

LEADING INNOVATIONS FOR RESILIENT & CARBON-NEUTRAL POWER SYSTEMS 25-29 JUNE, 2023, BELGRADE, SERBIA

Imperial College London

Assigning Shadow Prices to Synthetic Inertia and Frequency Reserves from RES

IEEE Trans. on Sustainable Energy, 2023

Luis Badesa, Carlos Matamala, Yujing Zhou and Goran Strbac

Motivation

Lower inertia on the road to lower emissions

Thermal generators (nuclear, gas, coal...):

Most renewables: no inertia

The risk of instability has increased!

Inertia stores kinetic energy:

this energy gave us time to contain a sudden generation-demand imbalance

Decarbonisation

How to create incentives for RES to provide ancillary services?

PowerTech | Belgrade 2023 |

25-29 JUNE, 2023, BELGRADE, SERBIA

How to answer this question?

PowerTech Belgrade 2023 LEADING INNOVATIONS FOR RESILIENT & CARBON-NEUTRAL POWER SYSTEMS 25-29 JUNE, 2023, BELGRADE, SERBIA

> Frequency ancillary services ('insurance' to prevent blackouts)

Described by **differential equations** (timescale of seconds)

Economic Optimisation (e.g. Unit Commitment)

Based on **algebraic equations** (timescale of min/hours)

Swing equation

(reduced-order model for system frequency dynamics):

$$\frac{2H}{f_0} \cdot \frac{\mathrm{d}\Delta f(t)}{\mathrm{d}t} = \mathrm{FR}(t) - P_\mathrm{L}$$

1) Solve swing equation to obtain the conditions for maintaining frequency stability

2) Compute shadow prices from

the dual variables of the frequency-security constraints

Solving the swing equation

Solving the swing equation

PowerTech Belgrade 2023 LEADING INNOVATIONS FOR RESILIENT & CARBON-NEUTRAL POWER SYSTEMS 25-29 JUNE, 2023, BELGRADE, SERBIA

 $\frac{2(H_{\text{sync}} + H_{\text{synt}})}{f_0} \cdot \frac{d\Delta f(t)}{dt} = FR(t) - P_L - P_{\text{rec}}(t)$

Simplifications

- Uniform frequency model *
- Damping is neglected **
- Ramp approximation for frequency response ***

Advantages

- Closed form solution
- Convex constraints
- All system magnitudes are decision variables (including 'P_L')

Don't like these simplifications? Then you can refer to these alternative papers:

* L. Badesa et al., "Conditions for Regional Frequency Stability in Power System Scheduling" (Parts I and II), IEEE Transactions on Power Systems, 2021

** L. Badesa et al., "Simultaneous Scheduling of Multiple Frequency Services in Stochastic Unit Commitment", IEEE Transactions on Power Systems, 2019

*** M. Paturet et al., "Stochastic Unit Commitment in Low-Inertia Grids", IEEE Transactions on Power Systems, 2020

The simplifications are **only needed when formulating the market**

Additional advantage \rightarrow Simple and clear instructions to market participants:

- Comply with a certain ramp requirement for frequency reserves
- Comply with the promised inertia constant

A **full dynamic model** would however be used **for tuning the controllers** of the different devices

The wind turbine decelerates, so it deviates from the MPPT:

 The power delivered to the grid by the turbine in the 'post-inertial' period is lower than the power in the 'pre-fault' period

Applicability of the proposed framework

Modelling tool: Frequency-secured Unit Commitment

PowerTech Belgrade 2023 LEADING INNOVATIONS FOR RESILIENT & CARBON-NEUTRAL POWER SYSTEMS 25-29 JUNE, 2023, BELGRADE, SERBIA

$$\begin{array}{ll} \min & \sum_{g \in \mathcal{G}} c_g^{\mathrm{nl}} \cdot y_g + c_g^{\mathrm{m}} \cdot P_g & \longrightarrow & \text{Minimise fuel and commitment costs} \\ \text{s.t.} & \sum_{g \in \mathcal{G}} P_g + \sum_{\forall i} \left(\mathsf{P}_i - P_i^{\mathrm{curt}} \right) = \mathsf{P}_{\mathrm{D}} & \rightarrow & \text{Load-balance constraint} \\ & y_g \in \{0, 1\} \\ & y_g \cdot \mathsf{P}_g^{\mathrm{msg}} \leq P_g \leq y_g \cdot \mathsf{P}_g^{\mathrm{max}} \\ & 0 \leq R_g \leq y_g \cdot \mathsf{R}_g^{\mathrm{max}} \\ & 0 \leq R_g \leq \mathsf{P}_g^{\mathrm{max}} - P_g \\ & 0 \leq P_i^{\mathrm{curt}} \leq \mathsf{P}_i \\ & 0 \leq R_i \leq \mathsf{R}_i^{\mathrm{max}} \\ & 0 \leq R_i \leq \mathsf{P}_i^{\mathrm{curt}} \\ & \text{Sync. inertia from all } g \\ & \text{Synt. inertia from all GFM} \\ & \text{RoCoF constraint} \\ & \text{Nadir constraint} \\ & \text{q-s-s constraint} \end{array} \right\} \quad \text{Frequency-security constraints}$$

Synthetic inertia from wind turbines with grid-forming inverters has the **same price signal as synchronous inertia**, except when the '**recovery effect**' of the wind turbine is too high

Price for synchronous inertia:

25-29 JUNE, 2023, BELGRADE,

PowerTech Belgrade 2023

Challenge: synchronous inertia is linked to binary variables (i.e., non-convexities)

 'Restricted pricing' (i.e. fixing the commitment decision of thermal units) will not work for remunerating RES providing frequency services

owerTech elgrade 2023

INE 2023 BELGRAD

• Convex hull pricing is however compatible with remunerating synthetic inertia

The synthetic inertia constant is a **control parameter**:

- Synt inertia providers could increase revenue by optimising H_{const} hourly
- Requires a communication network (investment needed)

Fixed inertia constant

Optimised inertia constant

25-29 JUNE, 2023, BELGRAD

PowerTech Belgrade 2023

- 1. The theoretical framework when using **convex hull pricing needs development** (e.g., including AC OPF constraints)
- 2. Understand **implications** of this market **on other types of stability** (e.g., voltage and transient stability)
- 3. Who should pay for ancillary services?

THANK YOU FOR YOUR ATTENTION!

Luis Badesa

Carlos Matamala

Yujing Zhou Goran Strbac

PowerTech Belgrade 2023 LEADING INNOVATIONS FOR RESILIENT & CARBON-NEUTRAL POWER SYSTEMS 25-29 JUNE, 2023, BELGRADE, SERBIA