// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see . pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; // This is a contract to emulate file-level functions. Convert to a library // after the migration to solc v0.7.1. // solhint-disable private-vars-leading-underscore // solhint-disable var-name-mixedcase contract StableMath { using FixedPoint for uint256; uint256 internal constant _MIN_AMP = 1; uint256 internal constant _MAX_AMP = 5000; uint256 internal constant _AMP_PRECISION = 1e3; uint256 internal constant _MAX_STABLE_TOKENS = 5; // Note on unchecked arithmetic: // This contract performs a large number of additions, subtractions, multiplications and divisions, often inside // loops. Since many of these operations are gas-sensitive (as they happen e.g. during a swap), it is important to // not make any unnecessary checks. We rely on a set of invariants to avoid having to use checked arithmetic (the // Math library), including: // - the number of tokens is bounded by _MAX_STABLE_TOKENS // - the amplification parameter is bounded by _MAX_AMP * _AMP_PRECISION, which fits in 23 bits // - the token balances are bounded by 2^112 (guaranteed by the Vault) times 1e18 (the maximum scaling factor), // which fits in 172 bits // // This means e.g. we can safely multiply a balance by the amplification parameter without worrying about overflow. // Computes the invariant given the current balances, using the Newton-Raphson approximation. // The amplification parameter equals: A n^(n-1) function _calculateInvariant( uint256 amplificationParameter, uint256[] memory balances, bool roundUp ) internal pure returns (uint256) { /********************************************************************************************** // invariant // // D = invariant D^(n+1) // // A = amplification coefficient A n^n S + D = A D n^n + ----------- // // S = sum of balances n^n P // // P = product of balances // // n = number of tokens // *********x************************************************************************************/ // We support rounding up or down. uint256 sum = 0; uint256 numTokens = balances.length; for (uint256 i = 0; i < numTokens; i++) { sum = sum.add(balances[i]); } if (sum == 0) { return 0; } uint256 prevInvariant = 0; uint256 invariant = sum; uint256 ampTimesTotal = amplificationParameter * numTokens; for (uint256 i = 0; i < 255; i++) { uint256 P_D = balances[0] * numTokens; for (uint256 j = 1; j < numTokens; j++) { P_D = Math.div(Math.mul(Math.mul(P_D, balances[j]), numTokens), invariant, roundUp); } prevInvariant = invariant; invariant = Math.div( Math.mul(Math.mul(numTokens, invariant), invariant).add( Math.div(Math.mul(Math.mul(ampTimesTotal, sum), P_D), _AMP_PRECISION, roundUp) ), Math.mul(numTokens + 1, invariant).add( // No need to use checked arithmetic for the amp precision, the amp is guaranteed to be at least 1 Math.div(Math.mul(ampTimesTotal - _AMP_PRECISION, P_D), _AMP_PRECISION, !roundUp) ), roundUp ); if (invariant > prevInvariant) { if (invariant - prevInvariant <= 1) { return invariant; } } else if (prevInvariant - invariant <= 1) { return invariant; } } _revert(Errors.STABLE_GET_BALANCE_DIDNT_CONVERGE); } // Computes how many tokens can be taken out of a pool if `tokenAmountIn` are sent, given the current balances. // The amplification parameter equals: A n^(n-1) function _calcOutGivenIn( uint256 amplificationParameter, uint256[] memory balances, uint256 tokenIndexIn, uint256 tokenIndexOut, uint256 tokenAmountIn ) internal pure returns (uint256) { /************************************************************************************************************** // outGivenIn token x for y - polynomial equation to solve // // ay = amount out to calculate // // by = balance token out // // y = by - ay (finalBalanceOut) // // D = invariant D D^(n+1) // // A = amplification coefficient y^2 + ( S - ---------- - D) * y - ------------- = 0 // // n = number of tokens (A * n^n) A * n^2n * P // // S = sum of final balances but y // // P = product of final balances but y // **************************************************************************************************************/ // Amount out, so we round down overall. // Given that we need to have a greater final balance out, the invariant needs to be rounded up uint256 invariant = _calculateInvariant(amplificationParameter, balances, true); balances[tokenIndexIn] = balances[tokenIndexIn].add(tokenAmountIn); uint256 finalBalanceOut = _getTokenBalanceGivenInvariantAndAllOtherBalances( amplificationParameter, balances, invariant, tokenIndexOut ); // No need to use checked arithmetic since `tokenAmountIn` was actually added to the same balance right before // calling `_getTokenBalanceGivenInvariantAndAllOtherBalances` which doesn't alter the balances array. balances[tokenIndexIn] = balances[tokenIndexIn] - tokenAmountIn; return balances[tokenIndexOut].sub(finalBalanceOut).sub(1); } // Computes how many tokens must be sent to a pool if `tokenAmountOut` are sent given the // current balances, using the Newton-Raphson approximation. // The amplification parameter equals: A n^(n-1) function _calcInGivenOut( uint256 amplificationParameter, uint256[] memory balances, uint256 tokenIndexIn, uint256 tokenIndexOut, uint256 tokenAmountOut ) internal pure returns (uint256) { /************************************************************************************************************** // inGivenOut token x for y - polynomial equation to solve // // ax = amount in to calculate // // bx = balance token in // // x = bx + ax (finalBalanceIn) // // D = invariant D D^(n+1) // // A = amplification coefficient x^2 + ( S - ---------- - D) * x - ------------- = 0 // // n = number of tokens (A * n^n) A * n^2n * P // // S = sum of final balances but x // // P = product of final balances but x // **************************************************************************************************************/ // Amount in, so we round up overall. // Given that we need to have a greater final balance in, the invariant needs to be rounded up uint256 invariant = _calculateInvariant(amplificationParameter, balances, true); balances[tokenIndexOut] = balances[tokenIndexOut].sub(tokenAmountOut); uint256 finalBalanceIn = _getTokenBalanceGivenInvariantAndAllOtherBalances( amplificationParameter, balances, invariant, tokenIndexIn ); // No need to use checked arithmetic since `tokenAmountOut` was actually subtracted from the same balance right // before calling `_getTokenBalanceGivenInvariantAndAllOtherBalances` which doesn't alter the balances array. balances[tokenIndexOut] = balances[tokenIndexOut] + tokenAmountOut; return finalBalanceIn.sub(balances[tokenIndexIn]).add(1); } function _calcBptOutGivenExactTokensIn( uint256 amp, uint256[] memory balances, uint256[] memory amountsIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // BPT out, so we round down overall. // First loop calculates the sum of all token balances, which will be used to calculate // the current weights of each token, relative to this sum uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // Calculate the weighted balance ratio without considering fees uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length); // The weighted sum of token balance ratios without fee uint256 invariantRatioWithFees = 0; for (uint256 i = 0; i < balances.length; i++) { uint256 currentWeight = balances[i].divDown(sumBalances); balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]); invariantRatioWithFees = invariantRatioWithFees.add(balanceRatiosWithFee[i].mulDown(currentWeight)); } // Second loop calculates new amounts in, taking into account the fee on the percentage excess uint256[] memory newBalances = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { uint256 amountInWithoutFee; // Check if the balance ratio is greater than the ideal ratio to charge fees or not if (balanceRatiosWithFee[i] > invariantRatioWithFees) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithFees.sub(FixedPoint.ONE)); uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% amountInWithoutFee = nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE - swapFeePercentage)); } else { amountInWithoutFee = amountsIn[i]; } newBalances[i] = balances[i].add(amountInWithoutFee); } // Get current and new invariants, taking swap fees into account uint256 currentInvariant = _calculateInvariant(amp, balances, true); uint256 newInvariant = _calculateInvariant(amp, newBalances, false); uint256 invariantRatio = newInvariant.divDown(currentInvariant); // If the invariant didn't increase for any reason, we simply don't mint BPT if (invariantRatio > FixedPoint.ONE) { return bptTotalSupply.mulDown(invariantRatio - FixedPoint.ONE); } else { return 0; } } function _calcTokenInGivenExactBptOut( uint256 amp, uint256[] memory balances, uint256 tokenIndex, uint256 bptAmountOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // Token in, so we round up overall. // Get the current invariant uint256 currentInvariant = _calculateInvariant(amp, balances, true); // Calculate new invariant uint256 newInvariant = bptTotalSupply.add(bptAmountOut).divUp(bptTotalSupply).mulUp(currentInvariant); // Calculate amount in without fee. uint256 newBalanceTokenIndex = _getTokenBalanceGivenInvariantAndAllOtherBalances( amp, balances, newInvariant, tokenIndex ); uint256 amountInWithoutFee = newBalanceTokenIndex.sub(balances[tokenIndex]); // First calculate the sum of all token balances, which will be used to calculate // the current weight of each token uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // We can now compute how much extra balance is being deposited and used in virtual swaps, and charge swap fees // accordingly. uint256 currentWeight = balances[tokenIndex].divDown(sumBalances); uint256 taxablePercentage = currentWeight.complement(); uint256 taxableAmount = amountInWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountInWithoutFee.sub(taxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% return nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE - swapFeePercentage)); } /* Flow of calculations: amountsTokenOut -> amountsOutProportional -> amountOutPercentageExcess -> amountOutBeforeFee -> newInvariant -> amountBPTIn */ function _calcBptInGivenExactTokensOut( uint256 amp, uint256[] memory balances, uint256[] memory amountsOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // BPT in, so we round up overall. // First loop calculates the sum of all token balances, which will be used to calculate // the current weights of each token relative to this sum uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // Calculate the weighted balance ratio without considering fees uint256[] memory balanceRatiosWithoutFee = new uint256[](amountsOut.length); uint256 invariantRatioWithoutFees = 0; for (uint256 i = 0; i < balances.length; i++) { uint256 currentWeight = balances[i].divUp(sumBalances); balanceRatiosWithoutFee[i] = balances[i].sub(amountsOut[i]).divUp(balances[i]); invariantRatioWithoutFees = invariantRatioWithoutFees.add(balanceRatiosWithoutFee[i].mulUp(currentWeight)); } // Second loop calculates new amounts in, taking into account the fee on the percentage excess uint256[] memory newBalances = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it to // 'token out'. This results in slightly larger price impact. uint256 amountOutWithFee; if (invariantRatioWithoutFees > balanceRatiosWithoutFee[i]) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithoutFees.complement()); uint256 taxableAmount = amountsOut[i].sub(nonTaxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% amountOutWithFee = nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE - swapFeePercentage)); } else { amountOutWithFee = amountsOut[i]; } newBalances[i] = balances[i].sub(amountOutWithFee); } // Get current and new invariants, taking into account swap fees uint256 currentInvariant = _calculateInvariant(amp, balances, true); uint256 newInvariant = _calculateInvariant(amp, newBalances, false); uint256 invariantRatio = newInvariant.divDown(currentInvariant); // return amountBPTIn return bptTotalSupply.mulUp(invariantRatio.complement()); } function _calcTokenOutGivenExactBptIn( uint256 amp, uint256[] memory balances, uint256 tokenIndex, uint256 bptAmountIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // Token out, so we round down overall. // Get the current and new invariants. Since we need a bigger new invariant, we round the current one up. uint256 currentInvariant = _calculateInvariant(amp, balances, true); uint256 newInvariant = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply).mulUp(currentInvariant); // Calculate amount out without fee uint256 newBalanceTokenIndex = _getTokenBalanceGivenInvariantAndAllOtherBalances( amp, balances, newInvariant, tokenIndex ); uint256 amountOutWithoutFee = balances[tokenIndex].sub(newBalanceTokenIndex); // First calculate the sum of all token balances, which will be used to calculate // the current weight of each token uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result // in swap fees. uint256 currentWeight = balances[tokenIndex].divDown(sumBalances); uint256 taxablePercentage = currentWeight.complement(); // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it // to 'token out'. This results in slightly larger price impact. Fees are rounded up. uint256 taxableAmount = amountOutWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% return nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE - swapFeePercentage)); } function _calcTokensOutGivenExactBptIn( uint256[] memory balances, uint256 bptAmountIn, uint256 bptTotalSupply ) internal pure returns (uint256[] memory) { /********************************************************************************************** // exactBPTInForTokensOut // // (per token) // // aO = tokenAmountOut / bptIn \ // // b = tokenBalance a0 = b * | --------------------- | // // bptIn = bptAmountIn \ bptTotalSupply / // // bpt = bptTotalSupply // **********************************************************************************************/ // Since we're computing an amount out, we round down overall. This means rounding down on both the // multiplication and division. uint256 bptRatio = bptAmountIn.divDown(bptTotalSupply); uint256[] memory amountsOut = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { amountsOut[i] = balances[i].mulDown(bptRatio); } return amountsOut; } // The amplification parameter equals: A n^(n-1) function _calcDueTokenProtocolSwapFeeAmount( uint256 amplificationParameter, uint256[] memory balances, uint256 lastInvariant, uint256 tokenIndex, uint256 protocolSwapFeePercentage ) internal pure returns (uint256) { /************************************************************************************************************** // oneTokenSwapFee - polynomial equation to solve // // af = fee amount to calculate in one token // // bf = balance of fee token // // f = bf - af (finalBalanceFeeToken) // // D = old invariant D D^(n+1) // // A = amplification coefficient f^2 + ( S - ---------- - D) * f - ------------- = 0 // // n = number of tokens (A * n^n) A * n^2n * P // // S = sum of final balances but f // // P = product of final balances but f // **************************************************************************************************************/ // Protocol swap fee amount, so we round down overall. uint256 finalBalanceFeeToken = _getTokenBalanceGivenInvariantAndAllOtherBalances( amplificationParameter, balances, lastInvariant, tokenIndex ); if (balances[tokenIndex] <= finalBalanceFeeToken) { // This shouldn't happen outside of rounding errors, but have this safeguard nonetheless to prevent the Pool // from entering a locked state in which joins and exits revert while computing accumulated swap fees. return 0; } // Result is rounded down uint256 accumulatedTokenSwapFees = balances[tokenIndex] - finalBalanceFeeToken; return accumulatedTokenSwapFees.mulDown(protocolSwapFeePercentage).divDown(FixedPoint.ONE); } // Private functions // This function calculates the balance of a given token (tokenIndex) // given all the other balances and the invariant function _getTokenBalanceGivenInvariantAndAllOtherBalances( uint256 amplificationParameter, uint256[] memory balances, uint256 invariant, uint256 tokenIndex ) internal pure returns (uint256) { // Rounds result up overall uint256 ampTimesTotal = amplificationParameter * balances.length; uint256 sum = balances[0]; uint256 P_D = balances[0] * balances.length; for (uint256 j = 1; j < balances.length; j++) { P_D = Math.divDown(Math.mul(Math.mul(P_D, balances[j]), balances.length), invariant); sum = sum.add(balances[j]); } // No need to use safe math, based on the loop above `sum` is greater than or equal to `balances[tokenIndex]` sum = sum - balances[tokenIndex]; uint256 inv2 = Math.mul(invariant, invariant); // We remove the balance fromm c by multiplying it uint256 c = Math.mul( Math.mul(Math.divUp(inv2, Math.mul(ampTimesTotal, P_D)), _AMP_PRECISION), balances[tokenIndex] ); uint256 b = sum.add(Math.mul(Math.divDown(invariant, ampTimesTotal), _AMP_PRECISION)); // We iterate to find the balance uint256 prevTokenBalance = 0; // We multiply the first iteration outside the loop with the invariant to set the value of the // initial approximation. uint256 tokenBalance = Math.divUp(inv2.add(c), invariant.add(b)); for (uint256 i = 0; i < 255; i++) { prevTokenBalance = tokenBalance; tokenBalance = Math.divUp( Math.mul(tokenBalance, tokenBalance).add(c), Math.mul(tokenBalance, 2).add(b).sub(invariant) ); if (tokenBalance > prevTokenBalance) { if (tokenBalance - prevTokenBalance <= 1) { return tokenBalance; } } else if (prevTokenBalance - tokenBalance <= 1) { return tokenBalance; } } _revert(Errors.STABLE_GET_BALANCE_DIDNT_CONVERGE); } }