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These are some basic notes on duality theory and the KKT conditions for optimality, focusing 

on concepts rather than on detailed mathematical proofs. We end with a discussion on the 

meaning of shadow prices. 

 

1.  What is the dual problem? 
 

Optimization problems may be viewed from either of two perspectives: the primal problem or 

the dual problem. If the primal is a minimization problem, then the dual is a maximization 

problem (and vice versa). 
 

2.  Why is it useful to formulate the dual problem?  
 

Among other potential advantages: 

- By combining the primal and the dual problems we can deduce conditions for checking if 

any point is a local optimum, the so called ‘KKT conditions’. 
 

- The dual gives a lower bound on the optimal value of the original problem (we call the 

original optimization the ‘primal problem’). This is very useful for numerical algorithms for 

optimization, as the dual can provide a cheap certificate for a lower bound of the global 

optimum. The proof is given later in this document. 
 

- The dual might be computationally easier to solve in some cases. Furthermore, if the primal 

problem is convex, the solution of the dual is the same as the solution of the primal (because 

‘strong duality’ holds in practically all relevant convex problems, explained later in this 

document). 
 

- The dual gives information about ‘shadow prices’: the value of a dual variable (defined later 

in this document) represents the change in the optimal value of the primal due to relaxing 

infinitesimally the constraint that the dual variable is associated with. This has an economic 

meaning, which we discuss later. 
 

- The dual gives information about feasibility of the primal: if the dual is unbounded, the 

primal is infeasible, and vice versa. More details on this can be found at the beginning of 

section 5.2.2 in reference [1]. 
 

3.  Formulating the dual 
 

Let’s consider a general optimization problem in standard form, with equality and inequality 

constraints. The primal problem is: 

 

We discuss next how to solve this problem. 

https://badber.github.io/
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3.1   The Lagrangian function 
 

To help us solve the above problem, we can make use of the Lagrangian function.  

The basic idea in Lagrangian duality is to take the constraints into account by augmenting the 

objective function with a weighted sum of the constraint functions. The Lagrangian function is 

then: 

 

Where ‘λ’ and ‘ν’ are called ‘Lagrange multipliers’ or ‘dual variables’. 

At this point it might be helpful to read the first section ‘Summary and rationale’ of the Wikipedia 

page on the method of Lagrange multipliers for solving optimization problems with just equality 

constraints. This gives an idea of why augmenting the objective function with the constraints is 

helpful for solving such problems. 

 

But why is the Lagrangian function useful for constrained optimization? (‘constrained’ meaning 

that the objective function is subject to both equality and inequality constraints) 

 

To begin with, the value of the Lagrangian is always lower than the original objective function 

for any given feasible point, when setting ‘λ ≥ 0’.  That is: 
 

 

          for any feasible point ‘x’, i.e., meeting                          and     

 

 
 

       Proof:  

       (from Prof. Spyros Chatzivasileiadis’s course, slide 10) 

 

                

 

So the Lagrangian is a lower bound for the objective function when evaluated in any feasible 

point. 

 

This condition is important, as 

otherwise the product ‘λi · fi(x̃)’ 

would not be less than 0. 

https://badber.github.io/
https://en.wikipedia.org/wiki/Lagrange_multiplier
https://en.wikipedia.org/wiki/Lagrange_multiplier
http://www.chatziva.com/teaching/2018/31765/Lectures/31765_Lecture8.pdf
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3.2   The dual function 
 

Given the proof above, by minimizing the Lagrangian over ‘x’ (which is an unconstrained 

optimization problem), we can get a lower bound for the optimal value of the original 

constrained optimization (‘optimal value’ meaning the value of the objective function at the 

optimal solution).  

The infimum (global optimum) of the Lagrangian function is called the Lagrangian dual function: 

 

The independent variables in the dual function ‘g(λ, ν)’ are just the dual variables ‘λ’ and ‘ν’, 

given that we have already minimized over the primal variable ‘x’. 

The dual function gives lower bounds on the optimal value of the primal problem. This can be 

easily seen by considering the result on the previous page:  

 

 
 

Interestingly, the dual function is always concave, even if the primal problem is non-convex (see 

slides 8-9 and section 5.1.2 for the demonstration). You can find a definition of convexity later 

in this document. 

 

3.2.1   Particular case: a linear program 
 

Since it is the easiest problem to understand, let’s consider the particular case of a linear 

program, i.e., an optimization problem where both the objective function and all constraints are 

linear: 

 

(where the ‘curved ≥’ symbol simply means that all components of vector ‘x’ must be positive) 

Its corresponding Lagrangian function is: 

 

(note that all vectors are defined as column vectors, hence the use of the ‘transpose’ operator; 

the minus sign for the λ term is because the inequality constraint is now ‘≥’, not ‘≤’ as in the 

previous page, so condition ‘λ ≥ 0’ still applies for the Lagrangian to be a lower bound of the 

objective function) 

https://badber.github.io/
http://www.chatziva.com/teaching/2018/31765/Lectures/31765_Lecture8.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf


Author: Luis Badesa                                                                                                           September 2024 

 

4 
 

And its corresponding dual function: 
 

                            

The optimization problem above has the following solution: 
 

          
 

Since a lower bound of ‘−∞’ is trivial, we are only interested in the upper solution. This result 

will be relevant in the next section. 

 

3.3   The dual problem 
 

Given that for each pair ‘(λ, ν)’ the dual function gives us a lower bound for the optimal value of 

the primal problem, by maximizing the dual function over the dual variables ‘λ’ and ‘ν’ we can 

obtain the best lower bound (i.e., the maximum lower bound possible). 

This maximization is called the Lagrange dual problem: 

 

There are some constraints ‘hidden’ or ‘implicit’ in the objective function of the dual problem. 

We won’t consider here the general case, as it is best to understand this in the particular case 

of a linear program.  

Recall from the previous section on linear programming that the dual function is meaningless 

(i.e., unbounded) unless the upper condition in the following expression holds: 

 

          
 

So the ‘hidden’ constraint is exactly that condition: 

 

(equivalent conditions would appear in a more general, i.e., non-linear, primal problem; 

however, we won’t discuss them here) 

We can formulate an equivalent to the dual problem, explicitly including that condition: 

 

 
 

Note that typically it’s not necessary to write the dual problem ‘by hand’, as optimization 

solvers give the numerical solution of the dual too. 

if 

if 

https://badber.github.io/
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4.  Weak and strong duality 
 

As we have shown, the optimal value of the Lagrange dual problem, which we denote ‘d*’, is the 

best lower bound on ‘p*’ (optimal value of the primal) that can be obtained from the Lagrange 

dual function. We then have the simple but important inequality: 

 

Which holds even if the original problem is not convex. This property is called ‘weak duality’. 

We refer to the difference ‘p* − d*’ as the ‘duality gap’ of the original problem. If the duality 

gap is zero for a given problem, then we say that ‘strong duality’ holds. 

Strong duality holds for convex problems1, meaning that the optimal value of the primal and 

dual problems is the same. Given that a linear program is a convex problem, strong duality 

holds (the proof can be found in section 5.2.4 of [1] and in reference [2], but these are 

mathematically dense). On the other hand, in general, strong duality does not hold for non-

convex problems. 
 

5.  KKT optimality conditions 
 

Making use of what we have learned from duality, we are now ready to formulate optimality 

conditions for a constrained optimization problem (i.e., conditions that must be met by the 

optimal solution). These are very useful for actually solving an optimization problem, and are 

widely used by numerical solvers. 

We will see next how to obtain the Karush-Kuhn-Tucker (KKT) conditions: these are 4 necessary 

(but not sufficient) conditions for optimality of a general optimization problem (including non-

convex, although with some caveats that are briefly discussed later). They are first-order 

conditions (they only include first derivatives).  

- It might be helpful to first think of an unconstrained optimization problem, where we just 

need to minimize a given function: the necessary condition for optimality is to set the 

derivative equal to zero2. But this is not sufficient, higher order derivatives are necessary to 

check if a certain point where the derivative is zero is actually a minimum (see ‘derivative 

test’ for more info). Then, the KKT is the equivalent necessary condition, but for constrained 

optimization problems (accepting both equality and inequality constraints). 

 

5.1   Deduction of the KKT 
 

To obtain the KKT, we must start assuming that strong duality holds (later on we briefly comment 

on the use of KKT when strong duality does not hold, see section 5.3). This gives us the following 

 
1  Some regularity condition (e.g., Slater’s condition) must be met in addition to the problem being convex, 

but most practical convex problems meet this condition, for which we omit further details. 
2 We assume a smooth function, so that we can compute the derivate; a similar approach using a 

‘subgradient’ can be applied to non-smooth functions, but we won’t discuss it here. 

https://badber.github.io/
https://en.wikipedia.org/wiki/Derivative_test
https://en.wikipedia.org/wiki/Derivative_test
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expressions, where ‘x*’ is an optimal solution to the primal problem (i.e., ‘f0(x*) = p*’, as used in 

section 4), and ‘(λ*, ν*)’ is an optimal solution to the dual problem (i.e., ‘g(λ*, ν*) = d*’): 

 

The 1st line states that the duality gap is zero (we are assuming strong duality). The 2nd line is 

simply the definition of the dual function (see section 3.2). To understand the inequality between 

the 2nd and 3rd lines, note that any minimization over ‘x’ (which is what the infimum is doing) will 

be lower or equal than the value of the same function evaluated in a point ‘x*’ that might not 

be the minimizer for this function (‘x*’ is the minimizer of the primal objective function ‘f0(x)’, 

but not necessarily of the Lagrangian function ‘L(x,λ*,ν*)’). Finally, the 3rd line is the Lagrangian 

function, which we have already proven to be lower than the primal objective function for any 

feasible point (see section 3.1), which is the statement on the 4th line. 
 

Note that the first term in the above expression is the same as the last term. So all the 

inequalities are actually equalities. By looking at the 3rd and 4th lines and setting an equality 

between them, we see that the following term must be zero: 

 

(remember that ‘hi(x*) = 0’, which is a feasibility condition for the primal problem stated at the 

very beginning of section 3) 

Since ‘λ* ≥ 0’ and ‘fi(x*) ≤ 0’ (recall section 3.1), all values in the sum would be negative, so their 

total sum would never be zero, unless each of the products is zero: 

 

 
 

This condition is known as ‘complementary slackness’ (one of the four KKT conditions). It states 

that the product of an optimal dual variable and its corresponding inequality constraint 

evaluated at the optimal primal solution must be zero: either the dual variable or the function 

in the constraint must be zero.  
 

- This shows an interesting property: an ‘active’ constraint (meaning that the ‘less than or 

equal to’ holds as an equality, ‘fi(x*) = 0’) in the optimal solution implies that its 

corresponding dual variable is positive. On the other hand, an ‘inactive’ constraint (i.e., ‘fi(x*) 

< 0’, which means that the constraint could be removed from the optimization without 

making any difference) implies that its corresponding dual variable is zero. 

https://badber.github.io/
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We can get two more optimality conditions from the deduction at the top of the previous page: 

note that for the inequality between the 3rd and 4th lines to hold, which we demonstrated in 

section 3.1, primal feasibility (meaning that ‘fi(x) ≤ 0’ and ‘hi(x) = 0’) and dual feasibility 

(meaning that ‘λ ≥ 0’) must hold. Otherwise, the Lagrangian would not be a lower bound for the 

primal objective function (see section 3.1), and therefore our deduction in the previous page 

would not make sense. Then, ‘primal feasibility’ and ‘dual feasibility’ are the next two of the 

four KKT conditions:  

                                                     , 

 

We have already obtained three of the four KKT conditions. The remaining one is called 

‘stationarity’, and to deduce it we must go back to the expression that we started with: 

 

Where the inequalities have been replaced by equalities. Note that the 2nd and 3rd lines prove 

that the primal solution ‘x*’ is in fact also a minimizer of the Lagrangian function ‘L(x,λ*,ν*)’ over 

‘x’. Therefore, the gradient of the Lagrangian function must be zero at the optimal solution, ‘x*’ 

(this is also a condition for optimality in unconstrained optimization, recall the derivative test 

mentioned at the beginning of section 5):  

 

Which is the fourth and last of the KKT conditions, the ‘stationarity condition’. 
 

5.2   List of KKT conditions 
 

To summarise the previous section, the KKT are necessary conditions for optimality when 

strong duality holds. They are however not sufficient, meaning that an optimal solution must 

meet the KKT conditions, but a point that meets the KKT conditions is not guaranteed to be an 

optimizer. A ‘KKT point’ might be a local or global minimum of the original optimization problem, 

a saddle point, or a local or global maximum. 

The KKT are four conditions: 

1) Stationarity: the gradient of the Lagrangian with respect to the primal variables must be 

zero.  

 

https://badber.github.io/
https://en.wikipedia.org/wiki/Derivative_test
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2) Complementary slackness: a dual variable is zero unless its associated inequality constraint 

is binding (‘binding’ meaning that the constraint is ‘active’ at the optimal solution). 
 

 
 

3) Primal feasibility: the inequality and equality constraints in the primal problem must hold. 
 

 
 

4) Dual feasibility: all dual variables associated to inequality constraints must be non-negative 

(either zero or positive). 
 

 
 

Finally, a note on an important case when the KKT conditions are actually sufficient: 

For a convex problem, the KKT are sufficient conditions for optimality 3 

 

5.3   Uses of the KKT 
 

Given the above statement, KKT conditions can transform a convex optimization problem into a 

set of algebraic equations and inequations (which always include non-linear equations even if 

the optimization problem is linear, because complementary slackness implies the product of 

variables).  

Therefore, the KKT play an important role in optimization. In a few special cases, it is possible to 

solve the KKT conditions (and therefore, the optimization problem) analytically. More generally, 

many algorithms for convex optimization are conceived as, or can be interpreted as, methods 

for solving the KKT conditions. 

Finally, a quick note on solving optimization problems without formulating the dual problem. 

While we started the discussion here defining the dual problem, which led to the KKT conditions, 

solving a constrained optimization does not necessarily imply formulating its dual. That is, even 

without thinking of duality, there are methods to solve a constrained optimization problem 

simply by using the primal formulation. See for example the Simplex algorithm for linear 

programming. 

 

5.4   KKT when strong duality does not hold 
 

Although we have only deduced the KKT by assuming that strong duality holds, these conditions 

are also useful for non-convex problems. Non-convex problems have, in general, a non-zero 

duality gap: some non-convex problems might happen to meet strong duality but, in general, 

this property is not met.  

 
3  This is true for most practical convex problems, although it is in fact only true if the convex problem 

meets a regularity condition (e.g., Slater’s), but this is typically met in practice. For linear programs, the 
KKT are always sufficient (the proof is given in section 5.5.3 of [1]). 

https://badber.github.io/
https://en.wikipedia.org/wiki/Simplex_algorithm
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The KKT are in fact also necessary optimality conditions for a non-convex smooth constrained 

optimization problem, if a mild ‘constraint qualification’ (i.e., regularity condition) is satisfied. 

We omit further details, but if you are interested in proofs, you can refer to, e.g., “Numerical 

Optimization” by Nocedal and Wright. For discrete optimization, which is non-smooth, the KKT 

simply cannot be directly computed (see the discussion in section 7 for more details). 

Given that a ‘KKT point’ (i.e., a solution to the KKT conditions) might be a local or global minimum 

of the original optimization problem, a saddle point, or a local or global maximum, further checks 

are needed to determine if the point is in fact a local optimizer: second order optimality 

conditions can be used (or n-th order, if necessary). These conditions are conceptually similar to 

the derivative test for unconstrained optimization.  

At this point, we could think of applying the following steps to solve a non-convex optimization 

problem (i.e., to obtain its global optimum):  

1) Formulate the KKT conditions and solve them. 
 

2) Apply further derivative tests to leave only the KKT points that are local minimizers.  
 

3) Evaluate the objective function at all these local minimizers and take the point that gives 

the lowest objective value overall.  

This way, we could obtain the global optimum to a non-convex problem. However, this procedure 

is intractable in practice for general non-convex problems: just Step 1 might be extremely 

difficult, as it implies solving a set of non-linear equations and inequations. Then, if Step 1 is 

solvable, Step 3 can imply function evaluations for an enormous number of points.  

In conclusion, although the KKT gives us some valuable information about smooth non-convex 

problems, finding the global optimum of a non-convex problem is extremely difficult (even 

finding a local optimum is not typically done using Steps 1 and 2 above, but rather using ‘interior 

point’ methods as in the numerical solver Ipopt). Solving a non-convex optimization problem is 

in fact ‘NP-hard’, meaning in lay terms that it might be impossible to compute a solution in a 

reasonable amount of time. 

 

6.  On the concept of ‘shadow prices’ 
 

Dual values can be thought of as ‘shadow prices’, as they measure the sensitivity of the optimal 

value of the primal to a change in the constraint. The value of a dual variable represents the 

change in the optimal value of the primal due to relaxing infinitesimally the constraint that the 

dual variable is associated with (we omit the proof, refer to sections 5.4.4 and 5.6 of [1] for a 

thorough albeit dense explanation).  

So we can interpret the value of the dual variables as ‘prices’, if the optimization problem that 

they belong to is some economic minimization or maximization. The primal is typically 

interpreted as a ‘resource allocation’ problem (e.g., how much electric power to produce from 

each of the generators in an electricity grid, in order to minimize overall cost), while the dual is 

a ‘resource valuation’ problem (e.g., what is the value of electric power for the sellers and buyers 

involved). Primal variables are quantities while dual variables are prices. 

 

https://badber.github.io/
https://en.wikipedia.org/wiki/Derivative_test
https://github.com/coin-or/Ipopt
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- For some mathematical details on why the derivative of the objective function, evaluated 

at the optimal solution, and taken with respect to the ‘slack’ parameter of a constraint (i.e., 

the extra margin that we can give to that constraint) gives as a result the corresponding dual 

variable, see sections 1.2.3 and 1.3 of these notes from UC Berkeley. 

 

- For some intuition on practical applications of shadow pricing, let’s consider a very simple 

electricity market: 

 
 

Where we have 3 generators, each with a maximum capacity of 20 MW, and with marginal 

generation costs of 5 €/MWh, 10 €/MWh and 15 €/MWh (we consider that this is an hourly 

electricity market, so a generator operating at, say, 10 MW for an hour would produce an 

energy of 10 MWh). 

 

‘Demand’ is a parameter, i.e., a constant value in the optimization, not a decision variable. 

Suppose the value of this parameter ‘Demand’ is of 50 MWh. 

 

Now look at the ‘Total Generation == Demand’ constraint: if the fixed parameter ‘Demand’ 

decreases from 50 MWh to 49 MWh, the objective value would decrease. By how much 

would it decrease? By exactly the optimal value of the dual variable associated to the 

‘Generation == Demand’ constraint. You can check it yourself, either solving this trivial 

optimization problem by hand (simply draw the staircase-like objective function and cut it 

by a vertical line of the 50 MWh of inelastic demand), or run this Julia/JuMP code (the JuMP 

library for the Julia programming language is a very useful tool for solving optimization 

problems, here are some instructions on how to get started with it). 

 

- For another example related to electricity, but this time pricing a service included in an 

inequality constraint, consider ‘Reserve’: an electricity system needs to carry some volume 

of ‘reserve’, meaning some generators don’t operate at full output to be able to rapidly 

increase power output if any other generation in the system fails, so that demand can still 

be supplied. The type of constraint that would be included in the above electricity market 

formulation is ‘Reserve ≥ 10 MW’ (the value of ‘10 MW’ is arbitrary here). For details on the 

meaning of prices for reserve, see section 5.1 in this paper. 

 

 

But why should the price of a commodity or service be equal to the sensitivity of the optimal 

value? The economic interpretation of the dual variables as prices is based on the welfare 

theorems of microeconomics. While these theorems are mathematical idealizations that 

almost never fully apply in real markets, if used carefully, they can be very useful to guide the 

behaviour of the many selfish agents operating in a liberalized economy. More on this in the 

next section.  

 

https://badber.github.io/
https://eml.berkeley.edu/~webfac/saez/e131_s04/shadow.pdf
https://github.com/badber/Miscellany/blob/master/simple_EconomicDispatch.jl
https://raw.githubusercontent.com/badber/Miscellany/master/Julia_instructions.pdf
https://arxiv.org/pdf/1909.06671
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6.1   Advantages and limitations of shadow prices 
 

The main advantage of shadow prices is to lead selfish agents to act in a socially optimal way, 

under certain conditions: 1) strong duality must hold when formulating the market via an 

optimization problem; and 2) perfect competition must apply, meaning no market participant 

has the capability to distort the market outcome in their own benefit.  

In a sense, this is Adam Smith’s ‘invisible hand of the market’. As we will see next, the two 

conditions listed above are rarely met in practice, which is why completely unregulated markets 

never lead to what’s best for society. 
 

Why are the two conditions above necessary? 
 

1) If the duality gap is larger than zero (i.e., if strong duality does not hold), shadow prices 

don’t correspond to an ‘economic equilibrium’, as the optimal solution of the dual problem 

does not correspond to the optimal solution of the primal. So some market participants 

would want to deviate from the solution given by the shadow prices, as they could be better 

off. You can refer to Chapter 6 of [3] for more details. 
 
 

• Therefore, we typically seek convex markets. Recall from section 4 in this document 

that strong duality holds practically always for convex problems, while it typically does 

not for non-convex problems. 
 

• Physical models may be non-convex, as is the case for the power flow equations in 

alternating current, which govern the behaviour of electricity grids, and therefore must 

be incorporated into formulations of electricity markets. More on this in section 6.3.2. 

 

2) If no market agent has the capability to exert ‘market power’ (i.e., we are in a perfectly 

competitive setting), the solution of the equilibrium problem and the central optimization 

is the same. We have introduced here some concepts such as ‘equilibrium’, which we discuss 

next in section 6.2, but the main message is that shadow prices incentivize individuals to 

behave in a socially optimal way in this setting. 
 

• For the proof of why the decisions of different selfish agents converge to the solution 

given by the shadow prices, if perfect competition holds, see Prof. Jalal Kazempour’s 

slides. 
 

• When does imperfect competition arise? There can be imperfect competition if some 

market participants are sufficiently large or are strategically placed within a network, so 

they can influence prices by adapting their bidding strategies, increasing their own 

profit by doing so. We call these agents ‘price-makers’, while in perfect competition all 

agents are ‘price-takers’. 
 

In summary, non-convexities and market power are important reasons why shadow prices do 

not support the socially optimal solution. 

 

 

https://badber.github.io/
https://en.wikipedia.org/wiki/Invisible_hand
https://drive.google.com/file/d/1cy0t64Z1S461MibyUwXKkIDhp9FRAOtv/view
https://en.wikipedia.org/wiki/Market_power
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6.2   Economic equilibrium 
 

To better understand the explanations above, it’s important to define the concept of ‘economic 

equilibrium’: it is a market outcome from which participants do not have an incentive to 

unilaterally deviate. Note the word ‘unilaterally’, since agreeing on strategic behaviour with 

other market participants would entail collusion, an illegal practice.  

 

Consider a simple electricity market, as represented in the picture below: 
 

- The supply curve is monotonically increasing: producing more electricity increases the total 

cost. Different generation technologies have different operating costs, based on their fuel 

and maintenance requirements. 
 

- The demand curve is monotonically decreasing: consumers will buy less electricity if the 

price increases. We have chosen here a simple line for representing the so called ‘inverse 

demand function’, which is almost vertical since demand for electricity is quite ‘inelastic’ 

(meaning that we will consume roughly the same amount of electricity regardless of its price, 

since we need this commodity for our most basic needs). 
 

 
 

The equilibrium is reached at the intersection of these two curves. It is an equilibrium because 

the amount of electricity produced equals the amount of electricity purchased.  

 

Neither producers nor consumers have an incentive to deviate from this solution: 

 

1) If producers asked for a higher price, they would sell less electricity, as consumers are not 

willing to purchase so much energy if the price is higher. 
 

• To better understand this in the picture, simply move upwards in the demand curve, 

starting from the equilibrium point: going upwards means paying a higher price, but it 

also means going to the left on the horizontal axis, that is, buying less energy. 
 

(see the next page) 

0 

https://badber.github.io/
https://en.wikipedia.org/wiki/Collusion
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• In this situation, producers would have an incentive to keep selling electricity, since they 

could still produce more electricity at a lower cost than the price they are being paid. 

But they would have to lower the price in order to sell more, as consumers need a lower 

price in order to increase the amount of electricity they purchase. This takes producers 

back to the equilibrium point. 
 

• On the other hand, at the equilibrium point, producers cannot sell more electricity: given 

that their operating costs increase, no consumer is willing to pay the higher price that 

would be required to recover production costs for the extra MWh of electricity. 
 

2) If producers asked instead for a lower price, some consumers would be willing to pay more 

than this, therefore creating an incentive for an increase in production. This would in turn 

lead to an increase in price, as the cost of the additional MWh’s produced would be higher, 

since less efficient generation plants would be needed. This takes producers and consumers 

back again to the equilibrium point. 

 

https://badber.github.io/
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Another related concept is an ‘equilibrium problem’: this is a generalization of an optimization 

problem, where different agents solve their own optimization to maximize their own profit (if 

they are suppliers) or utility (if they are consumers), while all of them are subject to some linking 

conditions (such as ‘total generation must equal demand’ in an electricity system). 

- If you want to learn more about equilibrium problems, check out this paper by Profs. Antonio 

Conejo and Carlos Ruiz and the courses by Prof. Jalal Kazempour. 

 

6.3   Further topics 
 

6.3.1   Shadow prices in practice 
 

In spite of their limitations, shadow prices are widely used in practice. For example, they are 

used to compute prices in electricity markets, although these markets certainly exhibit non-

convexities which, as discussed in section 6.1, make shadow prices somewhat incoherent.  

- We typically say that electricity markets use ‘marginal pricing’, given that the price of 

electricity is set by the most expensive generator needed at any given time, the ‘marginal’ 

generator. This is in fact the shadow price of the ‘generation must equal demand’ constraint 

(see the simple optimization problem in page 10 and the first picture in section 6.2 to better 

understand this). 
 

- Non-convexities are introduced by the power flow equations in alternating current, which 

we discuss in more detail in section 6.3.2. Other non-convexities are introduced by the on/off 

state of thermal generators, which is modelled through binary decision variables. The latter 

are discrete non-convexities, which make it impossible to compute shadow prices. Some 

mathematical tricks have been developed to overcome this problem, although none of them 

complete solves the issue. The meaning of dual variables in discrete optimization is 

discussed in section 7. 
 

The main advantage of shadow pricing is that it allows for decentralized decisions (made by the 

different market participants) that lead to the social optimum solution, if used carefully (for 

example, when dealing with non-convexities, as mentioned above).  

Given the limitations of shadow prices under non-convexities and imperfect competition (both 

of which are present in most electricity markets, certainly non-convexities are present in all of 

them), we may consider the main alternative to markets, which is central planning. However, 

an important challenge in central planning is how to deal with uncertainty:  

- Let’s take the case of the electricity system and consider which investments to make in new 

generators. We need to make a guess on the future growth of demand, the location of this 

demand (given that placing generation closer to demand reduces losses and avoids network 

congestion), and on which will be the most competitive generation technologies in terms of 

operating costs and technical characteristics.  
 

o It is impossible to know exactly how these variables will eventually turn out. For 

example, we could think that investing in ‘carbon capture and storage’ technologies 

along with thermal generation will be the best way to complement renewables by 

keeping some dispatchable generation for the future zero-emissions electricity grid. 

https://badber.github.io/
https://ieeexplore.ieee.org/abstract/document/9215011
https://sites.google.com/site/jalalkazempour/teaching
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This assumes that the cost of energy storage will remain prohibitive at large scale, and 

therefore dispatchable generation (e.g., gas fired power plants) is the most effective 

alternative. But, what if the cost of storage drops dramatically in the coming decade, 

as has happened with solar photovoltaic panels in recent years? The gas fired power 

plants with carbon capture and storage would then become ‘stranded assets’, given 

that they have high running costs (they need fuel) while storage does not. But no one 

really knows if the cost of storage will indeed decrease sufficiently… 
 

- If private investors are responsible for the consequences of wrong decisions (i.e., potential 

bankruptcy), they have a very clear incentive to hedge against the uncertainty (e.g., 

investing in different technologies which all show some promise). But there is also a clear 

incentive to not hedge excessively, as an overly conservative position also leads to 

significantly reduced benefits.  
 

- The errors made by central planners on the other hand might not have clear consequences 

for the ones making the wrong call on an investment. In liberal democracies, governments 

change every few years, so it would be subsequent governments who have to deal with the 

consequences of decisions made by previous planners. Therefore, there is not such a big 

incentive to account for uncertainty appropriately.  
 

So two important problems can be argued for central planning:  

1) It is difficult to make the planners accountable for decisions that turn out wrong.  
 

o Note that private investors do get away with big mistakes sometimes, as with bailouts to 

banks during the 2008 global economic crisis. This is just an example of why markets 

need to be carefully regulated to work appropriately. 
 

2) The mindset of central planners can slow down innovation, as they tend to be risk averse to 

avoid making big mistakes that catch attention. Innovation is a high risk, high gain approach, 

as many mistakes can be made, but the successes can lead to huge progress.   
 

o This does not apply to, for example, fundamental research. No private entity would 

invest in research in particle physics, although it may bring huge returns to society a few 

decades down the line (and it’s simply extremely interesting to explore). This is just 

another example of why public support is critical for many activities. 

 

As we have gotten into the realm of economics, this section is much more speculative than the 

rest of this document, which deals with rigorous mathematics. As such, the claims I have made 

above are based on my current understanding and vision of the field of economics, and they can 

certainly be disputed. 

 

Finally, if you are interested in a first introduction to the topic of prices in electricity markets: 

- Check slides 52 to 92 here, by Prof. Jalal Kazempour. With some mathematical detail, but 

using a simple and very clear example. A slightly more detailed version of those slides is 

available on video here. 

 

 

https://badber.github.io/
https://en.wikipedia.org/wiki/Too_big_to_fail
https://en.wikipedia.org/wiki/Too_big_to_fail
https://drive.google.com/file/d/1CW2Saxo2I6GJ-vrMFOKGrUik0GblRqv-/view
https://www.youtube.com/watch?v=pTxHvqpEegQ&t=4048s
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6.3.2   Non-convexity and the AC OPF problem 
 

Before jumping into the main topic for this section, it is useful to give an intuitive definition of 

convexity. For the formal definition of convexity, you can refer to section 1.1 of [1]. 

Consider two generic functions, as in the following picture: 

 
 

The intuitive definition of convexity, which is represented in the above picture, is the following: 

  

 
 

For an optimization problem to be convex, all constraints and the objective function must be 

convex. 

- Any linear function is convex.  
 

- To check if a quadratic function is convex, one can write it in standard form (the one used 

here), and if the matrix included in that expression is ‘positive semidefinite,’ then the 

function is convex. 
 

- Any equality constraint which is non-linear introduces a non-convexity: 

 
(note that the feasible space in the graph above is just the curve itself, since this corresponds 

to an equality constraint; therefore, the line falls outside the feasible space) 

A function is convex if the line joining any two points in its epigraph            

(the subspace above the function) is contained within that epigraph 

https://badber.github.io/
https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program
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Now let’s consider the meaning of shadow prices in non-convex problems. We only discuss here 

smooth non-convex functions, such as the ones in the pictures above. For a discussion on 

discrete optimization (all of which is non-convex), refer to section 7. 

In particular, let’s focus on the ‘alternating current optimal power flow’ (AC OPF), a very 

important problem in electricity markets. The objective function of the AC OPF is to minimize 

total generation costs, so that generation equals demand plus losses, and complying with 

several technical limits (e.g., generators have a maximum capacity, transmission lines can carry 

a maximum current to avoid violating their ‘thermal limit’, etc.). 

It is important to know that one cannot choose the paths along which electric power flows: 

these are governed by Kirchhoff’s laws. We won’t get into specifics here, but the non-convexity 

of the AC OPF problem can be clearly seen in the following equality constraint, which must be 

included in the optimization as it represents the flow of electric power across a circuit: 

 

Which defines the flow of active power (‘p’) from node i to node j in a circuit. For a deduction of 

the power flow equations, you can refer to these notes by Dr Letif Mones. 

In the above constraint, some decision variables such as ‘δij’ (this is the ‘phase angle difference 

of the voltage phasors at both ends of the line i-j’, although this definition is somewhat irrelevant 

to our discussion) are inside trigonometric functions of sines and cosines. As these functions are 

non-linear, and they appear in an equality constraint, we can conclude that the constraint is 

non-convex. 

Given that the AC OPF is non-convex, its associated shadow prices do not lead to the socially 

optimal solution (recall section 6.1). In theory, these prices could still be used as economic 

signals for generators and consumers, even though care would be needed due to the non-zero 

duality gap. In practice, prices for electricity are not directly computed from the AC OPF, as the 

primal formulation of this optimization problem is intractable for large scale electricity grids, 

and therefore the dispatch instructions for generators cannot be computed (recall the difficulty 

in solving non-convex problems discussed in section 5.4). 

In order to solve the optimal dispatch for an electricity grid and compute prices from it, some 

simplifications are typically made to the AC OPF formulation, such as the so called (and 

confusingly so) ‘DC OPF’. This name may be confusing since this model has nothing to do with 

direct current (DC), but the name implies that we make an approximation of the AC power flow 

equations so that they resemble the equations that we would encounter in a DC electricity grid.  

The simplifications made by DC OPF are typically acceptable in transmission systems (i.e., high 

voltage grids). However, other approaches to deal with the non-convexities of the AC OPF 

include convex relaxations, which we won’t discuss here. For more details on AC OPF, DC OPF 

and relaxations of the former, refer to [3]. Note that optimizing electric power flows and 

computing meaningful prices is an active area of research. 

Finally, a note on the feasible space of the AC OPF problem: it can be formed by several 

disconnected regions, as shown in Figures 3 and 4 of this paper.  

 

https://badber.github.io/
https://invenia.github.io/blog/2020/12/04/pf-intro/
https://molzahn.github.io/pubs/molzahn-opf_spaces.pdf
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6.3.3   Negative prices 
 

Negative prices are a curious phenomenon that can be explained through duality theory. 

Let's first discuss the mathematics. Dual variables associated to inequality constraints must be 

non-negative for the Lagrangian function to be a lower bound of the primal objective function 

(refer to section 3.1 for a reminder). But dual variables associated to equality constraints are 

‘free’, that is, they may take both positive and negative values.  

- If your recall the deduction in section 3.1, note that equality constraints must always be 

active, i.e., ‘h(x) = 0’, therefore ‘ν · h(x) = 0’ regardless of ‘ν’ being positive or negative. 

Now let’s consider a specific example of an electricity grid. First, it’s useful to define the concept 

of ‘Locational Marginal Price’ (LMP): this is the price of electricity at each node of the grid. It 

comes from the dual variable associated to the equality constraint of ‘generation minus demand 

equals power exported’ at each node, where the power exported follows Kirchhoff’s laws. 

- In DC OPF, the LMP can be different at each node of the grid if there is network congestion 

in any given line. 
 

- In AC OPF, the LMP is always different in every node, due to line losses as determined by 

Joule’s law (lines losses are neglected in DC OPF). Network congestion can of course also be 

present in AC OPF. 

Take now this example of a DC OPF created by Prof. Kyri Baker, where we can see a negative price 

in node 1. How can we interpret this result?  

 

 

 

- First note that LMPs arise from an equality constraint, therefore they can be negative.  

 

- In this case, network congestion is causing the negative LMP in node 1, since we cannot use 

the cheapest generator Pg1 without violating the flow limit of 10 MW in the line connecting 

nodes 1 and 3. Remember that line flows are determined by Kirchhoff’s laws, so we cannot 

simply force power to flow instead through the lines connecting nodes 1 to 2, and then 2 to 

3, to eventually reach the load of 100 MWh at node 3. 

https://badber.github.io/
https://x.com/kyrib/status/1606457274608017408/photo/1
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- However, if we add some load in node 1, for example of 70 MWh, we see that the LMP 

becomes positive, and more importantly, we see that the total generation cost (i.e., the 

optimal value of the primal problem) has decreased! We manage to go from a total cost of 

$7,600 down to $3,400. How can the total cost decrease if we have increased demand? The 

reason for this counterintuitive result is Kirchhoff’s laws, as the increase in demand in node 

1 allows now to use the cheapest generator Pg1, eventually decreasing overall costs. 

 

You can find the Jupyter notebook code for the above example in Prof. Kyri Baker’s GitHub page. 

 

On negative prices in real electricity markets, these have become quite common in Europe since 

the beginning of the 2020’s. Some of the reasons why we see negative prices, even though 

European markets do not solve an OPF (US electricity system operators do use the OPF for 

clearing the market) are: 

- Negative prices can arise from the inflexibility of some thermal plants (nuclear is the best 

example for this, as it cannot turn on and off frequently): these plants may want to remain 

synchronized to the grid during periods of high renewable output (renewables can make 

prices drop to zero, as they have no fuel costs), and are even willing to pay for doing so (i.e., 

they submit a negative offer to the market for producing power).  
 

o Even though they incur fuel costs by remaining synchronized to the grid, and they have 

to pay the negative price on top of that, this might be a sensible strategy if the start-up 

costs of having to re-synchronize again in a few hours (after the period of excess 

renewable energy has ended) exceed the negative profit they incur during the hours 

with negative price. 
 

- Another cause of negative prices are certain financial instruments such as contracts for 

differences (CfD) or power purchase agreements (PPA), which guarantee a certain price for 

some renewable generators, regardless of the price set at the wholesale electricity market. 

We call this guaranteed price the ‘strike price’. 
 

o If there is excess renewable generation, the power plants benefitting from these 

financial instruments would be willing to submit negative offers to the market, up until 

the negative value of their strike price: if their strike price is of 40 €/MWh, and the 

market clearing price turns out to be of -39 €/MWh, they still make a profit of 1 €/MWh 

(assuming zero fuel costs). 

 

Finally, note that the price of other services such as reserve, discussed at the beginning of 

section 6, cannot be negative: unlike the price of energy, which comes from the power-balance 

equality constraint, the price of reserve comes from an inequality constraint, so the lowest 

possible price is zero. 

 

6.3.4   Alternative market-clearing mechanisms 
 

Given the limitations of shadow prices, different market-clearing mechanisms have been 

proposed. There are 4 desirable properties that a market-clearing mechanism can meet, namely 

1) market efficiency, 2) incentive compatibility, 3) cost recovery, and 4) revenue adequacy. 

Marginal pricing of electricity only meets properties 3 and 4, as shown here.  

https://badber.github.io/
https://github.com/kyribaker/3bus_LMPs
https://drive.google.com/file/d/1NB_7-QPG0fS2JOb_5ExopsdvWZe1KRS8/view
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While LMPs (or some simplified version of them, as applied in Europe) are still the most common 

practice in electricity markets, some alternative methods for computing prices include ‘pay-as-

bid’ and ‘Vickrey–Clarke–Groves’ (VCG). However, there is always a trade-off: no mechanism 

can meet the 4 desirable market properties, as proven in papers by Nobel prize winners Leonid 

Hurwicz and Roger Myerson. 
 

7.  KKT with integer variables 
 

We discussed smooth non-convex functions in section 6.3.2. An important characteristic of 

these functions is that they are differentiable (even for non-smooth but continuous functions 

we can compute subgradients, which are practically as useful as gradients for optimization 

purposes). However, in discrete optimization, neither gradients nor subgradients can be 

computed.  

First, let’s see why discrete optimization is non-convex. The feasible space in an optimization 

problem where decision variables must take integer values would look like a cloud of points: 

 

The line joining any two points within the feasible space lies outside it, therefore the problem 

is non-convex, as we saw in section 6.3.2.  

Even for optimization problems where we have both continuous and integer variables (we call 

these ‘mixed-integer programs’) part of the feasible space would look like the above picture. 

The main message is that integer variables always introduce non-convexities. 

From the picture above, we can draw an intuitive definition of the concept of ‘convex hull’: the 

convex hull is obtained by thinking of a rubber band that we stretch and then let compress 

around the cloud of points: 

 

https://badber.github.io/
https://en.wikipedia.org/wiki/Subderivative
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The subspace within the convex hull is indeed convex, so this is a useful concept when dealing 

with discrete optimization. In fact, it is sometimes used to compute shadow prices in electricity 

markets, as it is one of the ways to deal with the on/off state of thermal generators modelled 

through binary decision variables in the so called ‘Unit Commitment’ optimization problem. It 

is actually the method that has shown the best properties for this application, although at the 

expense of being computationally expensive (it might look simple in the graphic above, but that 

is just an illustrative example; it becomes much harder to do with millions of decision variables). 

 

Moving on to the main topic of this section, what do KKT conditions tell us about discrete 

optimization problems? The answer is, very little. 

- The main issue is that discrete problems are not differentiable, which is a requirement for 

computing the KKT stationarity condition. 
 

- The integrality constraints (i.e., the requirement that decision variables are integer) imply 

that most regularity conditions are not met.  
 

o Recall from section 5.4 that meeting a regularity condition is necessary for KKT 

solutions to be local optima. We typically use Slater’s condition, which in simple terms 

says that the feasible space must contain at least one ‘strictly interior’ point. Since the 

feasible space of purely integer programs is formed by isolated points, these are not 

strictly interior. 

 

For more details on the two statements above, check out this book (be aware that it is 

mathematically dense) and this Stack Exchange post. 
 

Note that we are focusing now on the original optimization problem with integer variables, not 

on its convex hull, which is in fact a relaxation of the original problem (‘relaxation’ meaning that 

the feasible space is larger than in the original problem). KKT conditions do apply to the convex 

hull, but the optimal solution of this relaxation will likely not coincide with the optimal solution 

of the original discrete problem. To better understand this, you can search for the concept of 

‘relaxation gap’, which is for example relevant in convex relaxations of the AC OPF problem 

(notably the ‘Second-Order Cone’ and the ‘Semi-Definite’ relaxations). 
 

So what can we do for computing prices in integer problems? We have already mentioned the 

convex-hull approach, sometimes applied to the Unit Commitment problem in electricity 

markets. For simpler methods, you can read about the ‘dispatchable’ and ‘restricted’ 

approaches in this paper. This is still an active area of research. 

 

 

 

 

 

 

https://badber.github.io/
https://labs.ece.uw.edu/real/Library/Teaching/05a-Unit_Commitment.pptx
https://link.springer.com/book/10.1007/978-1-4419-6123-5
https://or.stackexchange.com/questions/2789/do-the-kkt-conditions-hold-for-mixed-integer-nonlinear-problems
https://energy-markets-school.dk/wp/wp-content/2018/Presentations/DTUSummerSchool_SDPOPF.pdf
https://arxiv.org/pdf/2208.04869
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