60000 (86%)]\tLoss: 0.566899\n", "Train Epoch: 3 [52480/60000 (87%)]\tLoss: 0.455567\n", "Train Epoch: 3 [53120/60000 (88%)]\tLoss: 0.590804\n", "Train Epoch: 3 [53760/60000 (90%)]\tLoss: 0.655986\n", "Train Epoch: 3 [54400/60000 (91%)]\tLoss: 0.603358\n", "Train Epoch: 3 [55040/60000 (92%)]\tLoss: 0.498249\n", "Train Epoch: 3 [55680/60000 (93%)]\tLoss: 0.582818\n", "Train Epoch: 3 [56320/60000 (94%)]\tLoss: 0.671843\n", "Train Epoch: 3 [56960/60000 (95%)]\tLoss: 0.562645\n", "Train Epoch: 3 [57600/60000 (96%)]\tLoss: 0.710898\n", "Train Epoch: 3 [58240/60000 (97%)]\tLoss: 0.704995\n", "Train Epoch: 3 [58880/60000 (98%)]\tLoss: 0.426514\n", "Train Epoch: 3 [59520/60000 (99%)]\tLoss: 0.586657\n", "\n", "Test set: Average loss: 0.3266, Accuracy: 9035/10000 (90%)\n", "\n", "Train Epoch: 4 [0/60000 (0%)]\tLoss: 0.555241\n", "Train Epoch: 4 [640/60000 (1%)]\tLoss: 0.414488\n", "Train Epoch: 4 [1280/60000 (2%)]\tLoss: 0.423981\n", "Train Epoch: 4 [1920/60000 (3%)]\tLoss: 0.458799\n", "Train Epoch: 4 [2560/60000 (4%)]\tLoss: 0.526234\n", "Train Epoch: 4 [3200/60000 (5%)]\tLoss: 0.502130\n", "Train Epoch: 4 [3840/60000 (6%)]\tLoss: 0.572711\n", "Train Epoch: 4 [4480/60000 (7%)]\tLoss: 0.768068\n", "Train Epoch: 4 [5120/60000 (9%)]\tLoss: 0.552236\n", "Train Epoch: 4 [5760/60000 (10%)]\tLoss: 0.413747\n", "Train Epoch: 4 [6400/60000 (11%)]\tLoss: 0.495317\n", "Train Epoch: 4 [7040/60000 (12%)]\tLoss: 0.513442\n", "Train Epoch: 4 [7680/60000 (13%)]\tLoss: 0.371071\n", "Train Epoch: 4 [8320/60000 (14%)]\tLoss: 0.537922\n", "Train Epoch: 4 [8960/60000 (15%)]\tLoss: 0.550542\n", "Train Epoch: 4 [9600/60000 (16%)]\tLoss: 0.492354\n", "Train Epoch: 4 [10240/60000 (17%)]\tLoss: 0.430003\n", "Train Epoch: 4 [10880/60000 (18%)]\tLoss: 0.676727\n", "Train Epoch: 4 [11520/60000 (19%)]\tLoss: 0.522242\n", "Train Epoch: 4 [12160/60000 (20%)]\tLoss: 0.323046\n", "Train Epoch: 4 [12800/60000 (21%)]\tLoss: 0.413817\n", "Train Epoch: 4 [13440/60000 (22%)]\tLoss: 0.493616\n", "Train Epoch: 4 [14080/60000 (23%)]\tLoss: 0.482043\n", "Train Epoch: 4 [14720/60000 (25%)]\tLoss: 0.598020\n", "Train Epoch: 4 [15360/60000 (26%)]\tLoss: 0.698045\n", "Train Epoch: 4 [16000/60000 (27%)]\tLoss: 0.464924\n", "Train Epoch: 4 [16640/60000 (28%)]\tLoss: 0.598145\n", "Train Epoch: 4 [17280/60000 (29%)]\tLoss: 0.513251\n", "Train Epoch: 4 [17920/60000 (30%)]\tLoss: 0.383759\n", "Train Epoch: 4 [18560/60000 (31%)]\tLoss: 0.451445\n", "Train Epoch: 4 [19200/60000 (32%)]\tLoss: 0.298578\n", "Train Epoch: 4 [19840/60000 (33%)]\tLoss: 0.724677\n", "Train Epoch: 4 [20480/60000 (34%)]\tLoss: 0.648704\n", "Train Epoch: 4 [21120/60000 (35%)]\tLoss: 0.417878\n", "Train Epoch: 4 [21760/60000 (36%)]\tLoss: 0.587597\n", "Train Epoch: 4 [22400/60000 (37%)]\tLoss: 0.650825\n", "Train Epoch: 4 [23040/60000 (38%)]\tLoss: 0.461850\n", "Train Epoch: 4 [23680/60000 (39%)]\tLoss: 0.498996\n", "Train Epoch: 4 [24320/60000 (41%)]\tLoss: 0.272354\n", "Train Epoch: 4 [24960/60000 (42%)]\tLoss: 0.552614\n", "Train Epoch: 4 [25600/60000 (43%)]\tLoss: 0.559007\n", "Train Epoch: 4 [26240/60000 (44%)]\tLoss: 0.514660\n", "Train Epoch: 4 [26880/60000 (45%)]\tLoss: 0.449900\n", "Train Epoch: 4 [27520/60000 (46%)]\tLoss: 0.459001\n", "Train Epoch: 4 [28160/60000 (47%)]\tLoss: 0.510848\n", "Train Epoch: 4 [28800/60000 (48%)]\tLoss: 0.376767\n", "Train Epoch: 4 [29440/60000 (49%)]\tLoss: 0.663157\n", "Train Epoch: 4 [30080/60000 (50%)]\tLoss: 0.380203\n", "Train Epoch: 4 [30720/60000 (51%)]\tLoss: 0.487593\n", "Train Epoch: 4 [31360/60000 (52%)]\tLoss: 0.368228\n", "Train Epoch: 4 [32000/60000 (53%)]\tLoss: 0.531883\n", "Train Epoch: 4 [32640/60000 (54%)]\tLoss: 0.514747\n", "Train Epoch: 4 [33280/60000 (55%)]\tLoss: 0.413709\n", "Train Epoch: 4 [33920/60000 (57%)]\tLoss: 0.466322\n", "Train Epoch: 4 [34560/60000 (58%)]\tLoss: 0.481781\n", "Train Epoch: 4 [35200/60000 (59%)]\tLoss: 0.332192\n", "Train Epoch: 4 [35840/60000 (60%)]\tLoss: 0.535552\n", "Train Epoch: 4 [36480/60000 (61%)]\tLoss: 0.701525\n", "Train Epoch: 4 [37120/60000 (62%)]\tLoss: 0.472824\n", "Train Epoch: 4 [37760/60000 (63%)]\tLoss: 0.506161\n", "Train Epoch: 4 [38400/60000 (64%)]\tLoss: 0.434092\n", "Train Epoch: 4 [39040/60000 (65%)]\tLoss: 0.458589\n", "Train Epoch: 4 [39680/60000 (66%)]\tLoss: 0.571874\n", "Train Epoch: 4 [40320/60000 (67%)]\tLoss: 0.417427\n", "Train Epoch: 4 [40960/60000 (68%)]\tLoss: 0.562599\n", "Train Epoch: 4 [41600/60000 (69%)]\tLoss: 0.595764\n", "Train Epoch: 4 [42240/60000 (70%)]\tLoss: 0.763261\n", "Train Epoch: 4 [42880/60000 (71%)]\tLoss: 0.449961\n", "Train Epoch: 4 [43520/60000 (72%)]\tLoss: 0.504707\n", "Train Epoch: 4 [44160/60000 (74%)]\tLoss: 0.518068\n", "Train Epoch: 4 [44800/60000 (75%)]\tLoss: 0.457749\n", "Train Epoch: 4 [45440/60000 (76%)]\tLoss: 0.556885\n", "Train Epoch: 4 [46080/60000 (77%)]\tLoss: 0.407525\n", "Train Epoch: 4 [46720/60000 (78%)]\tLoss: 0.627192\n", "Train Epoch: 4 [47360/60000 (79%)]\tLoss: 0.640685\n", "Train Epoch: 4 [48000/60000 (80%)]\tLoss: 0.461735\n", "Train Epoch: 4 [48640/60000 (81%)]\tLoss: 0.440985\n", "Train Epoch: 4 [49280/60000 (82%)]\tLoss: 0.617622\n", "Train Epoch: 4 [49920/60000 (83%)]\tLoss: 0.502659\n", "Train Epoch: 4 [50560/60000 (84%)]\tLoss: 0.525112\n", "Train Epoch: 4 [51200/60000 (85%)]\tLoss: 0.530759\n", "Train Epoch: 4 [51840/60000 (86%)]\tLoss: 0.327249\n", "Train Epoch: 4 [52480/60000 (87%)]\tLoss: 0.392866\n", "Train Epoch: 4 [53120/60000 (88%)]\tLoss: 0.716493\n", "Train Epoch: 4 [53760/60000 (90%)]\tLoss: 0.916052\n", "Train Epoch: 4 [54400/60000 (91%)]\tLoss: 0.398534\n", "Train Epoch: 4 [55040/60000 (92%)]\tLoss: 0.514750\n", "Train Epoch: 4 [55680/60000 (93%)]\tLoss: 0.466898\n", "Train Epoch: 4 [56320/60000 (94%)]\tLoss: 0.446999\n", "Train Epoch: 4 [56960/60000 (95%)]\tLoss: 0.575152\n", "Train Epoch: 4 [57600/60000 (96%)]\tLoss: 0.578759\n", "Train Epoch: 4 [58240/60000 (97%)]\tLoss: 0.473566\n", "Train Epoch: 4 [58880/60000 (98%)]\tLoss: 0.520567\n", "Train Epoch: 4 [59520/60000 (99%)]\tLoss: 0.242124\n", "\n", "Test set: Average loss: 0.2797, Accuracy: 9146/10000 (91%)\n", "\n", "Train Epoch: 5 [0/60000 (0%)]\tLoss: 0.509088\n", "Train Epoch: 5 [640/60000 (1%)]\tLoss: 0.581982\n", "Train Epoch: 5 [1280/60000 (2%)]\tLoss: 0.393443\n", "Train Epoch: 5 [1920/60000 (3%)]\tLoss: 0.635975\n", "Train Epoch: 5 [2560/60000 (4%)]\tLoss: 0.359194\n", "Train Epoch: 5 [3200/60000 (5%)]\tLoss: 0.446414\n", "Train Epoch: 5 [3840/60000 (6%)]\tLoss: 0.638958\n", "Train Epoch: 5 [4480/60000 (7%)]\tLoss: 0.456178\n", "Train Epoch: 5 [5120/60000 (9%)]\tLoss: 0.676889\n", "Train Epoch: 5 [5760/60000 (10%)]\tLoss: 0.725724\n", "Train Epoch: 5 [6400/60000 (11%)]\tLoss: 0.758731\n", "Train Epoch: 5 [7040/60000 (12%)]\tLoss: 0.298136\n", "Train Epoch: 5 [7680/60000 (13%)]\tLoss: 0.498484\n", "Train Epoch: 5 [8320/60000 (14%)]\tLoss: 0.781466\n", "Train Epoch: 5 [8960/60000 (15%)]\tLoss: 0.372765\n", "Train Epoch: 5 [9600/60000 (16%)]\tLoss: 0.551780\n", "Train Epoch: 5 [10240/60000 (17%)]\tLoss: 0.671177\n", "Train Epoch: 5 [10880/60000 (18%)]\tLoss: 0.386135\n", "Train Epoch: 5 [11520/60000 (19%)]\tLoss: 0.429770\n", "Train Epoch: 5 [12160/60000 (20%)]\tLoss: 0.351372\n", "Train Epoch: 5 [12800/60000 (21%)]\tLoss: 0.712960\n", "Train Epoch: 5 [13440/60000 (22%)]\tLoss: 0.696320\n", "Train Epoch: 5 [14080/60000 (23%)]\tLoss: 0.242317\n", "Train Epoch: 5 [14720/60000 (25%)]\tLoss: 0.757244\n", "Train Epoch: 5 [15360/60000 (26%)]\tLoss: 0.641723\n", "Train Epoch: 5 [16000/60000 (27%)]\tLoss: 0.303923\n", "Train Epoch: 5 [16640/60000 (28%)]\tLoss: 0.451922\n", "Train Epoch: 5 [17280/60000 (29%)]\tLoss: 0.546510\n", "Train Epoch: 5 [17920/60000 (30%)]\tLoss: 0.449047\n", "Train Epoch: 5 [18560/60000 (31%)]\tLoss: 0.497757\n", "Train Epoch: 5 [19200/60000 (32%)]\tLoss: 0.590393\n", "Train Epoch: 5 [19840/60000 (33%)]\tLoss: 0.591735\n", "Train Epoch: 5 [20480/60000 (34%)]\tLoss: 0.422177\n", "Train Epoch: 5 [21120/60000 (35%)]\tLoss: 0.596936\n", "Train Epoch: 5 [21760/60000 (36%)]\tLoss: 0.533217\n", "Train Epoch: 5 [22400/60000 (37%)]\tLoss: 0.441300\n", "Train Epoch: 5 [23040/60000 (38%)]\tLoss: 0.472163\n", "Train Epoch: 5 [23680/60000 (39%)]\tLoss: 0.565845\n", "Train Epoch: 5 [24320/60000 (41%)]\tLoss: 0.585979\n", "Train Epoch: 5 [24960/60000 (42%)]\tLoss: 0.654992\n", "Train Epoch: 5 [25600/60000 (43%)]\tLoss: 0.646540\n", "Train Epoch: 5 [26240/60000 (44%)]\tLoss: 0.327594\n", "Train Epoch: 5 [26880/60000 (45%)]\tLoss: 0.361460\n", "Train Epoch: 5 [27520/60000 (46%)]\tLoss: 0.527023\n", "Train Epoch: 5 [28160/60000 (47%)]\tLoss: 0.510980\n", "Train Epoch: 5 [28800/60000 (48%)]\tLoss: 0.596273\n", "Train Epoch: 5 [29440/60000 (49%)]\tLoss: 0.641761\n", "Train Epoch: 5 [30080/60000 (50%)]\tLoss: 0.352163\n", "Train Epoch: 5 [30720/60000 (51%)]\tLoss: 0.477677\n", "Train Epoch: 5 [31360/60000 (52%)]\tLoss: 0.331182\n", "Train Epoch: 5 [32000/60000 (53%)]\tLoss: 0.546108\n", "Train Epoch: 5 [32640/60000 (54%)]\tLoss: 0.691826\n", "Train Epoch: 5 [33280/60000 (55%)]\tLoss: 0.432296\n", "Train Epoch: 5 [33920/60000 (57%)]\tLoss: 0.293409\n", "Train Epoch: 5 [34560/60000 (58%)]\tLoss: 0.461841\n", "Train Epoch: 5 [35200/60000 (59%)]\tLoss: 0.441172\n", "Train Epoch: 5 [35840/60000 (60%)]\tLoss: 0.450768\n", "Train Epoch: 5 [36480/60000 (61%)]\tLoss: 0.479811\n", "Train Epoch: 5 [37120/60000 (62%)]\tLoss: 0.368302\n", "Train Epoch: 5 [37760/60000 (63%)]\tLoss: 0.714117\n", "Train Epoch: 5 [38400/60000 (64%)]\tLoss: 0.512306\n", "Train Epoch: 5 [39040/60000 (65%)]\tLoss: 0.353668\n", "Train Epoch: 5 [39680/60000 (66%)]\tLoss: 0.634520\n", "Train Epoch: 5 [40320/60000 (67%)]\tLoss: 0.508755\n", "Train Epoch: 5 [40960/60000 (68%)]\tLoss: 0.574378\n", "Train Epoch: 5 [41600/60000 (69%)]\tLoss: 0.515621\n", "Train Epoch: 5 [42240/60000 (70%)]\tLoss: 0.340576\n", "Train Epoch: 5 [42880/60000 (71%)]\tLoss: 0.285466\n", "Train Epoch: 5 [43520/60000 (72%)]\tLoss: 0.502436\n", "Train Epoch: 5 [44160/60000 (74%)]\tLoss: 0.399609\n", "Train Epoch: 5 [44800/60000 (75%)]\tLoss: 0.348736\n", "Train Epoch: 5 [45440/60000 (76%)]\tLoss: 0.346850\n", "Train Epoch: 5 [46080/60000 (77%)]\tLoss: 0.276397\n", "Train Epoch: 5 [46720/60000 (78%)]\tLoss: 0.838089\n", "Train Epoch: 5 [47360/60000 (79%)]\tLoss: 0.402147\n", "Train Epoch: 5 [48000/60000 (80%)]\tLoss: 0.303684\n", "Train Epoch: 5 [48640/60000 (81%)]\tLoss: 0.553139\n", "Train Epoch: 5 [49280/60000 (82%)]\tLoss: 0.497246\n", "Train Epoch: 5 [49920/60000 (83%)]\tLoss: 0.535975\n", "Train Epoch: 5 [50560/60000 (84%)]\tLoss: 0.429838\n", "Train Epoch: 5 [51200/60000 (85%)]\tLoss: 0.462401\n", "Train Epoch: 5 [51840/60000 (86%)]\tLoss: 0.443050\n", "Train Epoch: 5 [52480/60000 (87%)]\tLoss: 0.449190\n", "Train Epoch: 5 [53120/60000 (88%)]\tLoss: 0.407580\n", "Train Epoch: 5 [53760/60000 (90%)]\tLoss: 0.709944\n", "Train Epoch: 5 [54400/60000 (91%)]\tLoss: 0.663002\n", "Train Epoch: 5 [55040/60000 (92%)]\tLoss: 0.664517\n", "Train Epoch: 5 [55680/60000 (93%)]\tLoss: 0.559338\n", "Train Epoch: 5 [56320/60000 (94%)]\tLoss: 0.369790\n", "Train Epoch: 5 [56960/60000 (95%)]\tLoss: 0.673157\n", "Train Epoch: 5 [57600/60000 (96%)]\tLoss: 0.338669\n", "Train Epoch: 5 [58240/60000 (97%)]\tLoss: 0.492030\n", "Train Epoch: 5 [58880/60000 (98%)]\tLoss: 0.344072\n", "Train Epoch: 5 [59520/60000 (99%)]\tLoss: 0.422336\n", "\n", "Test set: Average loss: 0.2519, Accuracy: 9238/10000 (92%)\n", "\n", "Train Epoch: 6 [0/60000 (0%)]\tLoss: 0.386451\n", "Train Epoch: 6 [640/60000 (1%)]\tLoss: 0.457663\n", "Train Epoch: 6 [1280/60000 (2%)]\tLoss: 0.515761\n", "Train Epoch: 6 [1920/60000 (3%)]\tLoss: 0.612987\n", "Train Epoch: 6 [2560/60000 (4%)]\tLoss: 0.787487\n", "Train Epoch: 6 [3200/60000 (5%)]\tLoss: 0.491761\n", "Train Epoch: 6 [3840/60000 (6%)]\tLoss: 0.454228\n", "Train Epoch: 6 [4480/60000 (7%)]\tLoss: 0.359811\n", "Train Epoch: 6 [5120/60000 (9%)]\tLoss: 0.368992\n", "Train Epoch: 6 [5760/60000 (10%)]\tLoss: 0.442591\n", "Train Epoch: 6 [6400/60000 (11%)]\tLoss: 0.597941\n", "Train Epoch: 6 [7040/60000 (12%)]\tLoss: 0.383115\n", "Train Epoch: 6 [7680/60000 (13%)]\tLoss: 0.362788\n", "Train Epoch: 6 [8320/60000 (14%)]\tLoss: 0.514896\n", "Train Epoch: 6 [8960/60000 (15%)]\tLoss: 0.774907\n", "Train Epoch: 6 [9600/60000 (16%)]\tLoss: 0.390481\n", "Train Epoch: 6 [10240/60000 (17%)]\tLoss: 0.584314\n", "Train Epoch: 6 [10880/60000 (18%)]\tLoss: 0.288985\n", "Train Epoch: 6 [11520/60000 (19%)]\tLoss: 0.426987\n", "Train Epoch: 6 [12160/60000 (20%)]\tLoss: 0.278613\n", "Train Epoch: 6 [12800/60000 (21%)]\tLoss: 0.499849\n", "Train Epoch: 6 [13440/60000 (22%)]\tLoss: 0.431185\n", "Train Epoch: 6 [14080/60000 (23%)]\tLoss: 0.689421\n", "Train Epoch: 6 [14720/60000 (25%)]\tLoss: 0.337867\n", "Train Epoch: 6 [15360/60000 (26%)]\tLoss: 0.626685\n", "Train Epoch: 6 [16000/60000 (27%)]\tLoss: 0.497805\n", "Train Epoch: 6 [16640/60000 (28%)]\tLoss: 0.441194\n", "Train Epoch: 6 [17280/60000 (29%)]\tLoss: 0.561231\n", "Train Epoch: 6 [17920/60000 (30%)]\tLoss: 0.401973\n", "Train Epoch: 6 [18560/60000 (31%)]\tLoss: 0.561977\n", "Train Epoch: 6 [19200/60000 (32%)]\tLoss: 0.410717\n", "Train Epoch: 6 [19840/60000 (33%)]\tLoss: 0.770685\n", "Train Epoch: 6 [20480/60000 (34%)]\tLoss: 0.639804\n", "Train Epoch: 6 [21120/60000 (35%)]\tLoss: 0.302792\n", "Train Epoch: 6 [21760/60000 (36%)]\tLoss: 0.529687\n", "Train Epoch: 6 [22400/60000 (37%)]\tLoss: 0.717906\n", "Train Epoch: 6 [23040/60000 (38%)]\tLoss: 0.498945\n", "Train Epoch: 6 [23680/60000 (39%)]\tLoss: 0.429929\n", "Train Epoch: 6 [24320/60000 (41%)]\tLoss: 0.435225\n", "Train Epoch: 6 [24960/60000 (42%)]\tLoss: 0.320319\n", "Train Epoch: 6 [25600/60000 (43%)]\tLoss: 0.590387\n", "Train Epoch: 6 [26240/60000 (44%)]\tLoss: 0.265355\n", "Train Epoch: 6 [26880/60000 (45%)]\tLoss: 0.454373\n", "Train Epoch: 6 [27520/60000 (46%)]\tLoss: 0.790875\n", "Train Epoch: 6 [28160/60000 (47%)]\tLoss: 0.486921\n", "Train Epoch: 6 [28800/60000 (48%)]\tLoss: 0.462753\n", "Train Epoch: 6 [29440/60000 (49%)]\tLoss: 0.813337\n", "Train Epoch: 6 [30080/60000 (50%)]\tLoss: 0.308712\n", "Train Epoch: 6 [30720/60000 (51%)]\tLoss: 0.476948\n", "Train Epoch: 6 [31360/60000 (52%)]\tLoss: 0.649331\n", "Train Epoch: 6 [32000/60000 (53%)]\tLoss: 0.337972\n", "Train Epoch: 6 [32640/60000 (54%)]\tLoss: 0.552407\n", "Train Epoch: 6 [33280/60000 (55%)]\tLoss: 0.584259\n", "Train Epoch: 6 [33920/60000 (57%)]\tLoss: 0.682539\n", "Train Epoch: 6 [34560/60000 (58%)]\tLoss: 0.472495\n", "Train Epoch: 6 [35200/60000 (59%)]\tLoss: 0.581826\n", "Train Epoch: 6 [35840/60000 (60%)]\tLoss: 0.430555\n", "Train Epoch: 6 [36480/60000 (61%)]\tLoss: 0.408301\n", "Train Epoch: 6 [37120/60000 (62%)]\tLoss: 0.544223\n", "Train Epoch: 6 [37760/60000 (63%)]\tLoss: 0.276037\n", "Train Epoch: 6 [38400/60000 (64%)]\tLoss: 0.383866\n", "Train Epoch: 6 [39040/60000 (65%)]\tLoss: 0.486723\n", "Train Epoch: 6 [39680/60000 (66%)]\tLoss: 0.401154\n", "Train Epoch: 6 [40320/60000 (67%)]\tLoss: 0.501817\n", "Train Epoch: 6 [40960/60000 (68%)]\tLoss: 0.514987\n", "Train Epoch: 6 [41600/60000 (69%)]\tLoss: 0.501832\n", "Train Epoch: 6 [42240/60000 (70%)]\tLoss: 0.471297\n", "Train Epoch: 6 [42880/60000 (71%)]\tLoss: 0.467299\n", "Train Epoch: 6 [43520/60000 (72%)]\tLoss: 0.421591\n", "Train Epoch: 6 [44160/60000 (74%)]\tLoss: 0.485595\n", "Train Epoch: 6 [44800/60000 (75%)]\tLoss: 0.450339\n", "Train Epoch: 6 [45440/60000 (76%)]\tLoss: 0.339639\n", "Train Epoch: 6 [46080/60000 (77%)]\tLoss: 0.386934\n", "Train Epoch: 6 [46720/60000 (78%)]\tLoss: 0.288079\n", "Train Epoch: 6 [47360/60000 (79%)]\tLoss: 0.448822\n", "Train Epoch: 6 [48000/60000 (80%)]\tLoss: 0.774343\n", "Train Epoch: 6 [48640/60000 (81%)]\tLoss: 0.379256\n", "Train Epoch: 6 [49280/60000 (82%)]\tLoss: 0.430138\n", "Train Epoch: 6 [49920/60000 (83%)]\tLoss: 0.486228\n", "Train Epoch: 6 [50560/60000 (84%)]\tLoss: 0.548016\n", "Train Epoch: 6 [51200/60000 (85%)]\tLoss: 0.312752\n", "Train Epoch: 6 [51840/60000 (86%)]\tLoss: 0.405820\n", "Train Epoch: 6 [52480/60000 (87%)]\tLoss: 0.346440\n", "Train Epoch: 6 [53120/60000 (88%)]\tLoss: 0.289083\n", "Train Epoch: 6 [53760/60000 (90%)]\tLoss: 0.595599\n", "Train Epoch: 6 [54400/60000 (91%)]\tLoss: 0.303218\n", "Train Epoch: 6 [55040/60000 (92%)]\tLoss: 0.461978\n", "Train Epoch: 6 [55680/60000 (93%)]\tLoss: 0.425981\n", "Train Epoch: 6 [56320/60000 (94%)]\tLoss: 0.318439\n", "Train Epoch: 6 [56960/60000 (95%)]\tLoss: 0.555305\n", "Train Epoch: 6 [57600/60000 (96%)]\tLoss: 0.662117\n", "Train Epoch: 6 [58240/60000 (97%)]\tLoss: 0.489319\n", "Train Epoch: 6 [58880/60000 (98%)]\tLoss: 0.406899\n", "Train Epoch: 6 [59520/60000 (99%)]\tLoss: 0.385348\n", "\n", "Test set: Average loss: 0.2355, Accuracy: 9277/10000 (93%)\n", "\n", "Train Epoch: 7 [0/60000 (0%)]\tLoss: 0.717746\n", "Train Epoch: 7 [640/60000 (1%)]\tLoss: 0.469850\n", "Train Epoch: 7 [1280/60000 (2%)]\tLoss: 0.594132\n", "Train Epoch: 7 [1920/60000 (3%)]\tLoss: 0.475334\n", "Train Epoch: 7 [2560/60000 (4%)]\tLoss: 0.430496\n", "Train Epoch: 7 [3200/60000 (5%)]\tLoss: 0.294112\n", "Train Epoch: 7 [3840/60000 (6%)]\tLoss: 0.312968\n", "Train Epoch: 7 [4480/60000 (7%)]\tLoss: 0.362220\n", "Train Epoch: 7 [5120/60000 (9%)]\tLoss: 0.429730\n", "Train Epoch: 7 [5760/60000 (10%)]\tLoss: 0.357846\n", "Train Epoch: 7 [6400/60000 (11%)]\tLoss: 0.336342\n", "Train Epoch: 7 [7040/60000 (12%)]\tLoss: 0.553371\n", "Train Epoch: 7 [7680/60000 (13%)]\tLoss: 0.517778\n", "Train Epoch: 7 [8320/60000 (14%)]\tLoss: 0.441374\n", "Train Epoch: 7 [8960/60000 (15%)]\tLoss: 0.242141\n", "Train Epoch: 7 [9600/60000 (16%)]\tLoss: 0.288597\n", "Train Epoch: 7 [10240/60000 (17%)]\tLoss: 0.355948\n", "Train Epoch: 7 [10880/60000 (18%)]\tLoss: 0.225561\n", "Train Epoch: 7 [11520/60000 (19%)]\tLoss: 0.556643\n", "Train Epoch: 7 [12160/60000 (20%)]\tLoss: 0.426134\n", "Train Epoch: 7 [12800/60000 (21%)]\tLoss: 0.408436\n", "Train Epoch: 7 [13440/60000 (22%)]\tLoss: 0.452091\n", "Train Epoch: 7 [14080/60000 (23%)]\tLoss: 0.417876\n", "Train Epoch: 7 [14720/60000 (25%)]\tLoss: 0.312885\n", "Train Epoch: 7 [15360/60000 (26%)]\tLoss: 0.513127\n", "Train Epoch: 7 [16000/60000 (27%)]\tLoss: 0.371684\n", "Train Epoch: 7 [16640/60000 (28%)]\tLoss: 0.347489\n", "Train Epoch: 7 [17280/60000 (29%)]\tLoss: 0.463195\n", "Train Epoch: 7 [17920/60000 (30%)]\tLoss: 0.391325\n", "Train Epoch: 7 [18560/60000 (31%)]\tLoss: 0.483347\n", "Train Epoch: 7 [19200/60000 (32%)]\tLoss: 0.341747\n", "Train Epoch: 7 [19840/60000 (33%)]\tLoss: 0.484753\n", "Train Epoch: 7 [20480/60000 (34%)]\tLoss: 0.342775\n", "Train Epoch: 7 [21120/60000 (35%)]\tLoss: 0.680683\n", "Train Epoch: 7 [21760/60000 (36%)]\tLoss: 0.297526\n", "Train Epoch: 7 [22400/60000 (37%)]\tLoss: 0.473823\n", "Train Epoch: 7 [23040/60000 (38%)]\tLoss: 0.535452\n", "Train Epoch: 7 [23680/60000 (39%)]\tLoss: 0.457003\n", "Train Epoch: 7 [24320/60000 (41%)]\tLoss: 0.428764\n", "Train Epoch: 7 [24960/60000 (42%)]\tLoss: 0.437032\n", "Train Epoch: 7 [25600/60000 (43%)]\tLoss: 0.626992\n", "Train Epoch: 7 [26240/60000 (44%)]\tLoss: 0.401498\n", "Train Epoch: 7 [26880/60000 (45%)]\tLoss: 0.341814\n", "Train Epoch: 7 [27520/60000 (46%)]\tLoss: 0.347058\n", "Train Epoch: 7 [28160/60000 (47%)]\tLoss: 0.592646\n", "Train Epoch: 7 [28800/60000 (48%)]\tLoss: 0.486121\n", "Train Epoch: 7 [29440/60000 (49%)]\tLoss: 0.521025\n", "Train Epoch: 7 [30080/60000 (50%)]\tLoss: 0.396132\n", "Train Epoch: 7 [30720/60000 (51%)]\tLoss: 0.568312\n", "Train Epoch: 7 [31360/60000 (52%)]\tLoss: 0.475081\n", "Train Epoch: 7 [32000/60000 (53%)]\tLoss: 0.496030\n", "Train Epoch: 7 [32640/60000 (54%)]\tLoss: 0.321438\n", "Train Epoch: 7 [33280/60000 (55%)]\tLoss: 0.361846\n", "Train Epoch: 7 [33920/60000 (57%)]\tLoss: 0.436478\n", "Train Epoch: 7 [34560/60000 (58%)]\tLoss: 0.532364\n", "Train Epoch: 7 [35200/60000 (59%)]\tLoss: 0.510952\n", "Train Epoch: 7 [35840/60000 (60%)]\tLoss: 0.645716\n", "Train Epoch: 7 [36480/60000 (61%)]\tLoss: 0.459234\n", "Train Epoch: 7 [37120/60000 (62%)]\tLoss: 0.372446\n", "Train Epoch: 7 [37760/60000 (63%)]\tLoss: 0.232452\n", "Train Epoch: 7 [38400/60000 (64%)]\tLoss: 0.349685\n", "Train Epoch: 7 [39040/60000 (65%)]\tLoss: 0.594316\n", "Train Epoch: 7 [39680/60000 (66%)]\tLoss: 0.716787\n", "Train Epoch: 7 [40320/60000 (67%)]\tLoss: 0.736326\n", "Train Epoch: 7 [40960/60000 (68%)]\tLoss: 0.434927\n", "Train Epoch: 7 [41600/60000 (69%)]\tLoss: 0.504802\n", "Train Epoch: 7 [42240/60000 (70%)]\tLoss: 0.458648\n", "Train Epoch: 7 [42880/60000 (71%)]\tLoss: 0.433149\n", "Train Epoch: 7 [43520/60000 (72%)]\tLoss: 0.291753\n", "Train Epoch: 7 [44160/60000 (74%)]\tLoss: 0.414159\n", "Train Epoch: 7 [44800/60000 (75%)]\tLoss: 0.387175\n", "Train Epoch: 7 [45440/60000 (76%)]\tLoss: 0.412587\n", "Train Epoch: 7 [46080/60000 (77%)]\tLoss: 0.396877\n", "Train Epoch: 7 [46720/60000 (78%)]\tLoss: 0.497912\n", "Train Epoch: 7 [47360/60000 (79%)]\tLoss: 0.428156\n", "Train Epoch: 7 [48000/60000 (80%)]\tLoss: 0.457888\n", "Train Epoch: 7 [48640/60000 (81%)]\tLoss: 0.519679\n", "Train Epoch: 7 [49280/60000 (82%)]\tLoss: 0.357949\n", "Train Epoch: 7 [49920/60000 (83%)]\tLoss: 0.349140\n", "Train Epoch: 7 [50560/60000 (84%)]\tLoss: 0.389948\n", "Train Epoch: 7 [51200/60000 (85%)]\tLoss: 0.426888\n", "Train Epoch: 7 [51840/60000 (86%)]\tLoss: 0.348459\n", "Train Epoch: 7 [52480/60000 (87%)]\tLoss: 0.596195\n", "Train Epoch: 7 [53120/60000 (88%)]\tLoss: 0.567125\n", "Train Epoch: 7 [53760/60000 (90%)]\tLoss: 0.301156\n", "Train Epoch: 7 [54400/60000 (91%)]\tLoss: 0.650556\n", "Train Epoch: 7 [55040/60000 (92%)]\tLoss: 0.716237\n", "Train Epoch: 7 [55680/60000 (93%)]\tLoss: 0.478880\n", "Train Epoch: 7 [56320/60000 (94%)]\tLoss: 0.421738\n", "Train Epoch: 7 [56960/60000 (95%)]\tLoss: 0.435452\n", "Train Epoch: 7 [57600/60000 (96%)]\tLoss: 0.639110\n", "Train Epoch: 7 [58240/60000 (97%)]\tLoss: 0.387537\n", "Train Epoch: 7 [58880/60000 (98%)]\tLoss: 0.839672\n", "Train Epoch: 7 [59520/60000 (99%)]\tLoss: 0.409901\n", "\n", "Test set: Average loss: 0.2244, Accuracy: 9333/10000 (93%)\n", "\n", "Train Epoch: 8 [0/60000 (0%)]\tLoss: 0.469116\n", "Train Epoch: 8 [640/60000 (1%)]\tLoss: 0.369547\n", "Train Epoch: 8 [1280/60000 (2%)]\tLoss: 0.205326\n", "Train Epoch: 8 [1920/60000 (3%)]\tLoss: 0.377605\n", "Train Epoch: 8 [2560/60000 (4%)]\tLoss: 0.759715\n", "Train Epoch: 8 [3200/60000 (5%)]\tLoss: 0.435700\n", "Train Epoch: 8 [3840/60000 (6%)]\tLoss: 0.496598\n", "Train Epoch: 8 [4480/60000 (7%)]\tLoss: 0.382843\n", "Train Epoch: 8 [5120/60000 (9%)]\tLoss: 0.572180\n", "Train Epoch: 8 [5760/60000 (10%)]\tLoss: 0.510329\n", "Train Epoch: 8 [6400/60000 (11%)]\tLoss: 0.479855\n", "Train Epoch: 8 [7040/60000 (12%)]\tLoss: 0.630407\n", "Train Epoch: 8 [7680/60000 (13%)]\tLoss: 0.418155\n", "Train Epoch: 8 [8320/60000 (14%)]\tLoss: 0.401250\n", "Train Epoch: 8 [8960/60000 (15%)]\tLoss: 0.618375\n", "Train Epoch: 8 [9600/60000 (16%)]\tLoss: 0.614910\n", "Train Epoch: 8 [10240/60000 (17%)]\tLoss: 0.318959\n", "Train Epoch: 8 [10880/60000 (18%)]\tLoss: 0.337133\n", "Train Epoch: 8 [11520/60000 (19%)]\tLoss: 0.797270\n", "Train Epoch: 8 [12160/60000 (20%)]\tLoss: 0.405077\n", "Train Epoch: 8 [12800/60000 (21%)]\tLoss: 0.660094\n", "Train Epoch: 8 [13440/60000 (22%)]\tLoss: 0.607702\n", "Train Epoch: 8 [14080/60000 (23%)]\tLoss: 0.496708\n", "Train Epoch: 8 [14720/60000 (25%)]\tLoss: 0.288580\n", "Train Epoch: 8 [15360/60000 (26%)]\tLoss: 0.542240\n", "Train Epoch: 8 [16000/60000 (27%)]\tLoss: 0.460526\n", "Train Epoch: 8 [16640/60000 (28%)]\tLoss: 0.513786\n", "Train Epoch: 8 [17280/60000 (29%)]\tLoss: 0.357062\n", "Train Epoch: 8 [17920/60000 (30%)]\tLoss: 0.301969\n", "Train Epoch: 8 [18560/60000 (31%)]\tLoss: 0.418003\n", "Train Epoch: 8 [19200/60000 (32%)]\tLoss: 0.445466\n", "Train Epoch: 8 [19840/60000 (33%)]\tLoss: 0.381778\n", "Train Epoch: 8 [20480/60000 (34%)]\tLoss: 0.454850\n", "Train Epoch: 8 [21120/60000 (35%)]\tLoss: 0.311810\n", "Train Epoch: 8 [21760/60000 (36%)]\tLoss: 0.547684\n", "Train Epoch: 8 [22400/60000 (37%)]\tLoss: 0.196216\n", "Train Epoch: 8 [23040/60000 (38%)]\tLoss: 0.286038\n", "Train Epoch: 8 [23680/60000 (39%)]\tLoss: 0.477280\n", "Train Epoch: 8 [24320/60000 (41%)]\tLoss: 0.818387\n", "Train Epoch: 8 [24960/60000 (42%)]\tLoss: 0.514256\n", "Train Epoch: 8 [25600/60000 (43%)]\tLoss: 0.455588\n", "Train Epoch: 8 [26240/60000 (44%)]\tLoss: 0.365949\n", "Train Epoch: 8 [26880/60000 (45%)]\tLoss: 0.358122\n", "Train Epoch: 8 [27520/60000 (46%)]\tLoss: 0.453270\n", "Train Epoch: 8 [28160/60000 (47%)]\tLoss: 0.543010\n", "Train Epoch: 8 [28800/60000 (48%)]\tLoss: 0.643081\n", "Train Epoch: 8 [29440/60000 (49%)]\tLoss: 0.510997\n", "Train Epoch: 8 [30080/60000 (50%)]\tLoss: 0.316055\n", "Train Epoch: 8 [30720/60000 (51%)]\tLoss: 0.675488\n", "Train Epoch: 8 [31360/60000 (52%)]\tLoss: 0.303624\n", "Train Epoch: 8 [32000/60000 (53%)]\tLoss: 0.449534\n", "Train Epoch: 8 [32640/60000 (54%)]\tLoss: 0.451440\n", "Train Epoch: 8 [33280/60000 (55%)]\tLoss: 0.478363\n", "Train Epoch: 8 [33920/60000 (57%)]\tLoss: 0.425090\n", "Train Epoch: 8 [34560/60000 (58%)]\tLoss: 0.211939\n", "Train Epoch: 8 [35200/60000 (59%)]\tLoss: 0.356067\n", "Train Epoch: 8 [35840/60000 (60%)]\tLoss: 0.646257\n", "Train Epoch: 8 [36480/60000 (61%)]\tLoss: 0.643568\n", "Train Epoch: 8 [37120/60000 (62%)]\tLoss: 0.322013\n", "Train Epoch: 8 [37760/60000 (63%)]\tLoss: 0.407144\n", "Train Epoch: 8 [38400/60000 (64%)]\tLoss: 0.543189\n", "Train Epoch: 8 [39040/60000 (65%)]\tLoss: 0.287051\n", "Train Epoch: 8 [39680/60000 (66%)]\tLoss: 0.351675\n", "Train Epoch: 8 [40320/60000 (67%)]\tLoss: 0.288524\n", "Train Epoch: 8 [40960/60000 (68%)]\tLoss: 0.453518\n", "Train Epoch: 8 [41600/60000 (69%)]\tLoss: 0.253906\n", "Train Epoch: 8 [42240/60000 (70%)]\tLoss: 0.512110\n", "Train Epoch: 8 [42880/60000 (71%)]\tLoss: 0.590715\n", "Train Epoch: 8 [43520/60000 (72%)]\tLoss: 0.325584\n", "Train Epoch: 8 [44160/60000 (74%)]\tLoss: 0.482525\n", "Train Epoch: 8 [44800/60000 (75%)]\tLoss: 0.337738\n", "Train Epoch: 8 [45440/60000 (76%)]\tLoss: 0.318561\n", "Train Epoch: 8 [46080/60000 (77%)]\tLoss: 0.341067\n", "Train Epoch: 8 [46720/60000 (78%)]\tLoss: 0.545488\n", "Train Epoch: 8 [47360/60000 (79%)]\tLoss: 0.402002\n", "Train Epoch: 8 [48000/60000 (80%)]\tLoss: 0.231705\n", "Train Epoch: 8 [48640/60000 (81%)]\tLoss: 0.242957\n", "Train Epoch: 8 [49280/60000 (82%)]\tLoss: 0.426707\n", "Train Epoch: 8 [49920/60000 (83%)]\tLoss: 0.341219\n", "Train Epoch: 8 [50560/60000 (84%)]\tLoss: 0.422939\n", "Train Epoch: 8 [51200/60000 (85%)]\tLoss: 0.410271\n", "Train Epoch: 8 [51840/60000 (86%)]\tLoss: 0.443087\n", "Train Epoch: 8 [52480/60000 (87%)]\tLoss: 0.273087\n", "Train Epoch: 8 [53120/60000 (88%)]\tLoss: 0.300433\n", "Train Epoch: 8 [53760/60000 (90%)]\tLoss: 0.408493\n", "Train Epoch: 8 [54400/60000 (91%)]\tLoss: 0.410628\n", "Train Epoch: 8 [55040/60000 (92%)]\tLoss: 0.481743\n", "Train Epoch: 8 [55680/60000 (93%)]\tLoss: 0.532843\n", "Train Epoch: 8 [56320/60000 (94%)]\tLoss: 0.255752\n", "Train Epoch: 8 [56960/60000 (95%)]\tLoss: 0.287013\n", "Train Epoch: 8 [57600/60000 (96%)]\tLoss: 0.429710\n", "Train Epoch: 8 [58240/60000 (97%)]\tLoss: 0.377912\n", "Train Epoch: 8 [58880/60000 (98%)]\tLoss: 0.560696\n", "Train Epoch: 8 [59520/60000 (99%)]\tLoss: 0.380459\n", "\n", "Test set: Average loss: 0.2163, Accuracy: 9362/10000 (94%)\n", "\n", "Train Epoch: 9 [0/60000 (0%)]\tLoss: 0.585349\n", "Train Epoch: 9 [640/60000 (1%)]\tLoss: 0.493247\n", "Train Epoch: 9 [1280/60000 (2%)]\tLoss: 0.391806\n", "Train Epoch: 9 [1920/60000 (3%)]\tLoss: 0.493008\n", "Train Epoch: 9 [2560/60000 (4%)]\tLoss: 0.448494\n", "Train Epoch: 9 [3200/60000 (5%)]\tLoss: 0.325095\n", "Train Epoch: 9 [3840/60000 (6%)]\tLoss: 0.695937\n", "Train Epoch: 9 [4480/60000 (7%)]\tLoss: 0.266650\n", "Train Epoch: 9 [5120/60000 (9%)]\tLoss: 0.420215\n", "Train Epoch: 9 [5760/60000 (10%)]\tLoss: 0.353440\n", "Train Epoch: 9 [6400/60000 (11%)]\tLoss: 0.341078\n", "Train Epoch: 9 [7040/60000 (12%)]\tLoss: 0.439247\n", "Train Epoch: 9 [7680/60000 (13%)]\tLoss: 0.214538\n", "Train Epoch: 9 [8320/60000 (14%)]\tLoss: 0.469013\n", "Train Epoch: 9 [8960/60000 (15%)]\tLoss: 0.341292\n", "Train Epoch: 9 [9600/60000 (16%)]\tLoss: 0.785742\n", "Train Epoch: 9 [10240/60000 (17%)]\tLoss: 0.466753\n", "Train Epoch: 9 [10880/60000 (18%)]\tLoss: 0.418933\n", "Train Epoch: 9 [11520/60000 (19%)]\tLoss: 0.352861\n", "Train Epoch: 9 [12160/60000 (20%)]\tLoss: 0.330622\n", "Train Epoch: 9 [12800/60000 (21%)]\tLoss: 0.394191\n", "Train Epoch: 9 [13440/60000 (22%)]\tLoss: 0.304991\n", "Train Epoch: 9 [14080/60000 (23%)]\tLoss: 0.291812\n", "Train Epoch: 9 [14720/60000 (25%)]\tLoss: 0.460314\n", "Train Epoch: 9 [15360/60000 (26%)]\tLoss: 0.462962\n", "Train Epoch: 9 [16000/60000 (27%)]\tLoss: 0.573508\n", "Train Epoch: 9 [16640/60000 (28%)]\tLoss: 0.424545\n", "Train Epoch: 9 [17280/60000 (29%)]\tLoss: 0.314216\n", "Train Epoch: 9 [17920/60000 (30%)]\tLoss: 0.399477\n", "Train Epoch: 9 [18560/60000 (31%)]\tLoss: 0.281409\n", "Train Epoch: 9 [19200/60000 (32%)]\tLoss: 0.491287\n", "Train Epoch: 9 [19840/60000 (33%)]\tLoss: 0.478374\n", "Train Epoch: 9 [20480/60000 (34%)]\tLoss: 0.580464\n", "Train Epoch: 9 [21120/60000 (35%)]\tLoss: 0.456699\n", "Train Epoch: 9 [21760/60000 (36%)]\tLoss: 0.328621\n", "Train Epoch: 9 [22400/60000 (37%)]\tLoss: 0.444201\n", "Train Epoch: 9 [23040/60000 (38%)]\tLoss: 0.337673\n", "Train Epoch: 9 [23680/60000 (39%)]\tLoss: 0.385429\n", "Train Epoch: 9 [24320/60000 (41%)]\tLoss: 0.408061\n", "Train Epoch: 9 [24960/60000 (42%)]\tLoss: 0.261543\n", "Train Epoch: 9 [25600/60000 (43%)]\tLoss: 0.307577\n", "Train Epoch: 9 [26240/60000 (44%)]\tLoss: 0.340200\n", "Train Epoch: 9 [26880/60000 (45%)]\tLoss: 0.251913\n", "Train Epoch: 9 [27520/60000 (46%)]\tLoss: 0.269230\n", "Train Epoch: 9 [28160/60000 (47%)]\tLoss: 0.456552\n", "Train Epoch: 9 [28800/60000 (48%)]\tLoss: 0.598232\n", "Train Epoch: 9 [29440/60000 (49%)]\tLoss: 0.418178\n", "Train Epoch: 9 [30080/60000 (50%)]\tLoss: 0.356407\n", "Train Epoch: 9 [30720/60000 (51%)]\tLoss: 0.392345\n", "Train Epoch: 9 [31360/60000 (52%)]\tLoss: 0.379441\n", "Train Epoch: 9 [32000/60000 (53%)]\tLoss: 0.465714\n", "Train Epoch: 9 [32640/60000 (54%)]\tLoss: 0.367991\n", "Train Epoch: 9 [33280/60000 (55%)]\tLoss: 0.285676\n", "Train Epoch: 9 [33920/60000 (57%)]\tLoss: 0.243431\n", "Train Epoch: 9 [34560/60000 (58%)]\tLoss: 0.355942\n", "Train Epoch: 9 [35200/60000 (59%)]\tLoss: 0.374828\n", "Train Epoch: 9 [35840/60000 (60%)]\tLoss: 0.277245\n", "Train Epoch: 9 [36480/60000 (61%)]\tLoss: 0.273998\n", "Train Epoch: 9 [37120/60000 (62%)]\tLoss: 0.406776\n", "Train Epoch: 9 [37760/60000 (63%)]\tLoss: 0.651791\n", "Train Epoch: 9 [38400/60000 (64%)]\tLoss: 0.417006\n", "Train Epoch: 9 [39040/60000 (65%)]\tLoss: 0.287786\n", "Train Epoch: 9 [39680/60000 (66%)]\tLoss: 0.592247\n", "Train Epoch: 9 [40320/60000 (67%)]\tLoss: 0.317201\n", "Train Epoch: 9 [40960/60000 (68%)]\tLoss: 0.324063\n", "Train Epoch: 9 [41600/60000 (69%)]\tLoss: 0.393426\n", "Train Epoch: 9 [42240/60000 (70%)]\tLoss: 0.413506\n", "Train Epoch: 9 [42880/60000 (71%)]\tLoss: 0.633300\n", "Train Epoch: 9 [43520/60000 (72%)]\tLoss: 0.276478\n", "Train Epoch: 9 [44160/60000 (74%)]\tLoss: 0.473216\n", "Train Epoch: 9 [44800/60000 (75%)]\tLoss: 0.327980\n", "Train Epoch: 9 [45440/60000 (76%)]\tLoss: 0.727830\n", "Train Epoch: 9 [46080/60000 (77%)]\tLoss: 0.416605\n", "Train Epoch: 9 [46720/60000 (78%)]\tLoss: 0.407100\n", "Train Epoch: 9 [47360/60000 (79%)]\tLoss: 0.375050\n", "Train Epoch: 9 [48000/60000 (80%)]\tLoss: 0.488991\n", "Train Epoch: 9 [48640/60000 (81%)]\tLoss: 0.413114\n", "Train Epoch: 9 [49280/60000 (82%)]\tLoss: 0.520725\n", "Train Epoch: 9 [49920/60000 (83%)]\tLoss: 0.420221\n", "Train Epoch: 9 [50560/60000 (84%)]\tLoss: 0.599522\n", "Train Epoch: 9 [51200/60000 (85%)]\tLoss: 0.490780\n", "Train Epoch: 9 [51840/60000 (86%)]\tLoss: 0.228232\n", "Train Epoch: 9 [52480/60000 (87%)]\tLoss: 0.347773\n", "Train Epoch: 9 [53120/60000 (88%)]\tLoss: 0.476633\n", "Train Epoch: 9 [53760/60000 (90%)]\tLoss: 0.256655\n", "Train Epoch: 9 [54400/60000 (91%)]\tLoss: 0.396474\n", "Train Epoch: 9 [55040/60000 (92%)]\tLoss: 0.328017\n", "Train Epoch: 9 [55680/60000 (93%)]\tLoss: 0.355085\n", "Train Epoch: 9 [56320/60000 (94%)]\tLoss: 0.354232\n", "Train Epoch: 9 [56960/60000 (95%)]\tLoss: 0.360218\n", "Train Epoch: 9 [57600/60000 (96%)]\tLoss: 0.332372\n", "Train Epoch: 9 [58240/60000 (97%)]\tLoss: 0.364290\n", "Train Epoch: 9 [58880/60000 (98%)]\tLoss: 0.261339\n", "Train Epoch: 9 [59520/60000 (99%)]\tLoss: 0.250586\n", "\n", "Test set: Average loss: 0.2151, Accuracy: 9366/10000 (94%)\n", "\n", "Train Epoch: 10 [0/60000 (0%)]\tLoss: 0.438674\n", "Train Epoch: 10 [640/60000 (1%)]\tLoss: 0.447094\n", "Train Epoch: 10 [1280/60000 (2%)]\tLoss: 0.303145\n", "Train Epoch: 10 [1920/60000 (3%)]\tLoss: 0.327250\n", "Train Epoch: 10 [2560/60000 (4%)]\tLoss: 0.238297\n", "Train Epoch: 10 [3200/60000 (5%)]\tLoss: 0.383331\n", "Train Epoch: 10 [3840/60000 (6%)]\tLoss: 0.382009\n", "Train Epoch: 10 [4480/60000 (7%)]\tLoss: 0.389430\n", "Train Epoch: 10 [5120/60000 (9%)]\tLoss: 0.295570\n", "Train Epoch: 10 [5760/60000 (10%)]\tLoss: 0.259864\n", "Train Epoch: 10 [6400/60000 (11%)]\tLoss: 0.495971\n", "Train Epoch: 10 [7040/60000 (12%)]\tLoss: 0.361642\n", "Train Epoch: 10 [7680/60000 (13%)]\tLoss: 0.765770\n", "Train Epoch: 10 [8320/60000 (14%)]\tLoss: 0.403898\n", "Train Epoch: 10 [8960/60000 (15%)]\tLoss: 0.209247\n", "Train Epoch: 10 [9600/60000 (16%)]\tLoss: 0.482393\n", "Train Epoch: 10 [10240/60000 (17%)]\tLoss: 0.459047\n", "Train Epoch: 10 [10880/60000 (18%)]\tLoss: 0.505761\n", "Train Epoch: 10 [11520/60000 (19%)]\tLoss: 0.433308\n", "Train Epoch: 10 [12160/60000 (20%)]\tLoss: 0.354521\n", "Train Epoch: 10 [12800/60000 (21%)]\tLoss: 0.233018\n", "Train Epoch: 10 [13440/60000 (22%)]\tLoss: 0.390475\n", "Train Epoch: 10 [14080/60000 (23%)]\tLoss: 0.245935\n", "Train Epoch: 10 [14720/60000 (25%)]\tLoss: 0.398529\n", "Train Epoch: 10 [15360/60000 (26%)]\tLoss: 0.393017\n", "Train Epoch: 10 [16000/60000 (27%)]\tLoss: 0.364165\n", "Train Epoch: 10 [16640/60000 (28%)]\tLoss: 0.657179\n", "Train Epoch: 10 [17280/60000 (29%)]\tLoss: 0.199565\n", "Train Epoch: 10 [17920/60000 (30%)]\tLoss: 0.373812\n", "Train Epoch: 10 [18560/60000 (31%)]\tLoss: 0.395341\n", "Train Epoch: 10 [19200/60000 (32%)]\tLoss: 0.367142\n", "Train Epoch: 10 [19840/60000 (33%)]\tLoss: 0.420444\n", "Train Epoch: 10 [20480/60000 (34%)]\tLoss: 0.411721\n", "Train Epoch: 10 [21120/60000 (35%)]\tLoss: 0.406184\n", "Train Epoch: 10 [21760/60000 (36%)]\tLoss: 0.309357\n", "Train Epoch: 10 [22400/60000 (37%)]\tLoss: 0.397584\n", "Train Epoch: 10 [23040/60000 (38%)]\tLoss: 0.699485\n", "Train Epoch: 10 [23680/60000 (39%)]\tLoss: 0.672688\n", "Train Epoch: 10 [24320/60000 (41%)]\tLoss: 0.383668\n", "Train Epoch: 10 [24960/60000 (42%)]\tLoss: 0.443057\n", "Train Epoch: 10 [25600/60000 (43%)]\tLoss: 0.409219\n", "Train Epoch: 10 [26240/60000 (44%)]\tLoss: 0.311079\n", "Train Epoch: 10 [26880/60000 (45%)]\tLoss: 0.367074\n", "Train Epoch: 10 [27520/60000 (46%)]\tLoss: 0.279823\n", "Train Epoch: 10 [28160/60000 (47%)]\tLoss: 0.337272\n", "Train Epoch: 10 [28800/60000 (48%)]\tLoss: 0.485712\n", "Train Epoch: 10 [29440/60000 (49%)]\tLoss: 0.345926\n", "Train Epoch: 10 [30080/60000 (50%)]\tLoss: 0.424248\n", "Train Epoch: 10 [30720/60000 (51%)]\tLoss: 0.322441\n", "Train Epoch: 10 [31360/60000 (52%)]\tLoss: 0.283901\n", "Train Epoch: 10 [32000/60000 (53%)]\tLoss: 0.640330\n", "Train Epoch: 10 [32640/60000 (54%)]\tLoss: 0.342491\n", "Train Epoch: 10 [33280/60000 (55%)]\tLoss: 0.343811\n", "Train Epoch: 10 [33920/60000 (57%)]\tLoss: 0.392110\n", "Train Epoch: 10 [34560/60000 (58%)]\tLoss: 0.433466\n", "Train Epoch: 10 [35200/60000 (59%)]\tLoss: 0.341572\n", "Train Epoch: 10 [35840/60000 (60%)]\tLoss: 0.394995\n", "Train Epoch: 10 [36480/60000 (61%)]\tLoss: 0.332045\n", "Train Epoch: 10 [37120/60000 (62%)]\tLoss: 0.276502\n", "Train Epoch: 10 [37760/60000 (63%)]\tLoss: 0.292657\n", "Train Epoch: 10 [38400/60000 (64%)]\tLoss: 0.455167\n", "Train Epoch: 10 [39040/60000 (65%)]\tLoss: 0.297509\n", "Train Epoch: 10 [39680/60000 (66%)]\tLoss: 0.640905\n", "Train Epoch: 10 [40320/60000 (67%)]\tLoss: 0.422916\n", "Train Epoch: 10 [40960/60000 (68%)]\tLoss: 0.473346\n", "Train Epoch: 10 [41600/60000 (69%)]\tLoss: 0.491301\n", "Train Epoch: 10 [42240/60000 (70%)]\tLoss: 0.346930\n", "Train Epoch: 10 [42880/60000 (71%)]\tLoss: 0.572828\n", "Train Epoch: 10 [43520/60000 (72%)]\tLoss: 0.365607\n", "Train Epoch: 10 [44160/60000 (74%)]\tLoss: 0.317555\n", "Train Epoch: 10 [44800/60000 (75%)]\tLoss: 0.468911\n", "Train Epoch: 10 [45440/60000 (76%)]\tLoss: 0.496311\n", "Train Epoch: 10 [46080/60000 (77%)]\tLoss: 0.696476\n", "Train Epoch: 10 [46720/60000 (78%)]\tLoss: 0.359581\n", "Train Epoch: 10 [47360/60000 (79%)]\tLoss: 0.419243\n", "Train Epoch: 10 [48000/60000 (80%)]\tLoss: 0.303316\n", "Train Epoch: 10 [48640/60000 (81%)]\tLoss: 0.383326\n", "Train Epoch: 10 [49280/60000 (82%)]\tLoss: 0.268373\n", "Train Epoch: 10 [49920/60000 (83%)]\tLoss: 0.413617\n", "Train Epoch: 10 [50560/60000 (84%)]\tLoss: 0.454594\n", "Train Epoch: 10 [51200/60000 (85%)]\tLoss: 0.359162\n", "Train Epoch: 10 [51840/60000 (86%)]\tLoss: 0.630098\n", "Train Epoch: 10 [52480/60000 (87%)]\tLoss: 0.521164\n", "Train Epoch: 10 [53120/60000 (88%)]\tLoss: 0.247818\n", "Train Epoch: 10 [53760/60000 (90%)]\tLoss: 0.330510\n", "Train Epoch: 10 [54400/60000 (91%)]\tLoss: 0.343167\n", "Train Epoch: 10 [55040/60000 (92%)]\tLoss: 0.380157\n", "Train Epoch: 10 [55680/60000 (93%)]\tLoss: 0.395422\n", "Train Epoch: 10 [56320/60000 (94%)]\tLoss: 0.687743\n", "Train Epoch: 10 [56960/60000 (95%)]\tLoss: 0.470193\n", "Train Epoch: 10 [57600/60000 (96%)]\tLoss: 0.473724\n", "Train Epoch: 10 [58240/60000 (97%)]\tLoss: 0.361690\n", "Train Epoch: 10 [58880/60000 (98%)]\tLoss: 0.349370\n", "Train Epoch: 10 [59520/60000 (99%)]\tLoss: 0.385800\n", "\n", "Test set: Average loss: 0.2124, Accuracy: 9367/10000 (94%)\n", "\n", "Train Epoch: 11 [0/60000 (0%)]\tLoss: 0.426175\n", "Train Epoch: 11 [640/60000 (1%)]\tLoss: 0.170051\n", "Train Epoch: 11 [1280/60000 (2%)]\tLoss: 0.250144\n", "Train Epoch: 11 [1920/60000 (3%)]\tLoss: 0.172225\n", "Train Epoch: 11 [2560/60000 (4%)]\tLoss: 0.421107\n", "Train Epoch: 11 [3200/60000 (5%)]\tLoss: 0.380877\n", "Train Epoch: 11 [3840/60000 (6%)]\tLoss: 0.230398\n", "Train Epoch: 11 [4480/60000 (7%)]\tLoss: 0.477564\n", "Train Epoch: 11 [5120/60000 (9%)]\tLoss: 0.395525\n", "Train Epoch: 11 [5760/60000 (10%)]\tLoss: 0.270284\n", "Train Epoch: 11 [6400/60000 (11%)]\tLoss: 0.310442\n", "Train Epoch: 11 [7040/60000 (12%)]\tLoss: 0.285872\n", "Train Epoch: 11 [7680/60000 (13%)]\tLoss: 0.333100\n", "Train Epoch: 11 [8320/60000 (14%)]\tLoss: 0.269915\n", "Train Epoch: 11 [8960/60000 (15%)]\tLoss: 0.340484\n", "Train Epoch: 11 [9600/60000 (16%)]\tLoss: 0.433937\n", "Train Epoch: 11 [10240/60000 (17%)]\tLoss: 0.552323\n", "Train Epoch: 11 [10880/60000 (18%)]\tLoss: 0.532913\n", "Train Epoch: 11 [11520/60000 (19%)]\tLoss: 0.495746\n", "Train Epoch: 11 [12160/60000 (20%)]\tLoss: 0.303816\n", "Train Epoch: 11 [12800/60000 (21%)]\tLoss: 0.264450\n", "Train Epoch: 11 [13440/60000 (22%)]\tLoss: 0.436694\n", "Train Epoch: 11 [14080/60000 (23%)]\tLoss: 0.440698\n", "Train Epoch: 11 [14720/60000 (25%)]\tLoss: 0.422328\n", "Train Epoch: 11 [15360/60000 (26%)]\tLoss: 0.415076\n", "Train Epoch: 11 [16000/60000 (27%)]\tLoss: 0.595344\n", "Train Epoch: 11 [16640/60000 (28%)]\tLoss: 0.246912\n", "Train Epoch: 11 [17280/60000 (29%)]\tLoss: 0.261348\n", "Train Epoch: 11 [17920/60000 (30%)]\tLoss: 0.420687\n", "Train Epoch: 11 [18560/60000 (31%)]\tLoss: 0.309478\n", "Train Epoch: 11 [19200/60000 (32%)]\tLoss: 0.351695\n", "Train Epoch: 11 [19840/60000 (33%)]\tLoss: 0.521406\n", "Train Epoch: 11 [20480/60000 (34%)]\tLoss: 0.290906\n", "Train Epoch: 11 [21120/60000 (35%)]\tLoss: 0.364633\n", "Train Epoch: 11 [21760/60000 (36%)]\tLoss: 0.324598\n", "Train Epoch: 11 [22400/60000 (37%)]\tLoss: 0.504305\n", "Train Epoch: 11 [23040/60000 (38%)]\tLoss: 0.565828\n", "Train Epoch: 11 [23680/60000 (39%)]\tLoss: 0.530418\n", "Train Epoch: 11 [24320/60000 (41%)]\tLoss: 0.394786\n", "Train Epoch: 11 [24960/60000 (42%)]\tLoss: 0.360259\n", "Train Epoch: 11 [25600/60000 (43%)]\tLoss: 0.332048\n", "Train Epoch: 11 [26240/60000 (44%)]\tLoss: 0.277467\n", "Train Epoch: 11 [26880/60000 (45%)]\tLoss: 0.392917\n", "Train Epoch: 11 [27520/60000 (46%)]\tLoss: 0.343030\n", "Train Epoch: 11 [28160/60000 (47%)]\tLoss: 0.575351\n", "Train Epoch: 11 [28800/60000 (48%)]\tLoss: 0.234557\n", "Train Epoch: 11 [29440/60000 (49%)]\tLoss: 0.345107\n", "Train Epoch: 11 [30080/60000 (50%)]\tLoss: 0.250498\n", "Train Epoch: 11 [30720/60000 (51%)]\tLoss: 0.252944\n", "Train Epoch: 11 [31360/60000 (52%)]\tLoss: 0.339441\n", "Train Epoch: 11 [32000/60000 (53%)]\tLoss: 0.419631\n", "Train Epoch: 11 [32640/60000 (54%)]\tLoss: 0.299459\n", "Train Epoch: 11 [33280/60000 (55%)]\tLoss: 0.496848\n", "Train Epoch: 11 [33920/60000 (57%)]\tLoss: 0.298093\n", "Train Epoch: 11 [34560/60000 (58%)]\tLoss: 0.502162\n", "Train Epoch: 11 [35200/60000 (59%)]\tLoss: 0.255059\n", "Train Epoch: 11 [35840/60000 (60%)]\tLoss: 0.411274\n", "Train Epoch: 11 [36480/60000 (61%)]\tLoss: 0.523597\n", "Train Epoch: 11 [37120/60000 (62%)]\tLoss: 0.413543\n", "Train Epoch: 11 [37760/60000 (63%)]\tLoss: 0.416163\n", "Train Epoch: 11 [38400/60000 (64%)]\tLoss: 0.369535\n", "Train Epoch: 11 [39040/60000 (65%)]\tLoss: 0.611558\n", "Train Epoch: 11 [39680/60000 (66%)]\tLoss: 0.304744\n", "Train Epoch: 11 [40320/60000 (67%)]\tLoss: 0.430891\n", "Train Epoch: 11 [40960/60000 (68%)]\tLoss: 0.405095\n", "Train Epoch: 11 [41600/60000 (69%)]\tLoss: 0.459111\n", "Train Epoch: 11 [42240/60000 (70%)]\tLoss: 0.305776\n", "Train Epoch: 11 [42880/60000 (71%)]\tLoss: 0.383718\n", "Train Epoch: 11 [43520/60000 (72%)]\tLoss: 0.357237\n", "Train Epoch: 11 [44160/60000 (74%)]\tLoss: 0.882389\n", "Train Epoch: 11 [44800/60000 (75%)]\tLoss: 0.515517\n", "Train Epoch: 11 [45440/60000 (76%)]\tLoss: 0.431814\n", "Train Epoch: 11 [46080/60000 (77%)]\tLoss: 0.502057\n", "Train Epoch: 11 [46720/60000 (78%)]\tLoss: 0.363643\n", "Train Epoch: 11 [47360/60000 (79%)]\tLoss: 0.300866\n", "Train Epoch: 11 [48000/60000 (80%)]\tLoss: 0.379479\n", "Train Epoch: 11 [48640/60000 (81%)]\tLoss: 0.409872\n", "Train Epoch: 11 [49280/60000 (82%)]\tLoss: 0.459707\n", "Train Epoch: 11 [49920/60000 (83%)]\tLoss: 0.407088\n", "Train Epoch: 11 [50560/60000 (84%)]\tLoss: 0.442198\n", "Train Epoch: 11 [51200/60000 (85%)]\tLoss: 0.360245\n", "Train Epoch: 11 [51840/60000 (86%)]\tLoss: 0.391902\n", "Train Epoch: 11 [52480/60000 (87%)]\tLoss: 0.690278\n", "Train Epoch: 11 [53120/60000 (88%)]\tLoss: 0.578411\n", "Train Epoch: 11 [53760/60000 (90%)]\tLoss: 0.317039\n", "Train Epoch: 11 [54400/60000 (91%)]\tLoss: 0.361648\n", "Train Epoch: 11 [55040/60000 (92%)]\tLoss: 0.256818\n", "Train Epoch: 11 [55680/60000 (93%)]\tLoss: 0.305927\n", "Train Epoch: 11 [56320/60000 (94%)]\tLoss: 0.334767\n", "Train Epoch: 11 [56960/60000 (95%)]\tLoss: 0.393670\n", "Train Epoch: 11 [57600/60000 (96%)]\tLoss: 0.357648\n", "Train Epoch: 11 [58240/60000 (97%)]\tLoss: 0.281211\n", "Train Epoch: 11 [58880/60000 (98%)]\tLoss: 0.324076\n", "Train Epoch: 11 [59520/60000 (99%)]\tLoss: 0.372610\n", "\n", "Test set: Average loss: 0.2098, Accuracy: 9373/10000 (94%)\n", "\n", "Train Epoch: 12 [0/60000 (0%)]\tLoss: 0.392381\n", "Train Epoch: 12 [640/60000 (1%)]\tLoss: 0.296244\n", "Train Epoch: 12 [1280/60000 (2%)]\tLoss: 0.375837\n", "Train Epoch: 12 [1920/60000 (3%)]\tLoss: 0.511141\n", "Train Epoch: 12 [2560/60000 (4%)]\tLoss: 0.328571\n", "Train Epoch: 12 [3200/60000 (5%)]\tLoss: 0.407022\n", "Train Epoch: 12 [3840/60000 (6%)]\tLoss: 0.298561\n", "Train Epoch: 12 [4480/60000 (7%)]\tLoss: 0.294834\n", "Train Epoch: 12 [5120/60000 (9%)]\tLoss: 0.459634\n", "Train Epoch: 12 [5760/60000 (10%)]\tLoss: 0.427800\n", "Train Epoch: 12 [6400/60000 (11%)]\tLoss: 0.315486\n", "Train Epoch: 12 [7040/60000 (12%)]\tLoss: 0.369394\n", "Train Epoch: 12 [7680/60000 (13%)]\tLoss: 0.383769\n", "Train Epoch: 12 [8320/60000 (14%)]\tLoss: 0.360964\n", "Train Epoch: 12 [8960/60000 (15%)]\tLoss: 0.565721\n", "Train Epoch: 12 [9600/60000 (16%)]\tLoss: 0.339542\n", "Train Epoch: 12 [10240/60000 (17%)]\tLoss: 0.318309\n", "Train Epoch: 12 [10880/60000 (18%)]\tLoss: 0.354276\n", "Train Epoch: 12 [11520/60000 (19%)]\tLoss: 0.729153\n", "Train Epoch: 12 [12160/60000 (20%)]\tLoss: 0.637019\n", "Train Epoch: 12 [12800/60000 (21%)]\tLoss: 0.311870\n", "Train Epoch: 12 [13440/60000 (22%)]\tLoss: 0.475887\n", "Train Epoch: 12 [14080/60000 (23%)]\tLoss: 0.593350\n", "Train Epoch: 12 [14720/60000 (25%)]\tLoss: 0.401409\n", "Train Epoch: 12 [15360/60000 (26%)]\tLoss: 0.340033\n", "Train Epoch: 12 [16000/60000 (27%)]\tLoss: 0.268461\n", "Train Epoch: 12 [16640/60000 (28%)]\tLoss: 0.246901\n", "Train Epoch: 12 [17280/60000 (29%)]\tLoss: 0.220537\n", "Train Epoch: 12 [17920/60000 (30%)]\tLoss: 0.343910\n", "Train Epoch: 12 [18560/60000 (31%)]\tLoss: 0.404446\n", "Train Epoch: 12 [19200/60000 (32%)]\tLoss: 0.390659\n", "Train Epoch: 12 [19840/60000 (33%)]\tLoss: 0.428503\n", "Train Epoch: 12 [20480/60000 (34%)]\tLoss: 0.349072\n", "Train Epoch: 12 [21120/60000 (35%)]\tLoss: 0.486959\n", "Train Epoch: 12 [21760/60000 (36%)]\tLoss: 0.328149\n", "Train Epoch: 12 [22400/60000 (37%)]\tLoss: 0.516612\n", "Train Epoch: 12 [23040/60000 (38%)]\tLoss: 0.457053\n", "Train Epoch: 12 [23680/60000 (39%)]\tLoss: 0.608891\n", "Train Epoch: 12 [24320/60000 (41%)]\tLoss: 0.689961\n", "Train Epoch: 12 [24960/60000 (42%)]\tLoss: 0.294651\n", "Train Epoch: 12 [25600/60000 (43%)]\tLoss: 0.393591\n", "Train Epoch: 12 [26240/60000 (44%)]\tLoss: 0.338527\n", "Train Epoch: 12 [26880/60000 (45%)]\tLoss: 0.577185\n", "Train Epoch: 12 [27520/60000 (46%)]\tLoss: 0.353298\n", "Train Epoch: 12 [28160/60000 (47%)]\tLoss: 0.622562\n", "Train Epoch: 12 [28800/60000 (48%)]\tLoss: 0.282284\n", "Train Epoch: 12 [29440/60000 (49%)]\tLoss: 0.313890\n", "Train Epoch: 12 [30080/60000 (50%)]\tLoss: 0.351841\n", "Train Epoch: 12 [30720/60000 (51%)]\tLoss: 0.396683\n", "Train Epoch: 12 [31360/60000 (52%)]\tLoss: 0.525927\n", "Train Epoch: 12 [32000/60000 (53%)]\tLoss: 0.234338\n", "Train Epoch: 12 [32640/60000 (54%)]\tLoss: 0.462475\n", "Train Epoch: 12 [33280/60000 (55%)]\tLoss: 0.566766\n", "Train Epoch: 12 [33920/60000 (57%)]\tLoss: 0.384067\n", "Train Epoch: 12 [34560/60000 (58%)]\tLoss: 0.281657\n", "Train Epoch: 12 [35200/60000 (59%)]\tLoss: 0.392156\n", "Train Epoch: 12 [35840/60000 (60%)]\tLoss: 0.567646\n", "Train Epoch: 12 [36480/60000 (61%)]\tLoss: 0.294172\n", "Train Epoch: 12 [37120/60000 (62%)]\tLoss: 0.395887\n", "Train Epoch: 12 [37760/60000 (63%)]\tLoss: 0.241547\n", "Train Epoch: 12 [38400/60000 (64%)]\tLoss: 0.475506\n", "Train Epoch: 12 [39040/60000 (65%)]\tLoss: 0.444349\n", "Train Epoch: 12 [39680/60000 (66%)]\tLoss: 0.590313\n", "Train Epoch: 12 [40320/60000 (67%)]\tLoss: 0.380521\n", "Train Epoch: 12 [40960/60000 (68%)]\tLoss: 0.319756\n", "Train Epoch: 12 [41600/60000 (69%)]\tLoss: 0.419879\n", "Train Epoch: 12 [42240/60000 (70%)]\tLoss: 0.384562\n", "Train Epoch: 12 [42880/60000 (71%)]\tLoss: 0.234591\n", "Train Epoch: 12 [43520/60000 (72%)]\tLoss: 0.330877\n", "Train Epoch: 12 [44160/60000 (74%)]\tLoss: 0.697167\n", "Train Epoch: 12 [44800/60000 (75%)]\tLoss: 0.272816\n", "Train Epoch: 12 [45440/60000 (76%)]\tLoss: 0.415027\n", "Train Epoch: 12 [46080/60000 (77%)]\tLoss: 0.403599\n", "Train Epoch: 12 [46720/60000 (78%)]\tLoss: 0.350379\n", "Train Epoch: 12 [47360/60000 (79%)]\tLoss: 0.210333\n", "Train Epoch: 12 [48000/60000 (80%)]\tLoss: 0.350989\n", "Train Epoch: 12 [48640/60000 (81%)]\tLoss: 0.421243\n", "Train Epoch: 12 [49280/60000 (82%)]\tLoss: 0.257715\n", "Train Epoch: 12 [49920/60000 (83%)]\tLoss: 0.430463\n", "Train Epoch: 12 [50560/60000 (84%)]\tLoss: 0.436658\n", "Train Epoch: 12 [51200/60000 (85%)]\tLoss: 0.385483\n", "Train Epoch: 12 [51840/60000 (86%)]\tLoss: 0.449448\n", "Train Epoch: 12 [52480/60000 (87%)]\tLoss: 0.369401\n", "Train Epoch: 12 [53120/60000 (88%)]\tLoss: 0.380905\n", "Train Epoch: 12 [53760/60000 (90%)]\tLoss: 0.391110\n", "Train Epoch: 12 [54400/60000 (91%)]\tLoss: 0.381158\n", "Train Epoch: 12 [55040/60000 (92%)]\tLoss: 0.317574\n", "Train Epoch: 12 [55680/60000 (93%)]\tLoss: 0.616171\n", "Train Epoch: 12 [56320/60000 (94%)]\tLoss: 0.333590\n", "Train Epoch: 12 [56960/60000 (95%)]\tLoss: 0.460308\n", "Train Epoch: 12 [57600/60000 (96%)]\tLoss: 0.586635\n", "Train Epoch: 12 [58240/60000 (97%)]\tLoss: 0.323481\n", "Train Epoch: 12 [58880/60000 (98%)]\tLoss: 0.410162\n", "Train Epoch: 12 [59520/60000 (99%)]\tLoss: 0.475991\n", "\n", "Test set: Average loss: 0.2096, Accuracy: 9381/10000 (94%)\n", "\n", "Train Epoch: 13 [0/60000 (0%)]\tLoss: 0.555876\n", "Train Epoch: 13 [640/60000 (1%)]\tLoss: 0.298020\n", "Train Epoch: 13 [1280/60000 (2%)]\tLoss: 0.341556\n", "Train Epoch: 13 [1920/60000 (3%)]\tLoss: 0.387244\n", "Train Epoch: 13 [2560/60000 (4%)]\tLoss: 0.299948\n", "Train Epoch: 13 [3200/60000 (5%)]\tLoss: 0.352979\n", "Train Epoch: 13 [3840/60000 (6%)]\tLoss: 0.445687\n", "Train Epoch: 13 [4480/60000 (7%)]\tLoss: 0.223049\n", "Train Epoch: 13 [5120/60000 (9%)]\tLoss: 0.494325\n", "Train Epoch: 13 [5760/60000 (10%)]\tLoss: 0.749437\n", "Train Epoch: 13 [6400/60000 (11%)]\tLoss: 0.404310\n", "Train Epoch: 13 [7040/60000 (12%)]\tLoss: 0.337297\n", "Train Epoch: 13 [7680/60000 (13%)]\tLoss: 0.434966\n", "Train Epoch: 13 [8320/60000 (14%)]\tLoss: 0.401748\n", "Train Epoch: 13 [8960/60000 (15%)]\tLoss: 0.340427\n", "Train Epoch: 13 [9600/60000 (16%)]\tLoss: 0.614933\n", "Train Epoch: 13 [10240/60000 (17%)]\tLoss: 0.428032\n", "Train Epoch: 13 [10880/60000 (18%)]\tLoss: 0.520478\n", "Train Epoch: 13 [11520/60000 (19%)]\tLoss: 0.343638\n", "Train Epoch: 13 [12160/60000 (20%)]\tLoss: 0.282134\n", "Train Epoch: 13 [12800/60000 (21%)]\tLoss: 0.236920\n", "Train Epoch: 13 [13440/60000 (22%)]\tLoss: 0.331308\n", "Train Epoch: 13 [14080/60000 (23%)]\tLoss: 0.342169\n", "Train Epoch: 13 [14720/60000 (25%)]\tLoss: 0.494079\n", "Train Epoch: 13 [15360/60000 (26%)]\tLoss: 0.566828\n", "Train Epoch: 13 [16000/60000 (27%)]\tLoss: 0.515479\n", "Train Epoch: 13 [16640/60000 (28%)]\tLoss: 0.546353\n", "Train Epoch: 13 [17280/60000 (29%)]\tLoss: 0.462009\n", "Train Epoch: 13 [17920/60000 (30%)]\tLoss: 0.547893\n", "Train Epoch: 13 [18560/60000 (31%)]\tLoss: 0.519924\n", "Train Epoch: 13 [19200/60000 (32%)]\tLoss: 0.445337\n", "Train Epoch: 13 [19840/60000 (33%)]\tLoss: 0.254473\n", "Train Epoch: 13 [20480/60000 (34%)]\tLoss: 0.351020\n", "Train Epoch: 13 [21120/60000 (35%)]\tLoss: 0.388969\n", "Train Epoch: 13 [21760/60000 (36%)]\tLoss: 0.285459\n", "Train Epoch: 13 [22400/60000 (37%)]\tLoss: 0.308739\n", "Train Epoch: 13 [23040/60000 (38%)]\tLoss: 0.501287\n", "Train Epoch: 13 [23680/60000 (39%)]\tLoss: 0.392744\n", "Train Epoch: 13 [24320/60000 (41%)]\tLoss: 0.490546\n", "Train Epoch: 13 [24960/60000 (42%)]\tLoss: 0.407411\n", "Train Epoch: 13 [25600/60000 (43%)]\tLoss: 0.557519\n", "Train Epoch: 13 [26240/60000 (44%)]\tLoss: 0.407774\n", "Train Epoch: 13 [26880/60000 (45%)]\tLoss: 0.313496\n", "Train Epoch: 13 [27520/60000 (46%)]\tLoss: 0.470231\n", "Train Epoch: 13 [28160/60000 (47%)]\tLoss: 0.457754\n", "Train Epoch: 13 [28800/60000 (48%)]\tLoss: 0.314194\n", "Train Epoch: 13 [29440/60000 (49%)]\tLoss: 0.395972\n", "Train Epoch: 13 [30080/60000 (50%)]\tLoss: 0.575824\n", "Train Epoch: 13 [30720/60000 (51%)]\tLoss: 0.275038\n", "Train Epoch: 13 [31360/60000 (52%)]\tLoss: 0.376274\n", "Train Epoch: 13 [32000/60000 (53%)]\tLoss: 0.517350\n", "Train Epoch: 13 [32640/60000 (54%)]\tLoss: 0.386348\n", "Train Epoch: 13 [33280/60000 (55%)]\tLoss: 0.315578\n", "Train Epoch: 13 [33920/60000 (57%)]\tLoss: 0.385711\n", "Train Epoch: 13 [34560/60000 (58%)]\tLoss: 0.308083\n", "Train Epoch: 13 [35200/60000 (59%)]\tLoss: 0.412020\n", "Train Epoch: 13 [35840/60000 (60%)]\tLoss: 0.630597\n", "Train Epoch: 13 [36480/60000 (61%)]\tLoss: 0.530440\n", "Train Epoch: 13 [37120/60000 (62%)]\tLoss: 0.324687\n", "Train Epoch: 13 [37760/60000 (63%)]\tLoss: 0.334050\n", "Train Epoch: 13 [38400/60000 (64%)]\tLoss: 0.539303\n", "Train Epoch: 13 [39040/60000 (65%)]\tLoss: 0.168277\n", "Train Epoch: 13 [39680/60000 (66%)]\tLoss: 0.218963\n", "Train Epoch: 13 [40320/60000 (67%)]\tLoss: 0.526194\n", "Train Epoch: 13 [40960/60000 (68%)]\tLoss: 0.554866\n", "Train Epoch: 13 [41600/60000 (69%)]\tLoss: 0.519487\n", "Train Epoch: 13 [42240/60000 (70%)]\tLoss: 0.659214\n", "Train Epoch: 13 [42880/60000 (71%)]\tLoss: 0.347684\n", "Train Epoch: 13 [43520/60000 (72%)]\tLoss: 0.218574\n", "Train Epoch: 13 [44160/60000 (74%)]\tLoss: 0.498827\n", "Train Epoch: 13 [44800/60000 (75%)]\tLoss: 0.428912\n", "Train Epoch: 13 [45440/60000 (76%)]\tLoss: 0.554430\n", "Train Epoch: 13 [46080/60000 (77%)]\tLoss: 0.334990\n", "Train Epoch: 13 [46720/60000 (78%)]\tLoss: 0.312058\n", "Train Epoch: 13 [47360/60000 (79%)]\tLoss: 0.393213\n", "Train Epoch: 13 [48000/60000 (80%)]\tLoss: 0.328563\n", "Train Epoch: 13 [48640/60000 (81%)]\tLoss: 0.441794\n", "Train Epoch: 13 [49280/60000 (82%)]\tLoss: 0.487448\n", "Train Epoch: 13 [49920/60000 (83%)]\tLoss: 0.393158\n", "Train Epoch: 13 [50560/60000 (84%)]\tLoss: 0.413585\n", "Train Epoch: 13 [51200/60000 (85%)]\tLoss: 0.331015\n", "Train Epoch: 13 [51840/60000 (86%)]\tLoss: 0.293183\n", "Train Epoch: 13 [52480/60000 (87%)]\tLoss: 0.448310\n", "Train Epoch: 13 [53120/60000 (88%)]\tLoss: 0.275573\n", "Train Epoch: 13 [53760/60000 (90%)]\tLoss: 0.361041\n", "Train Epoch: 13 [54400/60000 (91%)]\tLoss: 0.270119\n", "Train Epoch: 13 [55040/60000 (92%)]\tLoss: 0.339491\n", "Train Epoch: 13 [55680/60000 (93%)]\tLoss: 0.460334\n", "Train Epoch: 13 [56320/60000 (94%)]\tLoss: 0.355197\n", "Train Epoch: 13 [56960/60000 (95%)]\tLoss: 0.324064\n", "Train Epoch: 13 [57600/60000 (96%)]\tLoss: 0.461057\n", "Train Epoch: 13 [58240/60000 (97%)]\tLoss: 0.520947\n", "Train Epoch: 13 [58880/60000 (98%)]\tLoss: 0.555590\n", "Train Epoch: 13 [59520/60000 (99%)]\tLoss: 0.347576\n", "\n", "Test set: Average loss: 0.2075, Accuracy: 9385/10000 (94%)\n", "\n", "Train Epoch: 14 [0/60000 (0%)]\tLoss: 0.319042\n", "Train Epoch: 14 [640/60000 (1%)]\tLoss: 0.286377\n", "Train Epoch: 14 [1280/60000 (2%)]\tLoss: 0.475702\n", "Train Epoch: 14 [1920/60000 (3%)]\tLoss: 0.460729\n", "Train Epoch: 14 [2560/60000 (4%)]\tLoss: 0.227350\n", "Train Epoch: 14 [3200/60000 (5%)]\tLoss: 0.430530\n", "Train Epoch: 14 [3840/60000 (6%)]\tLoss: 0.370811\n", "Train Epoch: 14 [4480/60000 (7%)]\tLoss: 0.292918\n", "Train Epoch: 14 [5120/60000 (9%)]\tLoss: 0.462069\n", "Train Epoch: 14 [5760/60000 (10%)]\tLoss: 0.240440\n", "Train Epoch: 14 [6400/60000 (11%)]\tLoss: 0.330162\n", "Train Epoch: 14 [7040/60000 (12%)]\tLoss: 0.385992\n", "Train Epoch: 14 [7680/60000 (13%)]\tLoss: 0.260772\n", "Train Epoch: 14 [8320/60000 (14%)]\tLoss: 0.431668\n", "Train Epoch: 14 [8960/60000 (15%)]\tLoss: 0.391845\n", "Train Epoch: 14 [9600/60000 (16%)]\tLoss: 0.607404\n", "Train Epoch: 14 [10240/60000 (17%)]\tLoss: 0.517053\n", "Train Epoch: 14 [10880/60000 (18%)]\tLoss: 0.460434\n", "Train Epoch: 14 [11520/60000 (19%)]\tLoss: 0.294837\n", "Train Epoch: 14 [12160/60000 (20%)]\tLoss: 0.376117\n", "Train Epoch: 14 [12800/60000 (21%)]\tLoss: 0.302840\n", "Train Epoch: 14 [13440/60000 (22%)]\tLoss: 0.423695\n", "Train Epoch: 14 [14080/60000 (23%)]\tLoss: 0.396550\n", "Train Epoch: 14 [14720/60000 (25%)]\tLoss: 0.315363\n", "Train Epoch: 14 [15360/60000 (26%)]\tLoss: 0.452954\n", "Train Epoch: 14 [16000/60000 (27%)]\tLoss: 0.492529\n", "Train Epoch: 14 [16640/60000 (28%)]\tLoss: 0.209144\n", "Train Epoch: 14 [17280/60000 (29%)]\tLoss: 0.361104\n", "Train Epoch: 14 [17920/60000 (30%)]\tLoss: 0.337909\n", "Train Epoch: 14 [18560/60000 (31%)]\tLoss: 0.235293\n", "Train Epoch: 14 [19200/60000 (32%)]\tLoss: 0.378781\n", "Train Epoch: 14 [19840/60000 (33%)]\tLoss: 0.698394\n", "Train Epoch: 14 [20480/60000 (34%)]\tLoss: 0.654676\n", "Train Epoch: 14 [21120/60000 (35%)]\tLoss: 0.261703\n", "Train Epoch: 14 [21760/60000 (36%)]\tLoss: 0.491567\n", "Train Epoch: 14 [22400/60000 (37%)]\tLoss: 0.460270\n", "Train Epoch: 14 [23040/60000 (38%)]\tLoss: 0.663426\n", "Train Epoch: 14 [23680/60000 (39%)]\tLoss: 0.488279\n", "Train Epoch: 14 [24320/60000 (41%)]\tLoss: 0.412345\n", "Train Epoch: 14 [24960/60000 (42%)]\tLoss: 0.330990\n", "Train Epoch: 14 [25600/60000 (43%)]\tLoss: 0.319392\n", "Train Epoch: 14 [26240/60000 (44%)]\tLoss: 0.364210\n", "Train Epoch: 14 [26880/60000 (45%)]\tLoss: 0.279273\n", "Train Epoch: 14 [27520/60000 (46%)]\tLoss: 0.176225\n", "Train Epoch: 14 [28160/60000 (47%)]\tLoss: 0.297679\n", "Train Epoch: 14 [28800/60000 (48%)]\tLoss: 0.378201\n", "Train Epoch: 14 [29440/60000 (49%)]\tLoss: 0.232203\n", "Train Epoch: 14 [30080/60000 (50%)]\tLoss: 0.525251\n", "Train Epoch: 14 [30720/60000 (51%)]\tLoss: 0.368206\n", "Train Epoch: 14 [31360/60000 (52%)]\tLoss: 0.304667\n", "Train Epoch: 14 [32000/60000 (53%)]\tLoss: 0.358427\n", "Train Epoch: 14 [32640/60000 (54%)]\tLoss: 0.427945\n", "Train Epoch: 14 [33280/60000 (55%)]\tLoss: 0.488428\n", "Train Epoch: 14 [33920/60000 (57%)]\tLoss: 0.526154\n", "Train Epoch: 14 [34560/60000 (58%)]\tLoss: 0.725787\n", "Train Epoch: 14 [35200/60000 (59%)]\tLoss: 0.599196\n", "Train Epoch: 14 [35840/60000 (60%)]\tLoss: 0.327683\n", "Train Epoch: 14 [36480/60000 (61%)]\tLoss: 0.611174\n", "Train Epoch: 14 [37120/60000 (62%)]\tLoss: 0.429955\n", "Train Epoch: 14 [37760/60000 (63%)]\tLoss: 0.384994\n", "Train Epoch: 14 [38400/60000 (64%)]\tLoss: 0.302765\n", "Train Epoch: 14 [39040/60000 (65%)]\tLoss: 0.637129\n", "Train Epoch: 14 [39680/60000 (66%)]\tLoss: 0.300277\n", "Train Epoch: 14 [40320/60000 (67%)]\tLoss: 0.605257\n", "Train Epoch: 14 [40960/60000 (68%)]\tLoss: 0.563442\n", "Train Epoch: 14 [41600/60000 (69%)]\tLoss: 0.315805\n", "Train Epoch: 14 [42240/60000 (70%)]\tLoss: 0.498133\n", "Train Epoch: 14 [42880/60000 (71%)]\tLoss: 0.304480\n", "Train Epoch: 14 [43520/60000 (72%)]\tLoss: 0.358127\n", "Train Epoch: 14 [44160/60000 (74%)]\tLoss: 0.354776\n", "Train Epoch: 14 [44800/60000 (75%)]\tLoss: 0.349251\n", "Train Epoch: 14 [45440/60000 (76%)]\tLoss: 0.363538\n", "Train Epoch: 14 [46080/60000 (77%)]\tLoss: 0.397053\n", "Train Epoch: 14 [46720/60000 (78%)]\tLoss: 0.569868\n", "Train Epoch: 14 [47360/60000 (79%)]\tLoss: 0.387928\n", "Train Epoch: 14 [48000/60000 (80%)]\tLoss: 0.348416\n", "Train Epoch: 14 [48640/60000 (81%)]\tLoss: 0.377062\n", "Train Epoch: 14 [49280/60000 (82%)]\tLoss: 0.260186\n", "Train Epoch: 14 [49920/60000 (83%)]\tLoss: 0.297211\n", "Train Epoch: 14 [50560/60000 (84%)]\tLoss: 0.702463\n", "Train Epoch: 14 [51200/60000 (85%)]\tLoss: 0.302333\n", "Train Epoch: 14 [51840/60000 (86%)]\tLoss: 0.526482\n", "Train Epoch: 14 [52480/60000 (87%)]\tLoss: 0.400840\n", "Train Epoch: 14 [53120/60000 (88%)]\tLoss: 0.501183\n", "Train Epoch: 14 [53760/60000 (90%)]\tLoss: 0.302831\n", "Train Epoch: 14 [54400/60000 (91%)]\tLoss: 0.351778\n", "Train Epoch: 14 [55040/60000 (92%)]\tLoss: 0.406741\n", "Train Epoch: 14 [55680/60000 (93%)]\tLoss: 0.455119\n", "Train Epoch: 14 [56320/60000 (94%)]\tLoss: 0.324182\n", "Train Epoch: 14 [56960/60000 (95%)]\tLoss: 0.380480\n", "Train Epoch: 14 [57600/60000 (96%)]\tLoss: 0.729591\n", "Train Epoch: 14 [58240/60000 (97%)]\tLoss: 0.435105\n", "Train Epoch: 14 [58880/60000 (98%)]\tLoss: 0.378653\n", "Train Epoch: 14 [59520/60000 (99%)]\tLoss: 0.280005\n", "\n", "Test set: Average loss: 0.2066, Accuracy: 9386/10000 (94%)\n", "\n" ] } ], "source": [ "%%bash\n", "python ./examples/mnist_rnn/main.py --save-model" ] }, { "cell_type": "markdown", "metadata": { "id": "ktsCzOAtibnm" }, "source": [ "## Running on bacalhau" ] }, { "cell_type": "markdown", "metadata": { "id": "cwXOfQYjizBO" }, "source": [ "### Uploading the dataset to IPFS\n", "\n", "Since Container running on bacalhau has no network we need to manually upload the dateset to IPFS\n", "\n", "we can download the dataset using pytorch datasets in this case we need to download the MNIST dataset we create a folder data where we will download the dataset" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "id": "Z56ftVqIkF-V", "tags": [ "skip-execution" ] }, "outputs": [], "source": [ "%%bash\n", "mkdir ./data" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 443, "referenced_widgets": [ "19e950e4a0e74a23b572d106b5ceff28", "4ae758253fbf47f6b9726a339a2afda4", "5b550cc7c94d4bc1af93918e6eb5e4d5", "4a1abc1e676549c699b14f9f20b17b93", "c26d9de9a4b94490b15fe93f995e58e3", "45cfcf81e22245778fc65ad5526ee3f9", "a4856dda91ba46d3893da16a78ced553", "3cc19bac1e2c4e9489fd736ed022b670", "71b7586cbe1e46499f2ba3b96dd6362d", "ed768316b6374be0977e98a2e89a6d5c", "ca55d888ff144bce850358d4d84ed729", "1c140c4880604c11905a72ba148476ea", "568934921551423eaeae7492406a93c7", "90ba45a4147d4e4ab38ae66463a9b0c0", "0b6a5b3b14714992a6eef34aa39da585", "3172663b5565420db243ba9790ad0049", "fb95fabcf0634888b23f6cce07d2caf6", "bb72d28dfff641849fe650ee8db07643", "9de8aef5a2944d7190b06f83053e6655", "656a0820dd024bab8225ee4ab5dccf85", "8ea03baadd59462e891f56d9cb802906", "69eb98703aca4dbe89c77cd01eb532cd", "4ae6ae0acde54cb890cefc7f7788593a", "6a110fa7d5304c99bbb4a531f4ad1ba0", "a68235301bdf423292dc6d876ea21637", "85c68a5d7e9d4a94b2daac6e58ed8467", "0a30ea57f92847c389fdedd1a24069f4", "7fd5c6661b4d4fca801a8137019bff92", "a5cf83822ba94cdd976115d9b0c9ec89", "2a692a3c051940e4898e1f2fd359ba8a", "80d36b3ba64d40d1af23820f542ea095", "f8a5ef472d5a4ae8b5291bfd90452f6b", "59778ac443354fff907dfdb317805cce", "275e5c48485e4d31b7222fc04eb3419a", "a3f1d9d8ca554f46a4f6514481e7720f", "7d240cc5107a40af99941f891d1873d2", "fa102ef6bb794fb1a3a681d66269824d", "eddbf7edcc374d22a6ff0d3e3f0bd90f", "800b343785644c64969febfae839c555", "9c65956f42354d9f9286abdef81961df", "025308406bac4533a96bd167910f23bd", "63f29d62b68b4ffd939ca60d8dda6ab1", "b3066918e95b40a7887b61124c3fadfc", "0bf37b06a4834689add9016b24b8ea76" ] }, "id": "EQ4j558Djswf", "outputId": "32f8fdbf-78cb-42e1-ce0a-f22f94f605c6", "tags": [ "skip-execution" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\n", "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./data/MNIST/raw/train-images-idx3-ubyte.gz\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "19e950e4a0e74a23b572d106b5ceff28", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/9912422 [00:00