{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# Etude du transfert d’oxygène dans le biofilm\n", "Le terme biofilm est utilisé pour représenter une colonie de bactéries vivant dans une matrice polymérique excrétée par les bactéries. Nous considérerons, dans cette étude, le transfert de l’oxygène dissous dans un biofilm d’épaisseur, e, de 500 micromètres déposé sur une surface plane. \n", "L’oxygène diffuse depuis l’extérieur du biofilm (où il est présent à une concentration, cb de $7~10^{-3}$ mol/L) jusqu’au cœur du biofilm (dans lequel il est consommé par les bactéries). Dans cette première partie, nous considèrerons que la concentration en oxygène à l’interface biofilm/liquide, $c_i$, est égale à la concentration dans la solution, $c_b$.\n", "\n", "*Ecrire l’équation qui permettrait de décrire l’évolution de la concentration en oxygène dans le biofilm en régime stationnaire. Définir les conditions limites permettant de décrire au mieux le problème.* \n", "\n", "## Ecriture de l'équation différentielle\n", "Nous sommes en présence d’un phéomène de diffusion de l’oxygène couplé à une consommation de l’oxygène dans le biofilm que nous pouvons assimiler à une réaction homogène. En régime stationnaire et en coordonnées recitilignes, l’application de l’équation de continuité conduit à l’équation différentielle suivante :\n", "$$D\\frac{d^{2}c}{dz^{2}}-r=0$$\n", "Où r est la vitesse de réaction de l’oxygène dans le film. La résolution nécessite deux conditions limites qui sont les suivantes :\n", "$$z=0~~~~c=c_b$$\n", "$$z=e~~~~j=0~~soit~~\\frac{dc}{dz}=0$$\n", "car il n’y a pas de flux d’oxygène à travers la surface qui supporte le biofilm.\n", "\n", "*Ecrire les équations sous forme adimensionnelle et résoudre.* " ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Adimensionnalisation et résolution\n", "Sous forme adimensionnelle, l'équation et les conditions limites s'écrivent :\n", "$$D\\frac{d^{2}\\hat{c}}{d\\hat{z}^{2}}-\\frac{k_re^2}{D}\\hat{c}=0$$\n", "$$D\\frac{d^{2}\\hat{c}}{d\\hat{z}^{2}}-Ha^2\\hat{c}=0$$\n", "Les conditions limites sont alors :\n", "$$\\hat{z}=0~~~~\\hat{c}=1$$\n", "$$\\hat{z}=1~~~~\\frac{d\\hat{c}}{d\\hat{z}}=0$$\n", "Après quelques lignes mathématiques écrites rigoureusement (!), on trouve la solution suivante : \n", "$$\\hat{c}=\\frac{cosh(Ha(\\hat{z}-1))}{cosh(Ha)}$$" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Calcul du Nombre de Hatta\n", "$$Ha^2=\\frac{k_re^2}{D}$$\n", "\n", "On considère que les bactéries occupent 30 % en volume du biofilm. On estime que chaque bactérie (qu’on assimilera à une sphère d’un micromètre de diamètre) consomme 4 105 molécules d’O2 par seconde en présence d’une concentration en oxygène dissous de 7 10-3 mol/L. \n", "\n", "*Calculer à partir de ces données, la vitesse de la réaction de consommation de l’oxygène dans le biofilm et en déduire la constante de vitesse de réaction si la réaction de consommation d’oxygène par la bactérie est d’ordre un. *\n", "\n", "Soit V le volume de la bactérie et N le nombre d’Avogadro, la consommation par unité de volume de bactérie est de 4.10+5/(N*V) soit 1,26 mol/(s.m3 de bactérie). En considérant la fraction de volume occupée par les bactéries dans le biofilm, cela correspond à une vitesse de réaction homogène de 0,38 mol(s.m3 de biofilm). Si on considère une réaction d’ordre 1, la constante de vitesse est alors de 0,053 s-1. \n", "\n", "*Calculer le nombre sans dimension qui représente le rapport entre la réaction et la diffusion dans l'épaisseur du biofilm.*\n" ] }, { "cell_type": "code", "execution_count": 151, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "('Hatta=', 3.3663666051626899)\n" ] } ], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "Conso_bact=4.e+5 #molecule O2 /s\n", "Avo=6.022e+23 #molecule/mol\n", "R_bact=1.e-6/2. #m\n", "Vol_bact=4*3.14*(R_bact**3.)/3 #m3\n", "phi_bact=0.3\n", "c_o2=7. #mol.m-3\n", "e=500.e-6 #m\n", "D=1.2e-9 #m2.s-1\n", "\n", "#Consommation O2 par unité de volume de bactérie en mol.m-3.s-1\n", "cvbact=Conso_bact/(Avo*Vol_bact)\n", "#Consommation O2 par unité de volume de biofilm en mol.m-3.s-1\n", "cvbiof=cvbact*phi_bact\n", "#Constante de vitesse de consommation de l'O2 dans le biofilm s-1\n", "kr=cvbiof/c_o2\n", "Ha=e*np.sqrt(kr/D)\n", "print ('Hatta=',Ha)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true, "deletable": true, "editable": true }, "source": [ "*Définir le flux de matière en oxygène consommé par le biofilm et tracer le profil de concentration.*\n", "\n", "\n", "## Calcul du flux à l'interface\n", "\n", "$$j=-D\\frac{dc}{dz}\\Bigr|_{z=0}$$\n", "$$j=-\\frac{Dc_b}{e}\\frac{d\\hat{c}}{d\\hat{z}}\\Bigr|_{\\hat{z}=0}$$\n", "$$\\hat{j}=\\frac{j}{\\frac{Dc_i}{e}}=-\\frac{d\\hat{c}}{d\\hat{z}}\\Bigr|_{\\hat{z}=0}$$\n", "A partir du profil de concentration, on peut définir :\n", "$$\\hat{j}=Ha~tanh(Ha)$$\n" ] }, { "cell_type": "code", "execution_count": 152, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "('jhat =', 3.3583556284545795, '-')\n", "('j =', 5.6420374558036935e-05, 'mol.m-2.s-1')\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEKCAYAAAAW8vJGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH9RJREFUeJzt3Xt0VOW9//H3N9wOLGqRi1UJV+WehFCCKF4otV3cPPWy\n+HFUBMVapEp1US3SIpZaofUcXdpia6r+FOFQqR5vdBVBT8XqaVEILSCIyEVu1v4ERHsq0oj5/v6Y\nmTCTTMhMMnuun9daWcne88zk2YQ1n3me77P3NndHREQkoijTHRARkeyiYBARkRgKBhERiaFgEBGR\nGAoGERGJoWAQEZEYCgYREYmhYBARkRgKBhERidEy0x1ois6dO3vPnj0z3Q0RkZyyfv36g+7epbF2\nORkMPXv2pKqqKtPdEBHJKWa2J5F2mkoSEZEYCgYREYmhYBARkRgKBhERiaFgEBGRGIEGg5k9amYf\nmNnmBh43M/u5me0ws01m9uXAOrN0KfTsCUVFoe9Llwb2q0REclnQI4ZFwJgTPD4W6BP+mgY8GEgv\nli6FadNgzx5wD32fNk3hICISR6DB4O6vAh+eoMnFwGIPeR3oYGanpbwjc+bAkSOx+44cCe0XEZEY\nma4xdAX2RW3vD++rx8ymmVmVmVUdOHAgud+yd29y+0VEClimgyFh7v6Qu1e4e0WXLo2e0R2re/fk\n9ouIFLBMB8N7QLeo7eLwvtSaPx/atYvd17ZtaL+IiMTIdDAsB6aEVyedDXzs7u+n/LdMmgQPPQQ9\neoBZaN/IkaH9IiISI+jlqk8Aa4B+ZrbfzL5pZtPNbHq4yQpgF7ADeBi4IbDOTJoEu3dDTQ2cfTas\nWqWlqyIicQR6dVV3v6KRxx24Mcg+1LN0KWzYEFq2CseXroJGECIiZH4qKf3mzIGjR2P3aemqiEit\nwgsGLV0VETmhwgsGLV0VETmhwguGeEtX/+VftHRVRCSs8IKh7tJVMxgyRIVnEZGwwgsGiF26OmYM\nrFmjpasiImGFGQwRS5fCK6+EftZVV0VEgEIPhjlz4NNPY/dp6aqIFLjCDgYtXRURqaewg0FLV0VE\n6insYIi3dLV1ay1dFZGCVtjBUHfpaqtW0LEjXHHCSzyJiOS1wg4GiF26ungx/O1vcOqpWr4qIgUr\n0Kur5pzPPguNHCK3DtWVV0WkAGnEEG3u3OOX447Q8lURKTAKhmhavioiomCIoeWrIiIKhhjxlq+2\na6flqyJSUBQM0aKXr0a0bg2TJ2uFkogUDAVDXZHlq7/6VWj7o490gT0RKSgKhoYsWFB/n1YoiUgB\nUDA0RCuURKRAKRgaohVKIlKgFAwN0QolESlQCoaGxFuh1KaNViiJSN5TMJxIZIXSwoWh7cOHtUJJ\nRPKegiER99xTf59WKIlInlIwJEIrlESkgCgYEqEVSiJSQBQMidAKJREpIAqGROgaSiJSQBQMiYqs\nUKqsDG3rGkoikqcUDMn6yU/q79MKJRHJI4EHg5mNMbNtZrbDzGbHebyzma00s41mtsXMpgbdp2bR\nCiURyXOBBoOZtQB+AYwFBgJXmNnAOs1mABvdfTDwFeBeM2sdZL+aRSuURCTPBT1iOAvY4e673L0a\nWAZcXKfN34AvmJkB7YEPgWMB96vptEJJRPJc0MHQFdgXtb0/vC/aw4RGE38F3gRudveagPvVdPFW\nKLVooRVKIpI3sqH4/H1gE3A6UA48YGYn1W1kZtPMrMrMqg4cOJDuPsaKrFBavBjM4H//VyuURCRv\nBB0M7wHdoraLw/uinQs85SE7gHeB/nVfyN0fcvcKd6/o0qVLYB1Oyty5oUCIphVKIpLjgg6GdUAf\nM+sVLihfDiyv0+Zt4EIAM/sS0A/YFXC/UkMrlEQkDwUaDO5+jNCqo1XAVuBJd99iZtPNbHq42QKg\nwsw2Ab8HbnP3g0H2K2W0QklE8lDLoH+Bu68AVtTZVxn18wHgoqD7EYj580M1hSNHju9r21YrlEQk\np2VD8Tl3Ra9QMgvtc9cKJRHJaQqG5oqsUFqyBFq2hKNHtUJJRHKagiFV5syBY3XOy9MKJRHJQQqG\nVNEKJRHJEwqGVNEKJRHJEwqGVIl3DSUI1RpUiBaRHKJgSJV411CKUCFaRHKIgiGVIiuU4oWDCtEi\nkiMUDEFQIVpEcpiCIQgqRItIDlMwBEGFaBHJYQqGIKgQLSI5TMEQFBWiRSRHKRiCpkK0iOQYBUPQ\nVIgWkRyjYAiaCtEikmMUDEFTIVpEcoyCIR1UiBaRHKJgSCcVokUkBygY0kmFaBHJAQqGdFIhWkRy\ngIIhnVSIFpEcoGBINxWiRSTLKRgyRYVoEclSCoZMUSFaRLKUgiFTVIgWkSylYMgUFaJFJEspGDJJ\nhWgRyUIKhmygQrSIZBEFQzZoqODsrnqDiKSdgiEbNFSIBtUbRCTtFAzZ4ESFaFC9QUTSSsGQLSKF\naLP4j6veICJpomDINjrxTUQyLPBgMLMxZrbNzHaY2ewG2nzFzDaY2RYz+0PQfcpqOvFNRDKsZZAv\nbmYtgF8AXwf2A+vMbLm7vxXVpgPwS2CMu+81s1OC7FPWmzQp9H3OnFAYRIsUoqPbiYikWNAjhrOA\nHe6+y92rgWXAxXXaXAk84+57Adz9g4D7lP104puIZFDQwdAV2Be1vT+8L1pf4GQze8XM1pvZlHgv\nZGbTzKzKzKoOHDgQUHezjE58E5EMyIbic0tgKDAeGA3MNbO+dRu5+0PuXuHuFV26dEl3HzOjoYJz\nUVHoSzUHEQlA0MHwHtAtars4vC/afmCVu3/i7geBV4HBAfcrNzRUiP7889BZ0Tr5TUQCkHQwmNlJ\nZvaFBJuvA/qYWS8zaw1cDiyv0+Z54Dwza2lm7YDhwNZk+5Xt3n77bcrLyxkyZAg7d+6kffv2jT8p\n+sQ3M2jRon6bJGoOu3fvpm3btpSXl1NeXs706dMbbLtw4UL69+/PoEGDmDVrVsxje/fupX379txz\nzz21+3r27ElpaWnta990001xX3flypX069ePM888k5/+9Ke1++fNm0fXrl1rn79ixYqEjikZ8+bN\ni+lzc2zYsIFzzjmHQYMGUVZWxm9+85smv9ZTTz3FoEGDKCoqoqqqKiX9E2mOhFclmdkw4FHgC6FN\n+wi41t3XN/Qcdz9mZjOAVUAL4FF332Jm08OPV7r7VjNbCWwCaoBH3H1z0w8pOz333HNMmDCB22+/\nPbknTpp0fAVSUQM5nkTN4YwzzmDDhg0nbLN69Wqef/55Nm7cSJs2bfjgg9j1AN/97ncZO3Zs3Od1\n7ty5wdf9/PPPufHGG3nppZcoLi5m2LBhfOMb32DgwIEAzJw5k1tvvTXhY8mkdu3asXjxYvr06cNf\n//pXhg4dyujRo+nQoUPSr1VSUsIzzzzD9ddfH0BPRZKXzIjh/wI3uHtPd+8B3Ag81tiT3H2Fu/d1\n9zPcfX54X6W7V0a1+Q93H+juJe5+f7IHkYzdu3fTv39/rrnmGvr27cuVV17Jiy++yIgRI+jTpw9r\n164FYO3atZxzzjkMGTKEESNGsG3bNgC2bNnCWWedRXl5OWVlZWzfvp1PPvmE8ePHM3jwYEpKSup9\nelyxYgX3338/Dz74IKNGjYp57JVXXuGiiy6q3Z4xYwaLFi3i448/pl+/frW/94orruDhk0+Of1Ap\nvtjegw8+yOzZs2nTpg0Ap5xyfAXxc889R69evRg0aFDSr7t27VrOPPNMevfuTevWrbn88st5/vnn\nE37+K6+8wsiRI7n44ovp3bs3t912G0uWLGHYsGGUlpayc+dOIPQ3/upXv0pZWRkXXnghexsJznnz\n5nH11Vdz/vnn06NHD55++mluvfVWSktLGTNmDJ999lm95/Tt25c+ffoAcPrpp3PKKacQb1HEU089\nRUlJCYMHD+aCCy6I+/sHDBhAv379Ev53EAlaMsHwubu/Ftlw9/8BjqW+S8HbsWMHt9xyC2+//Tbb\ntm3jiSee4I9//CP33HMPCxYsAKB///689tpr/OUvf+HOO+/kBz/4AQCVlZXcfPPNbNiwgaqqKoqL\ni1m5ciWnn346GzduZPPmzYwZMybm940bN47p06czc+ZMVq9enVAfv/jFL/LAAw9wzTXXsGzZMg4f\nPsy3fv7zejWHmUA5UL5nD+WTJ1Peowfl5eUx0zTR3n33XcrLyxk5ciSvvfZa3DbvvPMOr732GsOH\nD2fkyJGsW7cOgH/84x/cfffd/PCHP4z7vFGjRtVOBd133331Hn/vvffo1u14yam4uJj33jteclq4\ncCFlZWVce+21HD58OO7v2LhxI5WVlWzdupUlS5awfft21q1bx3XXXcfChQsB+M53vsPVV1/Npk2b\nmDRpUoPTWtF27tzJyy+/zPLly7nqqqu48MILefPNN2nbti2/+93vTvjctWvXUl1dzRlnnFHvsTvv\nvJNVq1axceNGli+vO4sqkp0anUoysy+Hf/yDmf0KeAJw4N+AV4LrWnB69epFaWkpAIMGDeJrX/sa\nZkZpaSm7d+8G4OOPP+bqq69m+/btmFntp8ZzzjmH+fPns3//fi677DL69OlDaWkpt9xyC7fddhsX\nXXQR559/fkr6+fWvf52nnnqKG2+8kY0bN0JxceiBqJPfYt5+3UO1iAamik477TT27t1Lp06dWL9+\nPZdccglbtmzhpJNOiml37NgxPvzwQ15//XXWrVvHxIkT2bVrF/PmzWPmzJkN1kcam0o6kW9/+9vM\nnTsXM2Pu3LnccsstPProo/XaDRs2jNNOOw2AM888k9GjRwNQWlpaG7pr1qzhmWeeAWDy5Mn1aiTx\njB07llatWlFaWkpNTU1tuEf/n4jn/fffZ/LkyTz++OMUxZnqO/fcc7nmmmuYOHEil112WaP9EMkG\niYwY7g1/DSZ0zsEPgXnAAEIfVnNOZIoEoKioqHa7qKiIY8dCg6C5c+cyatQoNm/ezG9/+1uOHj0K\nwJVXXsny5ctp27Yt48aN4+WXX6Zv3778+c9/prS0lNtvv50777wz4b60bNmSmpqa2u3I7wGoqalh\n69attGvX7vgn6DoX26sdMRA1cmhgxNCmTRs6deoEwNChQznjjDN455136rUrLi7msssuw8w466yz\nKCoq4uDBg7zxxhvMmjWLnj17cv/997NgwQIeeOCBBo9t3759tSOIyspKunbtyr59x09r2b9/P127\nhk5r+dKXvkSLFi0oKiriW9/6Vu2UXrxjiGjob9cU0a/TqlUrLPzvG3ndN954o/ZYIp/8//73vzN+\n/Hjmz5/P2WefHfd1Kysrueuuu9i3bx9Dhw7l0KFDTJ06lfLycsaNG9fk/ooEqdERg7uPaqwNgJld\n7e6PN79L2eHjjz+ufdNatGhR7f5du3bRu3dvbrrpJvbu3cumTZvo378/HTt25KqrrqJDhw488sgj\nCf+eHj168NZbb/HPf/6TTz/9lN///vecd955ANx3330MGDCABQsWMHXqVNasWUOrVq1CT+zeHfbs\nof6EDfDRR9CtW73dBw4coGPHjrRo0YJdu3axfft2evfuXa/dJZdcwurVqxk1ahTvvPMO1dXVdO7c\nOWbqad68ebRv354ZM2Y0eGzdunWLKXQfO3aM7du38+6779K1a1eWLVvGr3/9ayD0yTsyEnj22Wcp\nKSlp7J+uQSNGjGDZsmVMnjyZpUuXpmQEN3z48Jhjqa6u5tJLL2XKlClMmDChweft3LmT4cOHM3z4\ncF544QX27dvHY481WpoTyahUnsdwcwpfK+NmzZrF97//fYYMGRLzSfTJJ5+kpKSE8vJyNm/ezJQp\nU3jzzTdrC9I/+tGPklp51K1bNyZOnEhJSQkTJ05kyJAhAGzbto1HHnmEe++9l/PPP58LLriAu+66\n6/gTm3Bzn1dffZWysjLKy8uZMGEClZWVdOzYEYDrrruudqnktddey65duygpKeHyyy/n8ccfr/0E\nfSLRNYYpU+qfwN6yZUseeOABRo8ezYABA5g4cWJtEXvWrFmUlpZSVlbG6tWr49YoErVw4UIee+wx\nysrKWLJkCT/72c/qtamsrKSysjLOsxPz5JNP8uqrr7Jo0aLaY44Exx133FE7qvje975HaWkpJSUl\njBgxgsGD65+i8+yzz1JcXMyaNWsYP3587fSYSKaYu6fmhcz+4u5DUvJijaioqHCt9yb0xh/vYnsR\nPXqEpp1ERAAzW+/uFY21S+WIITUJI4nTzX1EJACpDIbG5xokGA1dUynF5zeISGFIZTD8MYWvJclo\nQr1BRKQhCQeDmS0I31Qnsn2ymdVWQ9294eUpEqzoayrFo3s4iEgSkhkxjHX3jyIb7n4Y0ELsbKF6\ng4ikSDLB0MLMas8uMrO2QJsTtJdMUL1BRJopmWBYCvzezL5pZt8EXgLy5oS2vKF6Q+DiXVRPJJ8k\nHAzufjcwn9ClMAYAP3b3fw+qY9JEqjcEqrq6mu7duzNt2rQTXkNJJJc1eoKbma0CVgIvuPvbaelV\nI1JxgtvBgweprq5OUY+yVNe6t9eu89js2aALuyXtww8/5OGHH2bx4sWMHz+e2bNnN+sSHiLpkugJ\nbokEw6nAmPBXX+ANQkHx3+7+SQr6mrTmBsNHH33E0KFD+fTTT1PYqyz0wQeh24A2xAy++EVo2zZ9\nfcojR48e5fDhw5x66qm8//77me6OSKMSDYZELqL3N2ARsMjMigjdenMsMMvMPgVezLUppQ4dOtTe\n1CWvLV0aqikcORL/cfdQMGhKJCmvv/468+bNY+vWrfzkJz9h6tSpme6SSEolcx7D48BJ7r7G3e8A\n/hU4CuwPqnPSTI3VG0DLWJNUXV3NzJkzufTSS9m+fTvXX389rVu3znS3RFIq4YvoxbtIXjovnBdN\nF9Frgp49T3yxvfnzj99bWkTyUhAX0Ssys9qbDptZRxKYipIsoWWsIpKgZILhXmCNmf3YzH4M/AnI\nqdpCQdMyVhFJUDLnMSwGLgP+X/jrMndfElTHJACNXTZjzx6dHS0iyU0FuftbwFsB9UXSJXxb0Lgi\n00qgmoNIgUrlZbclV5yo3gCaVhIpcAqGQpTIMlZNK4kULAVDoYrUGxoLB61WEik4CoZCp2klEalD\nwVDoNK0kInUoGETTSiISQ8Egx2laSURQMEg0TSuJCAoGqUvTSiIFT8Eg8WlaSaRgBR4MZjbGzLaZ\n2Q4zm32CdsPM7JiZTQi6T5IATSuJFKxAg8HMWgC/IHTHt4HAFWY2sIF2dwMvBtkfSZKmlUQKUtAj\nhrOAHe6+y92rgWXAxXHafQd4Gvgg4P5IU2haSaSgBB0MXYF9Udv7w/tqmVlX4FLgwYD7Ik2laSWR\ngpINxef7gdvcveZEjcxsmplVmVnVgQMH0tQ1qaVpJZGCEXQwvAd0i9ouDu+LVgEsM7PdwATgl2Z2\nSd0XcveH3L3C3Su6dOkSVH+lMZpWEsl7QQfDOqCPmfUys9bA5cDy6Abu3svde7p7T+C/gBvc/bmA\n+yVNpWklkbwXaDC4+zFgBrAK2Ao86e5bzGy6mU0P8ndLgDStJJLXzN0z3YekVVRUeFVVVaa7IUuX\nht78jxxpuE2LFlBTE7qd6Pz5ul2oSAaZ2Xp3r2isXTYUnyVXJTKt9Pnn4K4RhEgOUTBI8yQyrRSh\nwrRITlAwSGo0tlopQoVpkaynYJDUiJ5WMgvVFhqiaSWRrKZgkNSJTCvV1MDjjzd+vsNVV2n0IJKF\nFAwSjEQK06DRg0gWUjBIcBItTKsoLZJVFAwSvEQK0ypKi2QNBYMET9NKIjlFwSDpEZlW+s//VFFa\nJMspGCS9NHoQyXoKBkm/ZIrSGj2IpJ2CQTInmbOlNXoQSRsFg2ROotNKoNGDSBopGCSzEi1KR2j0\nIBI4BYNkB40eRLKGgkGyh0YPIllBwSDZR6MHkYxSMEh20uhBJGMUDJLdNHoQSTsFg2Q/jR5E0krB\nILlDoweRtFAwSG7R6EEkcAoGyU0aPYgERsEguUujB5FAKBgk92n0IJJSCgbJD00ZPUydCp07Q1GR\ngkIkioJB8ksyo4fPPoNDh8Bd00wiURQMkn+SHT1EaJpJBFAwSD5LZvQQbc8emDwZzBQSUpAUDJLf\nmjp6cA991xSTFCAFgxSG6NGDGXTqBK1bJ/ZcTTFJgVEwSOGIjB5qauDgQXj00eSmmTTFJAUi8GAw\nszFmts3MdpjZ7DiPTzKzTWb2ppn9ycwGB90nEaBp00yaYpICEGgwmFkL4BfAWGAgcIWZDazT7F1g\npLuXAj8GHgqyTyL11C1SmyX2PE0xSZ4KesRwFrDD3Xe5ezWwDLg4uoG7/8ndD4c3XweKA+6TSH2R\n0YM7LFmiKSYpaEEHQ1dgX9T2/vC+hnwTeCHQHok0prlTTAoJyXFZU3w2s1GEguG2Bh6fZmZVZlZ1\n4MCB9HZOClNTp5hUh5AcF3QwvAd0i9ouDu+LYWZlwCPAxe5+KN4LuftD7l7h7hVdunQJpLMi9TRn\niglUh5CcFHQwrAP6mFkvM2sNXA4sj25gZt2BZ4DJ7v5OwP0RabqmniwHmmKSnBJoMLj7MWAGsArY\nCjzp7lvMbLqZTQ83uwPoBPzSzDaYWVWQfRJptlRMMSkkJIuZR/6z5pCKigqvqlJ+SJZYuhTmzAm9\n4ZsdD4BERZ7TowfMnx8KHpEAmNl6d69orF3WFJ9FclZz6xAaSUiWUTCIpFJz6hCgkJCsoGAQCUJT\n6xDRokNCd5uTNFIwiASloSmmpoRE3bvNaTQhAVIwiKRDKkMCNOUkgVIwiKSbQkKynIJBJJMUEpKF\nFAwi2SJeSCR7t7loCglpIgWDSDY60d3mmrvCKRISnTtrpZPEpWAQyQWpnHKKhMShQ1rpJHEpGERy\nTarrEhEaVUiYgkEklwUdEhpVFCQFg0i+CCokojVU0L7hhtB3jSzygoJBJB+lOyQefDD0ve7IQlNR\nOUnBIJLvTrQMtlOnUJtUBgY0PhWlwMhqCgaRQlJ3GezBg8GOKupSYOQEBYOIZGZUES2ZwFB4BE7B\nICKxMj2qiBYvMBQegVMwiEhiGhpV9OgB3/52+kMjIpnwqLuCSmESl+75LCKpFbkH9t690LFjaN+h\nQ027H3YmRfobmUr78MPjx5Poz927Z9V9vBO957OCQUTSI18CI1nJBEz37jBuHKxYEfvvlKLAUTCI\nSG4o1MBornbtQrePTSIcEg0G1RhEJLMaK3ZHr45K50qpbHfkSChQA6BgEJHsFC8wFB6x9u4N5GUV\nDCKSu5INj+gVVPkQJt27B/KyLQN5VRGRbDFpUvKrguLVPZJdlRR0naRdu1ABOgAaMYiI1NXYSCSR\nnxOZ6qr7cyIjmki7JAvPydCIQUQkKE0ZrWQBjRhERCSGgkFERGIoGEREJIaCQUREYigYREQkRk5e\nK8nMDgB7mvj0zsDBFHYnF+iYC4OOuTA055h7uHuXxhrlZDA0h5lVJXIRqXyiYy4MOubCkI5j1lSS\niIjEUDCIiEiMQgyGhzLdgQzQMRcGHXNhCPyYC67GICIiJ1aIIwYRETmBvA0GMxtjZtvMbIeZzY7z\nuJnZz8OPbzKzL2ein6mUwDFPCh/rm2b2JzMbnIl+plJjxxzVbpiZHTOzCensXxASOWYz+4qZbTCz\nLWb2h3T3MZUS+H/d2cxWmtnG8PFOzUQ/U8nMHjWzD8xscwOPB/v+5e559wW0AHYCvYHWwEZgYJ02\n44AXAAPOBt7IdL/TcMwjgJPDP48thGOOavcysAKYkOl+p+Hv3AF4C+ge3j4l0/0O+HjnAXeHf+4C\nfAi0znTfm3ncFwBfBjY38Hig71/5OmI4C9jh7rvcvRpYBlxcp83FwGIPeR3oYGanpbujKdToMbv7\nn9z9cHjzdaA4zX1MtUT+zgDfAZ4GPkhn5wKSyDFfCTzj7nsB3D2XjzuR4/0b8AUzM6A9oWA4lt5u\nppa7v0roOBoS6PtXvgZDV2Bf1Pb+8L5k2+SSZI/nm4Q+ceSyRo/ZzLoClwIPprFfQUrk79wXONnM\nXjGz9WY2JW29S71EjvdhYCDwV+BN4GZ3r0lP9zIm0Pcv3ainAJnZKELBcF6m+5IG9wO3uXuN5cp9\nfJuvJTAUuBBoC6wxs9fd/Z3Mdisw3wc2AaOAM4CXzOw1d/97ZruVu/I1GN4DukVtF4f3JdsmlyR0\nPGZWBjwCjHX3Q2nqW1ASOeYKYFk4FDoD48zsmLs/l54uplwix7wfOOTunwCfmNmrwGAgF4MhkeM9\nF1jgocn3HWb2LtAfWJueLmZEoO9f+TqVtA7oY2a9zKw1cDmwvE6b5cCUcHX/bOBjd38/3R1NoUaP\n2cy6A88Ak/Pk02Ojx+zuvdy9p7v3BP4LuCGHQwES+7/9PHCembU0s3bAcGBrmvuZKokc79uERkeY\n2ZeAfsCutPYy/QJ9/8rLEYO7HzOzGcAqQqsaHnX3LWY2Pfx4JaEVKuOAHcARIKeXuCV4zHcAnYBf\nhj9BH/McvgBZgsecVxI5ZnffamYrCU2v1ACPuHvcZY/ZLsG/8QLgMTPbROjD7m3untNXXDWzJ4Cv\nAJ3NbD/wQ6AVpOf9S2c+i4hIjHydShIRkSZSMIiISAwFg4iIxFAwiIhIDAWDiIjEUDCIpJCZzTaz\nSZnuh0hzKBhEUms08GKmOyHSHAoGkSYws+nh+x1sMLN3zWy1mZ1E6HLPB8ysi5k9bWbrwl/nZrrP\nIonSCW4izWBmrQjd6+HfCZ2ZWu7ud5jZr4Ffuvv/hC9FssrdB2SyryKJystLYoik0c+Al939t2b2\nEPBYeP/XgIFRV3Q9yczau/s/MtFJkWRoxCDSRGZ2DfB/gH8NX9Z7AzDU3T83s4NAsbsfzWgnRZpA\nNQaRJjCzocCtwFXhUBgEvO3un4ebvEjoznGR9uUZ6KZIkygYRJpmBtARWB0eKWwEVkY9fhNQEb5R\n+1vA9Az0UaRJNJUkkgJm9hIwJcfv6SECKBhERKQOTSWJiEgMBYOIiMRQMIiISAwFg4iIxFAwiIhI\nDAWDiIjEUDCIiEiM/w+ZCEuAIyu5sQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "jhat=Ha*np.tanh(Ha)\n", "print('jhat =',jhat, '-')\n", "c_i=7.\n", "j=jhat*D*c_i/e\n", "print ('j =',j, 'mol.m-2.s-1')\n", "z=np.linspace(0.,1.,100)\n", "c=np.cosh(Ha*(z-1))/np.cosh(Ha)\n", "plt.plot(z,c, 'ro-')\n", "plt.annotate('', xy=(0.5, 0.5), xytext=(0., 0.5),arrowprops=dict(arrowstyle=\"->\"))\n", "plt.text(0., 0.55, 'mass flux = %.2E mol.m-2.s-1'%j)\n", "plt.xlabel('z/e')\n", "plt.ylabel('c/c_b')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Effet d'une couche limite sur le transfert\n", "On considère maintenant l’effet que peut avoir la vitesse de l’eau au dessus du biofilm sur le transfert en oxygène. \n", "*Déterminer la concentration à l'interface entre la couche limite de diffusion et le biofilm et en déduire l'expression pour le flux d'oxygène.*\n", "\n", "En régime permanent le flux d'oxygène absorbée par le biofilm doit être égal à celui arrivant par diffusion dans la couche limite :\n", "$$j=\\frac{Dc_i}{e}Ha~tanh(Ha)=k(c_b-c_i)$$\n", "Cette égalité permet de déterminer la concentration à l'interface ainsi que le flux transféré : \n", "$$\\frac{c_i}{c_b}=\\frac{Bi}{Bi+Ha~tanh(Ha)}$$\n", "$$\\frac{j}{kc_b}=\\frac{1}{1+\\frac{Bi}{Ha~tanh(Ha)}}$$\n", "\n", "avec un nombre de Biot qui représente le rapport du coefficient de matière dans la couche limite $k=\\frac{D_w}{\\delta}$ sur le transfert de matière dans le biofilm $\\frac{D_b}{e}$\n", "$$Bi=\\frac{D_w}{D_f}\\frac{e}{\\delta}$$\n", "\n", "*Déterminer le coefficient de transfert de matière à l'interface si le biofilm est dans un canal ayant un diamètre hydraulique de 1 cm et la vitesse du fluide est de 1 m/s. \n", "Tracer le profil de concentration et déterminer le flux de matière *" ] }, { "cell_type": "code", "execution_count": 153, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "('Reynolds : ', 10000.0)\n", "('Sherwood : ', 283.3922292078881)\n", "('Coefficient de transfert de mati\\xc3\\xa8re : ', 5.6678445841577614e-05, 'm/s')\n", "('Epaisseur de couche limite massique : ', 3.5286782661440934e-05, 'm')\n" ] } ], "source": [ "u=1. #m.s-1\n", "d=0.01 #m\n", "ro=1000. #kg.m-3\n", "mu=0.001 #kg.m-1.s-1\n", "Dw=2.e-9 #m2.s-1\n", "\n", "re=ro*u*d/mu\n", "sc=mu/(ro*Dw)\n", "print('Reynolds : ', re)\n", "if re<2000 :\n", " L=1 #m\n", " sh=1.86*((re*sc*d/L)**0.33)\n", "else :\n", " sh=0.023*(re**0.8)*(sc**0.33)\n", "print ('Sherwood : ', sh)\n", "k=sh*Dw/d\n", "delta=d/sh\n", "print ('Coefficient de transfert de matière : ', k, 'm/s')\n", "print ('Epaisseur de couche limite massique : ', delta, 'm')" ] }, { "cell_type": "code", "execution_count": 154, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "('Biot :', 23.616019100657343)\n", "('Concentration \\xc3\\xa0 l interface, ci =', 6.1284880693152584, ' mol.m-3')\n", "('Flux d oxygene consomme j =', 4.9395941763603873e-05, 'mol.m-2.s-1')\n" ] } ], "source": [ "Bi=Dw*e/(D*delta)\n", "print ('Biot :', Bi)\n", "chat=Bi/(Bi+Ha*np.tanh(Ha))\n", "c_i=chat*c_b\n", "print ('Concentration à l interface, ci =', c_i, ' mol.m-3')\n", "j_f=k*(c_b-c_i)\n", "j_b=D*c_i*Ha*np.tanh(Ha)/e\n", "print ('Flux d oxygene consomme j =', j_f, 'mol.m-2.s-1')" ] }, { "cell_type": "code", "execution_count": 155, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Profil de concentration dans la couche limite puis dans le biofilm\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEKCAYAAAARnO4WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4lNX5//H3nQ0StrCELZAEEEH2JTYoggpWRVRsRali\nxaXfgLVW68+2qLS1Sm21V2211FLrhhYVFFRAcEMERWUVRdmUHWQJJMgSlizn98ckIQlZZsLMZDLz\neV3XXMw86zlJuJ8z9znPecw5h4iIhL+o2i6AiIgEhwK+iEiEUMAXEYkQCvgiIhFCAV9EJEIo4IuI\nRAgFfBGRCKGALyISIRTwRUQiRExtF6C0Fi1auLS0tNouhohInbJixYp9zrmk6rYLqYCflpbG8uXL\na7sYIiJ1iplt9WY7pXRERCKEAr6ISIRQwBcRiRAK+CIiEUIBX0QkQgQ04JtZFzNbVep10Mzu8vuJ\npk6FtDSIivL8O3Wq308hIlLXBXRYpnNuPdAHwMyigZ3A6349ydSpkJkJubmez1u3ej4DjB7t11OJ\niNRlwUzpDAU2Oue8Gi/qtfvvPxnsi+XmepaLiEiJYN549RPg5fILzSwTyARISUnx/ajbtlW42G3b\nxps5Ob4fr5Q9jaaf1v4iIt4aGzM24OcISgvfzOKAK4FXy69zzj3lnEt3zqUnJVV7Z/CpKrtIOMfF\nvXqR/OoppxQRiUjBSukMA1Y65/b4/ch/+hMkJJyy2ICEHTvoe9ddCvoiIgQv4F9HBekcvxg9Gp56\nClJTcRWsjjl6lO4PPRSQU4uI1CUBD/hm1gD4ITAzYCcZPRq2bAGzClfH79wZsFOLiNQVAQ/4zrkj\nzrnmzrnvA32uo8nJlRVC+XwRiXhhdaft17/7Hfnx8acsVz5fRCTMAv7Oa67h83/8g9x27ZTPFxEp\nJ6wCPniC/rtffql8vohIOWEX8Ispny8iUlbYBnzl80VEygrbgK98vohIWWEb8EH5fBGR0sI64BdT\nPl9EJEICvvL5IiIREvCVzxcRiZCAD8rni4hETMAvpny+iESqiAv4yueLSKSKuICvfL6IRKqIC/ig\nfL6IRKaIDPjFqsvnd3p5SXALJCISQBEd8KvL558/bqqCvoiEjYgO+NXl82NzT5Ax4c2gl0tEJBAi\nOuBD9fn8htuzg1wiEZHAiPiAX6yyfP7h9s2CXBIRkcBQwC9SUT4/v14MSyaOqKUSiYj4V8ADvpkl\nmtlrZrbOzNaa2TmBPmdNlMnnm1FoRlReAUPHPMf1ne5T562I1HnBaOE/DrztnOsK9AbWBuGcNVKc\nz18+eTIuNpaoQoc5aLQtWyN2RKTOC2jAN7MmwGDgGQDn3Ann3IFAntMfuj/0ENEnTpRZphE7IlLX\nBbqF3wHIAp4zs8/N7Gkza1B6AzPLNLPlZrY8KysrwMXxTmV32mrEjojUZYEO+DFAP+Dfzrm+wBFg\nfOkNnHNPOefSnXPpSUlJAS6OdzRiR0TCUaAD/g5gh3OuOPn9Gp4LQEiraMROQWy0RuyISJ0W0IDv\nnNsNbDezLkWLhgJrAnlOfygesXMopRnOoCDasPxCjdgRkTotGKN07gCmmtmXQB/g4SCc87TtvOYa\nXtr4MPOn3IyLiSbKacSOiNRtAQ/4zrlVRTn6Xs65q5xzOYE+pz9lTHiTmOP5ZZZpxI6I1EW607Ya\nlY3M0YgdEalrFPCrUdnIHI3YEZG6RgG/GksmjiAvIa7MsoI4jdgRkbpHAb8aG6/LYOHk0SUjdgqj\nDCvQiB0RqXsU8L2w8bqMUiN2oogq0IgdEal7FPB9kDHhTaJPFJRZphE7IlJXKOD7QCN2RKQuU8D3\ngUbsiEhdpoDvA43YEZG6TAHfBxWO2NEcOyJSRyjg+6j0iJ3C2Gg9FUtE6gwF/BrSHDsiUtco4NeQ\nRuyISF2jgF9DGrEjInWNAn4NVThiR0/FEpEQpoBfQ+VH7OTFx+JcIQPue53MuHEatSMiISemtgtQ\nl228LoON12UA0Ouv7zDgvtdpuOMAcHLUTvF2IiK1TS18P+kxeSFWbplG7YhIKFHA9xON2hGRUKeA\n7ycatSMioU4B308qGrWTlxCnUTsiEjICHvDNbIuZrTazVWa2PNDnqy1lRu0ULXMxUZpnR0RCRrBa\n+Bc65/o459KDdL5aUTzPzoJnx+AM4g4e0zw7IhIylNIJgLMfmI25sss0YkdEalswAr4D3jezFWaW\nWX6lmWWa2XIzW56VlRWE4gSeRuyISCgKRsA/zznXBxgG3G5mg0uvdM495ZxLd86lJyUlBaE4gacR\nOyISigIe8J1zO4v+3Qu8Dvwg0OesbRWN2HFAw23Z6sAVkVoT0IBvZg3MrFHxe+Bi4KtAnjMUlB+x\n4wAreqkDV0RqS6Bb+K2Aj83sC2Ap8JZz7u0AnzMkFI/YOZzSTFMuiEhICOjkac65TUDvQJ4j1KkD\nV0RChYZlBpg6cEUkVCjgB1iFHbimDlwRCT7Nhx9gxXPhZ0x4k4bbPGmc4puyNGe+iASTWvhBoA5c\nEQkFCvhBpA5cEalNCvhBpA5cEalNCvhBpA5cEalN6rQNInXgikhtUgs/yNSBKyK1RQG/lqgDV0SC\nTQG/lqgDV0SCTQG/lmgKZREJNnXa1pIKO3CL1qkDV0QCQS38WqQOXBEJJgX8EKAOXBEJBgX8EKAO\nXBEJBgX8EKAOXBEJBnXa+sHudYk8PXooZpA57T0m9h/J4wee9Xp/f3bgZm9ryB97Xcvw3y/n4ru/\nPGX9ji+aMfX2wRw/HEPztMPc8sJ84hvnVbn/fWdcT/2GJ4iK9twW3HnQLkb945NTjv31O+2Zfve5\nFBYYA29Zx6W/WQXA7Af78/EzZ9GoxVEARkxcSs9h27350Xht9oP9qdcwr8I6+2r7qua89ItBHDsU\nS1SUY9i9n5N+7cYaHWvFax2Z81B/dq9tyvhPZpKavu+0yydSUwr4frBqVhr9rt7EZfd9XuNjbLwu\ng43XZXB9p/totK1s7r64A9ebgP/qr8+h+6XbKl3/4tjzufrRzzhz8C4WP9eF9/7Wmyv/uLza/e9+\nfw4NWxyr9LiFBcbLvxzInfPeomm7I/x5wI/pdfkW2nY7AMDQO7/0SzAOhriEfG567gNadT7Ige8S\neDjjx3S7eDsJiSd8Plbb7tmMnf4uU38+OAAlFfFNWAX8vduiePCahpyZns+6pTGc0aeAIdcd55VH\n4jm437jrP0c4s38BG1ZE88y9CeQdh7j6cMekIyR3LmTb2ij+eUcD8k+AK4RbXmtMYttc/nvdReTs\naIgrNC67b2WZ1t7qee354ImeWLRj3QfJ3P3+nJJ16xe24f3HenP7m57ntr/8y4Gk9s+i71Vb+Mu5\nP+K2mW/Tusv3PH3DULpcsJNBP1t3Wh24q95Mo0XaIeIa5FW6zZ5vmtB50C4AzrpoB08MH14S8L3Z\nvzJblrakZaeDJHU8BMDZo77ly9lptO22yqv91y9sw5w/phOfeILvvmpGv6s30bZ7Ngsm9SDvWDS3\nzXiXpE4H2belIS/+3wUc3lefhknHGPP0hzRLOVzpcWc/2J/9mxuxb3Njsrc3ZORfP2XTZ61Y8247\nEpNzuf2Nt4mOLSyzT6szvy95n9g2l0ZJxziUVf+UgL/itY68NbE/FuWIb3KCexbMOuX8bc464FX9\nRYIhrAI+wK5NUfz6uWP84p+F/HpoIz6aEcef3z7E0nmxzPh7fe793xHadS7g4bmHiI6BLz6M4X8P\nxfPbF47wzvP1uHzscc6/5gR5J2B3whG+mpdCkza5/GKWJ2gf/b5srr3nsO0MylzjUzohvskJRj3+\nMVNuvZAhd6wmN6ceg362DvB01Ba38H/FYyzgQs9ODgoTojnSpgm9xu4qSZcUO3Y4hnf+2oc7357D\ne49V/tz4tt1y+GJWGn1GbGHlax3J2d7Aq/0fu+jykpTOgJ9u4KK7VpdZn/NdAk3bnQy8iclH2Ly0\nZcnnD//VgyUvnklq/yyu/uunNGh6amt5x5fNeWD1dBKaHWNC5+sZeMs67v3sdeY/0YMF/+rBtY99\nwrS7zmPATzdwzo0bWPxcF6b96lxum/FupfUFyNrUmLvfn8OuNYk8ct6PGPvqu4x89DP+PfJiVs9N\noc+ILZXuu3lpEgV5USR1OnjKurcm9uOOt96iaXIuuQfiKthbJLQEJeCbWTSwHNjpnLs8kOdqlVpI\najdPiy2lawG9LsjHDFK7FbB3m6ePOveg8cTtCXy3MRozKMj37Nvl7Hxe+1s8+78zBlyeR1yfApJ7\nZPPab85h5r0Z9By+lc7n7fZLObtdtJOVr3XilV+ex4QVr5UsXzJxBOePm0ps7gn+zt1ld8qDvH1x\nLGw/mo2UTe/MeTCdoXd+Sf2G+VWe98b/LmTar85l7p/60euKrcTEFXq1f3UpnaqcP3YNw+9fCeaY\n9YezmfHrc7jx6YWnbJeankWTNrkAJHU6SLcfevL8yT2z2bCwLQCbPmvJuFc9AX7ADd8w897q01zd\nL91OdGwhbXtm4wqN7pcUHbdHNvu3NKp0v+93JfD8zUMY88wCoioY3tDp3D1MufVC+o/cSN8fba62\nHCK1zeeAb2aNAeecO+TDbncCa4HGvp7PVzGlGloWBbFxnlZpVBQU5Hu6Ql/6czw9zstn/ItH2Lst\niglXNARg8Mg8OvcvYMW7sUwc1ZBRk9vS9cLvuH/pDL6al8Ks359N1yE7GT5hpVdliY52FBaevKUq\n/1h0yfvCQk9nb1xCPrk59Wja7ghQtgP3d9sm8GFxC79YLvzojlm0vq7s4i1LW7JyZkdm3juAowfi\nsChHbL0CLrz96zLbte56gDvnzQVgz4YmrJ6b4tP+xbK3N+DJqy71/Nwy19CuVzY5OxqWrD+wswFN\nkz11atzqaMny825dy5NXDavwmLH1CkreF5+/+H1hfs0HlMUUHScqCqJjCzE7eY6CAmPzkpZM/fkg\nAK54YDm9r9jK0YOxTLryUq58cCkdB+yt8Lijn/yIzUtasnpeCg9nXM19S2Yw4zfnsH1Vc5q0zeWO\n2fNqXGaRQPA64JvZ2cCzQCPPRzsA3OKcW1HNfu2A4cCfoHyTtXbkHjSat/G0bD946eQVYveWKFqn\nFXL52OPs2xHFzi+b07rLARo0O07G6G+ITzzO4me7en2eZqmH2LW2KXnHo8g7GsO6Bcl0Guj5hjD/\n8V607nqAEROXMuVnF/Dbj98oySUXd+D+PW5cyXz5pbmD8BSTyyy758OT+ePiESsVBeuDe+vTuOUx\nCgth7sP9GJy5xqf9S+rW/ggTVswo+VyQb+z9tgn7NjciMfkIy6adwa0vzgc8LeXilvuqNzrQtnvN\nbyjrdM4elk3rxIAbvmHJS2dwhh++cXXI2FumLvknopg88hIG3PAN/a+uvOWetbExHTL20iFjL1+/\n3Z6c7Q0Z88yHp10ekUDxpYX/DPBz59xHAGZ2HvAc0Kua/f4B/AbPheIUZpYJZAKkpKT4UJyau+qO\nYzxxewNe/Vt9+l98soNy8RuxLJxWj+hYR9OWjht+v4Ety5OY+dsBWJQjOraQ6yd95PV5mrU/Qv+R\nG3mwz7W0SDtI+z77Adi9vgmLn+3K+E9ep36jPDoP2sXch/txxR+Wl9m/dD6/DAfXd7qPJRNHeDVy\n58XMwQzOXENq+j6WvXIGCyd3B6DvVZs596b1XtWldA4/uWc2Nz+/oMz66BjHqMc/5onhl1FYYJx7\n03rads8BYOb4DLZ/0RwzaJ52iNFPev8zLG/UPxbzws8u4L2/9S7ptC1v0X/OAmDw2LU1OseKVzvx\nzUetObK/Hp++cCYAY575kPZ99jPrgXRS+2fR+4qtzBg/gL3fNAaMLhfupF3v/acc6/M30ph210AO\nZ8UzacQw2vfezy/nzq1RuUROlzlXQROyog3NPnfO9S23bKVzrl8V+1wOXOac+7mZXQDcU1UOPz09\n3S1fvryy1dV6IyenxvtWZE+j6X49nq86vbykJJ9fkbyEOBZOHq0J1kTCwNiYsTXe18xWOOfSq9uu\n2sSomfUzs37AQjP7j5ldYGbnm9mTwIfV7D4QuNLMtgCvAEPM7H/VF1/Ak9pZOHk0h1KaUdFlWROs\niYgvvEnp/K3c5z+Uel/l1wPn3L3AvQClWvg3+FLASFecz8+MG1fhT1sTrImIt6oN+M65C6vbBsDM\nxjjnppx+kaQileXzNcGaiHjLn5On3VnVSufch4Eegx/ONMGaiJwuf954Vf4ZHuJHekKWiJwuf7bw\nvRvuIzWmJ2SJyOnwZ8BXCz9I9IQsEakJfwb8xX48llSh0o7aohuylM8XkYp4HfDN7GEzSyz1uamZ\nTSz+7Jz7hb8LJxWrqAMXPF+xivP5CvoiUp4vLfxhzrmSyb2dcznAZf4vklRHN2SJSE34EvCjzaxe\n8QcziwfqVbF9SCsompjROc+rMoWFhTjnSl6horgDt7KeEw3XFJHyfBmWORWYb2bPFX2+GaizN1r9\nckBjvtsYTed++Rzcb1x5+3GGXn+cegllt/vL839h265tdGzXkQOHDjD07KEM7DuQ+nH1a6fg5VR2\nQ1bp9A5ouKaI+NDCd849gmeK47OKXg855x4NVMEC7fYnPNP1frMyhj1bo3nhD/Fk9m7CZ3Niy7T4\nr7/0egA27dhE9vfZvPHhG9w/6X6Wr1keEi3+yvL5xZTeEZFi3kye9o6Z/crMujrn5jnn7il6vROM\nAgZKt3PyadPp5AM3jh81Du43Hh3TgKwdJ38saW3TSG6ZXPI5Lz+PI0eP8PTrT7M3u+IHYwRTdfl8\n0HBNEfHwpoU/BsgBHjCzlWb2bzMbYWYNAly2gJo/NY5dG08+gap+A0dajwL+tvAQLduffKj1irUr\n2Ll3Z8nnerH1aNOiDffeci+tmrcKapkrU/qGrAppuKaI4N3kabuB54HnzSwKyACGAb8xs6PAu3Ux\ntbPotThSuuXTqXcBB/ZEceXPj9HrgvxTnl269KulJDVNoktaF/bl7OOijIvo1qkbUebPWxj8o/Tz\ncEtTPl9EwLdHHE4B7nTOfQp8amb/AF4AdgSqcIH0x9cPe7XdbdfcFuCS+E/5+XYqm35BAV8kMvnS\nTO1Vbhx+NpDsnHvJ/8WSmqp2uKby+SIRy5eAH2VmTYs/mFkz/DvbpviRpl8QkfJ8Cfh/w5PKecjM\nHgI+Aepc7j5SaPoFESnPl3H4LwA/BvYUvX7snHsxUAWT06PpF0SkPJ9SMs65NcCaAJVFiuzet5un\nX38aMyPz6kwm/ncij//mcZ+PU+3zcLdlkxk3jsPtm7Fk4ogKO3Ozv8/mj//5I8MHD+fiARefsn7H\nnh1MnTeV4yeO07xJc2656hbi68VXuf99k+6jflz9kpFOnVM6M+qSUacc++uNXzP93ekUukIG9hnI\npedeCsDsRbP5+POPaZTQCIARF46g5xk9ff75VGX2otnUi6tXYZ19tX33dl56+yWOHT9GVFQUwwYO\nI71beo2OtWLtCuYsmsPufbsZf/N4Utumnnb5JHIoBx+CVm1YRb+z+nHZef6Zm66q6RdwVQ/ZfPX9\nV+neqXulx37xrRe5eujVnJl6JotXLea9T9/jyguurHb/u2+4m4YJDSs9bmFhIS+//TJ3Xn8nTRs3\n5c/P/plenXvRNqktAEMzhvolGAdDXGwcN115E62ateLAoQM8/MzDdOvYjYT6CdXvXE7bpLaMHTmW\nqXOnBqCkEu4U8Kuw78A+/vnKP+mQ3IFNOzaR2iaVc3qdw5xFcziUe4hbRtxCh+QObN65menvTSc/\nP5/YmFhuvOJGWjdvzXdZ3zFl9hQKCgpwODKvziSxYSL/nflfcg7l4JzjsvMuK9PaW/3taj5Y+gFm\nxrot67j7hrtL1q3fup73P3uf20fdDsDLb79MaptU+nbpy1+e+wu3XXsbrZu35unXn6ZLWhcG9R0E\nVD4+v7SKhmyuWr+KFoktiIutfOqGPdl76JzSGYCzOp7FEy8/URLwvdm/Mlu+20LLZi1JapoEwNnd\nzubLDV+WBPzqrN+6njmL5hBfL57vsr6j31n9aJvUlgXLFpCXn8dt19xGUtMk9h3Yx4tzXuTw0cM0\nTGjImMvH0KxJ5Q+Gn71oNvsP7GffgX1kf5/NyB+OZNOOTazZtIbERoncfu3tREdHl9mn9A16iY0S\nadSgEYdyD50S8FesXcFbH72FmRFfL557brznlPO3adHGq/qLVEQBvxpZ2Vlk/jiTNpe34S/P/oVl\nXy/j12N+zRcbvuDtT97mtmtuo3WL1txz4z1ER0WzdvNa3lzwJmNHjmXRykUM+cEQMnpkkF+QT2Fh\nIV9t/IomjZrwi594Hh9w9NjRMufreUZPBvUb5FM6Ib5+PKMuGcWU2VMYcvYQco/llgR7ONlqf33W\nSyxucfyU/X/yFYz/uOyQzWMnjvHOp+9w5/V38t5n71V67rYt2vLFhi/o06UPK9euJOdgjlf7P/a/\nx0pSOgN6DeCijIvKrM85lEPTRiWDwkhsnMjmnZtLPn+47EOWrF5CautUrr7oahrEn3rj9449O3hg\n7AMkxCcw4V8TGNhnIPfeci/zl85nwbIFXHvxtUx7ZxoDeg3gnF7nsHjVYqa9O63aey+ycrK4+4a7\n2bVvF488/whjrx7LyItG8u9X/83qb1fTp0ufSvfdvHMzBQUFJRey0t766C3u+MkdNG3clNxjuVWW\nQaQmAhrwzaw+sAjPNMpxwJvOufGBPKe/NU9sXjKXTpukNnTt0BUzI7llMvsP7Afg6PGjPD/rebJy\nsgAoKPTM0dMxuSPzFs/jwMED9Onah1bNWpGclMxr77/GzA9m0vOMniWt49PVrWM3Vq5dySvvvMKE\nn004Zf3G6zLodV0GvfAMy6woxVM8ZHPJxBE8krSdoT8YWu2soDdefiPT3p3G3I/n0qtzL2KiPX9S\ncxbNqXL/6lI6VTm/3/kMP284GMz6cBYz3p/BjVfceMp2qW1TadKoCQBJTZPo1rEbAMktk9mwdQMA\nm3ZuYtzIcQAM6DmAmR/MrPb83Tt1Jzo6mrYt2+KcK0lZJbdMZv/3+yvd7/tD3/P8rOcZc+WYCu/U\n7tSuE1PmTKH/Wf3p26VvteUQ8VWgW/jHgSHOucNmFgt8bGaDnHMfBfi8fhMbE1vy3sxKApqZUeg8\nc+7MWjiLLmlduO2a29h3YB+P/e8xAH7Q4wd0SO7A6m9XM+mVSYy+bDRd07py/63389W3XzFr4Sy6\npnVl+KDhXpUlOiq65JwA+fn5Je8LXSG79+8mLiaO3GO5NG3c9JT9p783nQ1bNvDoOGi43bCi2T6L\nW/ilh2z+6vdNWbluJTM/mMnRY0cxM2KjY7nw7AvLHLN1i9bcef2dAOzZv4fV364GPCkZb/Yvln0w\nmyenPQnA4H6DadeqHTmHckrWHzh4oKTF37hh45Ll5/U9jyenP1nhMWOjy/7uij+bGYWFhRXu442Y\nGM/fQJRFER0VjZmVHLegsIDNOzeX5NivOP8Kep/Zm6PHjzJp2iSuvOBKOiZ3rPC4oy8bzeadm1n9\n7WoefvZh7rvlPmbMn8H23dtp0qgJd/zkjhqXWQQCHPCdZ/7g4jkMYoFoPBOxhZWjx46S2Mjz9MdP\nv/y0ZHlWThYtElsw5OwhZH+fzc69O2ndvDUN4huQ0TOD+PrxLF7l/aOAmzVpxq59u8jLzyMvP491\nW9bRqX0nAOYvmU/r5q0ZccEIpsyewm9v+u0pueRrf3htyftOLy+pcgqGT57M89yxy8kRKxUF64NH\nDtK4QWMKXSFzF89lcL/BAGXyz1XtX1K3xs2Y8H8nv5kUFBawN3sv+w7sI7FRIsvWLOPWq24FPC3l\n4pb7qvWrvM7rV6RTu04sW7OMAT0HsOSrJZzR/owaH6tYh+QOZeqSX5DP5NcmM6DXAPqf1b/S/bJy\nsuiQ3IEOyR34euPX5BzMYcwVY067PCLFAp7DN7NoYAVwBjDZOfdVufWZQCZASkpKoIsTEJeccwnP\nz36eeR/Po8cZPUqWr1i7giWrlxAdFU3jho0ZNnAYW77bwswPZmIY0dHRJfPte6NZ42b0P6s/Dz71\nIC0SW9C+dXsAdu/fzeJVixl/83jq16tP55TOzP14Llecf0Wlx/JmyGZxeofksutenPMig/sNJrVt\nKsu+XsbCFQsB6NulL+f2PterupTO4Se3SubmK28usz46KppRl4ziiZefoLCwkHN7n1sS2Gd+MJPt\ne7ZjZjRv0pzRw0Z7dc6KjLpkFC/MfoH3PnuvpNO2vEUrFgEwuP/gGp1jxZoVfLPtG47kHuHTLzwN\ngjFXjKF96/bMWjiL1Dap9D6zNzPmzyiZcrtLWhfatWp3yrE+X/c5096dxuHcw0yaPon2rdrzy+t+\nWaNySeSxYD3Eo+gB6O8A451zCyraJj093S1fvrzG53gjx79fHvY0mu7X44WiSvP5RfIS4lg4ebQm\nXBMJsLExY2u8r5mtcM5Ve3NH0Ob4LZp47S2gZnecSEDoiVkikSOgAd/Mkopa9sUPPf8hsCqQ5xTf\nePXELD0QXSQsBLqF3wZYYGZfAEuBOc65ygd1S62o7olZmnBNJDwENOA75750zvV1zvV2zvUsehC6\nhCild0TCW+g9p09qjdI7IuFNAV/KUHpHJHwp4EuFlN4RCT8K+FIhpXdEwo8CvlRK6R2R8KKAL9VS\nekckPCjgS7WU3hEJDwr44hWld0TqPgV88Yk36Z2hNz6n1r5ICNIjDsUnxbNmVjaXPpRt7ZfeR0Rq\nl1r44rPq0jvF1JkrEloU8KXGqkvvgDpzRUKJUjpSY0rviNQtauHLaSlO78x/4WZ15oqEOLXwxS/U\n2hcJfWrhi9+oM1cktCngi9+pM1ckNCmlI36n9I5IaFILXwJCnbkioUctfAkotfZFQoda+BJwvnTm\nqrUvEjgBDfhm1t7MFpjZGjP72szuDOT5JLR505mrWTdFAifQLfx84P8557oBA4DbzaxbgM8pIcqb\nefWLxeaeYMjNU8iMG6cWv4ifBDTgO+d2OedWFr0/BKwFkgN5Tglt3nbmAkQVFGJOLX4RfwlaDt/M\n0oC+gP64umorAAAJUUlEQVTXik+tfVB+X8QfghLwzawhMAO4yzl3sNy6TDNbbmbLs7KyglEcCRG+\ntPZB+X2R0xXwgG9msXiC/VTn3Mzy651zTznn0p1z6UlJSYEujoSgMq19g8Loqv8s1doXqZmAjsM3\nMwOeAdY65x4L5Lmkbtt4XUbJ+PtOLy/h/HFTic09Uen2Grsv4rtAt/AHAj8FhpjZqqLXZQE+p9Rx\nvo7mUWtfxDsBbeE75z6GCm+uFKlScYtfrX0R/9GdthLS1NoX8R8FfAl5vozm0Ugekcop4Eudoda+\nyOlRwJc6Ra19kZpTwJc6Sa19Ed8p4EudVZPW/tAxz5EZqwnZJDLpAShS53nzkJViVvR1QMM4JRKp\nhS9hwdd5eUCpHok8auFLWPGltQ+6aUsii1r4EnbU2hepmAK+hK3yI3lcNc19dexKuDPnvHn8RHCk\np6e75cuX13j/N3Jy/Fga2NNoul+PJ7Wr08tLvE71FHMGODic0owlE0co5SMBMzZmbI33NbMVzrn0\n6rZTC18iRk1SPeZ0A5eEDwV8iTi+Pl6xmPL8Utcp4EtEqklrH5Tnl7pNwzIlopUfxomdvDmrKqVv\n4Lrg1hcY+Kvp1M8+wuH2yvVL6FLAl4hX/vGKvgb/mLwCYvYfATSmX0KbUjoipRSnep7Km8z8KTf7\nnOcH5foldCngi1Sipnl+UK5fQpMCvkg1fL2Bq7TSwzoV/KW26carKujGK6lISZ5/ezbHmjYg7vAx\nok8U+HQM3dAl5QXjxquABnwzexa4HNjrnOtR3fYK+FIX1eQO3tIU/AXC407b54FLA3wOkVp1Orl+\nUNpHgiegAd85twjIDuQ5RELF6eT6iyn4SyCp01bEjyob1qngL6Eg4J22ZpYGzKksh29mmUAmQEpK\nSv+tW7fW+FzK4UuoqskNXZVRzj881flO26KCpFFFwC9NnbYSCQIR/I81awCGpneow4IR8DW1gkiQ\nne5UDqUVbx+ffaRkWXEKaOiNz+lbgJQR6GGZLwMXAC2APcAfnHPPVLa9WvgSyfzZ8i8tPzaavMb1\n1foPcWGR0vGFAr6IR6CCPygNFKoU8H2kgC/hKJDBvzR1BtcuBXwfKeBLuAt28Ne3gOBRwPeRAr5E\nkvJz+mBQf/8RXQjqKAV8Hyngi/hncjdf6UJw+hTwfaSAL3KqYKWBKqILgfcU8H2kgC9StdpIA1Wk\ndAfxlst6kDb3q7JlisALgwK+jxTwRWqmVr8FQKXTSlf0DSFcLwoK+D5SwBc5faHyLcBb1V0U6soF\nQgHfRwr4IoFT1y4ElfHlAhHMi4UCvo8U8EWCL1wuBN4oPU2FNxcJX97HZ+dCSgr86U8werRP5VLA\n9wMFfJGa8/ZCUFUOPyIlJMBTT/kU9BXw/UABX8T/Sl8IDrevZJROmH5D8FpqKmzZ4vXmmh5ZREJS\n6emhi33yz1O3q/AbQul0SDhfFLZtC8hhFfBFJCRVdGEor9qLQl29QKSkBOSwCvgiUmd5c1EozacL\nRAXvgzFNBQkJno7bAFDAF5GI4esForzTvWAEapSOtxTwRUS8dLoXjKqczjh8b0UF/AwiIhISFPBF\nRCKEAr6ISIRQwBcRiRAK+CIiESKkplYwsyxga22Xo5QWwL7aLkSAhXsdw71+oDqGi9OpY6pzLqm6\njUIq4IcaM1vuzfwUdVm41zHc6weqY7gIRh2V0hERiRAK+CIiEUIBv2pP1XYBgiDc6xju9QPVMVwE\nvI7K4YuIRAi18EVEIkRYB3wzu9TM1pvZt2Y2voL1ZmZPFK3/0sz6VbevmTUzs/fM7Juif5uWWndv\n0fbrzeySwNcwuHU0s+ZmtsDMDpvZpGDUr6pyllrvzzr+0MxWmNnqon+HhFn9fmBmq4peq83sJ4Gu\nX7DrWGp9StHf6j2BrV3V5Sy13p+/xzQzO1rqdznZq0I658LyBUQDG4GOQBzwBdCt3DaXAfPwPFJz\nALCkun2BR4HxRe/HA48Uve9WtF09oEPR/tFhVscGwHnAOGBSmP4e+wJti973AHaGWf0SgJii922A\n/UBsONWx1DFfA14F7gnDv9M04CtfyxnOLfwfAN865zY5504ArwAjym0zAnjBeXwGJJpZm2r2HQFM\nKXo/Bbiq1PJXnHPHnXObgW+LjhNIQa2jc+6Ic+5j4FhAa1VWsOv4uXPuu6LlXwPxZlYvUJWrpozF\n/Fm/XOdcftHy+sBBIMBP9Aj6/0XM7CpgM57fYTAEvY41Ec4BPxnYXurzjqJl3mxT1b6tnHO7it7v\nBlr5cD5/C3Yda0Nt1vFqYKVz7njNiu6VoNfPzDLM7GtgDXC3c67wdCtRjaDW0cwaAr8F/uiPwnup\nNv5OOxSlcxaa2SBvCqkHoJwG55wzqxNPyKyxSK2jmXUHHgEurp1S+U/5+jnnlgDdzews4G0zW+Cc\nO1B7JTx95er4APB359xhM6vFUvlXuTruAlKcc/vNrD/whpl1d84drOoY4RzwdwLtS31uV7TMm21i\nq9h3j5m1cc7tKvo6tteH8/lbsOtYG4JeRzNrB7wO3Oic2+iXWlSu1n6Hzrm1ZrYR6AwsO61aVC3Y\ndcwARprZo0AiUGhmx5xzgRxoENQ6Fn3rPF70fkXR7/FMYHmVpfQ16V9XXnguZpvwdKAWd4R0L7fN\ncMp2oiytbl/gr5TtRHm06H13ynbabiLwnbZBrWOpY95E8Dptg/17TCza7sdhWr8OnOy0TcWTSkgM\npzqWO+4DBKfTNti/xySK4guezt6dQLNqyxmMP+raeuHpFd+Apwf8/qJl44BxRe8N+FfR+tVAelX7\nFi1vDswHvgHeL/1DBu4v2n49MCxM67gFyAYO48k1dgunOgITgCPAqlKvlmFUv5/i6chchadVf1k4\n/p2W2uYBghDwa+H3eHWp3+NK4Apvyqg7bUVEIkQ4j9IREZFSFPBFRCKEAr6ISIRQwBcRiRAK+CIi\nEUIBX0QkQijgi4hECAV8kWqY2bhS845vNrMFtV0mkZrQjVciXjKzWOADPLe3z67t8oj4Si18Ee89\nDnygYC91VTjPliniN2Z2E57Jxn5Ry0URqTGldESqUTTf+BRgkHMup7bLI1JTSumIVO8XQDNgQVHH\n7dO1XSCRmlALX0QkQqiFLyISIRTwRUQihAK+iEiEUMAXEYkQCvgiIhFCAV9EJEIo4IuIRAgFfBGR\nCPH/Ab2P1bi+bnkQAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Densité de flux d oxygene (permet de vérifier la continuité du flux à l interface)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEKCAYAAADNSVhkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHIdJREFUeJzt3X+QXeV93/H3Rz9W/BC2tKCosn4glZEnlTJTm2y1tHHG\nroEikWaWSWpHqgYEdWfZAZo0Gc9YFJxxp5AhtJ7GNIBGeGxLGQVVTSbWplWhRMaeMh0JBCXYgspa\nSaAfASEj8UPISEj69o/7LFxd7957d/eec++59/OaubPnnvM8Z8/jBX94nvO95yoiMDMzy9OkZl+A\nmZl1HoePmZnlzuFjZma5c/iYmVnuHD5mZpY7h4+ZmeXO4WNmZrlz+JiZWe4cPmZmlrspzb6AVnXF\nFVfEwoULx9X37XPnGnotH0463tDzmZmNZpZmTaj/888//7OIqHkSh88oFi5cyK5du8bV9/snTjT0\nWo5etqWh5zMzG83tU26fUH9Jr9XTzstuZmaWO4ePmZnlLtPwkbRc0h5JQ5LWjnBckh5Kx1+SdHWt\nvpK6JT0laW/6ObPs2N2p/R5JN5Tt/2Ha92J6/VKW4zYzs+oyCx9Jk4GHgRXAEmCVpCUVzVYAi9Or\nH3i0jr5rge0RsRjYnt6Tjq8ElgLLgUfSeYatjojPpNebjR6vmZnVL8uZzzJgKCL2R8QZYDPQV9Gm\nD9gYJTuAGZLm1OjbB2xI2xuAm8r2b46I0xFxABhK5zEzsxaTZbXbXOBQ2fvDQG8dbebW6Ds7Il5P\n228As8vOtWOEcw3bIOlD4C+B+yKLb9HbtAnuuYe+gwc5M2MGSHSdODGh7Z/Pncv/+aPr2beq8n86\nM7PiKnSpdUSEpHpCZHVEHJF0GaXwuRnYWNlIUj+l5T8WLFgwtovZtAn6++HUKQRMKyu3nsj2JYcP\n8/mBTQAOIDNrG1kuux0B5pe9n5f21dOmWt+jaWmO9HP4/s2ofSJi+Od7wJ8zynJcRKyPiJ6I6Jk1\na4wftLrnHjh1amx96jT11Bl6792aybnNzJohy/B5DlgsaZGkLkrFAIMVbQaBW1LV2zXAO2lJrVrf\nQWBN2l4DbC3bv1LSNEmLKBUxPCtpiqQrACRNBf458JOGj/bgwYafstz0Q37KgZm1j8zCJyLOAncB\nTwKvAFsiYrekAUkDqdk2YD+l4oDHgDuq9U19HgCul7QXuC69Jx3fArwMPAHcGRHngGnAk5JeAl6k\nNBt6rOEDHusy3VgF/Mur/h1XPb4z299jZpYDZXHfvR309PTEmB6vU3bPJ0sfXtLFj9at9v0fM8tE\nAx6v83xE9NRq5yccNMrq1bB+PVx5JSFxeuZMTnd3T2x7hF/j+z9m1g4KXe3WclavhtWr2dqgB4v2\nXX45jDAz9f0fMys6z3xa2M/nzh1x/8n53TlfiZlZYzl8Wtjur3+dsxdffMG+c1MmsfO+ygdFmJkV\ni5fdWtiRL30JgF++/26mHzrO2YumEpPEa32fbfKVmZlNjMOnxR350pd44V+V7vv8vWf20vdPv8nq\nhWuZ9vYpTs7vZud9fa58M7PCcfgUyKUHjxMSF50olXNfdvC4H71jZoXkez4F0vv1raii+s2l12ZW\nRA6fAhmtxNql12ZWNA6fAhmtxNql12ZWNA6fAtl5Xx8fXtJ1wb4PL+ly6bWZFY7Dp0D2rerlR+tW\n896C0qN3AjjXNYVr13zXDx01s0Jx+BTMvlW9/Pm+P+KZb/0OABe9fQrFx5VvDiAzKwKHT0F95ptP\noYp9rnwzs6Jw+BSUK9/MrMgcPgXlyjczKzKHT0G58s3MisyP1ymo4cfp9N67lekHjxOTxP/+Lyv9\nmB0zKwTPfApsuPLtvz/1+0w6H/yTr/4F/V0DLrs2s5bnmU8buPjv3ub8JD9w1MyKwzOfNtD79a1M\nOu8HjppZcTh82oDLrs2saBw+bcBl12ZWNA6fNuCyazMrGodPG6h84ChATJYfOGpmLcvh0yaGy65/\n8L1bCUHXe6f9wFEza1kOnzaz7A8H0YWFb658M7OW4/BpM658M7MicPi0GVe+mVkROHzajCvfzKwI\nHD5tZsTKt0mufDOz1pJp+EhaLmmPpCFJa0c4LkkPpeMvSbq6Vl9J3ZKekrQ3/ZxZduzu1H6PpBtG\n+H2Dkn6SxVhbyXDl2/bv3UpIdJ105ZuZtZbMwkfSZOBhYAWwBFglaUlFsxXA4vTqBx6to+9aYHtE\nLAa2p/ek4yuBpcBy4JF0nuHr+S3gZONH2rp6/3AQhZ/5ZmatJ8uZzzJgKCL2R8QZYDNQeeOhD9gY\nJTuAGZLm1OjbB2xI2xuAm8r2b46I0xFxABhK50HSdOAPgPuyGGircuWbmbWqLMNnLnCo7P3htK+e\nNtX6zo6I19P2G8DsOn7ffwC+CZwa8ygKzJVvZtaqCl1wEBEBRLU2kj4DXBURf1XrfJL6Je2StOvY\nsWONusymGbHy7eKprnwzs6bLMnyOAPPL3s9L++ppU63v0bQ0R/r5Zo1z/WOgR9KrwDPApyX9cKQL\njoj1EdETET2zZs2qY4it7YLKN32835VvZtZsWYbPc8BiSYskdVEqBhisaDMI3JKq3q4B3klLatX6\nDgJr0vYaYGvZ/pWSpklaRKmI4dmIeDQiPhURC4HPAT+NiC9kMeBW9FHl24bbOD9ZTP35h658M7Om\nyyx8IuIscBfwJPAKsCUidksakDSQmm0D9lMqDngMuKNa39TnAeB6SXuB69J70vEtwMvAE8CdEXEu\nq/EVTe+9W5l0zpVvZtYapmR58ojYRilgyvetK9sO4M56+6b9bwHXjtLnfuD+KtfzKvArdVx623Hl\nm5m1kkIXHFj9XPlmZq3E4dMhRqp8C2D6weMuPjCz3GW67GatY9+qXqB072f6wdJS23AB3HDxQXk7\nM7MseebTQYYr304u6EYVx1x8YGZ5cvh0IBcfmFmzOXw6kIsPzKzZHD4daKTig7N+7I6Z5cjh04Eq\nH7sTAOHH7phZfhw+Har8sTsxeRJTPvBjd8wsPw6fDld67M75C/a58s3Msubw6XCufDOzZnD4dDhX\nvplZMzh8Opwfu2NmzeDH63Q4P3bHzJrBMx/zY3fMLHcOH/uIiw/MLC8OH/uIiw/MLC8OH/uIiw/M\nLC8uOLCPuPjAzPLimY9dwMUHZpYHh4+NyMUHZpYlh4+NyMUHZpYlh4+NyMUHZpYlFxzYiFx8YGZZ\n8szHRuXiAzPLisPHanLxgZk1msPHanLxgZk1msPHanLxgZk1mgsOrCYXH5hZo3nmY3Vx8YGZNZLD\nx8bExQdm1giZho+k5ZL2SBqStHaE45L0UDr+kqSra/WV1C3pKUl708+ZZcfuTu33SLqhbP8Tkv5W\n0suSviPpwhsYVrdRiwwC3/8xs7plFj6SJgMPAyuAJcAqSUsqmq0AFqdXP/BoHX3XAtsjYjGwPb0n\nHV8JLAWWA4+k8wB8OSL+YTr2SeB3Gj7gDjFS8QGU7gEN3/9xAJlZLVnOfJYBQxGxPyLOAJuBvoo2\nfcDGKNkBzJA0p0bfPmBD2t4A3FS2f3NEnI6IA8BQOg8R8W5qMwXoAt5q8Fg7xr5Vvfxo3WreW9BN\njHDc93/MrB5Zhs9c4FDZ+8NpXz1tqvWdHRGvp+03gNn1/D5JTwJvAh9ExLaxDsY+Nlx88AuVB4nv\n/5hZLYUuOIiIgBH/A3yktjcAc4AuSbeO1EZSv6RdknYdO3ascRfapnz/x8zGK8vwOQLML3s/L+2r\np021vkfT0hzp55v1/r6I+AD4S+AfjXTBEbE+InoiomfWrFlVB2e+/2Nm45dl+DwHLJa0KFWXrQQG\nK9oMArekqrdrgHfSklq1voPAmrS9Bthatn+lpGmSFlEqYnhW0vSysJoC/AbwYhYD7jS+/2Nm45XZ\nEw4i4qyku4AngcnAdyJit6SBdHwdsA24kVJxwCngtmp906kfALZI+grwGvDl1Ge3pC3Ay8BZ4M6I\nOCfpUmBQ0jRK/1H+v4DvZDXuTrNvVS/7VvXS3zUw4gKo7/+Y2UgyfbxOurG/rWLfurLtAO6st2/a\n/xZw7Sh97gfur9h3lFGW2axxTs7v5rKDvxg0fviomY2k0AUH1jpGe/jo1JOn6e8acAGCmV3A4WMN\nccH9H8Hpy6YBcNHx91G4AMHMLuTwsYYZ/vzP+jPrODPzUj+A1MxG5fCxTPgBpGZWjcPHMuEPoJpZ\nNQ4fy4Q/gGpm1Th8LBP+AKqZVePwscz4AaRmNhqHj2XO93/MrJLDxzLn+z9mVsnhY5nz/R8zq+Tw\nsVzUvP9z8LiX4Mw6iMPHcjXa/R8vwZl1FoeP5Wq0+z/DvARn1hky/UoFs0r7VvUC0HvvVqYfPD7i\nKpxLsM3an2c+lrvh+z8nF7gE26xTjRo+kp5JP9+T9G7F6x1JByTdkd+lWrtxCbZZ5xo1fCLic+nn\nZRHxiYrXJ4Ee4PfyulBrPy7BNutc4152S19n/YXGXYp1Ipdgm3WmCd3ziYjXG3Uh1tlcgm3WWVxw\nYC3BJdhmncWl1tYSXIJt1lk887GW4RJss87h8LGW4xJss/bn8LGW4xJss/bn8LGW5BJss/bm8LGW\n5hJss/bk8LGW5hJss/bk8LGWVuv+D3gJzqyIHD7W8mqVYHsJzqx4HD5WGF6CM2sfmYaPpOWS9kga\nkrR2hOOS9FA6/pKkq2v1ldQt6SlJe9PPmWXH7k7t90i6Ie27RNL/kPT/JO2W9ECWY7bseAnOrH1k\nFj6SJgMPAyuAJcAqSUsqmq0AFqdXP/BoHX3XAtsjYjGwPb0nHV8JLAWWA4+k8wD8p4j4ZeCzwK9J\nWtH4EVsevARn1h6ynPksA4YiYn9EnAE2A30VbfqAjVGyA5ghaU6Nvn3AhrS9AbipbP/miDgdEQeA\nIWBZRJyKiKcB0rleAOZlMWDLj5fgzIoty/CZCxwqe3847aunTbW+s8u+yuENYHa9v0/SDOA3Kc2Y\nrMC8BGdWbIUuOIiIgFH/v+cCkqYAjwMPRcT+Udr0S9oladexY8caeKWWBS/BmRVXluFzBJhf9n5e\n2ldPm2p9j6alOdLPN+v8feuBvRHxJ6NdcESsj4ieiOiZNWtWlaFZK/ESnFnxZBk+zwGLJS2S1EWp\nGGCwos0gcEuqersGeCctqVXrOwisSdtrgK1l+1dKmiZpEaUihmcBJN0HfBL4t1kM1JrLS3BmxZNZ\n+ETEWeAu4EngFWBLROyWNCBpIDXbBuynVBzwGHBHtb6pzwPA9ZL2Atel96TjW4CXgSeAOyPinKR5\nwD2UquZekPSipH+d1bitObwEZ1YsKt02sUo9PT2xa9eucfX9/okTDb2Wo5dtaej52tlVj+/k8wOb\nmHrqzKht3lvQXXpitpn9gtun3D6h/pKej4ieWu0KXXBgVslLcGbF4PCxtuMlOLPW5/CxtlVPFdwX\nb9tAf9eAZ0JmOZvS7Aswy8q+Vb0A9N67lekHj4/4paiTzp0HPp4Jlfczs+x45mNtrdYSXDl/Hsgs\nPw4f6wi1luCGuRjBLB8OH+sIF1TBCc5PHvkffRcjmOXD4WMdY3gJbv2Zdfzgu2tqFiNce8t3PQsy\ny4gLDqwj1VOMUD4LKu9jZhPnmY91rHqLEVyIYNZ4Dh/rePUUI7gQwayxvOxmHc9LcGb588zHjI+X\n4LZvvM2FCGY58MzHrIxnQWb58MzHrMJYChE8CzIbH4eP2SjqKUTwh1LNxsfhYzaKer4baJhnQWZj\n4/Axq6LeQgTwLMhsLBw+ZnXwLMissRw+ZnXyLMiscRw+ZmPkWZDZxDl8zMbBsyCziXH4mE2AZ0Fm\n4+PwMZsgz4LMxs7hY9YgngWZ1c/hY9ZAngWZ1cfhY5YBz4LMqnP4mGXEsyCz0Tl8zDLmWZDZL3L4\nmOVgPLOga9d8l/6pAw4ia0v+MjmzHNXzZXXDlKZJ/uI6a0eZznwkLZe0R9KQpLUjHJekh9LxlyRd\nXauvpG5JT0nam37OLDt2d2q/R9INZfvvl3RI0sksx2tWj7HMgoZNPXWGL962gf4uz4SsPWQWPpIm\nAw8DK4AlwCpJSyqarQAWp1c/8GgdfdcC2yNiMbA9vScdXwksBZYDj6TzAPw1sCyDYZqN21juBQFM\nOncehZfkrD1kOfNZBgxFxP6IOANsBvoq2vQBG6NkBzBD0pwaffuADWl7A3BT2f7NEXE6Ig4AQ+k8\nRMSOiHg9m2Gajd94ZkFQWpJzhZwVWZbhMxc4VPb+cNpXT5tqfWeXBckbwOwx/D6zllQ5C4pqN4Mq\nuELOiqjQ1W4REVDXikVdJPVL2iVp17Fjxxp1WrO6DM+C1n+4ju0bbisFkeD85Nr/mrpCzoomy2q3\nI8D8svfz0r562kyt0veopDkR8XpaontzDL+vqohYD6wH6OnpaViomY3VvlW9H1W2XfX4Tj4/sImp\np87U7OcKOSuKLGc+zwGLJS2S1EWpGGCwos0gcEuqersGeCctqVXrOwisSdtrgK1l+1dKmiZpEaUi\nhmezGpxZXsa7JOflOGtlmYVPRJwF7gKeBF4BtkTEbkkDkgZSs23AfkrFAY8Bd1Trm/o8AFwvaS9w\nXXpPOr4FeBl4ArgzIs4BSHpQ0mHgEkmHJX0jq3GbZWHEJbk6+nk5zlqVSrdNrFJPT0/s2rVrXH2/\nf+JEQ6/l6GVbGno+aw9jWY4rFwICTi7oZud9fV6WswvcPuX2CfWX9HxE9NRq5yccmBVU5dMS0Mf3\nfKrxfSFrBYWudjPrdONdjhvm+0LWLA4fszYx7g+s4vtClj+Hj1mbGW91XPlTExxEljUXHIzCBQfW\nLq56fOeY7wuVc4FCZ8mr4MDhMwqHj7Wj8iAawxN8PuIgan95hY+X3cw6yHjvCw3z0pw1ikutzTrQ\neMu0y5WXbH/hKxv5td/fwkXH3+fkfM+KrDYvu43Cy27WSSZ6X6iSl+eKy/d8mszhY53KQdTZHD5N\n5vAxcxB1IodPkzl8zC7kIOoMDp8mc/iYje6jIDp0nA9mXkrXyQ+YfObcuM/nIGodDp8mc/iY1a+R\nsyIHUXM5fJrM4WM2Pg6iYnP4NJnDx2zisgiiD7ovBeHPFGXE4dNkDh+zxmp0wcIwz44ay+HTZA4f\ns+w4iFqXw6fJHD5m+cg6iLxMNzYOnyZz+JjlL6sgKnd26mQ+/MRFDqNROHyazOFj1lx5BBF4hlTJ\n4dNkDh+z1lH5oVYEF731fi6h1Gn3jxw+TebwMWt9nh01nsOnyRw+ZsWSVxCVa8fZkcOnyRw+ZsU1\n4jLd8fcb8hy60bTL7Mjh02QOH7P2lPcMqWih5PBpMoePWftrRiHDsFYNJYdPkzl8zDpXM+4fDSv/\nHFL5kmFeweTwaTKHj5lBc2dHlfKYLTl8mszhY2bVNHN2VKmRoeTwaTKHj5nVq5VmR+XGE0ptET6S\nlgPfAiYD346IByqOKx2/ETgF3BoRL1TrK6kb+K/AQuBV4MsRcSIduxv4CnAO+N2IeDLt/1Xge8DF\nwDbg96LGwB0+ZjZRRQyl627+zoTO3fTwkTQZ+ClwPXAYeA5YFREvl7W5Efg3lMKnF/hWRPRW6yvp\nQeB4RDwgaS0wMyK+JmkJ8DiwDPgU8DfApyPinKRngd8FdlIKn4ci4n9Wu36Hj5llpRmfQ6pHDIfi\nlVfC/ffD6tVjPke94TNlPBdYp2XAUETsTxe0GegDXi5r0wdsTLOQHZJmSJpDaVYzWt8+4Aup/wbg\nh8DX0v7NEXEaOCBpCFgm6VXgExGxI51rI3ATUDV8zMyysm9V76jLXs2cLX10/tdeg/7+0vY4Aqge\nWYbPXOBQ2fvDlGY3tdrMrdF3dkS8nrbfAGaXnWvHCOf6MG1X7jczazmjBVPuoXTqFNxzTyHDJ3MR\nEVLj/meX1A/0AyxYsGDc57lp5sxGXVIysRuAZtYGbr4dbi5tXly+f9OmUkgcPAjd3aV9b70FEkz0\ntsrBgxPrX8WkzM4MR4D5Ze/npX31tKnW92hamiP9fLOOc82rcR0ARMT6iOiJiJ5Zs2ZVHZyZWUtY\nvRpefRXOn4ef/az0ioA/+7PSvRsJLr+89ILS+3pN4D/Ca8kyfJ4DFktaJKkLWAkMVrQZBG5RyTXA\nO2lJrVrfQWBN2l4DbC3bv1LSNEmLgMXAs+l870q6JlXX3VLWx8ysPU00lC65pFR0kJHMwicizgJ3\nAU8CrwBbImK3pAFJA6nZNmA/MAQ8BtxRrW/q8wBwvaS9wHXpPen4FkpFCU8Ad0bEcMnIHcC30+/Z\nh4sNzKxT1RNKV14J69dndr8H/CHTUU2k1NrMrFPVW2qd5bKbmZnZiBw+ZmaWO4ePmZnlzuFjZma5\nc/iYmVnuXO02CknHgNeafR3JFcDPmn0RGfMY20O7j7HdxwcTH+OVEVHzU/oOnwKQtKue0sUi8xjb\nQ7uPsd3HB/mN0ctuZmaWO4ePmZnlzuFTDOubfQE58BjbQ7uPsd3HBzmN0fd8zMwsd575mJlZ7hw+\nOZC0XNIeSUOS1o5wXJIeSsdfknR1rb6SuiU9JWlv+jmz7Njdqf0eSTdkP8J8xyjpcklPSzop6U/z\nGF+16yw73sgxXi/peUk/Tj+/2IZjXCbpxfT6saSV7TS+suML0j+rX812dNWvs+x4I/+GCyX9vOzv\nuK7uC40IvzJ8AZMpfY3D3we6gL8FllS0uZHS1zwIuAbYWasv8CCwNm2vBf44bS9J7aYBi1L/yW02\nxkuBzwEDwJ+26d/xs8Cn0vavAEfacIyXAFPS9hzgLWBqu4yv7Jx/Afw34Ktt+DdcCPxkPNfqmU/2\nlgFDEbE/Is4Am4G+ijZ9wMYo2QHMUOlbWqv17QM2pO0NwE1l+zdHxOmIOEDpO4yWZTW4JNcxRsT7\nEfEM8EGmo7pQ3mP8vxHxd2n/buBiSdOyGlyS9xhPRem7uwAuAt4Fhr+DKwt5/7uIpJuAA5T+hnnI\nfYzj5fDJ3lzgUNn7w2lfPW2q9Z0dpW9pBXgDmD2G39doeY+xGZo5xt8GXoiI0+O79LrlPkZJvZJ2\nU/oSyD+IiPMTHUQVuY5P0nTga8C/b8TF16kZ/5wuSktuP5L06/Ve6JR6G1rrioiQ1NZli506RklL\ngT8G/llzrqqxKscYETuBpZL+AfCEpKcj4u3mXeHEVIzvG8B/joiTqvyK6gKrGOPrwIKIeEvSrwLf\nl7Q0It6tdR6HT/aOAPPL3s9L++ppM7VK36OS5kTE62nK/OYYfl+j5T3GZsh9jJLmAX8F3BIR+xoy\niuqa9neMiFck7QMWA89NaBSjy3t8vcC/kPQgMAM4L+mDiMiySCbXMabZ+Om0/Xz6G34aqP010OO5\nUeTXmG4ATgH2U7r5P3wTb2lFm9/gwhuAz9bqC/xHLrwB+GDaXsqFBQf7yb7gINcxlp3zVvIrOMj7\n7zgjtfutNv5ndREfFxxcSWnJZ0a7jK/ivN8gn4KDvP+Gs0j//0KpUOEI0F3Xteb1D3YnvyhVl/yU\nUiXJPWnfADCQtgU8nI7/GOip1jftvxzYDuwF/qb8Dw7ck9rvAVa06RhfBY4DJymtTS9ppzEC9wLv\nAy+WvX6pzcZ4M6Ub8S9Smu3c2E7jq/i93yCH8GnC3/C3y/6GLwC/We91+gkHZmaWO1e7mZlZ7hw+\nZmaWO4ePmZnlzuFjZma5c/iYmVnuHD5mZpY7h4+ZmeXO4WNWEJIGyr435YCkp5t9TWbj5Q+ZmhWM\npKnADyg94uSvm309ZuPhmY9Z8XwL+IGDx4rMT7U2KxBJt1J6COddTb4UswnxsptZQaTvS9kA/HpE\nnGj29ZhNhJfdzIrjLqAbeDoVHXy72RdkNl6e+ZiZWe488zEzs9w5fMzMLHcOHzMzy53Dx8zMcufw\nMTOz3Dl8zMwsdw4fMzPLncPHzMxy9/8BHaPtVZG4krsAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.patches as mpatches\n", "z=np.linspace(-delta,e,100)\n", "c=c_i*np.cosh(Ha*((z/e)-1))/np.cosh(Ha)\n", "c=np.where(z > 0., c, c_i+(c_i-c_b)*z/delta) \n", "jz=-(D*c_i/e)*Ha*np.sinh(Ha*((z/e)-1))/np.cosh(Ha)\n", "jz=np.where(z > 0., jz, k*(c_b-c_i)) \n", "print ('Profil de concentration dans la couche limite puis dans le biofilm')\n", "fig,ax = plt.subplots(1)\n", "plt.plot(z,c, 'ro-')\n", "plt.annotate('', xy=(0, c_b/2), xytext=(-delta/2, c_b/2),arrowprops=dict(arrowstyle=\"fancy\",color='blue'))\n", "plt.text(-delta, 0.5+c_b/2, 'mass flux = %.2E mol.m-2.s-1'%j_f,color='blue')\n", "plt.annotate('', xy=(delta/2,c_b/2), xytext=(0, c_b/2),arrowprops=dict(arrowstyle=\"fancy\",color='green'))\n", "plt.text(0, c_b/2-0.5, 'mass flux = %.2E mol.m-2.s-1'%j_b,color='green')\n", "rectb = mpatches.Rectangle([0, 0], e, c_b, fc=\"palegreen\")\n", "rectf = mpatches.Rectangle([0, 0], -delta, c_b, fc=\"paleturquoise\")\n", "ax.add_patch(rectb)\n", "ax.add_patch(rectf)\n", "plt.xlabel('z')\n", "plt.ylabel('c/c_b')\n", "plt.show()\n", "print ('Densité de flux d oxygene (permet de vérifier la continuité du flux à l interface)')\n", "fig2,ax = plt.subplots(1)\n", "plt.plot(z,jz, 'ro-')\n", "rectb = mpatches.Rectangle([0, 0], e, c_b, fc=\"palegreen\")\n", "rectf = mpatches.Rectangle([0, 0], -delta, c_b, fc=\"paleturquoise\")\n", "ax.add_patch(rectb)\n", "ax.add_patch(rectf)\n", "plt.xlabel('z')\n", "plt.ylabel('j')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Vous pouvez refaire les calculs pour differentes valeurs de vitesse d'agitation autour du biofilm, pour différentes vitesses de consommation d'oxygène pour les bactéries pour bien comprendre les phénomènes de transport." ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }